1
|
Kumi RO, Issahaku AR, Soremekun OS, Agoni C, Olotu FA, Soliman MES. From the Explored to the Unexplored: Computer-Tailored Drug Design Attempts in the Discovery of Selective Caspase Inhibitors. Comb Chem High Throughput Screen 2019; 22:432-444. [PMID: 31560284 DOI: 10.2174/1386207322666190927143026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 01/09/2023]
Abstract
The pathophysiological roles of caspases have made them attractive targets in the treatment and amelioration of neurologic diseases. In normal conditions, the expression of caspases is regulated in the brain, while at the onset of neurodegeneration, such as in Alzheimer's disease, they are typically overexpressed. Till date, several therapeutic efforts that include the use of small endogenous binders have been put forward to curtail dysfunctionalities that drive aberrant death in neuronal cells. Caspases are highly homologous, both in structure and in sequence, which leaves us with the question: is it possible to specifically and individually target caspases, while multiple therapeutic attempts to achieve selective targeting have failed! Based on antecedent events, the use of Computer-Aided Drug Design (CADD) methods has significantly contributed to the design of small molecule inhibitors, especially with selective target ability and reduced off-target therapeutic effects. Interestingly, we found out that there still exists an enormous room for the integration of structure/ligand-based drug design techniques towards the development of highly specific reversible and irreversible caspase inhibitors. Therefore, in this review, we highlight drug discovery approaches that have been directed towards caspase inhibition in addition to an insightful focus on applicable CADD techniques for achieving selective targeting in caspase research.
Collapse
Affiliation(s)
- Ransford O Kumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Abdul R Issahaku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
2
|
M'Angale PG, Staveley BE. The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci 2016; 17:24. [PMID: 27192974 PMCID: PMC4872331 DOI: 10.1186/s12868-016-0261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
Background In contrast to the complexity found in mammals, only two Bcl-2 family genes have been found in Drosophila melanogaster including the pro-cell survival, human Bok-related orthologue, Buffy. The directed expression of α-synuclein, the first gene identified to contribute to inherited forms of Parkinson disease (PD), in the dopaminergic neurons (DA) of flies has provided a robust and well-studied Drosophila model of PD complete with the loss of neurons and accompanying motor defects. To more fully understand the biological basis of Bcl-2 genes in PD, we altered the expression of Buffy in the dopamine producing neurons with and without the expression of α-synuclein, and in the developing neuron-rich eye. Results To alter the expression of Buffy in the dopaminergic neurons of Drosophila, the Ddc-Gal4 transgene was used. The directed expression of Buffy in the dopamine producing neurons resulted in flies with increased climbing ability and enhanced survival, while the inhibition of Buffy in the dopaminergic neurons reduced climbing ability over time prematurely, similar to the phenotype observed in the α-synuclein-induced Drosophila model of PD. Subsequently, the expression of Buffy was altered in the α-synuclein-induced Drosophila model of PD. Analysis revealed that Buffy acted to rescue the associated loss of locomotor ability observed in the α-synuclein-induced model of PD, while Buffy RNA interference resulted in an enhanced α-synuclein-induced loss of climbing ability. In complementary experiments the overexpression of Buffy in the developing eye suppressed the mild rough eye phenotype that results from Gal4 expression and from α-synuclein expression. When Buffy is inhibited the roughened eye phenotype is enhanced. Conclusions The inhibition of Buffy in DA neurons produces a novel model of PD in Drosophila. The directed expression of Buffy in DA neurons provide protection and counteracts the α-synuclein-induced Parkinson disease-like phenotypes. Taken all together this demonstrates a role for Buffy, a Bcl-2 pro-cell survival gene, in neuroprotection.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
3
|
Zimmermann M, Kugler SJ, Schulz A, Nagel AC. Loss of putzig Activity Results in Apoptosis during Wing Imaginal Development in Drosophila. PLoS One 2015; 10:e0124652. [PMID: 25894556 PMCID: PMC4403878 DOI: 10.1371/journal.pone.0124652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022] Open
Abstract
The Drosophila gene putzig (pzg) encodes a nuclear protein that is an integral component of the Trf2/Dref complex involved in the transcription of proliferation-related genes. Moreover, Pzg is found in a complex together with the nucleosome remodeling factor NURF, where it promotes Notch target gene activation. Here we show that downregulation of pzg activity in the developing wing imaginal discs induces an apoptotic response, accompanied by the induction of the pro-apoptotic gene reaper, repression of Drosophila inhibitor of apoptosis protein accumulation and the activation of the caspases Drice, Caspase3 and Dcp1. As a further consequence ‘Apoptosis induced Proliferation’ (AiP) and ‘Apoptosis induced Apoptosis’ (AiA) are triggered. As expected, the activity of the stress kinase Jun N-terminal kinase (JNK), proposed to mediate both processes, is ectopically induced in response to pzg loss. In addition, the expression of the mitogen wingless (wg) but not of decapentaplegic (dpp) is observed. We present evidence that downregulation of Notch activates Dcp1 caspase and JNK signaling, however, neither induces ectopic wg nor dpp expression. In contrast, the consequences of Dref-RNAi were largely indistinguishable from pzg-RNAi with regard to apoptosis induction. Moreover, overexpression of Dref ameliorated the downregulation of pzg compatible with the notion that the two are required together to maintain cell and tissue homeostasis in Drosophila.
Collapse
Affiliation(s)
- Mirjam Zimmermann
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sabrina J. Kugler
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Adriana Schulz
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
- * E-mail:
| |
Collapse
|
4
|
Chen S, Wei HM, Lv WW, Wang DL, Sun FL. E2 ligase dRad6 regulates DMP53 turnover in Drosophila. J Biol Chem 2011; 286:9020-30. [PMID: 21205821 PMCID: PMC3058994 DOI: 10.1074/jbc.m110.190314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/27/2010] [Indexed: 11/06/2022] Open
Abstract
The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.
Collapse
Affiliation(s)
- Su Chen
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Hui-Min Wei
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Wen-Wen Lv
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Da-Liang Wang
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Fang-Lin Sun
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Tseng YK, Wu MS, Hou RF. Induction of apoptosis in SF21 cell line by conditioned medium of the entomopathogenic fungus, Nomuraea rileyi, through Sf-caspase-1 signaling pathway. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:206-214. [PMID: 18395831 DOI: 10.1002/arch.20242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The apoptosis in SF-21 cell line can be induced by the conditioned medium (CM) of the entomopathogenic fungus, Nomuraea rileyi, based on changes in morphology and formation of apoptotic bodies in cultured cells, and with the onset of DNA fragmentation as shown by TUNEL staining and agarose electrophoresis. Moreover, the induction of apoptosis in SF-21 cells was inhibited by adding the inhibitor of effector caspase, viz. z-DEVD-fmk, to the CM, indicating that Sf-caspase-1 is involved in this apoptosis. Similarly, the inhibitor of initiator caspase, viz., z-VAD-fmk, inhibited apoptosis. Therefore, both initiator and effector caspases are possibly involved in the apoptosis of SF-21 cells. In addition, we detected Sf-caspase-1 activity in the process of apoptosis in SF-21 cells, suggesting that the effector caspase in SF-21 is similar to that found in mammalian cells. Our results also indicated that the apoptosis found in this line is accomplished through a Sf-caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Yu-Kai Tseng
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
| | | | | |
Collapse
|
6
|
Arama E, Steller H. Detection of apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and acridine orange in Drosophila embryos and adult male gonads. Nat Protoc 2007; 1:1725-31. [PMID: 17487155 DOI: 10.1038/nprot.2006.235] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In Drosophila, vast numbers of cells undergo apoptosis during normal development. In addition, excessive apoptosis can be induced in response to a variety of stress or injury paradigms, including DNA damage, oxidative stress, nutrient deprivation, unfolded proteins and mechanical tissue damage. Two of the most commonly used methods to label apoptotic cells in Drosophila are terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) for fixed tissues and acridine orange (AO) staining for live embryos or tissues. Here, we describe protocols for labeling apoptotic cells in Drosophila embryos and adult male gonads. Slightly modified protocols can also be applied for other Drosophila tissues. The AO protocol is quick, simple and allows real-time imaging of doomed cells in live tissues. However, it is difficult to combine with conventional counterstains or Ab labeling. On the other hand, this functionality is readily afforded by the TUNEL protocol, which permits the detection of apoptotic cells in fixed tissues. These staining procedures can be completed in 1-2 d.
Collapse
Affiliation(s)
- Eli Arama
- Howard Hughes Medical Institute, Strang Laboratory of Cancer Research, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
7
|
Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M. DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 2006; 26:7258-68. [PMID: 16980627 PMCID: PMC1592896 DOI: 10.1128/mcb.00183-06] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accidental cell death often leads to compensatory proliferation. In Drosophila imaginal discs, for example, gamma-irradiation induces extensive cell death, which is rapidly compensated by elevated proliferation. Excessive compensatory proliferation can be artificially induced by "undead cells" that are kept alive by inhibition of effector caspases in the presence of apoptotic stimuli. This suggests that compensatory proliferation is induced by dying cells as part of the apoptosis program. Here, we provide genetic evidence that the Drosophila initiator caspase DRONC governs both apoptosis execution and subsequent compensatory proliferation. We examined mutants of five Drosophila caspases and identified the initiator caspase DRONC and the effector caspase DRICE as crucial executioners of apoptosis. Artificial compensatory proliferation induced by coexpression of Reaper and p35 was completely suppressed in dronc mutants. Moreover, compensatory proliferation after gamma-irradiation was enhanced in drice mutants, in which DRONC is activated but the cells remain alive. These results show that the apoptotic pathway bifurcates at DRONC and that DRONC coordinates the execution of cell death and compensatory proliferation.
Collapse
Affiliation(s)
- Shu Kondo
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
8
|
Kanuka H, Kuranaga E, Takemoto K, Hiratou T, Okano H, Miura M. Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J 2005; 24:3793-806. [PMID: 16222340 PMCID: PMC1276714 DOI: 10.1038/sj.emboj.7600822] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 08/30/2005] [Indexed: 01/22/2023] Open
Abstract
Caspases are well known for their role in the execution of apoptotic programs, in which they cleave specific target proteins, leading to the elimination of cells, and for their role in cytokine maturation. In this study, we identified a novel substrate, which, through cleavage by caspases, can regulate Drosophila neural precursor development. Shaggy (Sgg)46 protein, an isoform encoded by the sgg gene and essential for the negative regulation of Wingless signaling, is cleaved by the Dark-dependent caspase. This cleavage converts it to an active kinase, which contributes to the formation of neural precursor (sensory organ precursor (SOP)) cells. Our evidence suggests that caspase regulation of the wingless pathway is not associated with apoptotic cell death. These results imply a novel role for caspases in modulating cell signaling pathways through substrate cleavage in neural precursor development.
Collapse
Affiliation(s)
- Hirotaka Kanuka
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Erina Kuranaga
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kiwamu Takemoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Tetsuo Hiratou
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Sinjuku-ku, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Sinjuku-ku, Tokyo, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Cell Recovery Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Tel.: +81 3 5841 4860; Fax: +81 3 5841 4867; E-mail:
| |
Collapse
|
9
|
Abstract
To understand the role of a gene in adult behavior, it is necessary to control its expression in four dimensions: space and time. Two recent papers describe implementation of different but related technologies that now provide this missing element in fly behavioral research.
Collapse
Affiliation(s)
- Benjamin Leung
- Department of Neurobiology, University of Massachusetts Medical School, Worcester MA 01605, USA
| | | |
Collapse
|
10
|
Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S. The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 2004; 23:1627-35. [PMID: 15029247 PMCID: PMC391065 DOI: 10.1038/sj.emboj.7600155] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 02/11/2004] [Indexed: 11/09/2022] Open
Abstract
ARTS is an unusual septin-like mitochondrial protein that was originally shown to mediate TGF-beta-induced apoptosis. Recently, we found that ARTS is also important for cell killing by other pro-apoptotic factors, such as arabinoside, etoposide, staurosporine and Fas. In Drosophila, the IAP antagonists Reaper, Hid and Grim are essential for the induction of virtually all apoptotic cell death. We found that mutations in peanut, which encodes a Drosophila homologue of ARTS, can dominantly suppress cell killing by Reaper, Hid and Grim, indicating that peanut acts downstream or in parallel to these. In mammalian cells, ARTS is released from mitochondria upon pro-apoptotic stimuli and then binds to XIAP. Binding of ARTS to XIAP is direct, as recombinant ARTS and XIAP proteins can bind to each other in vitro. ARTS binding to XIAP is specific and related to its pro-apoptotic function, as mutant forms of ARTS (or related septins) that fail to bind XIAP failed to induce apoptosis. ARTS leads to decreased XIAP protein levels and caspase activation. Our data suggest that ARTS induces apoptosis by antagonizing IAPs.
Collapse
Affiliation(s)
- Yossi Gottfried
- Apoptosis and Carcinogenesis Research Laboratory, Pathology Department, Rambam Medical Center, Haifa, Israel
| | - Asaf Rotem
- Apoptosis and Carcinogenesis Research Laboratory, Pathology Department, Rambam Medical Center, Haifa, Israel
| | - Rona Lotan
- Apoptosis and Carcinogenesis Research Laboratory, Pathology Department, Rambam Medical Center, Haifa, Israel
| | - Hermann Steller
- Howard Hughes Medical Institute, The Rockefeller University, New York, USA
| | - Sarit Larisch
- Apoptosis and Carcinogenesis Research Laboratory, Pathology Department, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
11
|
Claveria C, Martinez-A C, Torres M. A Bax/Bak-independent Mitochondrial Death Pathway Triggered by Drosophila Grim GH3 Domain in Mammalian Cells. J Biol Chem 2004; 279:1368-75. [PMID: 14551193 DOI: 10.1074/jbc.m309819200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grim encodes a protein required for programmed cell death in Drosophila, whose proapoptotic activity is conserved in mammalian cells. Two proapoptotic domains are relevant for Grim killing function; the N-terminal region, which induces apoptosis by disrupting inhibitor of apoptosis protein (IAP) blockage of caspase activity, and the internal GH3 domain, which triggers a mitochondrial pathway. We explored the role of these two domains in heterologous killing of mammalian cells by Grim. The GH3 domain is essential for Grim proapoptotic activity in mouse cells, whereas the N-terminal domain is dispensable. The GH3 domain is required and sufficient for Grim targeting to mitochondria and for cytochrome c release in a caspase- and N-terminal-independent, IAP-insensitive manner. These Grim GH3 activities do not require Bax or Bak function, revealing GH3 activity as the first proapoptotic stimulus able to trigger the mitochondrial death pathway in mammalian cells in the absence of multidomain proapoptotic Bcl-2 proteins.
Collapse
Affiliation(s)
- Cristina Claveria
- Departamento de Inmunologiía y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientiíficas, Universidad Autónoma de Madrid Campus de Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
12
|
Paul A, Duttaroy A. Genomic regions responsible for manganese superoxide dismutase regulation in Drosophila melanogaster. Aging Cell 2003; 2:223-31. [PMID: 12934716 DOI: 10.1046/j.1474-9728.2003.00056.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of manganese superoxide dismutase (MnSOD), expression of which is essential for detoxification of superoxide radicals from mitochondria, has been shown to be regulated in vitro by many factors and conditions including oxidative stress, cytokines, lipopolysaccharide, cytoplasmic myc (c-myc), p53 and tumour necrosis factors. Here we describe genomic regions in Drosophila melanogaster with regulatory effects on transcription of the MnSOD gene at an organism-wide level. To understand the integrated regulation of MnSOD expression we screened chromosomes of D. melanogaster to locate deficiencies that altered the expression of MnSOD. Suppressors of MnSOD were screened by assessing the relative message abundance of MnSOD in 149 deletions covering approximately 81% of the Drosophila genome. The chromosomal deficiency Df(2R)017 significantly up-regulated MnSOD mRNA by 1.7-fold. Deficiency in four other genomic intervals, Df(1)ct-J4, Df(2L)BSC4, Df(3L)66C-G28 and Df(3R)Scr, down-regulated MnSOD expression. Changes in MnSOD expression were positively associated with paraquat sensitivity of the deletion genotypes. Thus, at least one candidate enhancer and four candidate suppressors exist in the Drosophila genome to regulate the transcriptional activity of the MnSOD gene in vivo.
Collapse
Affiliation(s)
- Anirban Paul
- Biology Department, Howard University, Washington DC 20059, USA
| | | |
Collapse
|
13
|
Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H. Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 2003; 22:3568-79. [PMID: 12853472 PMCID: PMC165625 DOI: 10.1093/emboj/cdg355] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Revised: 05/19/2003] [Accepted: 05/23/2003] [Indexed: 11/12/2022] Open
Abstract
Bcl-2 family proteins are key regulators of apoptosis. Both pro-apoptotic and anti-apoptotic members of this family are found in mammalian cells, but only the pro-apoptotic protein Debcl has been characterized in Drosophila: Here we report that Buffy, the second Drosophila Bcl-2-like protein, is a pro-survival protein. Ablation of Buffy by RNA interference leads to ectopic apoptosis, whereas overexpression of buffy results in the inhibition of developmental programmed cell death and gamma irradiation-induced apoptosis. Buffy interacts genetically and physically with Debcl to suppress Debcl-induced cell death. Genetic interactions suggest that Buffy acts downstream of Rpr, Grim and Hid, and upstream of the apical caspase Dronc. Furthermore, overexpression of buffy inhibits ectopic cell death in diap1 (th(5)) mutants. Taken together these data suggest that Buffy can act downstream of Rpr, Grim and Hid to block caspase-dependent cell death. Overexpression of Buffy in the embryo results in inhibition of the cell cycle, consistent with a G(1)/early-S phase arrest. Our data suggest that Buffy is functionally similar to the mammalian pro-survival Bcl-2 family of proteins.
Collapse
Affiliation(s)
- Leonie Quinn
- Trescowick Research Laboratories, Peter MacCallum Cancer Institute, St Andrews Place, East Melbourne
| | | | | | | | | | | | | |
Collapse
|
14
|
Siddall NA, Behan KJ, Crew JR, Cheung TL, Fair JA, Batterham P, Pollock JA. Mutations in lozenge and D-Pax2 invoke ectopic patterned cell death in the developing Drosophila eye using distinct mechanisms. Dev Genes Evol 2003; 213:107-19. [PMID: 12690448 DOI: 10.1007/s00427-003-0295-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 12/16/2002] [Indexed: 10/25/2022]
Abstract
Mutations in the lozenge gene of Drosophila melanogaster elicit a pleiotropic set of adult phenotypes, including severe compound eye perturbations resulting from the defective recruitment of photoreceptors R1/6 and R7, cone and pigment cells. In this study, we show that excessive patterned apoptosis is evident at the same developmental stage in these lozenge mutants. In lozenge null mutants, apoptosis occurs prior to lozenge-dependent cell fate specification. A second gene, D-Pax2, genetically interacts with lozenge. Interestingly, D-Pax2 mutants also exhibit increased cell death, but slightly later in development than that in lozenge mutants. Although expression of the caspase inhibitor p35 eliminates death in both lozenge and D-Pax2 mutants, the lozenge mutant eye phenotypes persist because other normal Lozenge functions are still lacking. D-Pax2 eye phenotypes, in contrast, are dramatically altered in a p35 background, because cells that normally differentiate as cone and primary pigment cells are subsequently transformed into secondary pigment cells. This study leads us to propose that Lozenge, aside from its known role in gene regulation of cell-specific transcription factors, is required to contribute to the repression of cell death mechanisms, creating a permissive environment for the survival of undifferentiated cells in early eye development. Lack of lozenge expression increases the likelihood that an undifferentiated cell will initiate its default death program and die prematurely. The ectopic cell death evident in D-Pax2 mutants appears to arise from the cell fate transformation of cone cells into secondary pigment cells, either autonomously or as a result of defective signalling.
Collapse
Affiliation(s)
- Nicole A Siddall
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Choi Y, Kawazoe Y, Murakami K, Misawa H, Uesugi M. Identification of bioactive molecules by adipogenesis profiling of organic compounds. J Biol Chem 2003; 278:7320-4. [PMID: 12496288 DOI: 10.1074/jbc.m210283200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important step in the postgenomic drug discovery is the construction of high quality chemical libraries that generate bioactive molecules at high rates. Here we report a cell-based approach to composing a focused library of biologically active compounds. A collection of bioactive non-cytotoxic chemicals was identified from a divergent library through the effects on the insulin-induced adipogenesis of 3T3-L1 cells, one of the most drastic and sensitive morphological alterations in cultured mammalian cells. The resulting focused library amply contained unique compounds with a broad range of pharmacological effects, including glucose-uptake enhancement, cytokine inhibition, osteogenesis stimulation, and selective suppression of cancer cells. Adipogenesis profiling of organic compounds generates a focused chemical library for multiple biological effects that are seemingly unrelated to adipogenesis, just as genetic screens with the morphology of fly eyes identify oncogenes and neurodegenerative genes.
Collapse
Affiliation(s)
- Yongmun Choi
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Martin JR, Keller A, Sweeney ST. Targeted expression of tetanus toxin: a new tool to study the neurobiology of behavior. ADVANCES IN GENETICS 2002; 47:1-47. [PMID: 12000095 DOI: 10.1016/s0065-2660(02)47001-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past few decades, the explosion of molecular genetic knowledge, particularly in the fruit fly Drosophila melanogaster, has led to the identification of a large number of genes, which, when mutated, directly or indirectly affect fly behavior. Beyond the genetic and molecular characterization of genes and their associated molecular pathways, recent advances in molecular genetics also have allowed the development of new tools dedicated more directly to the dissection of the neural bases for various behaviors. In particular, the conjunction of the development of two techniques--the enhancer-trap detection system and the targeted gene expression system, based on the yeast GAL4 transcription factor--has led to the development of the binary enhancer-trap P[GAL4] expression system, which allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns. Thus, this development, in addition to allowing the anatomical characterization of neuronal circuitry, also allows, via the expression of tetanus toxin light chain (known to specifically block synaptic transmission), an investigation of the role of specific neurons in certain behaviors. Using this system of "toxigenetics," several forms of behavior--from those mediated by sensory systems, such as olfaction, mechanoreception, and vision, to those mediated by higher brain function, such as learning, memory and locomotion--have been studied. These studies aim to map neuronal circuitry underlying specific behaviors and thereby unravel relevant neurophysiological mechanisms. The advantage of this approach is that it is noninvasive and permits the investigation of behavior in the free moving animal. We review a number of behavioral studies that have successfully employed this toxigenetic approach, and we hope to persuade the reader that transgenic tetanus toxin light chain is a useful and appropriate tool for the armory of neuroethologists.
Collapse
Affiliation(s)
- Jean-René Martin
- NAMC, CNRS, UMR-8620, Université Paris-Sud, Centre Scientifique d'Orsay, France
| | | | | |
Collapse
|
17
|
Clavería C, Caminero E, Martínez-A C, Campuzano S, Torres M. GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J 2002; 21:3327-36. [PMID: 12093734 PMCID: PMC126101 DOI: 10.1093/emboj/cdf354] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 04/19/2002] [Accepted: 05/16/2002] [Indexed: 11/13/2022] Open
Abstract
Grim encodes a protein required for programmed cell death in Drosophila. The Grim N-terminus induces apoptosis by disrupting IAP blockage of caspases; however, N-terminally-deleted Grim retains pro apoptotic activity. We describe GH3, a 15 amino acid internal Grim domain absolutely required for its proapoptotic activity and sufficient to induce cell death when fused to heterologous carrier proteins. A GH3 homology region is present in the Drosophila proapoptotic proteins Reaper and Sickle. The GH3 domain and the homologous regions in Reaper and Sickle are predicted to be structured as amphipathic alpha-helixes. During apoptosis induction, Grim colocalizes with mitochondria and cytochrome c in a GH3-dependent but N-terminal- and caspase activity-independent manner. When Grim is overexpressed in vivo, both the N-terminal and the GH3 domains are equally necessary, and cooperate for apoptosis induction. The N-terminal and GH3 Grim domains thus activate independent apoptotic pathways that synergize to induce programmed cell death efficiently.
Collapse
Affiliation(s)
| | - Eva Caminero
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CSIC-UAM, Campus de Cantoblanco and
Centro de Biología Molecular, CSIC-UAM, Cantoblanco, E-28049 Madrid, Spain Corresponding author e-mail:
| | | | - Sonsoles Campuzano
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CSIC-UAM, Campus de Cantoblanco and
Centro de Biología Molecular, CSIC-UAM, Cantoblanco, E-28049 Madrid, Spain Corresponding author e-mail:
| | - Miguel Torres
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CSIC-UAM, Campus de Cantoblanco and
Centro de Biología Molecular, CSIC-UAM, Cantoblanco, E-28049 Madrid, Spain Corresponding author e-mail:
| |
Collapse
|
18
|
Rodriguez A, Chen P, Oliver H, Abrams JM. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark. EMBO J 2002; 21:2189-97. [PMID: 11980716 PMCID: PMC125994 DOI: 10.1093/emboj/21.9.2189] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 02/08/2002] [Accepted: 03/15/2002] [Indexed: 11/14/2022] Open
Abstract
In mammals and Drosophila, apoptotic caspases are under positive control via the CED-4/Apaf-1/Dark adaptors and negative control via IAPs (inhibitor of apoptosis proteins). However, the in vivo genetic relationship between these opposing regulators is not known. In this study, we demonstrate that a dark mutation reverses catastrophic defects seen in Diap1 mutants and rescues cells specified for Diap1- regulated cell death in development and in response to genotoxic stress. We also find that dark function is required for hyperactivation of caspases which occurs in the absence of Diap1. Since the action of dark is epistatic to that of Diap1, these findings demonstrate that caspase-dependent cell death requires concurrent positive input through Apaf-1-like proteins together with disruption of IAP-caspase complexes.
Collapse
Affiliation(s)
| | | | - Holt Oliver
- Department of Cell Biology and
Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA Corresponding author e-mail:
| | - John M. Abrams
- Department of Cell Biology and
Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA Corresponding author e-mail:
| |
Collapse
|
19
|
Henis-Korenblit S, Shani G, Sines T, Marash L, Shohat G, Kimchi A. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc Natl Acad Sci U S A 2002; 99:5400-5. [PMID: 11943866 PMCID: PMC122781 DOI: 10.1073/pnas.082102499] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Apoptosis is characterized by a translation switch from cap-dependent to internal ribosome entry site (IRES)-mediated protein translation. During apoptosis, several members of the eukaryotic initiation factor (eIF)4G family are cleaved specifically by caspases. Here we investigated which of the caspase-cleaved eIF4G family members could support cap-independent translation through IRES elements that retain activity in the dying cell. We focused on two major fragments arising from the cleavage of eIF4GI and death-associated protein 5 (DAP5) proteins (eIF4GI M-FAG/p76 and DAP5/p86, respectively), because they are the only potential candidates to preserve the minimal scaffold function needed to mediate translation. Transfection-based experiments in cell cultures indicated that expression of DAP5/p86 in cells stimulated protein translation from the IRESs of c-Myc, Apaf-1, DAP5, and XIAP. In contrast, these IRESs were refractory to the ectopically expressed eIF4GI M-FAG/p76. Furthermore, our study provides in vivo evidence that the caspase-mediated removal of the C-terminal tail of DAP5/p97 relieves an inhibitory effect on the protein's ability to support cap-independent translation through the DAP5 IRES. Altogether, the data suggest that DAP5 is a caspase-activated translation factor that mediates translation through a repertoire of IRES elements, supporting the translation of apoptosis-related proteins.
Collapse
Affiliation(s)
- Sivan Henis-Korenblit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Wing JP, Karres JS, Ogdahl JL, Zhou L, Schwartz LM, Nambu JR. Drosophila sickle is a novel grim-reaper cell death activator. Curr Biol 2002; 12:131-5. [PMID: 11818064 DOI: 10.1016/s0960-9822(01)00664-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Drosophila genes reaper, head involution defective (hid), and grim all reside at 75C on chromosome three and encode related proteins that have crucial functions in programmed cell death (reviewed in ). In this report, we describe a novel grim-reaper gene, termed sickle, that resides adjacent to reaper. The sickle gene, like reaper and grim, encodes a small protein which contains an RHG motif and a Trp-block. In wild-type embryos, sickle expression was detected in cells of the developing central nervous system. Unlike reaper, hid, and grim, the sickle gene is not removed by Df(3L)H99, and strong ectopic sickle expression was detected in the nervous system of this cell death mutant. sickle very effectively induced cell death in cultured Spodoptera Sf-9 cells, and this death was antagonized by the caspase inhibitors p35 or DIAP1. Strikingly, unlike the other grim-reaper genes, targeted sickle expression did not induce cell death in the Drosophila eye. However, sickle strongly enhanced the eye cell death induced by expression of either an r/grim chimera or reaper.
Collapse
Affiliation(s)
- John P Wing
- Department of Biology, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ranganath RM, Nagashree NR. Role of programmed cell death in development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 202:159-242. [PMID: 11061565 DOI: 10.1016/s0074-7696(01)02005-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed cell death (PCD) is an integral part of both animal and plant development. In animals, model systems such as Caenorhabditis elegans, Drosophila melanogaster, and mice have shown a general cell death profile of induction, caspase mediation, cell death, and phagocytosis. Tremendous strides have been made in cell death research in animals in the past decade. The ordering of the C. elegans genes Ced-3, 4 and 9, identification of caspase-activated DNase that degrades nuclear DNA during PCD, identification of signal transduction modules involving caspases as well as the caspase-independent pathway, and the involvement of mitochondria are some of the findings of immense value in understanding animal PCDs. Similarly, the caspase inactivation mechanisms of infecting viruses to stall host cell death give a new dimension to the viral infection process. However, plant cell death profiles provide an entirely different scenario. The presence of a cell wall that cannot be phagocytosed, absence of the hallmarks of animal PCDs such as DNA laddering, formation of apoptotic bodies, a cell-death-specific nuclease, a biochemical machinery of killer enzymes such as caspases all point to novel ways of cell elimination. Large gaps in our understanding of plant cell death have prompted speculative inferences and comparisons with animal cell death mechanisms. This paper deals with both animals and plants for a holistic view on cell death in eukaryotes.
Collapse
Affiliation(s)
- R M Ranganath
- Department of Botany, Bangalore University, Jnanabharathi, India
| | | |
Collapse
|
22
|
Affiliation(s)
- P Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390-9039, USA
| | | |
Collapse
|
23
|
Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, Gottfried Y, Birkey Reffey S, de Caestecker MP, Danielpour D, Book-Melamed N, Timberg R, Duckett CS, Lechleider RJ, Steller H, Orly J, Kim SJ, Roberts AB. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2000; 2:915-21. [PMID: 11146656 DOI: 10.1038/35046566] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe a protein product of the human septin H5/PNUTL2/CDCrel2b gene, which we call ARTS (for apoptosis-related protein in the TGF-beta signalling pathway). ARTS is expressed in many cells and acts to enhance cell death induced by TGF-beta or, to a lesser extent, by other apoptotic agents. Unlike related septin gene products, ARTS is localized to mitochondria and translocates to the nucleus when apoptosis occurs. Mutation of the P-loop of ARTS abrogates its competence to activate caspase 3 and to induce apoptosis. Taken together, these observations expand the functional attributes of septins previously described as having roles in cytokinesis and cellular morphogenesis.
Collapse
Affiliation(s)
- S Larisch
- Pathology Department, Rambam Medical Center, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 2000; 103:805-13. [PMID: 11114336 DOI: 10.1016/s0092-8674(00)00183-5] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mutations in the amnesiac gene in Drosophila affect both memory retention and ethanol sensitivity. The predicted amnesiac gene product, AMN, is an apparent preproneuropeptide, and previous studies suggest that it stimulates cAMP synthesis. Here we show that, unlike other learning-related Drosophila proteins, AMN is not preferentially expressed in mushroom bodies. Instead, it is strongly expressed in two large neurons that project over all the lobes of the mushroom bodies, a finding that suggests a modulatory role for AMN in memory formation. Genetically engineered blockade of vesicle recycling in these cells abbreviates memory as in the amnesiac mutant. Moreover, restoration of amn gene expression to these cells reestablishes normal olfactory memory in an amn deletion background. These results indicate that AMN neuropeptide release onto the mushroom bodies is critical for normal olfactory memory.
Collapse
Affiliation(s)
- S Waddell
- Center for Learning and Memory Department of Brain and Cognitive Sciences Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
25
|
Baehrecke EH. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ 2000; 7:1057-62. [PMID: 11139278 DOI: 10.1038/sj.cdd.4400753] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Steroid hormones play an important role in the regulation of numerous physiological responses, but the mechanisms that enable these systemic signals to trigger specific cell changes remain poorly characterized. Recent studies of Drosophila illustrate several important features of steroid-regulated programmed cell death. A single steroid hormone activates both cell differentiation and cell death in different tissues and at multiple stages during development. While several steroid-regulated genes are required for cell execution, most of these genes function in both cell differentiation and cell death, and require more specific factors to kill cells. Genes that regulate apoptosis during Drosophila embryogenesis are induced by steroids in dying cells later in development. These apoptosis genes likely function downstream of hormone-induced factors to serve a more direct role in the death response. This article reviews the current knowledge of steroid signaling and the regulation of programmed cell death during development of Drosophila.
Collapse
Affiliation(s)
- E H Baehrecke
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland, MD 20742, USA.
| |
Collapse
|
26
|
Filippov V, Filippova M, Sehnal F, Gill SS. Temporal and spatial expression of the cell-cycle regulator cul-1 in Drosophila and its stimulation by radiation-induced apoptosis. J Exp Biol 2000; 203:2747-56. [PMID: 10952875 DOI: 10.1242/jeb.203.18.2747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cul-1 protein is part of the ubiquitin ligase complex that is conserved from yeast to humans. This complex specifically marks cell-cycle regulators for their subsequent destruction. Two null mutations of the cul-1 gene are known, in budding yeast and in nematodes. Although in both these organisms the cul-1 gene executes essentially the same function, the manifestation of its lack-of-function mutations differs considerably. In yeast the mutation causes arrest at the G(1)/S-phase transition, whereas in nematodes excessive cell divisions occur because mutant cells are unable to exit the mitotic cycle. We isolated cul-1 orthologues from two model organisms, Drosophila melanogaster and mouse. We show that the Drosophila full-length cul-1 gene restores the yeast mutant's inability to pass through the G(1)/S-phase transition. We also characterize expression of this gene at the transcript and protein levels during Drosophila development and show that cul-1 gene is maternally supplied as a protein, but not as an RNA transcript. Zygotic transcription of the gene, however, resumes at early stages of embryogenesis. We also found an increase in cul-1 transcription in cultured cells treated with a lethal dose of gamma-irradiation.
Collapse
Affiliation(s)
- V Filippov
- Department of Cell Biology and Neuroscience Graduate Programs in Biochemistry and Molecular Biology, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The recent discovery of a Drosophila orthologue of the p53 tumour suppressor promises new insights into the complex function, regulation and evolution of one of the most intensely studied human disease proteins.
Collapse
|
28
|
Blaumueller CM, Mlodzik M. The Drosophila tumor suppressor expanded regulates growth, apoptosis, and patterning during development. Mech Dev 2000; 92:251-62. [PMID: 10727863 DOI: 10.1016/s0925-4773(00)00246-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Drosophila expanded (ex) gene encodes a protein thought to play a role in signaling at apical junctions of epithelial cells. Previous studies have characterized this gene as a tumor suppressor involved in regulating the growth of a subset of Drosophila imaginal discs (Boedigheimer, M., Laughon, A., 1993. expanded: a gene involved in the control of cell proliferation in imaginal discs, Development 118, 1291-1301); although ex negatively regulates cell proliferation in the developing wing, it appeared to have a conflicting role in the eye. In contrast, our analysis of the loss-of-function phenotype indicates that ex does, in fact, regulate growth in the eye. We also show that this gene plays a role in patterning of the eye, mainly at the level of planar polarity. Our studies further demonstrate that, contrary to what was expected based on loss-of-function data, the tissue reduction phenotypes resulting from Ex overexpression are attributable to the induction of apoptotic cell death. Taken together, our data suggest that Ex is a versatile molecule that plays a role in most of the processes that govern disc development.
Collapse
Affiliation(s)
- C M Blaumueller
- Developmental Biology Programme, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | |
Collapse
|
29
|
Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C, Kopczynski C. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 2000; 101:91-101. [PMID: 10778859 DOI: 10.1016/s0092-8674(00)80626-1] [Citation(s) in RCA: 322] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The importance of p53 in carcinogenesis stems from its central role in inducing cell cycle arrest or apoptosis in response to cellular stresses. We have identified a Drosophila homolog of p53 ("Dmp53"). Like mammalian p53, Dmp53 binds specifically to human p53 binding sites, and overexpression of Dmp53 induces apoptosis. Importantly, inhibition of Dmp53 function renders cells resistant to X ray-induced apoptosis, suggesting that Dmp53 is required for the apoptotic response to DNA damage. Unlike mammalian p53, Dmp53 appears unable to induce a G1 cell cycle block when overexpressed, and inhibition of Dmp53 activity does not affect X ray-induced cell cycle arrest. These data reveal an ancestral proapoptotic function for p53 and identify Drosophila as an ideal model system for elucidating the p53 apoptotic pathway(s) induced by DNA damage.
Collapse
Affiliation(s)
- M Ollmann
- Exelixis, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell 2000; 101:103-13. [PMID: 10778860 DOI: 10.1016/s0092-8674(00)80627-3] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tumor suppressor gene p53 regulates multiple cellular responses to DNA damage, but the transcriptional targets that specify these responses are incompletely understood. We describe a Drosophila p53 homolog and demonstrate that it can activate transcription from a promoter containing binding sites for human p53. Dominant-negative forms of Drosophila p53 inhibit both transactivation in cultured cells and radiation-induced apoptosis in developing tissues. The cis-regulatory region of the proapoptotic gene reaper contains a radiation-inducible enhancer that includes a consensus p53 binding site. Drosophila p53 can activate transcription from this site in yeast and a multimer of this site is sufficient for radiation induction in vivo. These results indicate that reaper is a direct transcriptional target of Drosophila p53 following DNA damage.
Collapse
Affiliation(s)
- M H Brodsky
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- P Chen
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | |
Collapse
|
32
|
Goyal L, McCall K, Agapite J, Hartwieg E, Steller H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 2000; 19:589-97. [PMID: 10675328 PMCID: PMC305597 DOI: 10.1093/emboj/19.4.589] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 12/13/1999] [Accepted: 12/13/1999] [Indexed: 11/13/2022] Open
Abstract
Induction of apoptosis in Drosophila requires the activity of three closely linked genes, reaper, hid and grim. Here we show that the proteins encoded by reaper, hid and grim activate cell death by inhibiting the anti-apoptotic activity of the Drosophila IAP1 (diap1) protein. In a genetic modifier screen, both loss-of-function and gain-of-function alleles in the endogenous diap1 gene were obtained, and the mutant proteins were functionally and biochemically characterized. Gain-of-function mutations in diap1 strongly suppressed reaper-, hid- and grim-induced apoptosis. Sequence analysis of these alleles revealed that they were caused by single amino acid changes in the baculovirus IAP repeat domains of diap1, a domain implicated in binding REAPER, HID and GRIM. Significantly, the corresponding mutant DIAP1 proteins displayed greatly reduced binding of REAPER, HID and GRIM, indicating that REAPER, HID and GRIM kill by forming a complex with DIAP1. These data provide strong in vivo evidence for a previously published model of cell death regulation in Drosophila.
Collapse
Affiliation(s)
- L Goyal
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Departments of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
33
|
Li L, Vaessin H. Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev 2000. [DOI: 10.1101/gad.14.2.147] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Organogenesis requires coordination between developmental specific regulators and genes governing cell proliferation. Here we show thatDrosophila prospero encodes a critical regulator of the transition from mitotically active cells to terminal differentiated neurons. Loss of pros results in aberrant expression of multiple cell-cycle regulatory genes and ectopic mitotic activity. In contrast, ectopic pros expression causes transcriptional suppression of multiple cell-cycle regulatory genes and premature termination of cell division. pros activity, hence, provides a critical regulatory link between neuronal lineage development and transcriptional regulation of cell cycle regulatory genes.
Collapse
|
34
|
Henis-Korenblit S, Strumpf NL, Goldstaub D, Kimchi A. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol 2000; 20:496-506. [PMID: 10611228 PMCID: PMC85113 DOI: 10.1128/mcb.20.2.496-506.2000] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Death-associated protein 5 (DAP5) (also named p97 and NAT1) is a member of the translation initiation factor 4G (eIF4G) family that lacks the eIF4E binding site. It was previously implicated in apoptosis, based on the finding that a dominant negative fragment of the protein protected against cell death. Here we address its function and two distinct levels of regulation during apoptosis that affect the protein both at translational and posttranslational levels. DAP5 protein was found to be cleaved at a single caspase cleavage site at position 790, in response to activated Fas or p53, yielding a C-terminal truncated protein of 86 kDa that is capable of generating complexes with eIF4A and eIF3. Interestingly, while the overall translation rate in apoptotic cells was reduced by 60 to 70%, in accordance with the simultaneous degradation of the two major mediators of cap-dependent translation, eIF4GI and eIF4GII, the translation rate of DAP5 protein was selectively maintained. An internal ribosome entry site (IRES) element capable of directing the translation of a reporter gene when subcloned into a bicistronic vector was identified in the 5' untranslated region of DAP5 mRNA. While cap-dependent translation from this transfected vector was reduced during Fas-induced apoptosis, the translation via the DAP5 IRES was selectively maintained. Addition of recombinant DAP5/p97 or DAP5/p86 to cell-free systems enhanced preferentially the translation through the DAP5 IRES, whereas neutralization of the endogenous DAP5 in reticulocyte lysates by adding a dominant negative DAP5 fragment interfered with this translation. The DAP5/p86 apoptotic form was more potent than DAP5/p97 in these functional assays. Altogether, the data suggest that DAP5 is a caspase-activated translation factor which mediates cap-independent translation at least from its own IRES, thus generating a positive feedback loop responsible for the continuous translation of DAP5 during apoptosis.
Collapse
Affiliation(s)
- S Henis-Korenblit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
35
|
Irion U, Leptin M. Developmental and cell biological functions of the Drosophila DEAD-box protein abstrakt. Curr Biol 1999; 9:1373-81. [PMID: 10607561 DOI: 10.1016/s0960-9822(00)80082-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND DEAD-box proteins are a large family of proteins found in bacteria, plants and animals, but only few have been analysed functionally. They are involved in the regulation of various aspects of RNA processing and metabolism, including splicing, transport and translation. The study of their function in multicellular organisms has been restricted to a few special cases, such as the Vasa protein in the fruit fly Drosophila. RESULTS We show that abstrakt, a gene originally identified genetically by its effect on axon outgrowth and fasciculation of the Bolwig nerve, encodes a new Drosophila DEAD-box protein of which the closest homologue is a human gene of unknown function. Using temperature-sensitive alleles to assay its function, we found that abstrakt is essential for survival at all stages throughout the life cycle of the fly. Mutants show specific defects in many developmental processes, including cell-shape changes, localisation of RNA and apoptosis. CONCLUSIONS Abstrakt is not globally required for RNA splicing, transport, subcellular localisation or translation. Nevertheless, there is a widespread requirement for Abstrakt during post-transcriptional gene expression. Abstrakt must affect processing of specific subsets of RNAs, suggesting that differential post-translational control during development is more common than previously suspected.
Collapse
Affiliation(s)
- U Irion
- Institute of Genetics, University of Cologne, Wellcome/CRC Institute, Cologne, Cambridge, D-50931, CB2 1QR, Germany, UK
| | | |
Collapse
|
36
|
Yamaguchi M, Hirose F, Inoue YH, Shiraki M, Hayashi Y, Nishi Y, Matsukage A. Ectopic expression of human p53 inhibits entry into S phase and induces apoptosis in the Drosophila eye imaginal disc. Oncogene 1999; 18:6767-75. [PMID: 10597285 DOI: 10.1038/sj.onc.1203113] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transgenic flies in which ectopic expression of human p53 was targeted to the Drosophila eye imaginal disc were established. On sectioning of adult fly eyes which displayed a severe rough eye phenotype, most ommatidia were found to be fused and irregular shapes of rabdomeres were observed. In addition, many pigment cells were lost. In the developing eye imaginal disc, photoreceptor cell differentiation was initiated normally despite the ectopic expression of p53. However, expression of p53 inhibited cell cycle progression in eye imaginal disc cells and the S phase zone (the second mitotic wave) behind the morphogenetic furrow was almost completely abolished. Furthermore, expression of p53 induced extensive apoptosis of eye imaginal disc cells, and co-expression of baculovirus P35 in the eye imaginal disc suppressed the p53-induced rough eye phenotype. These results are consistent with the known functions of human p53 and indicate the existence of signaling systems with elements corresponding to human p53 in Drosophila eye imaginal disc cells. Genetic crosses of transgenic flies expressing p53 to a collection of Drosophila deficiency stocks allowed us to identify several genomic regions, deletions of which caused enhancement or suppression of the p53-induced rough eye phenotype. The transgenic flies established in this study should be useful to identify novel targets of p53 and its positive or negative regulators in Drosophila.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Apoptosis research demonstrates that, even though the multitude of regulatory circuits controlling programmed cell death might diverge, core elements of the 'apoptotic engine' are widely conserved. Therefore, studies in less complex model systems, such as the nematode and the fly, should continue to have a profound impact on our understanding of the process. This review explores genes and molecules that control apoptosis in Drosophila. The death inducers Reaper, Grim and Hid relay signals, possibly through IAPs (inhibitor of apoptosis proteins) and Dark (an Apaf-1/Ced-4 homologue), to trigger caspase function. This animal model promises continued insights into the determinants of cell death in 'naturally occurring' and pathological contexts.
Collapse
Affiliation(s)
- J M Abrams
- Dept of Cell Biology, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9039, USA.
| |
Collapse
|
38
|
Zhou L, Song Z, Tittel J, Steller H. HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol Cell 1999; 4:745-55. [PMID: 10619022 DOI: 10.1016/s1097-2765(00)80385-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified a Drosophila homolog of Apaf-1 and ced-4, termed hac-1. Like mammalian APAF-1, HAC-1 can activate caspases in a dATP-dependent manner in vitro. During embryonic development, hac-1 is prominently expressed in regions where cells undergo natural death. Significantly, hac-1 transcription is also rapidly induced upon ionizing irradiation, similar to the proapoptotic gene reaper. Loss of hac-1 function causes reduced cell death, and reducing the dosage of hac-1 suppresses ectopic cell killing upon expression of the dcp-1 procaspase in the retina but has little effect on reaper, hid, and grim-mediated killing. Our data indicate that caspase activation and apoptosis in Drosophila are independently controlled by at least two distinct regulatory pathways that converge at the level of caspase activation.
Collapse
Affiliation(s)
- L Zhou
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
39
|
Abstract
The reaper and head involution defective genes can induce apoptotic death in several Drosophila cell types, including portions of the embryo and eye. By a combination of FLP recombinase and the yeast Gal4/UAS transcription activation system, we expressed both cell death genes in discrete clones in the adult ovarian follicle cell layer. The expression of either reaper or head involution defective induced follicle cell apoptosis during all oogenic stages. Unexpectedly, the disruption of the follicle layer led to the induced degeneration of the nurse cells in an apoptotic manner, demonstrating a germline-somatic interaction required for germ cell viability. The germline apoptosis initiates at a specific time in oogenesis, coinciding with the beginning of vitellogenesis. This observation is intriguing given previous suggestions of a process to eliminate defective egg chambers at these same oogenic stages. The induce germline degeneration initiates with the transient formation of a network of filamentous actin around the nurse cell nucleus, in close association with a product of the adducin-related hu-li tai shao gene. This was immediately followed by nuclear condensation and DNA fragmentation, both characteristics diagnostic of apoptosis. Occurring concomitantly with the nuclear phenotypes were the disorganization of ring canals, and the degradation of Armadillo protein (a beta-catenin homolog) and filamentous actin. Germ cells degenerating as a normal consequence of oogenesis displayed a similar set of phenotypes, suggesting that a common apoptotic mechanism may underlie these different germline death phenomena.
Collapse
Affiliation(s)
- S Chao
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242-1234, USA
| | | |
Collapse
|
40
|
Hardisty RE, Mburu P, Brown SD. ENU mutagenesis and the search for deafness genes. BRITISH JOURNAL OF AUDIOLOGY 1999; 33:279-83. [PMID: 10890141 DOI: 10.3109/03005369909090110] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The availability of mouse mutant models for known human deafness loci is limited. Moreover, it is unlikely that the current mouse archives hold mutants for the full panoply of genes involved in auditory system development and transduction. A large-scale ENU mutagenesis is currently underway to increase significantly the number of mouse deafness mutants available, employing specific screens for both deafness and balance defects. In the MRC Harwell screen, 13 mice have been identified so far with deafness, a balance defect or both. Mutagenized mice from the programme are also being used to search for modifiers of a known deafness gene, myosin VIIA (mutated in the Shaker 1 mutant mouse). The progress and encouraging results of the programme indicate that the combination of ENU mutagenesis and effective phenotype screens will lead to a significant contribution to the understanding of the genes and mechanisms involved in hereditary deafness.
Collapse
Affiliation(s)
- R E Hardisty
- Mammalian Genetics Unit and Mouse Genome Centre, Medical Research Council, Harwell, Didcot, Oxon, UK
| | | | | |
Collapse
|
41
|
Ye Y, Fortini ME. Apoptotic activities of wild-type and Alzheimer's disease-related mutant presenilins in Drosophila melanogaster. J Cell Biol 1999; 146:1351-64. [PMID: 10491396 PMCID: PMC2156122 DOI: 10.1083/jcb.146.6.1351] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1999] [Accepted: 08/06/1999] [Indexed: 11/22/2022] Open
Abstract
Mutant human presenilins cause early-onset familial Alzheimer's disease and render cells susceptible to apoptosis in cultured cell models. We show that loss of presenilin function in Drosophila melanogaster increases levels of apoptosis in developing tissues. Moreover, overexpression of presenilin causes apoptotic and neurogenic phenotypes resembling those of Presenilin loss-of-function mutants, suggesting that presenilin exerts a dominant negative effect when expressed at high levels. In Drosophila S2 cells, Psn overexpression leads to reduced Notch receptor synthesis affecting levels of the intact approximately 300-kD precursor and its approximately 120-kD processed COOH-terminal derivatives. Presenilin-induced apoptosis is cell autonomous and can be blocked by constitutive Notch activation, suggesting that the increased cell death is due to a developmental mechanism that eliminates improperly specified cell types. We describe a genetic model in which the apoptotic activities of wild-type and mutant presenilins can be assessed, and we find that Alzheimer's disease-linked mutant presenilins are less effective at inducing apoptosis than wild-type presenilin.
Collapse
Affiliation(s)
- Yihong Ye
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Mark E. Fortini
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
42
|
White K. The third horseman takes wing. Nat Cell Biol 1999; 1:E123-4. [PMID: 10559952 DOI: 10.1038/12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Stein JC, Hansen G. Mannose induces an endonuclease responsible for DNA laddering in plant cells. PLANT PHYSIOLOGY 1999; 121:71-80. [PMID: 10482662 PMCID: PMC59391 DOI: 10.1104/pp.121.1.71] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/1999] [Accepted: 05/25/1999] [Indexed: 05/19/2023]
Abstract
The effect of D-mannose (Man) on plant cells was studied in two different systems: Arabidopsis roots and maize (Zea mays) suspension-cultured cells. In both systems, exposure to D-Man was associated with a subset of features characteristic of apoptosis, as assessed by oligonucleosomal fragmentation and microscopy analysis. Furthermore, D-Man induced the release of cytochrome c from mitochondria. The specificity of D-Man was evaluated by comparing the effects of diastereomers such as L-Man, D-glucose, and D-galactose. Of these treatments, only D-Man caused a reduction in final fresh weight with concomitant oligonucleosomal fragmentation. Man-induced DNA laddering coincided with the activation of a DNase in maize cytosolic extracts and with the appearance of single 35-kD band detected using an in-gel DNase assay. The DNase activity was further confirmed by using covalently closed circular plasmid DNA as a substrate. It appears that D-Man, a safe and readily accessible compound, offers remarkable features for the study of apoptosis in plant cells.
Collapse
Affiliation(s)
- J C Stein
- Novartis Agribusiness Biotechnology Research, 3054 Cornwallis Road, Research Triangle Park, Durham, North Carolina 27709, USA
| | | |
Collapse
|
44
|
Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1999; 1:272-9. [PMID: 10559939 DOI: 10.1038/12984] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we identify a new gene, dark, which encodes a Drosophila homologue of mammalian Apaf-1 and Caenorhabditis elegans CED-4, cell-death proteins. Like Apaf-1, but in contrast to CED-4, Dark contains a carboxy-terminal WD-repeat domain necessary for interactions with the mitochondrial protein cytochrome c. Dark selectively associates with another protein involved in apoptosis, the fly apical caspase, Dredd. Dark-induced cell killing is suppressed by caspase-inhibitory peptides and by a dominant-negative mutant Dredd protein, and enhanced by removal of the WD domain. Loss-of-function mutations in dark attenuate programmed cell deaths during development, causing hyperplasia of the central nervous system, and other abnormalities including ectopic melanotic tumours and defective wings. Moreover, ectopic cell killing by the Drosophila cell-death activators, Reaper, Grim and Hid, is substantially suppressed in dark mutants. These findings establish dark as an important apoptosis effector in Drosophila and raise profound evolutionary considerations concerning the relationship between mitochondrial components and the apoptosis-promoting machinery.
Collapse
Affiliation(s)
- A Rodriguez
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Although the study of germ cell death is arguably still in its infancy as a field, several recent breakthroughs have provided the fodder for a story, replete with episodes of apparent mass cellular suicide if not murder, that will undoubtedly serve as a research base for many laboratories over the next several years. Death is known to strike the male and female germlines with roughly equal intensity, but the innate feature of male germ cells being self-renewing while those of the female are not places the death of oocytes in a completely different light. Indeed, the functional life span of the female gonads is defined in most species, including humans, by the size and rate of depletion of the precious endowment of oocytes enclosed within follicles in the ovaries at birth. This continuous loss of oocytes throughout life, referred to by many as the female biological clock, appears to be driven by a genetic program of cell death that is composed of players and pathways conserved from worms to humans. It is on this genetic pathway, and the role of its constituent molecules in regulating female germ cell fate, that this review will focus. Emphasis will be placed on those studies using genetic-null or transgenic models to explore the functional requirement of proteins, such as Bcl-2 family members, Apaf-1, and caspases in vertebrates to CED-9, CED-4, and CED-3 in Caenorhabditis elegans, in oocyte survival and death. Furthermore, hypotheses regarding the potential impact of translating what is now known of the oocyte death pathway into new approaches for the clinical diagnosis and management of female infertility and the menopause will be offered as a means to stimulate further research in this new and exciting field.
Collapse
Affiliation(s)
- Y Morita
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
46
|
Abstract
Determining how genes function in developmentally complex multicellular organisms can be a formidable task. Obstacles arise from the fact that inactivation of most genes results in subtle or undetectable phenotypic alterations, and when phenotypes are observed they are often difficult to interpret because most genes play multiple roles in development. New techniques that have been applied to studying genes in the developing Drosophila eye promise to circumvent these obstacles. The advent of these techniques combined with the existing wealth of information about cellular pattern formation in the Drosophila eye make the eye a powerful model system for deciphering the function of genes in biological processes.
Collapse
Affiliation(s)
- B J Thomas
- Laboratory of Biochemistry, National Cancer Institute, Building 37, Room 4C17, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
47
|
Haining WN, Carboy-Newcomb C, Wei CL, Steller H. The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc Natl Acad Sci U S A 1999; 96:4936-41. [PMID: 10220397 PMCID: PMC21795 DOI: 10.1073/pnas.96.9.4936] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three genes-reaper, grim, and hid-are crucial to the regulation of programmed cell death in Drosophila melanogaster. Mutations involving all three genes virtually abolish apoptosis during development, and homozygous hid mutants die as embryos with extensive defects in apoptosis. Although Hid is central to apoptosis in Drosophila, it has no mammalian homologue identified to date. We present evidence that expression of Drosophila Hid in mammalian cells induces apoptosis. This activity is subject to regulation by inhibitors of mammalian cell death. We show that the N terminus of Hid, which is a region of homology with Reaper and Grim, is essential for Hid's function in mammalian cells. We demonstrate that Hid is localized to the mitochondria via a hydrophobic region at its C terminus and functionally interacts with BclXL. This study shows that the function of Hid as a death inducer in Drosophila is conserved in mammalian cells and argues for the existence of a mammalian homologue of this critical regulator of apoptosis.
Collapse
Affiliation(s)
- W N Haining
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Programmed cell death has seemed to be regulated in quite different ways in mammals and Drosophila. Recent results on the way Ras and downstream pathways can influence cell-death induction suggest the regulatory pathways in these distinct organisms might be more similar than was at first sight apparent.
Collapse
Affiliation(s)
- H McNeill
- Developmental Patterning Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
49
|
Clavería C, Albar JP, Serrano A, Buesa JM, Barbero JL, Martínez-A C, Torres M. Drosophila grim induces apoptosis in mammalian cells. EMBO J 1998; 17:7199-208. [PMID: 9857177 PMCID: PMC1171066 DOI: 10.1093/emboj/17.24.7199] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic studies have shown that grim is a central genetic switch of programmed cell death in Drosophila; however, homologous genes have not been described in other species, nor has its mechanism of action been defined. We show here that grim expression induces apoptosis in mouse fibroblasts. Cell death induced by grim in mammalian cells involves membrane blebbing, cytoplasmic loss and nuclear DNA fragmentation. Grim-induced apoptosis is blocked by both natural and synthetic caspase inhibitors. We found that grim itself shows caspase-dependent proteolytic processing of its C-terminus in vitro. Grim-induced death is antagonized by bcl-2 in a dose-dependent manner, and neither Fas signalling nor p53 are required for grim pro-apoptotic activity. Grim protein localizes both in the cytosol and in the mitochondria of mouse fibroblasts, the latter location becoming predominant as apoptosis progresses. These results show that Drosophila grim induces death in mammalian cells by specifically acting on mitochondrial apoptotic pathways executed by endogenous caspases. These findings advance our knowledge of the mechanism by which grim induces apoptosis and show the conservation through evolution of this crucial programmed cell death pathway.
Collapse
Affiliation(s)
- C Clavería
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
D'Silva I, Poirier GG, Heath MC. Activation of cysteine proteases in cowpea plants during the hypersensitive response--a form of programmed cell death. Exp Cell Res 1998; 245:389-99. [PMID: 9851880 DOI: 10.1006/excr.1998.4256] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is increasing evidence that the hypersensitive response during plant-pathogen interactions is a form of programmed cell death. In an attempt to understand the biochemical nature of this form of programmed cell death in the cowpea-cowpea rust fungus system, proteolytic activity in extracts of fungus-infected and uninfected cowpea plants was investigated, using exogenously added poly(ADP-ribose) polymerase as a marker. Unlike the proteolytic cleavage pattern of endogenous poly(ADP-ribose) polymerase in apoptotic animal cells, exogenously added poly(ADP-ribose) polymerase in extracts of fungus-infected plants was proteolytically cleaved into fragments of molecular masses 77, 52, 47, and 45 kDa. In vitro and in vivo protease inhibitor experiments revealed the activation of cysteine proteases, and possibly a regulatory role, during the hypersensitive response.
Collapse
Affiliation(s)
- I D'Silva
- Department of Botany, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | | | | |
Collapse
|