1
|
Malaie S, Pourakbar L, Siavash Moghaddam S, Xiao J, Khezrnejad N. Phytoremediation of mercury-contaminated Soil by Vigna radiata L. plant in companion with bacterial and fungal biofertilizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55549-55561. [PMID: 39231843 DOI: 10.1007/s11356-024-34910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mercury is one of the most toxic pollutants that has drawn the attention of scientists. This study investigates the phytoremediation capabilities of Vigna radiata L. in conjunction with microbial biostimulators. The inoculated seeds were cultivated in soil under controlled greenhouse conditions. The concentration of Hg, biomass, and photosynthetic pigments was investigated under amendment factor including EDTA, bacterial, fungal (Mycorrhiza and Trichoderma), biochar, and combined levels, as well as the pollution factor with three levels of HgCl2 as two factorial experiments. Results showed that Plant Growth-Promoting Microorganisms (PGPMs) influenced mercury absorption and distribution in different plant organs. Aside from biochar, all stimulators increased the plant's Hg concentration. Although EDTA greatly increased mercury accumulation in plants, it reduced biomass. Fungal and bacterial treatments increased total mercury in the plant but decreased its concentration in the leaves. The combination of bacteria and fungi resulted in the highest mercury absorption, while the biochar in combination with PGPMs produced the greatest biomass. Analysis of mercury concentration in seeds indicated that V radiata effectively prevented its contamination in seeds. The results disclosed that microbial combinations of bacteria and fungi could increase the plant's potential to cope with heavy metal pollution. This improvement is due to the different roles of these two organisms, like nitrogen fixation by bacteria and phosphorus absorption by mycorrhiza fungi. Moreover, biochar as a soil amendment and microorganism carrier was noticed. Finally, considering the plant's inherent capacity to stabilize mercury in the roots, phytostabilization with the benefit of combined levels of biochar and microorganisms can be introduced as the best approach.
Collapse
Affiliation(s)
- Shirwan Malaie
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Nabi Khezrnejad
- Department of Plant Protection, Mahabad Branch, Islamic Azad University, Mahabad, Iran
| |
Collapse
|
2
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
3
|
Alhashimi A, Abdelkareem A, Amin MA, Nowwar AI, Fouda A, Ismail MA, Mustafa AE, Alharbi M, Elkelish A, Sayed AM, Said HA. Eco-friendly approach to decrease the harmful effects of untreated wastewater on growth, yield, biochemical constituents, and heavy metal contents of carrot (Daucus carota L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14043-14058. [PMID: 38273079 DOI: 10.1007/s11356-024-31869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.
Collapse
Affiliation(s)
- Abdulrahman Alhashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ayman Abdelkareem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abdelatti I Nowwar
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Ismail
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abeer E Mustafa
- Department of Botany and Microbiology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Maha Alharbi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Abdelrahman M Sayed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Hanan A Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
4
|
Cong W, Li N, Miao Y, Huang Y, Zhao W, Kang Y, Zhang B, Wang J, Zhang J, Lv Y, Li J, Zhang J, Gong L, Liu B, Ou X. DNA hypomethylation-associated transcriptional rewiring enables resistance to heavy metal mercury (Hg) stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132649. [PMID: 37783144 DOI: 10.1016/j.jhazmat.2023.132649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/17/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Mercury (Hg) is an important hazardous pollutant that can cause phytotoxicity and harm human health through the food chain. Recently, rice (Oryza sativa L.) has been confirmed as a potential Hg bioaccumulator. Although the genetic and molecular mechanisms involved in heavy metal absorption and translocation in rice have been investigated for several heavy metals, Hg is largely neglected. Here, we analyzed one Hg-resistant line in rice (RHg) derived from a DNA methyltransferase-coding gene, OsMET1-2 heterozygous mutant. Compared with its isogenic wild-type (WT), RHg exhibited a significantly higher survival rate after Hg treatment, ameliorated oxidative damage, and lower Hg uptake and translocation. RNAseq-based comparative transcriptomic analysis identified 34 potential Hg resistance-related genes involved in phytohormone signaling, abiotic stress response, and zinc (Zn) transport. Importantly, the elevated expression of Hg resistance-related genes in RHg was highly correlated with DNA hypomethylation in their putative promoter regions. An ionomic analysis unraveled a negative correlation between Zn and Hg in roots. Moreover, Hg concentration was effectively decreased by exogenous application of Zn in Hg-stressed rice plants. Our findings indicate an epigenetic basis of Hg resistance and reveal an antagonistic relationship between Hg and Zn, providing new hints towards Hg detoxification in plants. ENVIRONMENTAL IMPLICATION: Mercury (Hg) as an important hazardous pollutant adversely impacts the environment and jeopardizes human health, due to its chronicity, transferability, persistence, bioaccumulation and toxicity. In this paper, we identified 34 potential genes that may significantly contribute to Hg resistance in rice. We find the expression of Hg resistance-related genes was highly correlated with DNA hypomethylation in their putative promoter regions. Our results also revealed an antagonistic relationship between Hg and Zinc (Zn), providing new hints towards Hg detoxification in plants. Together, findings of this study extend our current understanding of Hg tolerance in rice and are informative to breed seed non-accumulating rice cultivars.
Collapse
Affiliation(s)
- Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yiling Miao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Yuxi Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Wenhao Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Kang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jiayu Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yinhe Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jiamo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
5
|
Fu X, Lv CY, Zhang YY, Ai XZ, Bi HG. Comparative transcriptome analysis of grafting to improve chilling tolerance of cucumber. PROTOPLASMA 2023; 260:1349-1364. [PMID: 36949344 DOI: 10.1007/s00709-023-01854-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Grafting with pumpkin as rootstock could improve chilling tolerance of cucumber; however, the underlying mechanism of grafting-induced chilling tolerance remains unclear. Here, we analyzed the difference of physiological and transcriptional level between own-rooted (Cs/Cs) and hetero-grafted (Cs/Cm) cucumber seedlings under chilling stress. The results showed that grafting with pumpkin significantly alleviated the chilling injury as evidenced by slightly symptoms, lower contents of electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2-) and higher relative water content in Cs/Cm seedlings compared with Cs/Cs seedlings under chilling stress. RNA-seq data showed that grafting induced more DGEs at 8 °C/5 °C compared with 25 °C/18 °C. In accordance with the increase of the activities of antioxidant enzymes (SOD, POD, CAT, APX), grafting upregulated the expression of the regulated redox-related genes such as GST, SOD, and APX. Moreover, grafting increased the expression of genes participated in central carbon metabolism to promote the conversion and decomposition of sugar, which provided more energy for the growth of Cs/Cm seedlings under chilling stress. In addition, grafting regulated the genes involved in the intracellular signal transduction pathways such as calcium signal (CAML, CML, and CDPK) and inositol phospholipid signal (PLC), as well as changed the gene expression of plant hormone signal transduction pathways (ARF, GAI, ABF, and PYR/PYL). These results provide a physiological and transcriptional basis for the molecular mechanism of grafting-induced chilling tolerance of cucumber seedlings.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Yu Lv
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yan-Yan Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Tai'an Academy of Agricultural Sciences, Tai'an, 271000, China
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
6
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
7
|
The Early Oxidative Stress Induced by Mercury and Cadmium Is Modulated by Ethylene in Medicago sativa Seedlings. Antioxidants (Basel) 2023; 12:antiox12030551. [PMID: 36978799 PMCID: PMC10045221 DOI: 10.3390/antiox12030551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cadmium (Cd) and mercury (Hg) are ubiquitous soil pollutants that promote the accumulation of reactive oxygen species, causing oxidative stress. Tolerance depends on signalling processes that activate different defence barriers, such as accumulation of small heat sock proteins (sHSPs), activation of antioxidant enzymes, and the synthesis of phytochelatins (PCs) from the fundamental antioxidant peptide glutathione (GSH), which is probably modulated by ethylene. We studied the early responses of alfalfa seedlings after short exposure (3, 6, and 24 h) to moderate to severe concentration of Cd and Hg (ranging from 3 to 30 μM), to characterize in detail several oxidative stress parameters and biothiol (i.e., GSH and PCs) accumulation, in combination with the ethylene signalling blocker 1-methylcyclopropene (1-MCP). Most changes occurred in roots of alfalfa, with strong induction of cellular oxidative stress, H2O2 generation, and a quick accumulation of sHSPs 17.6 and 17.7. Mercury caused the specific inhibition of glutathione reductase activity, while both metals led to the accumulation of PCs. These responses were attenuated in seedlings incubated with 1-MCP. Interestingly, 1-MCP also decreased the amount of PCs and homophytochelatins generated under metal stress, implying that the overall early response to metals was controlled at least partially by ethylene.
Collapse
|
8
|
Pourjalali Z, Shahpiri A, Golkar P. Barley metallothionein isoforms, MT2b2 and MT4, differentially respond to photohormones in barley aleurone layer and their recombinant forms show different affinity for binding to zinc and cadmium. Biometals 2023; 36:3-18. [PMID: 36309886 DOI: 10.1007/s10534-022-00452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Metallothioneins (MTs) are metal-binding proteins that have important roles in the homeostasis of heavy metals. In this study, the two MT genes was studied in response to phytohormones using the barley aleurone layer as a kind of model system. The aleurone layer was isolated from barley embryo-less half grains and was incubated for 24 h with different phytohormones. Based on the results the genes encoding HvMT2b2 and HvMT4 were down-regulated through gibberellic acid (GA), while they were and up-regulated through salicylic acid (SA). Despite this, these two genes were differentially expressed to other hormones. Furthermore, the proteins HvMT2b2 and HvMT4 were heterologous expressed as GST-fusion proteins in E. coli. The HvMT4 and HvMT2b2 heterologous expression in E. coli gives rise to 10- and 3-fold improvements in the accumulation capacity for Zn2+, respectively. Whereas the transgenic E. coli strain that expresses HvMT2b2 could accumulate Cd2+ three-fold higher than control. The expression of HvMT4 did not affect the accumulation of Cd2+. HvMT4 which is known as seed-specific isoform seems to be able to bind to Zn2+ with good affinity and cannot bind Cd2+. In comparison, HvMT2b2 was able to bind both Zn2+ and Cd2+. Therefore HvMT4 could serve a noteworthy role in zinc storage in barley seeds. The expression of HvMT4 is induced by SA 30-fold, concerning the untreated aleurone layer. Such results could provide good insights for the assessment of the effects of phytohormones in the molecular mechanism involved in essential metal storage in cereal seeds.
Collapse
Affiliation(s)
- Zahra Pourjalali
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
9
|
Hasan MS, Karmakar AK. Removal of car battery heavy metals from wastewater by activated carbons: a brief review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73675-73717. [PMID: 36085225 DOI: 10.1007/s11356-022-22715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Spent automobile batteries are one of the most significant secondary sources of harmful heavy metals for the environment. After being incorporated into the aquatic ecosystems, these metals disseminate to various plants, microorganisms, and the human body and cause multiple adverse effects. Activated carbons (ACs) have long been used as an effective adsorbent for different heavy metals in wastewater treatment processes. Although numerous research works have been published to date on this topic, they are scattered in the literature. In this review, we have assembled these works and provided an extensive overview of the application of ACs for treating spent car battery heavy metals (CBHMs) from aquatic systems. The preparation of ACs from different precursor materials, their application in the adsorption of CBHMs, the adsorption mechanism, kinetics, adsorption isotherms and various parameters that may affect the adsorption processes have been discussed in detail. A brief comparative analysis of the adsorption performances of ACs prepared from different precursor materials is also provided. Finally, recommendations for future research works are also offered.
Collapse
Affiliation(s)
- Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
10
|
González-Reguero D, Robas-Mora M, Probanza A, Jiménez PA. Evaluation of the oxidative stress alleviation in Lupinus albus var. orden Dorado by the inoculation of four plant growth-promoting bacteria and their mixtures in mercury-polluted soils. Front Microbiol 2022; 13:907557. [PMID: 36246290 PMCID: PMC9556840 DOI: 10.3389/fmicb.2022.907557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) pollution is a serious environmental and public health problem. Hg has the ability to biomagnify through the trophic chain and generate various pathologies in humans. The exposure of plants to Hg affects normal plant growth and its stress levels, producing oxidative cell damage. Root inoculation with plant growth-promoting bacteria (PGPB) can help reduce the absorption of Hg, minimizing the harmful effects of this metal in the plant. This study evaluates the phytoprotective capacity of four bacterial strains selected for their PGPB capabilities, quantified by the calculation of the biomercuroremediator suitability index (IIBMR), and their consortia, in the Lupinus albus var. orden Dorado. The oxidative stress modulating capacity in the inoculated plant was analyzed by measuring the activity of the enzymes catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). In turn, the phytoprotective capacity of these PGPBs against the bioaccumulation of Hg was studied in plants grown in soils highly contaminated by Hg vs. soils in the absence of Hg contamination. The results of the oxidative stress alleviation and Hg bioaccumulation were compared with the biometric data of Lupinus albus var. orden Dorado previously obtained under the same soil conditions of Hg concentration. The results show that the biological behavior of plants (biometrics, bioaccumulation of Hg, and activity of regulatory enzymes of reactive oxygen species [ROS]) is significantly improved by the inoculation of strains B1 (Pseudomonas moraviensis) and B2 (Pseudomonas baetica), as well as their corresponding consortium (CS5). In light of the conclusions of this work, the use of these strains, as well as their consortium, is postulated as good candidates for their subsequent use in phytostimulation and phytoprotection processes in areas contaminated with Hg.
Collapse
|
11
|
Aboryia MS, El-Dengawy ERFA, El-Banna MF, El-Gobba MH, Kasem MM, Hegazy AA, Hassan HM, El-Yazied AA, El-Gawad HGA, Al-Qahtani SM, Al-Harbi NA, Dessoky ES, Ismail IA, El-Mogy MM, EL-Boraie ESA. Anatomical and Physiological Performance of Jojoba Treated with Proline under Salinity Stress Condition. HORTICULTURAE 2022; 8:716. [DOI: 10.3390/horticulturae8080716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A field trial study was conducted for two consecutive seasons 2020 and 2021 in approximately 8-month-old jojoba plants to evaluate the physiological responses following salt treatment and the role of proline as a foliar application to enhance jojoba tolerance to salinity stress. Jojoba plants were irrigated once a week for four months with diluted seawater in concentrations of 5000, 10,000, and 15,000 ppm and tap water (control). Anti-stress proline was applied four times throughout the experiment, the first at the beginning of the experiment and another three times at 30-day intervals, at concentrations of 0, 300, and 450 ppm. The effect of proline treatments on jojoba plant behavior includes growth vegetative characteristics, namely plant height increase percentage (PHIP), shoot number increase percentage (NSIP), stem diameter increase percentage (SDIP), number of leaves, leaf thickness, leaf area, and fresh and dry weights of leaves, and chemical characteristics, namely chlorophyll a and b, total chlorophyll, carotenoids, leaf mineral contents (N, P, K, Na, and Cl), total phenolic content (TPC), and proline concentration. Moreover, the impacts of proline on hydrogen peroxide (H2O2), superoxide anion (O2•−), malondialdehyde (MDA), and ion leakage (IL) under salinity stress were investigated. Briefly, proline at 450 ppm enhanced all studied growth and physiological characteristics and promoted the antioxidant system of jojoba plants compared with the control and other treatments. The anatomical structure of leaves was also examined, and favorable variations in the anatomical structure were detected in the stressed and proline-treated plants. Exogenous application of proline enhanced most of this anatomical characteristic of jojoba leaf under saline stress. In conclusion, proline as a foliar application at 450 ppm under salinity stress of 10,000 ppm enhances jojoba tolerance to salinity stress by modifying the physicochemical and morphological characteristics of jojoba plants.
Collapse
|
12
|
Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert. Sci Rep 2022; 12:11717. [PMID: 35810254 PMCID: PMC9271083 DOI: 10.1038/s41598-022-15822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Sewage and industrial waste discharges have been found to have a deleterious effect on plant growth and environmental safety through the accumulation of trace metal mercury (Hg) in soils. Although the effects of Hg on vascular plants have been reported in terms of enzyme activity, oxidative damage and physiology, few studies have been done on non-vascular plants. A simulation experiment including 7 Hg concentrations (0, 10, 20, 30, 40, 50, 75 µM) was conducted to investigate the influence of Hg stress on ultrastructure and physiological properties of biocrust moss Syntrichia. caninervis across 7 consecutive days. The results showed that the lowest lethal concentration of S. caninervis was 30 µM Hg. The mortality rate of the plants increased significantly with Hg concentrations. The ultrastructure did not change significantly at Hg concentration ≤ 20 µM, while exceeding which, cell walls began to separate, nuclei began to blur, and chloroplasts began to expand. The soluble sugars (SS), peroxidase (POD), and superoxide dismutase (SOD) activities increased initially and then decreased with the increase of concentration in the time gradient, with the largest values at 20 µM. The contents of malondialdehyde (MDA) and proline (Pro) increased with the increase of Hg concentration, both reached peak value at 50 µM. However, chlorophyll (Chl) contents continued to decrease along both the concentration and time gradients. Pearson correlation and principal component analysis showed that two principal components (PC1 and PC2) explained 73.9% of the variance in plant adaptation to Hg stress. SOD, POD, Chl, SS, and Pro all responded well to Hg in S. caninervis. Our study showed that Hg stress caused changes in ultrastructure and physiological metabolism of S. caninervis. 20 µM was the maximum concentration of Hg that biocrust moss S. caninervis can tolerate. S. caninervis mainly adopted two adaptation strategies related to exclusion and accumulation to reduce Hg stress.
Collapse
|
13
|
Singh S, Kumar V, Gupta P, Ray M. The trafficking of Hg II by alleviating its toxicity via Citrobacter sp. IITISM25 in batch and pilot-scale investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128711. [PMID: 35395524 DOI: 10.1016/j.jhazmat.2022.128711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The study aims to see how effective the Citrobacter species strain is in removing HgII under stressful conditions. For this, a response surface methodology was chosen to optimized pH, temperature, and biomass for effective biotransformation of HgII. The optimized value for pH, temperature, and biomass were 6.5, 30 °C, and 2 mg/l with 89% HgII removal potential. TEM-EDX showed accumulated mercury onto the bacterial surface. Pot study was conducted to check the potentiality of this strain in alleviating the toxicity in Solanum lycopersicum L. under different concentrations of mercury. The enhancement in antioxidative enzymes, as well as mercury accumulation, was observed in test plants inoculated with IITISM25. Obtained result showed a greater accumulation of mercury in the root system than that of the shoot system due to poor translocation. Moreover, mercury reductase enzyme synthesis was also boosted by the addition of β-mercaptoethanol and L-cysteine. The optimized condition for maximum enzyme synthesis was at pH 7.5 and temperature 30 °C with Km = 48.07 μmol and Vmax = 9.75 μmol/min. Thus, we can say that Citrobacter species strain IITISM25 can be effectively applied in remediation of HgII stress condition as well as promotion of Solanum lycopersicum L growth under stress conditions as a promising host.
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| | - Madhurya Ray
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| |
Collapse
|
14
|
Oliveira VH, Coelho JP, Borgogni R, Pereira ME, Figueira E. Metal(oid)s accumulation (Hg and As) and their biochemical effects in Halimione portulacoides (Ria de Aveiro, Portugal). MARINE POLLUTION BULLETIN 2022; 180:113804. [PMID: 35665648 DOI: 10.1016/j.marpolbul.2022.113804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
For decades, mercury (Hg) and arsenic (As) were discharged into the Aveiro Lagoon. This study was designed to assess the natural attenuation process evolution by: (1) evaluating Hg and As concentration in sediments and in Halimione portulacoides, and assess the long-term evolution of a historically contaminated salt-marsh system; (2) evaluating the stress levels imposed by Hg and As, and the mechanisms triggered to squash oxidative damage. Concentrations of Hg and As in sediments varied considerably between sampling locations. H. portulacoides did not bioconcentrate Hg and As, restricted translocation to aerial biomass and immobilized contaminants in cell walls. The ions that reached the cytosol induced oxidative stress, restrained by antioxidant mechanisms, especially SOD and CAT activity. Results show that after 25 years of natural attenuation, contamination decreased in the sediment, but remains above non-contaminated systems and continues to induce toxicity in the saltmarsh halophyte community, evidencing the persistent effect of Hg and As contamination.
Collapse
Affiliation(s)
- Vitor H Oliveira
- CESAM - Centre for Environmental and Marine Studies, Biology Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - J P Coelho
- CESAM - Centre for Environmental and Marine Studies, Biology Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - R Borgogni
- Department of Biology, Polytechnic School and Of Basic Sciences, Didactic Area of Mathematical, Physical and Natural Sciences, University of Naples Federico II, Italy
| | - M E Pereira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - E Figueira
- CESAM - Centre for Environmental and Marine Studies, Biology Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 2022; 204:410. [PMID: 35729415 DOI: 10.1007/s00203-022-02978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.
Collapse
|
16
|
Çavuşoğlu D, Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. Mitigative effect of green tea extract against mercury(II) chloride toxicity in Allium cepa L. model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27862-27874. [PMID: 34981388 PMCID: PMC8723811 DOI: 10.1007/s11356-021-17781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/23/2021] [Indexed: 05/06/2023]
Abstract
Mercury (Hg) is a highly toxic heavy metal for all organisms. In the present study, the mitigative role of 190 mg/L and 380 mg/L doses of green tea extract (GTex) against mercury(II) chloride (HgCI2)-induced toxicity was evaluated in Allium cepa L. For this aim, selected physiological, genotoxicity, and biochemical parameters as well as meristematic cell injuries in the roots were investigated. Ratios of catechin and caffeine in GTex were determined by HPLC analysis. Also, free radical scavenging activity of GTex was tested against superoxide and hydrogen peroxide radicals. As a result of HgCI2 application, germination percentage, root elongation, weight gain, and mitotic index (MI) declined, while the frequency of micronucleus (MN), chromosomal abnormalities (CAs), and meristematic cell damages increased. HgCI2 administration also led to a significant increase in malondialdehyde content, superoxide dismutase, and catalase activities which are signs of oxidative stress. On contrary, applications of GTex together with HgCI2 reduced HgCI2-induced adverse effects in all parameters in a dose-dependent manner. Antioxidant components in GTex were listed as caffeine, epigallocatechin gallate, epigallocatechin, epicatechin gallate, and catechin according to their abundance. GTex exhibited a strong scavenging ability in the presence of superoxide and hydrogen peroxide radicals. The present study revealed the strong protective capacity of GTex against HgCI2-induced toxicity in A. cepa owing to its high antioxidant content with a multifaceted perspective. With this study, a reliable starting point was established for future studies investigating the more common and diverse use of GTex against toxic substances.
Collapse
Affiliation(s)
- Dilek Çavuşoğlu
- Department of Plant and Animal Production, Atabey Vocational High School, Isparta University of Applied Sciences, Isparta, Turkey
| | - Oksal Macar
- Department of Food Technology, Sebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Sebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
17
|
Effects of the Chloroplast Fructose-1,6-Bisphosphate Aldolase Gene on Growth and Low-Temperature Tolerance of Tomato. Int J Mol Sci 2022; 23:ijms23020728. [PMID: 35054921 PMCID: PMC8775715 DOI: 10.3390/ijms23020728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important greenhouse vegetables, with a large cultivated area across the world. However, in northern China, tomato plants often suffer from low-temperature stress in solar greenhouse cultivation, which affects plant growth and development and results in economic losses. We previously found that a chloroplast aldolase gene in tomato, SlFBA4, plays an important role in the Calvin-Benson cycle (CBC), and its expression level and activity can be significantly altered when subjected to low-temperature stress. To further study the function of SlFBA4 in the photosynthesis and chilling tolerance of tomato, we obtained transgenic tomato plants by the over-expression and RNA interference (RNAi) of SlFBA4. The over-expression of SlFBA4 led to higher fructose-1,6-bisphosphate aldolase activity, net photosynthetic rate (Pn) and activity of other enzymes in the CBC than wild type. Opposite results were observed in the RNAi lines. Moreover, an increase in thousand-seed weight, plant height, stem diameter and germination rate in optimal and sub-optimal temperatures was observed in the over-expression lines, while opposite effects were observed in the RNAi lines. Furthermore, over-expression of SlFBA4 increased Pn and enzyme activity and decreased malonaldehyde (MDA) content under chilling conditions. On the other hand, Pn and MDA content were more severely influenced by chilling stress in the RNAi lines. These results indicate that SlFBA4 plays an important role in tomato growth and tolerance to chilling stress.
Collapse
|
18
|
Kim YO, Gwon Y, Kim J. Exogenous Cysteine Improves Mercury Uptake and Tolerance in Arabidopsis by Regulating the Expression of Heavy Metal Chelators and Antioxidative Enzymes. FRONTIERS IN PLANT SCIENCE 2022; 13:898247. [PMID: 35755654 PMCID: PMC9231614 DOI: 10.3389/fpls.2022.898247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 05/04/2023]
Abstract
Cysteine (Cys) is an essential amino acid component of the major heavy metal chelators, such as glutathione (GSH), metallothioneins (MTs), and phytochelatins (PCs), which are involved in the pathways of mercury (Hg) tolerance in plants. However, the mechanism through which Cys facilitates Hg tolerance in plants remains largely unclear. In this study, we investigated the effects of exogenous Cys on Hg uptake in the seedlings, roots, and shoots of Arabidopsis throughout 6 and 36 h of Hg exposure and on the regulation of Hg detoxification by heavy metal chelators and antioxidative enzymes. The results showed that exogenous Cys significantly improved Hg tolerance during the germination and seedling growth stages in Arabidopsis. Exogenous Cys significantly promoted Hg uptake in Arabidopsis roots by upregulating the expression of the Cys transporter gene AtLHT1, resulting in increased Hg accumulation in the roots and seedlings. In Arabidopsis seedlings, exogenous Cys further increased the Hg-induced glutathione synthase (GS1 and GS2) transcript levels, and the Hg and Hg + Cys treatments greatly upregulated MT3 expression after 36 h exposure. In the roots, MT3 was also significantly upregulated by treatment of 36 h of Hg or Hg + Cys. Notably, in the shoots, MT2a expression was rapidly induced (10-fold) in Hg presence and further markedly increased (20-fold) by exogenous Cys. Moreover, in the seedlings, exogenous Cys upregulated the transcripts of all superoxide dismutase (CuSOD1, CuSOD2, MnSOD1, FeSOD1, FeSOD2, and FeSOD3) within 6 h and subsequently increased the Hg-induced GR1 and GR2 transcript levels at 36 h, all of which could eliminate the promotion of reactive oxygen species production and cell damage caused by Hg. Additionally, exogenous Cys upregulated all the antioxidative genes rapidly in the roots and subsequently increased the expression of CuSOD1, CuSOD2, and MnSOD1 in the shoots. These results indicate that exogenous Cys regulates the transcript levels of heavy metal chelators and antioxidative enzymes differently in a time- and organ-specific manner under Hg stress. Taken together, our study elucidates the positive functional roles of exogenous Cys in the Hg uptake and tolerance mechanisms of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, South Korea
- *Correspondence: Yeon-Ok Kim, ;
| | - Yonghyun Gwon
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, South Korea
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, South Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Jangho Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, South Korea
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, South Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
- Jangho Kim,
| |
Collapse
|
19
|
Feng Q, Yang S, Wang Y, Lu L, Sun M, He C, Wang J, Li Y, Yu X, Li Q, Yan Y. Physiological and Molecular Mechanisms of ABA and CaCl 2 Regulating Chilling Tolerance of Cucumber Seedlings. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122746. [PMID: 34961219 PMCID: PMC8705041 DOI: 10.3390/plants10122746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 05/14/2023]
Abstract
Cold stress is a limiting factor to the growth and development of cucumber in the temperate regions; hence, improving the crop's tolerance to low temperature is highly pertinent. The regulation of low-temperature tolerance with exogenous ABA and CaCl2 was investigated in the cucumber variety Zhongnong 26. Under low-temperature conditions (day/night 12/12 h at 5 °C), seedlings were sprayed with a single application of ABA, CaCl2, or a combination of both. Our analysis included a calculated chilling injury index, malondialdehyde (MDA) content, relative electrical conductivity, antioxidant enzyme activities (SOD, CAT, and APX), leaf tissue structure, and expression of cold-related genes by transcriptome sequencing. Compared with the water control treatment, the combined ABA + CaCl2 treatment significantly improved the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of the seedlings by 34.47%, 59.66%, and 118.80%, respectively (p < 0.05), and significantly reduced the chilling injury index, relative electrical conductivity, and MDA content, by 89.47%, 62.17%, and 44.55%, respectively (p < 0.05). Transcriptome analysis showed that compared with the water control treatment, 3442 genes were differentially expressed for the combined treatment, 3921 for the ABA treatment, and 1333 for the CaCl2 treatment. KEGG enrichment analysis for both the ABA and combined ABA + CaCl2 treatments (as compared to the water control) showed that it mainly involves genes of the photosynthesis pathway and metabolic pathways. Differentially expressed genes following the CaCl2 treatment were mainly involved in plant hormone signal transduction, plant-pathogen interaction, MAPK signaling pathway-plant, phenylpropanoid biosynthesis, and circadian rhythm-plant. qRT-PCR analysis and RNA-seq results showed a consistent trend in variation of differential gene expression. Overall, this study demonstrated that although all three treatments provided some protection, the combined treatment of ABA (35 mg/L) with CaCl2 (500 mg/L) afforded the best results. A combined ABA + CaCl2 treatment can effectively alleviate cold-stress damage to cucumber seedlings by inducing physiological changes in photosynthesis and metabolism, and provides a theoretical basis and technical support for the application of exogenous ABA and CaCl2 for low-temperature protection of cucumber seedlings.
Collapse
Affiliation(s)
- Qian Feng
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China;
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China;
| | - Yijia Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Lu Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Mintao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Chaoxing He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Jun Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Yansu Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Xianchang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China;
- Correspondence: (Q.L.); (Y.Y.); Tel.: +86-0312-7528334 (Q.L.); +86-010-82109507 (Y.Y.)
| | - Yan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.L.); (M.S.); (C.H.); (J.W.); (Y.L.); (X.Y.)
- Correspondence: (Q.L.); (Y.Y.); Tel.: +86-0312-7528334 (Q.L.); +86-010-82109507 (Y.Y.)
| |
Collapse
|
20
|
Feng S, Shen Y, Xu H, Dong J, Chen K, Xiang Y, Jiang X, Yao C, Lu T, Huan W, Wang H. RNA-Seq Identification of Cd Responsive Transporters Provides Insights into the Association of Oxidation Resistance and Cd Accumulation in Cucumis sativus L. Antioxidants (Basel) 2021; 10:antiox10121973. [PMID: 34943077 PMCID: PMC8750378 DOI: 10.3390/antiox10121973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022] Open
Abstract
Greenhouse vegetable production (GVP) has grown rapidly and has become a major force for cucumber production in China. In highly intensive GVP systems, excessive fertilization results in soil acidification, increasing Cd accumulation and oxidative stress damage in vegetables as well as increasing health risk of vegetable consumers. Therefore, enhancing antioxidant capacity and activating the expression level of Cd transporter genes seem to be feasible solutions to promote plant resistance to Cd stress and to reduce accumulated Cd concentration. Here, we used transcriptomics to identify five cucumber transporter genes (CsNRAMP1, CsNRAMP4, CsHMA1, CsZIP1, and CsZIP8) in response to cadmium stress, which were involved in Cd transport activity in yeast. Ionomics, gene expression, and REDOX reaction level association analyses have shown that the transcript of CsNRAMP4 was positively correlated with Cd accumulation and antioxidant capacity of cucumber roots. The expression level of CsHMA1 was negatively correlated with Cd-induced antioxidant capacity. The overexpression of CsHMA1 significantly relieved Cd stress-induced antioxidant activities. In addition, shoots with high CsHMA2 expression remarkably presented Cd bioaccumulation. Grafting experiments confirmed that CsHMA1 contributed to the high antioxidant capacity of cucumber, while CsHMA2 was responsible for the transport of Cd from the roots to the shoots. Our study elucidated a novel regulatory mechanism for Cd transport and oxidative damage removal in horticultural melons and provided a perspective to regulate Cd transport artificially by modulating Cd accumulation and resistance in plants.
Collapse
Affiliation(s)
- Shengjun Feng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Yanghui Shen
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Huinan Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Junyang Dong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Kexin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Yu Xiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Xianda Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Chenjie Yao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
| | - Tao Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Huasen Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (S.F.); (H.X.); (J.D.); (K.C.); (Y.X.); (X.J.); (C.Y.)
- Correspondence: ; Tel.: +86-0571-63740028
| |
Collapse
|
21
|
Zhang X, Feng Y, Jing T, Liu X, Ai X, Bi H. Melatonin Promotes the Chilling Tolerance of Cucumber Seedlings by Regulating Antioxidant System and Relieving Photoinhibition. FRONTIERS IN PLANT SCIENCE 2021; 12:789617. [PMID: 34956288 PMCID: PMC8695794 DOI: 10.3389/fpls.2021.789617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 05/31/2023]
Abstract
Chilling adversely affects the photosynthesis of thermophilic plants, which further leads to a decline in growth and yield. The role of melatonin (MT) in the stress response of plants has been investigated, while the mechanisms by which MT regulates the chilling tolerance of chilling-sensitive cucumber remain unclear. This study demonstrated that MT positively regulated the chilling tolerance of cucumber seedlings and that 1.0 μmol⋅L-1 was the optimum concentration, of which the chilling injury index, electrolyte leakage (EL), and malondialdehyde (MDA) were the lowest, while growth was the highest among all treatments. MT triggered the activity and expression of antioxidant enzymes, which in turn decreased hydrogen peroxide (H2O2) and superoxide anion (O2 ⋅-) accumulation caused by chilling stress. Meanwhile, MT attenuated the chilling-induced decrease, in the net photosynthetic rate (Pn) and promoted photoprotection for both photosystem II (PSII) and photosystem I (PSI), regarding the higher maximum quantum efficiency of PSII (Fv/Fm), actual photochemical efficiency (ΦPSII), the content of active P700 (ΔI/I0), and photosynthetic electron transport. The proteome analysis and western blot data revealed that MT upregulated the protein levels of PSI reaction center subunits (PsaD, PsaE, PsaF, PsaH, and PsaN), PSII-associated protein PsbA (D1), and ribulose-1,5-bisphosphate carboxylase or oxygenase large subunit (RBCL) and Rubisco activase (RCA). These results suggest that MT enhances the chilling tolerance of cucumber through the activation of antioxidant enzymes and the induction of key PSI-, PSII-related and carbon assimilation genes, which finally alleviates damage to the photosynthetic apparatus and decreases oxidative damage to cucumber seedlings under chilling stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
22
|
Yalçın E, Macar O, Kalefetoğlu Macar T, Çavuşoğlu D, Çavuşoğlu K. Multi-protective role of Echinacea purpurea L. water extract in Allium cepa L. against mercury(II) chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62868-62876. [PMID: 34218367 PMCID: PMC8254617 DOI: 10.1007/s11356-021-15097-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/20/2021] [Indexed: 04/16/2023]
Abstract
Mercury (Hg) is a persistent and dangerous heavy metal with genotoxic properties. Echinacea purpurea L. is a well-known therapeutic plant with anti-inflammatory, antioxidant, and anti-tumor properties. In this study, multi-protective role of Echinacea purpurea L. extract against toxicity caused by mercury(II) chloride (HgCI2) on Allium cepa L. investigated in a multifaceted way. As a consequence of 100 mgL-1 HgCI2 administration, root elongation, weight increase, germination rate, and mitotic index were reduced, whereas micronucleus frequency, chromosomal abnormalities frequency, meristematic cell injuries severity, malondialdehyde level, catalase, and superoxide dismutase activity were increased. On the other hand, co-administration of increasing doses of E. purpurea extract (265 mgL-1 and 530 mgL-1) and HgCI2 gradually alleviated all observed toxic effects of HgCI2. Protective role of E. purpurea extract against HgCI2-toxicity on A. cepa were clearly demonstrated in this study. The results of this study will lead to future researches investigating use of E. purpurea extract against genotoxic contaminants.
Collapse
Affiliation(s)
- Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Oksal Macar
- Department of Food Technology, Sebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Sebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey
| | - Dilek Çavuşoğlu
- Department of Plant and Animal Production, Atabey Vocational High School, Isparta University of Applied Sciences, Isparta, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
23
|
Tran TAT, Dinh QT, Zhou F, Zhai H, Xue M, Du Z, Bañuelos GS, Liang D. Mechanisms underlying mercury detoxification in soil-plant systems after selenium application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46852-46876. [PMID: 34254235 DOI: 10.1007/s11356-021-15048-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 05/12/2023]
Abstract
Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil-plant systems after Se application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe-containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root uptake and translocation of Hg in plant after Se application are systemically discussed. In addition, the positive responses in plant physiological and biochemical processes to Se application under Hg stress are presented to show the possible mechanisms for protecting the plant. However, application of high levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of Se application methods, rates, and species on Hg detoxification is compared. This review provides a good approach for plant production in Hg-contaminated areas to meet food security demands and reduce the public health risk.
Collapse
Affiliation(s)
- Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Faculty of Natural Resources and Environmental Management, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa, 400570, Vietnam
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zekun Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648-9757, USA
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Fan Y, Jiang T, Chun Z, Wang G, Yang K, Tan X, Zhao J, Pu S, Luo A. Zinc affects the physiology and medicinal components of Dendrobium nobile Lindl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:656-666. [PMID: 33780739 DOI: 10.1016/j.plaphy.2021.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The growth of Dendrobium nobile is often influenced by zinc. Here, D. nobile was regularly sprayed with different concentrations (0, 50, 100, 200, 400, 800, 1000, 2000 μmol L-1) of zinc to study its effect on the growth and biosynthesis of medicinal components. Samples were taken at 0, 7, 14, and 21 days to detect physiological and medicinal components. The results showed that the net photosynthetic rate, transpiration rate, stomatal conductance, and Chl A and Chl B levels of leaves first increased and then decreased as the concentration of zinc increased. At 400 μmol L-1 concentration, these parameters reached their maximum values. Thus, a certain dose of zinc could promote the photosynthesis of D. nobile. There was an obvious increase in the synthesis of superoxide dismutase (SOD), while the content of ascorbate peroxidase and ascorbic acid (AsA) were the highest after treatment with 400 μmol L-1 zinc. Maximum levels of polysaccharides and polyphenols were observed on day 7 and 14, respectively, at a zinc concentration of 400 μmol L-1. These results suggest that exogenous zinc may promote the accumulation of medicinal components in D. nobile. It was also found that polysaccharides could combine well with zinc to form a polysaccharide-zinc chelate and transform inorganic zinc into organic form, which is stored in the form of polysaccharide-Zn and is known to reduce the damage induced by Zn stress.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Jiang
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Gang Wang
- College of Forest, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Kaigang Yang
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueyan Tan
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Zhao
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangrao Pu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aoxue Luo
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
25
|
Tiodar ED, Văcar CL, Podar D. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2435. [PMID: 33801363 PMCID: PMC7967564 DOI: 10.3390/ijerph18052435] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023]
Abstract
Mercury (Hg) pollution is a global threat to human and environmental health because of its toxicity, mobility and long-term persistence. Although costly engineering-based technologies can be used to treat heavily Hg-contaminated areas, they are not suitable for decontaminating agricultural or extensively-polluted soils. Emerging phyto- and bioremediation strategies for decontaminating Hg-polluted soils generally involve low investment, simple operation, and in situ application, and they are less destructive for the ecosystem. Current understanding of the uptake, translocation and sequestration of Hg in plants is reviewed to highlight new avenues for exploration in phytoremediation research, and different phytoremediation strategies (phytostabilization, phytoextraction and phytovolatilization) are discussed. Research aimed at identifying suitable plant species and associated-microorganisms for use in phytoremediation of Hg-contaminated soils is also surveyed. Investigation into the potential use of transgenic plants in Hg-phytoremediation is described. Recent research on exploiting the beneficial interactions between plants and microorganisms (bacteria and fungi) that are Hg-resistant and secrete plant growth promoting compounds is reviewed. We highlight areas where more research is required into the effective use of phytoremediation on Hg-contaminated sites, and conclude that the approaches it offers provide considerable potential for the future.
Collapse
Affiliation(s)
- Emanuela D. Tiodar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Cristina L. Văcar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Liu Z, Chen B, Wang LA, Urbanovich O, Nagorskaya L, Li X, Tang L. A review on phytoremediation of mercury contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123138. [PMID: 32947735 DOI: 10.1016/j.jhazmat.2020.123138] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) and its compounds are one of the most dangerous environmental pollutants and Hg pollution exists in soils in different degrees over the world. Phytoremediation of Hg-contaminated soils has attracted increasing attention for the advantages of low investment, in-situ remediation, potential economic benefits and so on. Searching for the hyperaccumulator of Hg and its application in practice become a research hotspot. In this context, we review the current literatures that introduce various experimental plant species for accumulating Hg and aided techniques improving the phytoremediation of Hg-contaminated soils. Experimental plant species for accumulating Hg and accumulation or translocation factor of Hg are listed in detail. The translocation factor (TF) is greater than 1.0 for some plant species, however, the bioaccumulation factor (BAF) is greater than 1.0 for Axonopus compressus only. Plant species, soil properties, weather condition, and the bioavailability and heterogeneity of Hg in soils are the main factors affecting the phytoremediation of Hg-contaminated soils. Chemical accelerator kinds and promoting effect of chemical accelerators for accumulating and transferring Hg by various plant species are also discussed. Potassium iodide, compost, ammonium sulphate, ammonium thiosulfate, sodium sulfite, sodium thiosulfate, hydrochloric acid and sulfur fertilizer may be selected to promote the absorption of Hg by plants. The review introduces transgenic gene kinds and promoting effect of transgenic plants for accumulating and transferring Hg in detail. Some transgenic plants can accumulate more Hg than non-transgenic plants. The composition of rhizosphere microorganisms of remediation plants and the effect of rhizosphere microorganisms on the phytoremediation of Hg-contaminated soils are also introduced. Some rhizosphere microorganisms can increase the mobility of Hg in soils and are beneficial for the phytoremediation.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Boning Chen
- Fuling Environmental Monitoring Center, 3 Taibai Rd, Fuling New District of Chongqing, China
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Oksana Urbanovich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Liubov Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Xiang Li
- International Policy, Faculty of Law and Economics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Li Tang
- School of Chemistry and Chemical Engineering, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, China
| |
Collapse
|
28
|
Al Khateeb W, Muhaidat R, Alahmed S, Al Zoubi MS, Al-Batayneh KM, El-Oqlah A, Abo Gamar M, Hussein E, Aljabali AA, Alkaraki AK. Heat shock proteins gene expression and physiological responses in durum wheat ( Triticum durum) under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1599-1608. [PMID: 32801489 PMCID: PMC7415065 DOI: 10.1007/s12298-020-00850-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/13/2023]
Abstract
Salt stress is a major abiotic stress causing adverse effects on plant growth and development. The aim of this study was to investigate the effect of NaCl stress on growth, stress indicator parameters (lipid peroxidation, chlorophyll content and proline content), yield, and the expression of heat shock proteins genes (Hsp17.8, Hsp26.3, Hsp70 and Hsp101) of five Jordanian durum wheat (Triticum durum) landraces. Plants were irrigated with tap water as control or 200 mM NaCl. Significant differences among the 5 Triticum durum landraces in terms of growth parameters, stress indicator parameters, and expression of heat shock proteins genes were observed. Salt stressed landraces demonstrated decreased growth, increased levels of stress indicator parameters, and upregulation in Hsp17.8, Hsp26.3, Hsp70 and Hsp101 expression. Landraces T11 and M23 showed the highest growth, lowest levels of stress indicator parameters, and high expression of heat shock protein genes under NaCl stress. Whereas, J2 and A8 landraces showed the lowest growth, highest levels of stress indicator parameters and low expression of heat shock protein genes under NaCl stress. In conclusion, NaCl stress caused significant reduction in growth parameters, increased level of lipid peroxidation and proline content and upregulation in heat shock proteins gene expression levels. Growth, stress indicator parameters and gene expression results suggest that T11 and M23 landraces are the most NaCl stress tolerant landraces and could be used to enhance the gene pool in wheat breeding programs.
Collapse
Affiliation(s)
- Wesam Al Khateeb
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163 Jordan
| | - Riyadh Muhaidat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163 Jordan
| | - Sanaa Alahmed
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163 Jordan
| | - Mazhar S. Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Khalid M. Al-Batayneh
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163 Jordan
| | - Ahmad El-Oqlah
- Department of Biology, Faculty of Science, Jerash University, Jerash, Jordan
| | - Mohammad Abo Gamar
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163 Jordan
| | - Emad Hussein
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163 Jordan
- Department of Food Science and Human Nutrition, A’Sharqiyah University, Ibra, Oman
| | - Alaa A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Almuthanna K. Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163 Jordan
| |
Collapse
|
29
|
Alamer KH, Fayez KA. Impact of salicylic acid on the growth and physiological activities of parsley plants under lead toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1361-1373. [PMID: 32647454 PMCID: PMC7326881 DOI: 10.1007/s12298-020-00830-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
Impact of spraying 50 µM salicylic acid (SA), lead nitrate soil treatments [1 and 2 mM Pb (NO3)2] and their combinations on parsley leaves (Petroselinum crispum L.) for 3 weeks was studied to evaluate leaf symptoms, photosynthetic pigments, anthocyanin, ultrastructure, malondialdehyde (MDA), soluble proteins, phenolic compounds, and guaiacol peroxidase activity (GPOX). Under Pb effect, parsley leaves showed chlorosis and decline in the content of photosynthetic pigments chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoid (Car) with increasing Pb treatments compared to the control. SA spraying helped to reduce chlorosis and increase photosynthetic pigments of Pb-treated plants compared to that of Pb treatment alone. Leaf anthocyanin content of SA-sprayed plants significantly increased compared to the control. On contrast, the anthocyanin content of Pb-treated plants with or without SA treatment decreased compared to the control. Parsley leaf chloroplasts were characterized by many and large starch grains. Deformations of chloroplast shape, increasing formation of plastoglobules and degeneration of chloroplast grana thylakoids were observed in Pb-treated plants. MDA and total phenolic compound contents increased in Pb-treated plants compared to the control. In contrast, soluble protein content decreased in Pb-treated plants. The decrease in leaf photosynthetic pigments and increase MDA contents was Pb-concentration dependent. The results as indicated by increasing lipid peroxidation confirmed Pb treatments generated reactive oxygen species (ROS) which caused oxidative stress. In contrast, SA application declined the extent of detrimental and harmful influence of Pb toxicity as indicated by the decrease MDA content, and increase in photosynthetic pigments, anthocyanin and phenolic compound contents of parsley leaves.
Collapse
Affiliation(s)
- Khalid Hasan Alamer
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Biology Department, Science and Arts College–Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalaf Ali Fayez
- Botany and Microbiology Department, Faculty of Science, Sohag University Sohag, Sohag, Egypt
| |
Collapse
|
30
|
Li X, Zhang J, Gong Y, Yang S, Ye M, Yu X, Ma J. Status of mercury accumulation in agricultural soils across China (1976-2016). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110564. [PMID: 32278826 DOI: 10.1016/j.ecoenv.2020.110564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination with mercury (Hg) is a serious and widespread issue in China, with particularly severe effects on the quality of agricultural soils. To analyse long-term, nation-wide trends in Hg contamination of agriculture soil, we conducted a review of Hg concentrations in agricultural soils over four decades, based on 791 studies comprising 1411 sites, published between 1976 and 2016. We assessed spatiotemporal variations in Hg concentration, along with ecological and health risks. While Hg concentrations in agricultural soils showed an increasing trend between 1979 and 2010, they declined thereafter. Moreover, Hg concentrations in agricultural soils were generally high in western (e.g. Guizhou), southern (e.g. Hunan) and north-eastern provinces (e.g. Liaoning), where mining activities were concentrated. Using the geoaccumulation index (Igeo) and other ecological and health risk indices, we found most sampling sites to be uncontaminated, or to have a low level of contamination, although some mining sites showed moderate to extreme Hg contamination. The noncarcinogenic risk to exposure groups followed the order of children (4.42) > adult females (2.71) > adult males (2.45). Therefore, children were identified as the priority risk group. Noncarcinogenic risk values exceeded 100 in some areas in Guizhou and Hunan provinces; these areas should be prioritised for Hg control measures. This review examined Hg pollution in Chinese agricultural soils to provide insight to policymakers for the development of targeted contamination prevention measures.
Collapse
Affiliation(s)
- Xingyuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingru Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Guangdong Provincal Academic of Environmental Science, Guangzhou, 510045, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhui Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mai Ye
- Guangdong Provincal Academic of Environmental Science, Guangzhou, 510045, China
| | - Xuan Yu
- Guangdong Provincal Academic of Environmental Science, Guangzhou, 510045, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
31
|
Marrugo-Negrete J, Durango-Hernández J, Díaz-Fernández L, Urango-Cárdenas I, Araméndiz-Tatis H, Vergara-Flórez V, Bravo AG, Díez S. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. CHEMOSPHERE 2020; 250:126142. [PMID: 32105852 DOI: 10.1016/j.chemosphere.2020.126142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
In this study, we evaluated the phytoremediation ability of three different genotypes of cowpea (Vigna unguiculata L. Walp) grown on mercury-contaminated soils from gold mining areas. In particular we compared a native genotype with two commercial lines L-019 and L-042. The plants were cultivated in soils amended at different concentrations of Hg (i.e. 0.2, 1, 2, 5 and 8 mg kg-1). After three months exposure, we determined plant growth, seed production, and Hg accumulation in different plant tissues (root, leaf, seed and stem). Indices of soil-plant metal transfer such as translocation, bioconcentration and bioaccumulation factors were calculated. Results showed that the native variety presented the highest seed production (3.8 g), however the highest plant biomass (7.9 g) was observed in line L-019, both on Hg-contaminated soil of 1 mg kg-1. The different plant tissues differed in terms of Hg concentration (root > leaf > stem). In the highest treated soil, the line L-042 accumulates higher Hg in both roots and leaves, while line L-019 accumulates more metal in stems. In line L-019, Hg concentrations in the fruit showed significant differences being higher in the valves than in the seeds. The transfer factors were generally lower than 1 and indicates the low accumulation of Hg by cowpeas. The estimated daily Hg intake through cowpea consumption showed values far below the threshold of 0.57 μg kg-1 dw day-1 recommended by the World Health Organization. Our results show cowpea V. unguiculata as a good protein-rich food substitute of Hg-contaminated fish for populations living near gold mining sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Vicente Vergara-Flórez
- Facultad de Ingeniería, Universidad de Sucre, Carrera 28 No. 5-267, Sincelejo, Sucre, Colombia
| | - Andrea G Bravo
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
32
|
Helaoui S, Boughattas I, Hattab S, Mkhinini M, Alphonse V, Livet A, Bousserrhine N, Banni M. Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure. CHEMOSPHERE 2020; 249:126121. [PMID: 32065994 DOI: 10.1016/j.chemosphere.2020.126121] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 05/28/2023]
Abstract
Metal accumulation in soil could lead to severe damage to plants, animals, and humans. The present work aims to evaluate the effects of nickel (Ni) exposure on Medicago sativa at physiological, biochemical, and transcriptomic levels. Plants were exposed to five increasing concentrations of Ni (0, 50, 150, 250, and 500 mg/kg) for 60 days. Agronomic parameters (fresh and dry matter) and chlorophyll content (Chl) were determined in an alfalfa plant. Chemical analyses were conducted, involving the determination of Ni loads in plants (roots and shoots). Moreover, malondialdehyde accumulation (MDA), glutathione-S-transferase (GST), and peroxidase activities, termed as oxidative stress biomarkers, were measured. The gene expression levels of Prx1C, GST, and phytochelatins (PCs) were determined at different nickel concentrations. Our results showed that Ni concentration in plants increased significantly along with Ni concentration in the soil. Regarding oxidative stress biomarkers, Ni contamination caused an increase in peroxidase and GST activities, with a remarkable accumulation of MDA, especially for the highest Ni concentration (500 mg/kg of Ni). Our data showed also a significant upregulation of Prx1C and GST genes in shoots and roots. The PCs' gene expression was significantly enhanced in response to the different nickel concentrations, suggesting their important role in Ni detoxification in alfalfa plants. Our data provided evidence about the clear toxicity of Ni, an often-underestimated trace element.
Collapse
Affiliation(s)
- Sondes Helaoui
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Meriem, Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Meriem, Sousse, Tunisia.
| | - Sabrine Hattab
- Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Meriem, Sousse, Tunisia
| | - Vanessa Alphonse
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil Cedex, 94010, France
| | - Alexandre Livet
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil Cedex, 94010, France
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil Cedex, 94010, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Meriem, Sousse, Tunisia
| |
Collapse
|
33
|
Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134749. [PMID: 32000322 DOI: 10.1016/j.scitotenv.2019.134749] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 05/09/2023]
Abstract
Environmental contamination by a non-essential and non-beneficial, although potentially toxic mercury (Hg), is becoming a great threat to the living organisms at a global scale. Owing to its various uses in numerous industrial processes, high amount of Hg is released into different environmental compartments. Environmental Hg contamination can result in food chain contamination, especially due to its accumulation in edible plant parts. Consumption of Hg-rich food is a key source of Hg exposure to humans. Since Hg does not possess any identified biological role and has genotoxic and carcinogenic potential, it is critical to monitor its biogeochemical behavior in the soil-plant system and its influence in terms of possible food chain contamination and human exposure. This review traces a plausible link among Hg levels, its chemical speciation and phytoavailability in soil, accumulation in plants, phytotoxicity and detoxification of Hg inside the plant. The role of different enzymatic (peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase) and non-enzymatic (glutathione, phytochelatins, proline and ascorbic acid) antioxidants has also been elucidated with respect to enhanced generation of reactive radicles and resulting oxidative stress. The review also outlines Hg build-up in edible plant tissues and associated health risks. The biogeochemical role of Hg in the soil-plant system and associated health risks have been described with well summarized and up-to-date data in 12 tables and 4 figures. We believe that this comprehensive review article and meta-analysis of Hg data can be greatly valuable for scientists, researchers, policymakers and graduate-level students.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058 Toulouse, cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France; Association Réseau-Agriville (http://reseau-agriville.com/), France
| |
Collapse
|
34
|
Zhang XW, Liu FJ, Zhai J, Li FD, Bi HG, Ai XZ. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. PLANTA 2020; 251:69. [PMID: 32076872 DOI: 10.1007/s00425-020-03362-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/08/2020] [Indexed: 05/27/2023]
Abstract
This report proves a cross talk between H2S and IAA in cold stress response, which has presented strong evidence that IAA acts as a downstream signal mediating the H2S-induced stress tolerance in cucumber seedlings. We evaluated changes in endogenous hydrogen sulfide (H2S) and indole-3-acetic acid (IAA) emission systems, and the interactive effect of exogenous H2S and IAA on chilling tolerance in cucumber seedlings. The results showed that chilling stress increased the activity and relative mRNA expression of L-/D-cysteine desulfhydrase (L-/D-CD), which in turn induced the accumulation of endogenous H2S. Similarly, the endogenous IAA system was triggered by chilling stress. We found that 1.0 mM sodium hydrosulfide (NaHS, an H2S donor) significantly enhanced the activity of flavin monooxygenase (FMO) and relative expression of FMO-like proteins (YUCCA2), which in turn elevated endogenous IAA levels in cucumber seedlings. However, IAA had little effects on activities of L-/D-CD and endogenous H2S levels. H2S-induced IAA production accompanied by increase in chilling tolerance, as shown by the decrease in stress-induced electrolyte leakage (EL) and reactive oxygen species (ROS) accumulation, and increase in gene expressions and enzyme activities of photosynthesis. 1-naphthylphthalamic acid (NPA, an IAA polar transport inhibitor) declined H2S-induced chilling tolerance and defense genes' expression. However, scavenging of H2S had a little effect on IAA-induced chilling tolerance. These results suggest that IAA acting as a downstream signaling molecule is involved in the H2S-induced chilling tolerance in cucumber seedlings.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng-Jiao Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiang Zhai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fu-De Li
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
35
|
El-Amier Y, Elhindi K, El-Hendawy S, Al-Rashed S, Abd-ElGawad A. Antioxidant System and Biomolecules Alteration in Pisum sativum under Heavy Metal Stress and Possible Alleviation by 5-Aminolevulinic Acid. Molecules 2019; 24:E4194. [PMID: 31752309 PMCID: PMC6891517 DOI: 10.3390/molecules24224194] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
Environmental pollution is the most serious problem that affects crop productivity worldwide. Pisum sativum is a leguminous plant that is cultivated on a large scale in the Nile Delta of Egypt as a winter crop, and many of the cultivated fields irrigated with drainage water that contained many pollutants including heavy metals. The present research aimed to investigate the impact of Cd and Ni on the biochemical and physiological processes in P. sativum and evaluate the potential alleviation of their toxicity by 5-aminolevulinic acid (ALA). Seedlings of P. sativum were grown in Hoagland solution treated with CdCl2 or NiCl2 for 72 h in the growth chamber. Hydrogen peroxide, lipid peroxidation, protein carbonylation, reduced glutathione, oxidized glutathione, proline, phenolics, antioxidant enzymes, as well as Cd and Ni concentrations were measured at 0, 12, 24, 36, 48, 72 h. An experiment of alleviation was conducted where ALA was added to the growth solution at a concentration of 200 µM coupled with 100 µM of either CdCl2 or NiCl2. Hydrogen peroxide, lipid peroxidation, protein carbonylation, reduced glutathione, oxidized glutathione, proline, and phenolics were induced due to the toxicity of Cd and Ni. The activities of antioxidant enzymes [NADH-oxidase (EC: 1.6.3.1), ascorbate peroxidase (EC: 1.11.1.11), glutathione reductase (EC: 1.6.4.2), superoxide dismutase (EC: 1.15.1.1), and catalase (EC: 1.11.1.6)] were induced under the treatments of both metals. On the other hand, the soluble protein decreased gradually depending upon the time of exposure to the heavy metals. The concentration of Cd and Ni in the leaves treated plants increased in time of exposure dependent manner, while their contents remained within the acceptable limits. The addition of ALA decreased the oxidative stress in treated P. sativum plants. The results revealed the significance of using ALA in the cultivation of P. sativum might improve its tolerance against heavy metal stress.
Collapse
Affiliation(s)
- Yasser El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Khalid Elhindi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.E.); (S.E.-H.)
- Vegetable and Floriculture Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Salah El-Hendawy
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.E.); (S.E.-H.)
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia;
| | - Ahmed Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.E.); (S.E.-H.)
| |
Collapse
|
36
|
Sharaf A, De Michele R, Sharma A, Fakhari S, Oborník M. Transcriptomic Analysis Reveals the Roles of Detoxification Systems in Response to Mercury in Chromera velia. Biomolecules 2019; 9:E647. [PMID: 31653042 PMCID: PMC6920818 DOI: 10.3390/biom9110647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023] Open
Abstract
Heavy metal pollution is an increasing global concern. Among heavy metals, mercury (Hg) is especially dangerous because of its massive release into the environment and high toxicity, especially for aquatic organisms. The molecular response mechanisms of algae to Hg exposure are mostly unknown. Here, we combine physiological, biochemical, and transcriptomic analysis to provide, for the first time, a comprehensive view on the pathways activated in Chromera velia in response to toxic levels of Hg. Production of hydrogen peroxide and superoxide anion, two reactive oxygen species (ROS), showed opposite patterns in response to Hg2+ while reactive nitrogen species (RNS) levels did not change. A deep RNA sequencing analysis generated a total of 307,738,790 high-quality reads assembled in 122,874 transcripts, representing 89,853 unigenes successfully annotated in databases. Detailed analysis of the differently expressed genes corroborates the biochemical results observed in ROS production and suggests novel putative molecular mechanisms in the algal response to Hg2+. Moreover, we indicated that important transcription factor (TF) families associated with stress responses differentially expressed in C. velia cultures under Hg stress. Our study presents the first in-depth transcriptomic analysis of C. velia, focusing on the expression of genes involved in different detoxification defense systems in response to heavy metal stress.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
| | - Roberto De Michele
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Ayush Sharma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
37
|
Rodríguez-Alonso J, Sierra MJ, Lominchar MÁ, Millán R. Effects of mercury on the germination and growth of Quercus ilex L. seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30930-30940. [PMID: 31452119 DOI: 10.1007/s11356-019-06186-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
While it is well-known that the toxicity of mercury for plants is related to its bioavailability in the environment in which the plant lives, few studies have addressed Hg effects under controlled conditions of life-limiting available Hg concentrations. This study examines the effects of Hg on the holm oak (Quercus ilex L.) exposed to medium-high available Hg concentrations. Holm oak seeds were sown in a perlite substrate and grown in the presence of a nutrient solution containing 0, 5, 25, or 50 μM Hg. The variables determined as outcome measures were impacts on germination, growth, and nutrient accumulation along with Hg concentration in leaves, stems, and roots at different growth stages. Our findings suggest no overall detrimental effects of the metal on germination, nutrient accumulation, and plant growth, although root morphology was clearly modified. Mercury accumulation in the plant varied according to time, organ, Hg treatment dose, and plant growth stage. When comparing Hg build-up in the different organs, highest concentrations of the metal were detected in the roots, followed by the leaves and stems. The Hg accumulation pattern was positively correlated with time and Hg dose, whereas negative correlation was observed with growth stage. The impacts of all these factors on Hg accumulation were not additive pointing to interesting interaction effects that should be explored in future work.
Collapse
Affiliation(s)
- Javier Rodríguez-Alonso
- CIEMAT-Environmental Department (DMA), Avenida Complutense 40, Building 20, E-28040, Madrid, Spain.
| | - María José Sierra
- CIEMAT-Environmental Department (DMA), Avenida Complutense 40, Building 20, E-28040, Madrid, Spain
| | - Miguel Ángel Lominchar
- CIEMAT-Environmental Department (DMA), Avenida Complutense 40, Building 20, E-28040, Madrid, Spain
| | - Rocío Millán
- CIEMAT-Environmental Department (DMA), Avenida Complutense 40, Building 20, E-28040, Madrid, Spain
| |
Collapse
|
38
|
Cui Q, Li Y, He X, Li S, Zhong X, Liu B, Zhang D, Li Q. Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO 2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:142-153. [PMID: 31493674 DOI: 10.1016/j.plaphy.2019.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Carbon dioxide is one of the most important anthropogenic greenhouse gases. We previously confirmed that elevated [CO2] alleviated the negative consequences of drought stress to cucumber seedlings, but the physiological mechanism remains unknown. We investigated the morphological and physiological characteristics as well as iTRAQ-based proteomics analyses in this study under different combinations [CO2] (400 and (800 ± 20) μmol·mol-1) and water conditions (no, moderate and severe drought stress simulated by polyethylene glycol 6000). The results showed: (1) elevated [CO2] significantly increased plant height, stem diameter, leaf area and relative water content (RWC) under drought stress; (2) drought stress significantly increased J and K peaks of the chlorophyll a fluorescence transient, indicating the damage of photosynthetic electron transport chain, while elevated [CO2] decreased them especially under moderate drought condition; (3) iTRAQ-based proteomics analyses indicated that elevated [CO2] increased the abundance of psbJ and the PSI reaction center subunit VI-2 in seedlings exposed to moderate drought stress; (4) the abundance of uroporphyrinogen decarboxylase 2 and tetrapyrrole-binding protein decreased in response to elevated [CO2] under severe drought condition; (5) elevated [CO2] regulated the expression of chloroplast proteins such as those related to stress and defense response, redox homeostasis, metabolic pathways. In conclusion, elevated [CO2] enhanced the efficiency of photosynthetic electron transport, limited the absorption of excess light energy, enhanced the ability of antioxidant and osmotic adjustment, and alleviated the accumulation of toxic substances under drought stress. These findings provide new clues for understanding the molecular basis of elevated [CO2] alleviated plant drought stress.
Collapse
Affiliation(s)
- Qingqing Cui
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Bei'jing, 100081, China
| | - Yiman Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinrui He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuhao Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Zhong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Binbin Liu
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Dalong Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| | - Qingming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
39
|
Demecsová L, Tamás L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. Biometals 2019; 32:717-744. [PMID: 31541378 DOI: 10.1007/s10534-019-00214-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022]
Abstract
The presented review is a summary on the current knowledge about metal induced stress response in plants, focusing on the roles of reactive oxygen species, auxin and nitric oxide in roots. The article focuses mainly on the difference between defence and toxicity symptoms of roots during metal-induced stress. Nowadays, pollution of soils by heavy metals is a rapidly growing issue, which affects agriculture and human health. In order to deal with these problems, we must first understand the basic mechanisms and responses to environmental conditions in plants growing under such conditions. Studies so far show somewhat conflicting data, interpreting the same stress responses as both symptoms of defence and toxicity. Therefore, the aim of this review is to give a report about current knowledge of heavy metal-induced stress research, and also to differentiate between toxicity and defence, and outline the challenges of research, focusing on reactive oxygen and nitrogen species, auxin, and the interplay among them. There are still remaining questions on how reactive oxygen and nitrogen species, as well as auxin, can activate either symptoms of toxicity or defence, and adaptation responses.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
40
|
Wang J, Shaheen SM, Swertz AC, Rennert T, Feng X, Rinklebe J. Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:687-693. [PMID: 30889465 DOI: 10.1016/j.jhazmat.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
We investigated effects of the application of a sulfur-modified organoclay (SMOC) at doses of 1%, 3% and 5% (w/w) on the geochemical fractionation of mercury (Hg) and its accumulation by pea and corn in a polluted floodplain soil. Soil Hg was fractionated sequentially to five operationally defined fractions as follows: F1: water soluble Hg; F2: "human stomach acid" soluble Hg; F3: organo-chelated Hg; F4: elemental Hg; and F5: Hg-sulfur-compounds/residual Hg. The high dosage of SMOC caused a decrease of Hg in F3 (18%) and F5 (36-63%), and 6.7 fold increase of Hg in the mobile fraction (MF = F1+F2) as compared to control soil. The transformation of Hg from F5 to the MF in SMOC-treated soil might be due to the associated decrease of soil pH. Pea accumulated more Hg than corn. Mercury contents were larger in roots than in shoots of both plants and increased significantly by a factor of up to 11 by SMOC addition. The potential transformation of Hg from the hardly soluble to the MF by SMOC addition and the associated increase of Hg accumulation by plants imply a great potential of the SMOC for enhancing Hg phytoremediation.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia.
| | - Ann-Christin Swertz
- University of Wuppertal, Faculty of Mechanical Engineering and Safety Engineering, Department of Safety Technology and Environmental Protection, Rainer-Gruenter-Straße, 42119 Wuppertal, Germany.
| | - Thilo Rennert
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, Germany.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Chen J, Chen K, Wang G, Wu L, Liu X, Wei G. PM 2.5 Pollution and Inhibitory Effects on Industry Development: A Bidirectional Correlation Effect Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071159. [PMID: 30935121 PMCID: PMC6480563 DOI: 10.3390/ijerph16071159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 01/31/2023]
Abstract
In this paper, a vector autoregression (VAR) model has been constructed in order to analyze a two-way mechanism between PM2.5 pollution and industry development in Beijing via the combination of an impulse response function and variance decomposition. According to the results, long-term equilibrium interconnection was found between PM2.5 pollution and the development of primary, secondary, and tertiary industries. One-way Granger causalities were found in the three types of industries shown to contribute to PM2.5 pollution, though the three industries showed different scales of influences on the PM2.5 pollution that varied for about 1–2 years. The development of the primary and secondary industries increased the emission of PM2.5, but the tertiary industry had an inhibitory effect. In addition, PM2.5 pollution had a certain inhibitory effect on the development of the primary and secondary industries, but the inhibition of the tertiary industry was not significant. Therefore, the development of the tertiary industry can contribute the most to the reduction of PM2.5 pollution. Based on these findings, policy-making recommendations can be proposed regarding upcoming pollution prevention strategies.
Collapse
Affiliation(s)
- Jibo Chen
- School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Keyao Chen
- National Climate Center, China Meteorological Administration, Beijing 100081, China.
| | - Guizhi Wang
- School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Lingyan Wu
- School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaodong Liu
- School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK.
| | - Guo Wei
- Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
42
|
Hou M, Li M, Yang X, Pan R. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:425-431. [PMID: 30683955 DOI: 10.1007/s00128-019-02553-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The heavy metal pollution in ecosystems is of increasing global concern. This study investigated firstly the responses of phytochelatins (PCs), glutathione (GSH) and other nonprotein thiols (NPT) in maize seedlings under vanadium (V), mercury (Hg) or their combined stress. With V or V-Hg combined stress, the contents of PCs, GSH and NPT in shoots and roots both increased with increasing the V stress level, and reached the maximum when the V stress level was 5 mg/L. Accumulation of V in all organs of maize seedlings was in sequence as follows: roots ≫ shoots, while Hg inhibited the accumulation of V. Results show that the root of plant has stronger tolerance to V, and the low V stress level can promote the synthesis of thiol groups to reduce the toxicity of Hg for plants.
Collapse
Affiliation(s)
- Ming Hou
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin, 541004, Guangxi, China.
| | - Mingyuan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin, 541004, Guangxi, China
| | - Xinhan Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin, 541004, Guangxi, China
| | - Renbing Pan
- College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road No.12, Guilin, 541004, Guangxi, China
| |
Collapse
|
43
|
Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2019. [DOI: 10.1007/978-3-030-30926-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Franić M, Galić V. As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. PLANT METALLOMICS AND FUNCTIONAL OMICS 2019:209-251. [DOI: 10.1007/978-3-030-19103-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Investigation of Camphor Effects on Fusarium graminearum and F. culmorum at Different Molecular Levels. Pathogens 2018; 7:pathogens7040090. [PMID: 30469464 PMCID: PMC6313782 DOI: 10.3390/pathogens7040090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/17/2022] Open
Abstract
Fusarium graminearum and F. culmorum are phytopathogens, which cause destructive diseases in cereals. Epidemics of these phytopathogens are caused by mycotoxin contamination and the reduction of crop quality. In this study, the alteration due to in vitro camphor treatment on F. culmorum 9F and F. graminearum H11 isolates was investigated in terms of epigenetic, cellular, and transcription levels. Camphor with different concentrations (0.2, 0.4, 0.8, 1, 2, and 4 µg/µL) was applied to potato dextrose agar (PDA) growth media. The minimum inhibitory concentration (MIC) and the half maximal inhibitory concentration (IC50) were calculated as 2 and 1 µg/µL, respectively. hog1, mst20, CAT, POD, mgv1, stuA, and tri5 genes, which are related to various cellular processes and pathogenesis, were examined by qPCR assay. qPCR analysis showed that camphor treatment leads to the downregulation of tri5 expression but the upregulation of the remaining genes. Apoptosis and oxidative stress were confirmed via acridine orange/ethidium bromide (AO/EB) and dichlorofluorescin diacetate (DCF-DA) staining, respectively. Moreover, coupled restriction enzyme digestion-random amplification (CRED-RA) assay, used for DNA methylation analysis, was carried out to evaluate epigenetic alterations. The decrease in genomic template stability (GTS) values, which resulted due to the alterations in random amplified polymorphic DNA (RAPD) profiles caused by camphor treatment, were detected as 97.60% in F. culmorum 9F and 66.27% in F. graminearum H-11. The outer and inner methylated cytosine profiles are determined by CRED-RA assay as type I–IV epigenetic alterations. The outcomes indicated that camphor could lead to alterations at several molecular levels of F. graminearum and F. culmorum.
Collapse
|
46
|
Tran TAT, Zhou F, Yang W, Wang M, Dinh QT, Wang D, Liang D. Detoxification of mercury in soil by selenite and related mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:77-84. [PMID: 29730412 DOI: 10.1016/j.ecoenv.2018.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 05/09/2023]
Abstract
A better understanding of the benefits of selenium (Se) fertilization to alleviate the toxicity of mercury (Hg) on plants and of the underlying mechanisms involved in Hg stress is important for the remediation of soils contaminated by Hg. This study is aimed to explore the effects of the application of selenite to alleviate the toxicity of Hg in soils to plants and related mechanisms involved in this process. The chemical (Hg uptake of pak choi), biological (root and shoot length, root and shoot weight) and physiological effects (antioxidant enzyme activities, non-enzymatic antioxidant contents (proline) and lipid peroxidation products (malondialdehyde)) produced over plants by the application of different doses of Hg and Se to soil has been investigated through a pot experiment, which was conducted with exposure to different dosages of mercuric chloride (0, 1.0, 2.0, and 3.0 mg/kg soil) and sodium selenite (0, 0.5, 1.0, and 2.5 mg/kg soil). Results indicated that single high Hg treatment (3.0 mg/kg Hg) resulted in significantly increase in Hg uptake by plants (P < 0.01), thus the growth of pak choi was inhibited. However, the Se application at 1.0 and 2.5 mg/kg led to significantly alleviated Hg uptake by plants (P < 0.05). Meanwhile, the low Se (at 0.5 and 1.0 mg/kg) applied to soil induced significantly improvement the growth of pak choi (P < 0.05) by elevating the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GSH-Px) enzymes and the content of chlorophyll (SPAD value) as well as suppressed the lipid peroxidation products contents (MDA) and proline. Results collectively indicated that applied Se played an important role in promoting the detoxification of Hg and growth of pak choi under oxidative stress. Notably, this role may only be significant when Se application at the appropriate concentration (≤ 1.0 mg/kg).
Collapse
Affiliation(s)
- Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Natural Science, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Vietnam
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Natural Science, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Vietnam
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
Sharma S, Uttam KN. Early Diagnosis of Mercury Stress of Wheat Seedlings Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1383411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sweta Sharma
- Department of Botany, University of Allahabad, Allahabad, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|
48
|
Pirzadah TB, Malik B, Tahir I, Irfan QM, Rehman RU. Characterization of mercury-induced stress biomarkers in Fagopyrum tataricum plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:225-236. [PMID: 29172663 DOI: 10.1080/15226514.2017.1374332] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of mercury stress on antioxidant enzymes, lipid peroxidation, photosynthetic pigments, hydrogen peroxide content, osmolytes, and growth parameters in Tartary buckwheat were investigated. The effect of Hg-exposure was found to be time (15 and 30 days) and concentration (0, 25, 50, and 75 μM) dependent. Hg was readily absorbed by seedlings with higher content in roots and it resulted in reduction of root and shoot length. The root and shoot Hg uptakes were significantly and directly correlated with each other. However, the fresh mass and biomass increased up to 50 μM Hg-treatment at both time periods. A significant positive correlation was observed between biomass accumulation with relative water content. Hg levels were positively correlated with the production of hydrogen peroxide in leaves as evidenced by 3, 3-diaminobenzidine (DAB)-mediated tissue fingerprinting. The osmolyte levels in general were elevated except for proline and protein which showed a decline at 75 μM Hg-treatment at 30-days. Amongst the photosynthetic pigments, chlorophyll showed a decline while as carotenoid and anthocyanin levels were elevated. The activity of antioxidant enzymes such as ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), Glutathione-s-transferase (GST) and superoxide dismutase (SOD) were positively correlated with Hg-treatment except SOD, which declined at 75 μM Hg-treatment in 30-days old seedlings. Catalase (CAT) activity showed a positive correlation up to 50 μM Hg-treatment but at 75 μM Hg-stress it decreases at both 15 and 30 days.
Collapse
Affiliation(s)
| | - Bisma Malik
- a University of Kashmir , Bioresources, Hazaratbal , Srinagar, Srinagar , India
| | - Inayatullah Tahir
- a University of Kashmir , Bioresources, Hazaratbal , Srinagar, Srinagar , India
| | - Qureshi M Irfan
- b Jamia Millia Islamia (A Central University), Biotechnology, Proteomics & Bioinformatics Lab , Department of Biotechnology , Jamia Millia Islamia , New Delhi , India
| | - Reiaz Ul Rehman
- a University of Kashmir , Bioresources, Hazaratbal , Srinagar, Srinagar , India
| |
Collapse
|
49
|
Lv S, Yang B, Kou Y, Zeng J, Wang R, Xiao Y, Li F, Lu Y, Mu Y, Zhao C. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke). PeerJ 2018; 6:e4325. [PMID: 29404218 PMCID: PMC5797682 DOI: 10.7717/peerj.4325] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 11/25/2022] Open
Abstract
This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde) content increased whereas and the Pn (net photosynthetic rate), Fv∕Fm (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate—low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.
Collapse
Affiliation(s)
- Shiqi Lv
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Yang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yixuan Kou
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jun Zeng
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ruixiong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yumeng Xiao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Fencan Li
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ying Lu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuwen Mu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
50
|
Zhao X, Gao L, Jin P, Cui L. The similar to RCD-one 1 protein SRO1 interacts with GPX3 and functions in plant tolerance of mercury stress. Biosci Biotechnol Biochem 2018; 82:74-80. [DOI: 10.1080/09168451.2017.1408395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Heavy metals in the environment are one of the major limiting factors affecting plant growth and development. However, the mechanisms of the heavy metal-induced physiological processes remain to be fully dissected. Here, we explored that SRO1 can physically interact with Glutathione Peroxidase 3 (GPX3) in Arabidopsis. Under Hg treatment, similar to the sro1, the growth of the gpx3/sro1 was repressed more seriously and the number of true leaves was more reduced and etiolated than that of the wild type and gpx3 plants. The electrolyte leakage rates showed that cell membrane integrity in gpx3/sro1 was damaged more severely than in the wild type and gpx3 mutant. The Real-time PCR results have shown that the expression of the APX1 and CAT3 was reduced under mercury stress in the sro1 and sro1/gpx3. Our results suggested that the combination of the SRO1 and GPX3 may be contributed to plant response to mercury stress by regulating ROS intracellular oxidative homeostasis.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lijie Gao
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Pingning Jin
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liusu Cui
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|