1
|
Moreira AF, Filipe HAL, Miguel SP, Ribeiro MJ, Coutinho P. Recent advances in smart gold nanoparticles for photothermal therapy. Nanomedicine (Lond) 2025:1-15. [PMID: 40329458 DOI: 10.1080/17435889.2025.2500912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Gold nanoparticles (AuNPs) possess unique properties, including low toxicity and excellent optical characteristics, making them highly appealing for biomedical applications. The plasmonic photothermal effect of AuNPs has been explored to trigger localized hyperthermia. Four commonly explored gold nanoparticles (spheres, rods, stars, and cages) are produced and optimized to present the localized surface plasmon resonance effect in the near-infrared region, exploiting the increased penetration in the human body. Additionally, the production of hybrid AuNPs, combining them with other materials, such as silica, graphene, zinc oxide, polymers, and small molecules has been explored to amplify the photothermal effect (T ≥ 45ºC). This review provides an overview of AuNPs' application in photothermal therapy, describing the general synthesis processes and the main particle parameters that affect their application in photothermal therapy, including the hybrid nanomaterials. Associated with this rapid progress, surface functionalization can also improve colloidal stability, safety, and therapeutic outcomes. In this regard, we also highlight the emerging trend of applying cell-derived vesicles as biomimetic coatings, capable of evading immune recognition, increasing blood circulation, and targeting specific tissues. In addition, the challenges and future developments of AuNPs for accelerating the clinical translations are discussed in light of their therapeutic and theragnostic potential.
Collapse
Affiliation(s)
- André F Moreira
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Hugo A L Filipe
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Sónia P Miguel
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Maximiano J Ribeiro
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Paula Coutinho
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| |
Collapse
|
2
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
3
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
4
|
Ghanbarikondori P, Aliakbari RBS, Saberian E, Jenča A, Petrášová A, Jenčová J, Khayavi AA. Enhancing Cisplatin Delivery via Liposomal Nanoparticles for Oral Cancer Treatment. Indian J Clin Biochem 2025; 40:211-217. [PMID: 40123632 PMCID: PMC11928341 DOI: 10.1007/s12291-024-01239-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/18/2024] [Indexed: 03/25/2025]
Abstract
Investigating the impact of liposomal Cisplatin on oral cancer cell line seeks to optimize drug delivery efficiency, decrease systemic toxicity, and amplify cytotoxicity specifically against malignant cells. Cisplatin was encapsulated within liposomal nanoparticles through thin-film hydration and extrusion methodologies. The physical and chemical characteristics of the nanoparticles, including zeta potential, size, drug load, and polydispersity index (PDI), were examined to evaluate their properties. The release of the drug was studied in a simulated body fluid environment in vitro. The stability of the nanoparticles was evaluated over a period of 45 days under normal bodily conditions. Ultimately, the liposomal formulations' efficacy was assessed in comparison to free drugs through cell viability assays conducted on the human tongue squamous cell carcinoma cell line CAL 27. The liposomal nanoparticles developed exhibited a favorable size range of 170 nm, a zeta potential of - 30 mV, and a low PDI of under 0.19, demonstrating uniform particle sizes. The encapsulation efficiencies were about % 90, and the drug loading capacities were sufficient. The in vitro release profiles displayed a sustained release pattern over 72 h. The liposomal formulations showed improved stability, with no notable changes in physicochemical properties throughout the study period. Cytotoxicity evaluations revealed that the liposomal Cisplatin formulation exhibited a remarkably higher cytotoxic effect on an oral cancer cell line relative to the unencapsulated drug. This research showcases the promise of liposomal formulations in optimizing the clinical efficacy of oral cancer treatments under superior drug delivery, diminished toxicity, and augmented cytotoxicity.
Collapse
Affiliation(s)
- Parizad Ghanbarikondori
- Department of Pharmaceutics, Pharmaceutical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran
| | | | - Elham Saberian
- Klinika and Akadémia Košice Bacikova, Pavol Jozef Šafárik University, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | | |
Collapse
|
5
|
Yang L, Zhang Y, Liu J, Wang X, Zhang L, Wan H. A tumor-targeting black phosphorus-based nanoplatform for controlled chemo-photothermal therapy of breast cancer. Mater Today Bio 2025; 31:101563. [PMID: 40026630 PMCID: PMC11870200 DOI: 10.1016/j.mtbio.2025.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Combination therapy with high efficacy and precision shows great potential in breast cancer treatment. Herein, we developed a multifunctional nanocarrier (NBP@mSiO2-PEG-cRGD) for tumor-targeting chemo-photothermal therapy of breast cancer in a controlled manner. The nanocarrier was constructed by enveloping nano-sized black phosphorus (NBP) within a mesoporous silica shell (mSiO2) modified with the tumor-targeting peptide c(Arg-Gly-Asp-dPhe-Cys) (cRGD). Due to the existence of pore channels within mSiO2, NBP@mSiO2-PEG-cRGD achieved high loading efficiency of indole-3-carbinol (I3C) molecules (NBP@mSiO2-PEG-cRGD/I3C), an anti-tumor agent derived from food. Mediated by cRGD/integrin αvβ3 interaction, NBP@mSiO2-PEG-cRGD/I3C reached breast tumors in a targeted manner. Once irradiated by the near-infrared laser, our nanocarrier exhibited superior photothermal conversion, which not only induced photothermal therapy but also facilitated the release of I3C from NBP@mSiO2-PEG-cRGD/I3C within tumor cells to inhibit the activation of proto-oncogenic phosphoinositide 3-kinase (PI3K)-AKT signaling pathway and drive chemotherapy. All these attributes contributed to a satisfactory therapeutic effect toward breast tumors, manifesting in significant inhibition of cell proliferation, promotion of cell apoptosis, and reduction of tumor micro-vessel formation, which led to the efficient inhibition of tumor growth. Collectively, the nanocarrier developed here provided useful insights into the development of multifunctional platforms to effectively combat cancer.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Xiaofen Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Li Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
6
|
Lee S, Moon HW, Lee SJ, Cho JC. Development and Characterization of PEGylated Poly D,L-Lactic Acid Nanoparticles for Skin Rejuvenation. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:470. [PMID: 40137643 PMCID: PMC11944346 DOI: 10.3390/nano15060470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Recently, various biocompatible and biodegradable materials have garnered significant attention as cosmetic fillers for skin rejuvenation. Among these, poly ε-caprolactone (PCL), poly L-lactic acid (PLLA), poly D,L-lactic acid (PDLLA), and polydioxanone (PDO) microspheres have been developed and commercialized as a dermal filler. However, its irregularly hydrophobic microspheres pose hydration challenges, often causing syringe needle blockages and side effects such as delayed onset nodules and papules after the procedure. In this study, we synthesized a polyethylene glycol-poly D,L-lactic acid (mPEG-PDLLA) copolymer to address the limitations of conventional polymer fillers. Comprehensive characterization of the copolymer was performed using nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The mPEG-PDLLA copolymers demonstrated a unimodal size distribution of approximately 121 ± 20 nm in an aqueous solution. The in vitro cytotoxicity and collagen genesis of mPEG-PDLLA copolymers were evaluated using human dermal fibroblast cells. In this study, angiogenesis was observed over time in hairless mice injected with mPEG-PDLLA copolymers, confirming its potential role in enhancing collagen synthesis. To assess the inflammatory response, the expression levels of the genes MMP1 and IL-1β were analyzed. Additionally, gene expression levels such as transforming growth factor-β and collagen types I and III were compared with Rejuran® in animal studies. The newly developed collagen-stimulating PEGylated PDLLA may be a safe and effective option for skin rejuvenation.
Collapse
Affiliation(s)
| | | | | | - Jin-Cheol Cho
- R&D Center, CHA Meditech Co., Ltd., 119 Techno 2-ro (#206, Migun Techno World, Yongsan-Dong), Yuseong-gu, Daejeon 34116, Republic of Korea; (S.L.); (H.-W.M.); (S.-J.L.)
| |
Collapse
|
7
|
Kumar A, Shahvej SK, Yadav P, Modi U, Yadav AK, Solanki R, Bhatia D. Clinical Applications of Targeted Nanomaterials. Pharmaceutics 2025; 17:379. [PMID: 40143042 PMCID: PMC11944548 DOI: 10.3390/pharmaceutics17030379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Targeted nanomaterials are at the forefront of advancements in nanomedicine due to their unique and versatile properties. These include nanoscale size, shape, surface chemistry, mechanical flexibility, fluorescence, optical behavior, magnetic and electronic characteristics, as well as biocompatibility and biodegradability. These attributes enable their application across diverse fields, including drug delivery. This review explores the fundamental characteristics of nanomaterials and emphasizes their importance in clinical applications. It further delves into methodologies for nanoparticle programming alongside discussions on clinical trials and case studies. We discussed some of the promising nanomaterials, such as polymeric nanoparticles, carbon-based nanoparticles, and metallic nanoparticles, and their role in biomedical applications. This review underscores significant advancements in translating nanomaterials into clinical applications and highlights the potential of these innovative approaches in revolutionizing the medical field.
Collapse
Affiliation(s)
- Ankesh Kumar
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - SK Shahvej
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit K. Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
8
|
Kim D, Kim C, Lee SE, Kim S, Lee SI, Park MH, Kim M, Sung D, Lee K. Development of ROS-Sensitive Sulfasalazine-Loaded Ferrocene Nanoparticles and Evaluation of Their Antirheumatic Effects in a 3D Synovial Hyperplasia Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407813. [PMID: 39950417 DOI: 10.1002/smll.202407813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/03/2024] [Indexed: 05/09/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation, synovial hyperplasia, and bone and cartilage destruction, which significantly impairs physical function and quality of life. Disease-modifying antirheumatic drugs, such as sulfasalazine (SSZ), are crucial for altering the course and progression of RA; however, their clinical use is hampered by poor water solubility and lack of specificity for the reactive oxygen species (ROS)-rich environment typical of RA. To overcome these challenges, ROS-sensitive SSZ-loaded ferrocene nanoparticles are developed. The nanoparticles facilitate enhanced solubility and stability of SSZ and particularly enable precision targeting through the distinctive redox properties of ferrocene. Using a 3D synovial hyperplasia model with fibroblast-like synoviocytes derive from RA patients and validate at both the protein and gene levels, these nanoparticles significantly reduce lactate dehydrogenase, ROS, and inflammatory cytokine levels. Further validation using a collagen-induced arthritis model demonstrates therapeutic efficacy and cytokine modulation in vivo. These findings highlight the potential of ferrocene nanoparticles as a novel and effective therapeutic strategy for RA, offering improved drug delivery and reduced systemic toxicity.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaehyun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - So Eun Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Min Hee Park
- THEDONEE Inc., Research Center, Seoul, South Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Zheng M, Cao Y, Zhou Q, Si J, Huang G, Ji Y, Wu Y, Ge Z. Multifunctional Zwitterionic N-Oxide Polymers to Overcome Cascade Physiological Barriers for Efficient Anticancer Drug Delivery. Adv Healthc Mater 2025; 14:e2403852. [PMID: 39910882 DOI: 10.1002/adhm.202403852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/01/2025] [Indexed: 02/07/2025]
Abstract
For efficient anticancer drug delivery, cascade physiological barriers must be overcome, which requires the drug delivery vehicles to possess different or even opposite properties at different stages. Poly(tertiary amine-oxide) (PTAO) polymers with the zwitterionic feature have distinct antifouling properties in blood circulation, which can be reduced and protonated in hypoxic tumors to promote cellular internalization. Nevertheless, the effects of various PTAO structures have not been studied systemically and optimized. In this report, the side groups of PTAO are proposed to be optimized by modulating the structures. Poly(2-(N-oxide-hexamethyleneimino)ethyl methacrylate) (POC7A) with a cyclic seven-membered ring is screened as the optimized PTAO structure for in vivo applications. Moreover, the block copolymer POC7A-block-poly(ε-caprolactone) (POC7A-PCL) is prepared for the formation of micelles in aqueous solution for delivery of doxorubicin (DOX). The zwitterionic nature of POC7A shells with efficient bioreductive activity and protonation in the tumor microenvironment endows the micelles with excellent antifouling properties for long blood circulation, efficient tumor accumulation, deep penetration, and effective cellular internalization. Thus, the DOX-loaded micelles exhibit potent antitumor efficacy after intravenous administration. Zwitterionic POC7A can be used as antifouling shells of the anticancer drug delivery nanocarriers to overcome the cascade physiological barriers efficiently.
Collapse
Affiliation(s)
- Moujiang Zheng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yufei Cao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiale Si
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guopu Huang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yuanyuan Ji
- Department of Geriatric General Surgery, Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Youshen Wu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter School of Physics, Xian Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
10
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
11
|
de Paula GA, de Paula MC, Dutra JAP, Carvalho SG, Di Filippo LD, Villanova JCO, Chorilli M. Targeted Polymeric Nanoparticles as a Strategy for the Treatment of Glioblastoma: A Review. Curr Drug Deliv 2025; 22:413-430. [PMID: 38013438 DOI: 10.2174/0115672018257713231107060630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
Glioblastoma multiforme is the most common and aggressive malignant tumor that affects the central nervous system, with high mortality and low survival. Glioblastoma multiforme treatment includes resection tumor surgery, followed by radiotherapy and chemotherapy adjuvants. However, the drugs used in chemotherapy present some limitations, such as the difficulty of crossing the bloodbrain barrier and resisting the cellular mechanisms of drug efflux. The use of polymeric nanoparticles has proven to be an effective alternative to circumvent such limitations, as it allows the exploration of a range of polymeric structures that can be modified in order to control the biodistribution and cytotoxic effect of the drug delivery systems. Nanoparticles are nanometric in size and allow the incorporation of targeting ligands on their surface, favoring the transposition of the blood-brain barrier and the delivery of the drug to specific sites, increasing the selectivity and safety of chemotherapy. The present review has described the characteristics of chitosan, poly(vinyl alcohol), poly(lactic-coglycolic acid), poly(ethylene glycol), poly(β-amino ester), and poly(ε-caprolactone), which are some of the most commonly used polymers in the manufacture of nanoparticles for the treatment of glioblastoma multiforme. In addition, some of the main targeting ligands used in these nanosystems are presented, such as transferrin, chlorotoxin, albumin, epidermal growth factor, and epidermal growth factor receptor blockers, explored for the active targeting of antiglioblastoma agents.
Collapse
Affiliation(s)
- Geanne Aparecida de Paula
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | - Suzana Gonçalves Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
12
|
Komatsu S, Kamei N, Kikuchi A. Thermoresponsive degradable hydrogels with renewable surfaces for protein removal. Biomater Sci 2024; 13:324-329. [PMID: 39584771 DOI: 10.1039/d4bm01383b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Most biological materials used in the body undergo protein adsorption, which alters their biological functions. Previously, we introduced surface-degradable hydrogels as adsorbed protein-removing surfaces. However, only a few surface renewals were possible because of the hydrophilic nature of the hydrogels, which accelerated their degradation. In this research, we introduced thermoresponsive properties of hydrogels for limited degradation for protein removal. Hydrogels were synthesized by the radical polymerization of N-isopropylacrylamide (NIPAAm), 2-methylene-1,3-dioxepane, and poly(ethylene glycol) monomethacrylate (PEGMA). The synthesized hydrogels demonstrated thermoresponsive behavior derived from poly(NIPAAm). At 10 °C, the hydrogels swelled and exhibited bulk degradation. After 2 h, the prepared hydrogels were degraded completely. However, at 37 °C, the hydrogels shrunk and showed surface degradation. After 7 h of degradation, the swelling ratio of the hydrogels changed marginally. The proteins adsorbed on the hydrogel surfaces were removed via surface degradation. However, the fluorescence intensity of adsorbed proteins increased on the hydrogel surfaces without degradable functions. In addition, the fluorescence intensity of adsorbed proteins increased in the hydrogels without PEG graft chains, suggesting that the prepared thermoresponsive hydrogels with PEG chains could be used as potential biomaterial surface coating materials, exhibiting regenerative low-fouling ability.
Collapse
Affiliation(s)
- Syuuhei Komatsu
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Naoki Kamei
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| |
Collapse
|
13
|
Cherik IT, Divsalar A, Abdolhamid Angaji S. Design, Synthesis, and Toxicity Evaluation of the Green Synthesized Oxaliplatin Nanoparticles Using Ginger Extract against Colorectal Cancer Cells. IRANIAN JOURNAL OF SCIENCE 2024; 48:1411-1423. [DOI: 10.1007/s40995-024-01678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/01/2024] [Indexed: 01/05/2025]
|
14
|
Xiong X, Zhang Y, Huang X, Zhang S, Li Q. Generating Immunological Memory Against Cancer by Camouflaging Gold-Based Photothermal Nanoparticles in NIR-II Biowindow for Mimicking T-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407038. [PMID: 39394989 DOI: 10.1002/smll.202407038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 10/14/2024]
Abstract
Photothermal therapy (PTT) against cancer not only directly ablates tumors but also induces tumor immunogenic cell death (ICD). However, the antitumor immune response elicited by ICD is insufficient to prevent relapse and metastasis because of the immunosuppressive tumor microenvironment (TME). A biomimetic nanoplatform (bmNP) mimicking cytotoxic lymphocytes (CTLs) for combinational photothermal-immunotherapy to effectively regulate the immunosuppressive TME is reported here. The bmNP is constructed by wrapping the T-cell membrane onto a new type of photothermal agents, spherical Au-based PNCs (sAuPNCs). Similar to T-cells, the bmNP enhanced accumulation at the tumor site by targeting the tumor via adhesion proteins on T-cell membrane. The obtained sAuPNCs have a wide absorption band in the second near-infrared (NIR-II) region with a high photothermal conversion efficiency (PCE) up to about 75% and excellent photostability. The bmNP with a smaller size is more superior compete with T-cells to bond with tumor cells via PD-1/PD-L1 interaction to effectively block the PD-1 checkpoint of T-cells for preventing T-cell exhaustion. Furthermore, in vivo studies reveal the immunological memory effect is significantly elicited in mice received bmNPs therapy. Collectively, bmNPs show great potential in photothermal-enhanced immunotherapy.
Collapse
Affiliation(s)
- Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
15
|
Wang J, Zhao X, Qiu L. Drug-induced self-assembled nanovesicles for chloroquine to sensitize MDR tumors to mitoxantrone hydrochloride. Colloids Surf B Biointerfaces 2024; 245:114358. [PMID: 39509852 DOI: 10.1016/j.colsurfb.2024.114358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Multidrug resistance (MDR) is an incidental trouble post-chemotherapy, necessitating innovative therapeutic strategies. This study explores the potential of chloroquine (CQ) as a sensitizer for mitoxantrone hydrochloride (MitH) in drug-resistant tumors and introduces a novel pH-responsive drug-induced self-assembly nanovesicle (DIV) based on an amphiphilic polyphosphonitrile (PPAP) for the co-delivery of MitH and CQ. PPAP cannot self-assemble into nanovesicles alone, but when a certain amount of MitH was added, the multiple non-covalent interactions between PPAP and MitH contributed to the formation of DIV, which exactly improved the co-loading content of MitH and CQ to a large extent. CQ prevents MitH efflux and autophagy to reverse MitH resistance. Given the synergy between MitH and CQ at a 1:2 mass ratio with a combination index of 0.40 in K562/ADR cells, MitH and CQ co-loaded DIV (MC-DIV) is constructed and demonstrates a sensitivity index of 7.1 on cytotoxicity compared to free MitH. Furthermore, MC-DIV achieves extended circulation time, synchronous dual-drug delivery, and improved tumor targeting following systemic administration, resulting in exceptional antitumor efficacy in K562/ADR xenograft models with a tumor inhibition rate of 83.0 %. Overall, MC-DIV provides a viable method to maximize the loading capacity of nanocarriers, and potentially serves as a promising formulation for various MitH-resistant tumors.
Collapse
Affiliation(s)
- Juan Wang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xinchen Zhao
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
17
|
Liu ZH, Mo XW, Jiang W, Liu C, Yin Y, Yang HY, Fu Y. Multifunctional hyaluronic acid ligand-assisted construction of CD44- and mitochondria-targeted self-assembled upconversion nanoparticles for enhanced photodynamic therapy. Dalton Trans 2024; 53:16885-16895. [PMID: 39365371 DOI: 10.1039/d4dt02399d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Upconversion nanoparticles (UCNPs) have been used as a potential nanocarrier for photosensitizers (PSs), which have demonstrated a great deal of promise in achieving an effective photodynamic therapy (PDT) for deep-seated tumors. However, overcoming biological barriers to achieve mitochondria-targeted PDT remains a major challenge. Herein, CD44- and mitochondria-targeted photodynamic nanosystems were fabricated through the self-assembly of hyaluronic acid-conjugated-methoxy poly(ethylene glycol)-diethylenetriamine-grafted-(chlorin e6-dihydrolipoic acid-(3-carboxypropyl)triphenylphosphine bromide) polymeric ligands (HA-c-mPEG-Deta-g-(Ce6-DHLA-TPP)) and NaErF4:Tm@NaYF4 core-shell UCNPs (termed CMPNs). The CMPNs presented ideal physiological stability, a good drug loading capacity and an improved capacity for the generation of singlet oxygen (1O2) based on the FRET mechanism. Significantly, confocal images revealed that CMPNs not only facilitated cellular uptake through CD44-receptor-targeted endocytosis, subsequently enabling rapid evasion from endo-lysosomal sequestration, but also specifically targeted mitochondria, ultimately inducing a profound disruption of mitochondrial membrane potential, which triggered apoptosis upon laser irradiation, thereby significantly enhancing the therapeutic effect. Furthermore, in vitro antitumor experiments further confirmed the substantial enhancement in cancer cell killing efficiency achieved by treating with CMPNs upon near-infrared (NIR) laser irradiation. This innovative approach holds promise for the development of NIR-laser-activated photodynamic nanoagents specifically designed for mitochondria-targeted PDT, thus addressing the limitations of the current PDT treatments.
Collapse
Affiliation(s)
- Ze Hao Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Xin Wang Mo
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Wei Jiang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
18
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Sun T, Li C, Luan J, Zhao F, Zhang Y, Liu J, Shao L. Black phosphorus for bone regeneration: Mechanisms involved and influencing factors. Mater Today Bio 2024; 28:101211. [PMID: 39280114 PMCID: PMC11402231 DOI: 10.1016/j.mtbio.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
BP has shown good potential for promoting bone regeneration. However, the understanding of the mechanisms of BP-enhanced bone regeneration is still limited. This review first summarizes the recent advances in applications of BP in bone regeneration. We further highlight the possibility that BP enhances bone regeneration by regulating the behavior of mesenchymal stem cells (MSCs), osteoblasts, vascular endothelial cells (VECs), and macrophages, mainly through the regulation of cytoskeletal remodeling, energy metabolism, oxidation resistance and surface adsorption properties, etc. In addition, moderating the physicochemical properties of BP (i.e., shape, size, and surface charge) can alter the effects of BP on bone regeneration. This review reveals the underlying mechanisms of BP-enhanced bone regeneration and provides strategies for further material design of BP-based materials for bone regeneration.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Chufeng Li
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Jiayi Luan
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
20
|
Xiong K, Nagayama M, Ijiro K, Mitomo H. Fair surface modification with mixed alkanethiols on gold nanoparticles through minimal unfair ligand exchange. NANOSCALE ADVANCES 2024; 6:4583-4590. [PMID: 39263403 PMCID: PMC11385987 DOI: 10.1039/d4na00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/13/2024] [Indexed: 09/13/2024]
Abstract
Surface modification with functional molecules is essential for introducing various surface properties. As gold nanoparticles (AuNPs) have extraordinary chemical, physical, and optical properties, control of their surface, mainly through modification with mixed alkanethiols via Au-S interactions, has attracted much attention. However, surface modification of AuNPs with mixed alkanethiols to provide a strictly regulated composition remains challenging. Further, there are very few methods that can easily establish the nature of ligands and their replacement with similar molecules at nanoparticle surfaces, limiting precise analyses. Herein, we demonstrate an unfair ligand exchange between oligo(ethylene glycol) (OEG)-attached alkanethiols as a source of unfair surface modification utilizing programable thermo-responsive properties of OEG-alkanethiols-modified AuNPs and fair surface modification with mixed OEG-alkanethiols by minimizing this effect. OEG-alkanethiols-modified AuNPs show an assembly/disassembly behavior in response to the solution temperature. Assembly temperature (T A) changes in the presence of other OEG-alkanethiols, confirming the ligand exchange between alkanethiols in an aqueous solution. Kinetic analyses indicate that the competitive exchange reaction of these two alkanethiols results in an unfair ligand exchange, which leads to gradual changes in surface composition. As this ligand exchange between alkanethiols takes a longer time compared to that from citric acid, which initially covered the AuNPs, exact surface modification of AuNPs with OEG-alkanethiols is performed by moderate reaction conditions (25 °C, several to 24 hours). This insight regarding "more prolonged reaction is not always better" could be widely applied for surface modifications with various thiol-ligands.
Collapse
Affiliation(s)
- Kun Xiong
- Graduate School of Life Science, Hokkaido University Sapporo 060-0810 Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University Sapporo 001-0021 Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University Sapporo 001-0021 Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
21
|
Ghasemi S, Samadi-Maybodi A. Improvement of fluorescence properties by surface modification of CdS-ZnS quantum dots by thiol compounds and its application as a sensitive fluorescence probe for copper ion detection. LUMINESCENCE 2024; 39:e4874. [PMID: 39252570 DOI: 10.1002/bio.4874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
The capped CdS-ZnS quantum dots (QDs) were synthesized with various thiol capping agents of glycolic acid (TGA), mercaptosuccinic acid (MSA), and L-cysteine (LCY) and used as fluorescence probe for determination of Cu (II) ions. The method of two-level three-factor full-factorial experiment design was used to achieve the best optical fluorescence emission. Results revealed that Cu (II) ions can effectively quench the emission of QDs, and the fluorescence intensity is linearly decreased with increasing Cu (II) ion concentration. The limit of detection for CdS-ZnS@ QDs capped with TGA, MSA, and LCY was obtained at 1.15 × 10-7, 1.32 × 10-7, and 2.19 × 10-7 mol L-1, respectively, with linear dynamic range of 3.13 × 10-6 to 1.41 × 10-4 mol L-1. Luminescence quantum yields of CdS-ZnS@LCY, CdS-ZnS@MSA, and CdS-ZnS@TGA were obtained at 4.17, 1.92, and 2.47, respectively. Results indicated that no significant quenching occurred in the presence of the other metal ions. The binding constant (Kb) of capped CdS-ZnS@ QDs with Cu2+ and the other metal ions was also investigated and discussed. The Kb value for Cu2+ was obtained considerably more than that the other ions. This work presents a new and sensitive method for determination of Cu2+ ion.
Collapse
Affiliation(s)
- Seyfollah Ghasemi
- Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
22
|
Xie M, Meng F, Wang P, Díaz-García AM, Parkhats M, Santos-Oliveira R, Asim MH, Bostan N, Gu H, Yang L, Li Q, Yang Z, Lai H, Cai Y. Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery. Int J Nanomedicine 2024; 19:8437-8461. [PMID: 39170101 PMCID: PMC11338174 DOI: 10.2147/ijn.s477652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Data published in 2020 by the International Agency for Research on Cancer (IARC) of the World Health Organization show that breast cancer (BC) has become the most common cancer globally, affecting more than 2 million women each year. The complex tumor microenvironment, drug resistance, metastasis, and poor prognosis constitute the primary challenges in the current diagnosis and treatment of BC. Magnetic iron oxide nanoparticles (MIONPs) have emerged as a promising nanoplatform for diagnostic tumor imaging as well as therapeutic drug-targeted delivery due to their unique physicochemical properties. The extensive surface engineering has given rise to multifunctionalized MIONPs. In this review, the latest advancements in surface modification strategies of MIONPs over the past five years are summarized and categorized as constrast agents and drug delivery platforms. Additionally, the remaining challenges and future prospects of MIONPs-based targeted delivery are discussed.
Collapse
Affiliation(s)
- Mengjie Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | | | - Marina Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, RJ, 21941906, Brazil
| | | | - Nazish Bostan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Lina Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Qi Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
23
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
24
|
Guerassimoff L, Ferrere M, Bossion A, Nicolas J. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization. Chem Soc Rev 2024; 53:6511-6567. [PMID: 38775004 PMCID: PMC11181997 DOI: 10.1039/d2cs01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/18/2024]
Abstract
Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
25
|
Xing D, Tang L, Yang H, Yan M, Yuan P, Wu Y, Zhang Y, Yin T, Wang Y, Gou J, Tang X, He H. Effect of mPEG-PLGA on Drug Crystallinity and Release of Long-Acting Injection Microspheres: In Vitro and In Vivo Perspectives. Pharm Res 2024; 41:1271-1284. [PMID: 38839720 DOI: 10.1007/s11095-024-03717-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Traditional progesterone (PRG) injections require long-term administration, leading to poor patient compliance. The emergence of long-acting injectable microspheres extends the release period to several days or even months. However, these microspheres often face challenges such as burst release and incomplete drug release. This study aims to regulate drug release by altering the crystallinity of the drug during the release process from the microspheres. METHODS This research incorporates methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) into poly(lactide-co-glycolide) (PLGA) microspheres to enhance their hydrophilicity, thus regulating the release rate and drug morphology during release. This modification aims to address the issues of burst and incomplete release in traditional PLGA microspheres. PRG was used as the model drug. PRG/mPEG-PLGA/PLGA microspheres (PmPPMs) were prepared via an emulsification-solvent evaporation method. Scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) were employed to investigate the presence of PRG in PmPPMs and its physical state changes during release. RESULTS The addition of mPEG-PLGA altered the crystallinity of the drug within the microspheres at different release stages. The crystallinity correlated positively with the amount of mPEG-PLGA incorporated; the greater the amount, the faster the drug release from the formulation. The bioavailability and muscular irritation of the long-acting injectable were assessed through pharmacokinetic and muscle irritation studies in Sprague-Dawley (SD) rats. The results indicated that PmPPMs containing mPEG-PLGA achieved low burst release and sustained release over 7 days, with minimal irritation and self-healing within this period. PmPPMs with 5% mPEG-PLGA showed a relative bioavailability (Frel) of 146.88%. IN CONCLUSION In summary, adding an appropriate amount of mPEG to PLGA microspheres can alter the drug release process and enhance bioavailability.
Collapse
Affiliation(s)
- Dandan Xing
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Lihua Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Hongyu Yang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Mingjiao Yan
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Panao Yuan
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yulan Wu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanjiao Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
26
|
Megahed S, Wutke N, Liu Y, Klapper M, Schulz F, Feliu N, Parak WJ. Encapsulation of Nanoparticles with Statistical Copolymers with Different Surface Charges and Analysis of Their Interactions with Proteins and Cells. Int J Mol Sci 2024; 25:5539. [PMID: 38791579 PMCID: PMC11122285 DOI: 10.3390/ijms25105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology. Here, we studied the encapsulation of gold nanoparticles and quantum dots with amphiphilic copolymers differing in their charge and molecular structure. Protein adsorption to the nanoconjugates was studied with fluorescence correlation spectroscopy, and their surface activity was studied with dynamic interfacial tensiometry. Encapsulation of the nanoparticles without affecting their characteristic properties was possible with all tested polymers and provided good stabilization. However, the interaction with proteins and cells significantly depended on structural details. We identified statistical copolymers providing strongly reduced protein adsorption and low unspecific cellular uptake. Interestingly, different zwitterionic amphiphilic copolymers showed substantial differences in their resulting bio-repulsive properties. Among the polymers tested herein, statistical copolymers with sulfobetaine and phosphatidylcholine sidechains performed better than copolymers with carboxylic acid- and dimethylamino-terminated sidechains.
Collapse
Affiliation(s)
- Saad Megahed
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Nicole Wutke
- Max Planck Institute für Polymerforschung, 55128 Mainz, Germany; (N.W.); (M.K.)
| | - Yang Liu
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| | - Markus Klapper
- Max Planck Institute für Polymerforschung, 55128 Mainz, Germany; (N.W.); (M.K.)
| | - Florian Schulz
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany;
| | - Wolfgang J. Parak
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| |
Collapse
|
27
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Pan F, Liu M, Li G, Chen B, Chu Y, Yang Y, Wu E, Yu Y, Lin S, Ding T, Wei X, Zhan C, Qian J. Phospholipid Type Regulates Protein Corona Composition and In Vivo Performance of Lipid Nanodiscs. Mol Pharm 2024; 21:2272-2283. [PMID: 38607681 DOI: 10.1021/acs.molpharmaceut.3c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.
Collapse
Affiliation(s)
- Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Mengyuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Guanghui Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| | - Boqian Chen
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yuxiu Chu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yang Yang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Ercan Wu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Yifei Yu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Shiqi Lin
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Tianhao Ding
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoli Wei
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China
| | - Jun Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmacy, Jing'an District Central Hospital of Shanghai Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
29
|
Chen H, Xing C, Lei H, Yan B, Zhang H, Tong T, Guan Y, Kang Y, Pang J. ROS-driven supramolecular nanoparticles exhibiting efficient drug delivery for chemo/Chemodynamic combination therapy for Cancer treatment. J Control Release 2024; 368:637-649. [PMID: 38484895 DOI: 10.1016/j.jconrel.2024.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Drug-based supramolecular self-assembling delivery systems have enhanced the bioavailability of chemotherapeutic drugs and reduced systemic side effects; however, improving the delivery efficiency and responsive release ability of these systems remains challenging. This study focuses primarily on the utilization of per-6-thio-β-cyclodextrin (CD) to link a significant quantity of paclitaxel (PTX) via ROS-sensitive thioketal (TK) linkages (designated as CDTP), thereby allowing efficiently drug release when exposed to high levels of reactive oxygen species (ROS) in the tumor microenvironment. To construct these supramolecular nanoparticles (NPs) with CDTP, we introduced PEGylated ferrocene (Fc) through host-guest interactions. The intracellular hydrogen peroxide (H2O2) is converted into hydroxyl radicals (•OH) through the Fc-catalyzed Fenton reaction. Additionally, the generated Fc+ consumes the antioxidant glutathione (GSH). In both in vivo and in vitro experiments, CDTP@Fc-PEG NPs were absorbed effectively by tumor cells, which increased levels of ROS and decreased levels of GSH, disrupting the redox balance of cancer cells and increasing their sensitivity to chemotherapy. Furthermore, CDTP@Fc-PEG NPs exhibited high tumor accumulation and cytotoxicity without causing significant toxicity to healthy organs. Collectively, our results suggest CDTP@Fc-PEG NPs as a promising supramolecular nano-delivery platform for high drug-loading of PTX and synergistic chemotherapy.
Collapse
Affiliation(s)
- Huikun Chen
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Hanqi Lei
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Binyuan Yan
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tongyu Tong
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yupeng Guan
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
30
|
Xu J, Zhang H, Chen D, Xu K, Li Z, Wu H, Geng X, Wei X, Wu J, Cui W, Wei S. Looking for a Beam of Light to Heal Chronic Pain. J Pain Res 2024; 17:1091-1105. [PMID: 38510563 PMCID: PMC10953534 DOI: 10.2147/jpr.s455549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.
Collapse
Affiliation(s)
- Jialing Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hao Zhang
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Dan Chen
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Kaiyong Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Zifa Li
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xiwen Geng
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xia Wei
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Ji’nan, Shandong, People’s Republic of China
| | - Jibiao Wu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Sheng Wei
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| |
Collapse
|
31
|
Miao Y, Li L, Wang Y, Wang J, Zhou Y, Guo L, Zhao Y, Nie D, Zhang Y, Zhang X, Gan Y. Regulating protein corona on nanovesicles by glycosylated polyhydroxy polymer modification for efficient drug delivery. Nat Commun 2024; 15:1159. [PMID: 38326312 PMCID: PMC10850157 DOI: 10.1038/s41467-024-45254-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
The dynamic protein corona formed on nanocarriers has been revealed to strongly affect their in vivo behaviors. Precisely manipulating the formation of protein corona on nanocarriers may provide an alternative impetus for specific drug delivery. Herein, we explore the role of glycosylated polyhydroxy polymer-modified nanovesicles (CP-LVs) with different amino/hydroxyl ratios in protein corona formation and evolution. CP-LVs with an amino/hydroxyl ratio of approximately 0.4 (CP1-LVs) are found to efficiently suppress immunoglobulin adsorption in blood and livers, resulting in prolonged circulation. Moreover, CP1-LVs adsorb abundant tumor distinctive proteins, such as CD44 and osteopontin in tumor interstitial fluids, mediating selective tumor cell internalization. The proteins corona transformation specific to the environment appears to be affected by the electrostatic interaction between CP-LVs and proteins with diverse isoelectric points. Benefiting from surface modification-mediated protein corona regulation, paclitaxel-loaded CP1-LVs demonstrate superior antitumor efficacy to PEGylated liposomes. Our work offers a perspective on rational surface-design of nanocarriers to modulate the protein corona formation for efficient drug delivery.
Collapse
Affiliation(s)
- Yunqiu Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lijun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangyue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yihan Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linmiao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanqi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
32
|
Oberdick SD, Dodd SJ, Koretsky AP, Zabow G. Shaped Magnetogel Microparticles for Multispectral Magnetic Resonance Contrast and Sensing. ACS Sens 2024; 9:42-51. [PMID: 38113475 DOI: 10.1021/acssensors.3c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Multispectral magnetic resonance imaging (MRI) contrast agents are microfabricated three-dimensional magnetic structures that encode nearby water protons with discrete frequencies. The agents have a unique radiofrequency (RF) resonance that can be tuned by engineering the geometric parameters of these microstructures. Multispectral contrast agents can be used as sensors by incorporating a stimulus-driven shape-changing response into their structure. These geometrically encoded magnetic sensors (GEMS) enable MRI-based sensing via environmentally induced changes to their geometry and their corresponding RF resonance. Previously, GEMS have been made using thin-film lithography techniques in a cleanroom environment. While these approaches offer precise control of the microstructure, they can be a limitation for researchers who do not have cleanroom access or microfabrication expertise. Here, an alternative approach for GEMS fabrication based on soft lithography is introduced. The fabrication scheme uses cheap, accessible materials and simple chemistry to produce shaped magnetic hydrogel microparticles with multispectral MRI contrast properties. The microparticles can be used as sensors by fabricating them out of shape-reconfigurable, "smart" hydrogels. The change in shape causes a corresponding shift in the resonance of the GEMS, producing an MRI-addressable readout of the microenvironment. Proof-of-principle experiments showing a multispectral response to pH change with cylindrical shell-shaped magnetogel GEMS are presented.
Collapse
Affiliation(s)
- Samuel D Oberdick
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary Zabow
- National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|
33
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
34
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
35
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Mehta P, Shende P. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery. Cell Biochem Funct 2023; 41:1031-1043. [PMID: 37933222 DOI: 10.1002/cbf.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
Collapse
Affiliation(s)
- Parth Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| | - Pravin Shende
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
37
|
Xue W, Lin X, Xu L, Trital A, He Y, Tang G, Bai H, Chen S. Integrating Liquification of the Gelated Tumor Interstitium around Nanomedicines with Biconditional GD2-Targeting for Precise and Safe Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304594. [PMID: 37651555 DOI: 10.1002/adma.202304594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/26/2023] [Indexed: 09/02/2023]
Abstract
The quick diffusion of nanomedicines in the polysaccharide-gel-filling tumor interstitium and precise active targeting are two major obstacles that have not yet been overcome. Here, a poly(L-glutamyl-L-lysine(EK) (p(EK))-camouflaged, doxorubicin (Dox)-conjugated nanomedicine is developed to demonstrate the underlying mechanism of zwitterionic shell in synchronous barrier-penetration and biconditional active targeting. The zwitterionic p(EK) shell liquifies its surrounding water molecules in the polysaccharide gel of tumor interstitium, leading to five times faster diffusion than the pegylated Doxil with similar size in tumor tissue. Its doped sulfonate groups lead to more precise active tumor-targeting than disialoganglioside (GD2) antibody by meeting the dual requirements of tumor microenvironment (TME) pH and overexpression of GD2 on tumor. Consequently, the concentrations of the nanomedicine in tumor are always higher than in life-supported organs in whole accumulation process, reaching over ten times higher Dox in GD2-overexpressing MCF-7 tumors than in life-supporting organs. Furthermore, the nanomedicine also avoids anti-GD2-like accumulation in GD2-expressing kidney in a mouse model. Thus, the nanomedicine expands the therapeutic window of Doxil by more than three times and eliminates tumors with negligible myocardial and acute toxicity. This new insight paves an avenue to design nanodelivery systems for highly precise and safe chemotherapy.
Collapse
Affiliation(s)
- Weili Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaowei Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liangbo Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ashish Trital
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
38
|
Savchenko IV, Zlotnikov ID, Kudryashova EV. Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery. Biomimetics (Basel) 2023; 8:543. [PMID: 37999184 PMCID: PMC10669405 DOI: 10.3390/biomimetics8070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The concept of targeted drug delivery can be described in terms of the drug systems' ability to mimic the biological objects' property to localize to target cells or tissues. For example, drug delivery systems based on red blood cells or mimicking some of their useful features, such as long circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies based on macrophages have gained very limited attention until recently. Here, we review two biomimetic strategies associated with macrophages that can be used to develop new therapeutic modalities: first, the mimicry of certain types of macrophages (i.e., the use of macrophages, including tumor-associated or macrophage-derived particles as a carrier for the targeted delivery of therapeutic agents); second, the mimicry of ligands, naturally absorbed by macrophages (i.e., the use of therapeutic agents specifically targeted at macrophages). We discuss the potential applications of biomimetic systems involving macrophages for new advancements in the treatment of infections, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia (I.D.Z.)
| |
Collapse
|
39
|
Ma S, Sun B, Li M, Han T, Yu C, Wang X, Zheng X, Li S, Zhu S, Wang Q. High-precision detection and navigation surgery of colorectal cancer micrometastases. J Nanobiotechnology 2023; 21:403. [PMID: 37919717 PMCID: PMC10621104 DOI: 10.1186/s12951-023-02171-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Surgical resection is an effective treatment for colorectal cancer (CRC) patients, whereas occult metastases hinder the curative effect. Currently, there is no effective method to achieve intraoperatively diagnosis of tumor-positive lymph nodes (LNs). Herein, we adopt a near-infrared-II (NIR-II) organic donor-pi-acceptor-pi-donor probe FE-2PEG, which exhibits bright fluorescence over 1100 nm, excellent photostability, blood circulation time, and biocompatibility, to achieve high-performance bioimaging with improved temporal and spatial resolution. Importantly, the FE-2PEG shows efficient passive enrichment in orthotopic CRC, metastatic mesenteric LNs, and peritoneal metastases by enhanced permeability and retention effect. Under NIR-II fluorescence-guided surgery (FGS), the peritoneal micrometastases were resected with a sensitivity of 94.51%, specificity of 86.59%, positive predictive value (PPV) of 96.57%, and negative predictive value of 79.78%. The PPV still achieves 96.07% even for micrometastases less than 3 mm. Pathological staining and NIR-II microscopy imaging proved that FE-2PEG could successfully delineate the boundary between the tumor and normal tissues. Dual-color NIR-II imaging strategy with FE-2PEG (1100 ~ 1300 nm) and PbS@CdS quantum dots (> 1500 nm) successfully protects both blood supply and normal tissues during surgery. The NIR-II-based FGS provides a promising prospect for precise intraoperative diagnosis and minimally invasive surgery of CRC.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Mengfei Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chenlong Yu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuang Li
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
40
|
Lustig DR, Buz E, Mulvey JT, Patterson JP, Kittilstved KR, Sambur JB. Characterizing the Ligand Shell Morphology of PEG-Coated ZnO Nanocrystals Using FRET Spectroscopy. J Phys Chem B 2023; 127:8961-8973. [PMID: 37802098 DOI: 10.1021/acs.jpcb.3c04900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Poly(ethylene glycol) (PEG) ligands can inhibit proteins and other biomolecules from adhering to underlying surfaces, making them excellent surface ligands for nanocrystal (NC)-based drug carriers. Quantifying the PEG ligand shell morphology is important because its structure determines the permeability of biomolecules through the shell to the NC surface. However, few in situ analytical tools can reveal whether the PEG ligands form either an impenetrable barrier or a porous coating surrounding the NC. Here, we present a Förster resonance energy transfer (FRET) spectroscopy-based approach that can assess the permeability of molecules through PEG-coated ZnO NCs. In this approach, ZnO NCs serve as FRET donors, and freely diffusing molecules in the bulk solution are FRET acceptors. We synthesized a series of variable chain length PEG-silane-coated ZnO NCs such that the longest chain length ligands far exceed the Förster radius (R0), where the energy transfer (EnT) efficiency is 50%. We quantified the EnT efficiency as a function of the ligand chain length using time-resolved photoluminescence lifetime (TRPL) spectroscopy within the framework of FRET theory. Unexpectedly, the longest PEG-silane ligand showed equivalent EnT efficiency as that of bare, hydroxyl-passivated ZnO NCs. These results indicate that the "rigid shell" model fails and the PEG ligand shell morphology is more likely porous or in a patchy "mushroom state", consistent with transmission electron microscopy data. While the spectroscopic measurements and data analysis procedures discussed herein cannot directly visualize the ligand shell morphology in real space, the in situ spectroscopy approach can provide researchers with valuable information regarding the permeability of species through the ligand shell under practical biological conditions.
Collapse
Affiliation(s)
- Danielle R Lustig
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| | - Enes Buz
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Justin B Sambur
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
41
|
Vaezi-Kakhki A, Asoodeh A. Comparison of different methods for synthesis of iron oxide nanoparticles and investigation of their cellular properties, and antioxidant potential. Int J Pharm 2023; 645:123417. [PMID: 37714316 DOI: 10.1016/j.ijpharm.2023.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Iron oxide nanoparticles could play a useful role in lung cancer therapy. Iron oxide nanoparticles (NPs) were synthesized by plant mediated synthesis, chemical, and microbial mediated synthesis. iron oxide nanoparticle polyethylene glycol cis-diamminedichloroplatinum (Fe2O3@PEG@CDDP(, iron oxide nanoparticle polyethylene glycol (Fe2O3@PEG), and cis-diamminedichloroplatinum (CDDP) were evaluated for their antioxidant,and in vitro cytotoxicity tests. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), mapping, and zeta potential were used to characterize the synthesized iron oxides NPs. Cell toxicity was determined using A549 and HFF cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antioxidant scavenging activity of Fe2O3@PEG@CDDP, Fe2O3@PEG, and CDDP displayed IC50 values (11.96, 26.74, and 3.17 μg/ml) and (8.54, 11.4, and 1.14 μg/ml) in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. Nanoparticles obtained from plant mediated synthesis method showed the great antioxidant activity. Results showed that, green-method synthesized nanoparticles were the most effective at killing cancer cells. Thus, the characteristics of nanoparticles from green synthesis are more valuable than the other methods. Green synthesis is environmental friendly cost-effective, and easy approach for synthesize NPs.
Collapse
Affiliation(s)
- Abbas Vaezi-Kakhki
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
42
|
Jiang X, Lee MJ, Luo T, Tillman L, Lin W. Co-delivery of three synergistic chemotherapeutics in a core-shell nanoscale coordination polymer for the treatment of pancreatic cancer. Biomaterials 2023; 301:122235. [PMID: 37441902 PMCID: PMC10528488 DOI: 10.1016/j.biomaterials.2023.122235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
The combination chemotherapy regimen FOLFIRINOX comprising folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin is the first-line treatment for patients with advanced pancreatic cancer, but its use remains prohibitive for the majority of patients due to severe side effects. Here, we report a core-shell nanoscale coordination polymer (NCP) nanoparticle co-delivering a potent and synergistic combination of oxaliplatin, gemcitabine, and SN38 (OGS), for the treatment of pancreatic cancer in mouse models. OGS contains key synergistic components of FOLFIRINOX in a controllable drug ratio., It exhibited particle stability in blood circulation and enhanced deposition of the drugs in acidic tumor environments. In vitro, OGS showed superior cytotoxicity over free drug combinations and robust cytotoxic synergism among its three components. In vivo, OGS improved drug circulation, increased tumor deposition, and exhibited superior antitumor efficacy over the free drug combination in both subcutaneous and orthotopic pancreatic tumor models. OGS treatment achieved 75-91% tumor growth inhibition and prolonged mouse survival by 1.6- to 2.8-folds while minimizing systemic toxicities such as neutropenia, hepatotoxicity, and renal toxicity. This work uncovers a novel and clinically relevant nanomedicine strategy to co-deliver synergistic combination chemotherapies for difficult-to-treat cancers.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Morten J Lee
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758, S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
43
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
44
|
Li Z, Fan X, Fan J, Zhang W, Liu J, Liu B, Zhang H. Delivering drugs to tubular cells and organelles: the application of nanodrugs in acute kidney injury. Nanomedicine (Lond) 2023; 18:1477-1493. [PMID: 37721160 DOI: 10.2217/nnm-2023-0200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Xiao Fan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Department of Physiology & Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| |
Collapse
|
45
|
Miraghaie SH, Zandi A, Davari Z, Mousavi-Kiasary MS, Saghafi Z, Gilani A, Kordehlachin Y, Shojaeian F, Mamdouh A, Heydari Z, Dorkoosh FA, Kaffashi B, Abdolahad M. Targeted Delivery of Anticancer Drug Loaded Charged PLGA Polymeric Nanoparticles Using Electrostatic Field. Macromol Biosci 2023; 23:e2300181. [PMID: 37399543 DOI: 10.1002/mabi.202300181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg-1 ] versus DLNs-based chemotherapy [0.75 mg kg-1 ]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.
Collapse
Affiliation(s)
- Seyyed Hossein Miraghaie
- Department of Polymer Engineering, Kish International Campus, University of Tehran, Kish Island, 79416-55664, Iran
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176-14411, Iran
| | - Ashkan Zandi
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
- Nano Electronic Center of Excellence, Nano-electronics and Thin Film Lab., School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
| | - Zahra Davari
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176-14411, Iran
| | - Mohamad Sadegh Mousavi-Kiasary
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
| | - Zohre Saghafi
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
| | - Ali Gilani
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
| | - Yasin Kordehlachin
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
| | - Fatemeh Shojaeian
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19615-1179, Iran
| | - Amir Mamdouh
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
| | - Zahra Heydari
- Preclinical lab, Core facility, Tehran University of Medical Sciences, Tehran, 14174-66191, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176-14411, Iran
| | - Babak Kaffashi
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano-bioelectronic Devices Lab., Cancer Electronics Research Group, School of Electrical and Computer Eng., College of Engineering, University of Tehran, Tehran, 14395-515, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176-14411, Iran
- Cancer Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| |
Collapse
|
46
|
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int J Nanomedicine 2023; 18:4727-4750. [PMID: 37621852 PMCID: PMC10444627 DOI: 10.2147/ijn.s419369] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Background Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension. Objective This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries. Methodology Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years. Results Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications. Conclusion This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Collapse
Affiliation(s)
- Harjeet Singh
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shivani Pandya
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Srushti Jasani
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Noble George
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Suliman A Alderhami
- Chemistry Department, Faculty of Science and Arts in Almakhwah, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
47
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
48
|
Galata AA, Kröger M. Globular Proteins and Where to Find Them within a Polymer Brush-A Case Study. Polymers (Basel) 2023; 15:polym15102407. [PMID: 37242983 DOI: 10.3390/polym15102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Protein adsorption by polymerized surfaces is an interdisciplinary topic that has been approached in many ways, leading to a plethora of theoretical, numerical and experimental insight. There is a wide variety of models trying to accurately capture the essence of adsorption and its effect on the conformations of proteins and polymers. However, atomistic simulations are case-specific and computationally demanding. Here, we explore universal aspects of the dynamics of protein adsorption through a coarse-grained (CG) model, that allows us to explore the effects of various design parameters. To this end, we adopt the hydrophobic-polar (HP) model for proteins, place them uniformly at the upper bound of a CG polymer brush whose multibead-spring chains are tethered to a solid implicit wall. We find that the most crucial factor affecting the adsorption efficiency appears to be the polymer grafting density, while the size of the protein and its hydrophobicity ratio come also into play. We discuss the roles of ligands and attractive tethering surfaces to the primary adsorption as well as secondary and ternary adsorption in the presence of attractive (towards the hydrophilic part of the protein) beads along varying spots of the backbone of the polymer chains. The percentage and rate of adsorption, density profiles and the shapes of the proteins, alongside with the respective potential of mean force are recorded to compare the various scenarios during protein adsorption.
Collapse
Affiliation(s)
- Aikaterini A Galata
- Magnetism and Interface Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martin Kröger
- Magnetism and Interface Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
49
|
Yooyod M, Ross S, Phewchan P, Daengmankhong J, Pinthong T, Tuancharoensri N, Mahasaranon S, Viyoch J, Ross GM. Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release. Gels 2023; 9:gels9040333. [PMID: 37102945 PMCID: PMC10138162 DOI: 10.3390/gels9040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
This study investigated the performance of novel hydrogels based on poly (N-vinylformamide) (PNVF), copolymers of NVF with N-hydroxyethyl acrylamide (HEA) (P(NVF-co-HEA)), and 2-carboxyethyl acrylate (CEA) (P(NVF-co-CEA)), which were synthesized by photopolymerization using a UVLED light source. The hydrogels were analyzed for important properties such as equilibrium water content (%EWC), contact angle, freezing and non-freezing water, and diffusion-based in vitro release. The results showed that PNVF had an extremely high %EWC of 94.57%, while a decreasing NVF content in the copolymer hydrogels led to a decrease in water content with a linear relationship with HEA or CEA content. Water structuring in the hydrogels showed appreciably more variance, with ratios of free to bound water differing from 16.7:1 (NVF) to 1.3:1 (CEA), corresponding to PNVF having ~67 water molecules per repeat unit. The release studies of different dye molecules followed Higuchi's model, with the amount of dye released from the hydrogels depending on the amount of free water and the structural interactions between the polymer and the molecule being released. The results suggest that PNVF copolymer hydrogels have potential for controlled drug delivery by altering the polymer composition to govern the amount and ratio of free to bound water contained in the hydrogels.
Collapse
Affiliation(s)
- Maytinee Yooyod
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Premchirakorn Phewchan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Jinjutha Daengmankhong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Thanyaporn Pinthong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nantaprapa Tuancharoensri
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sararat Mahasaranon
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
50
|
He Z, Li F, Zuo P, Tian H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3083. [PMID: 37109920 PMCID: PMC10145016 DOI: 10.3390/ma16083083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Over the past several years, resonance energy transfer involving noble metallic nanoparticles has received considerable attention. The aim of this review is to cover advances in resonance energy transfer, widely exploited in biological structures and dynamics. Due to the presence of surface plasmons, strong surface plasmon resonance absorption and local electric field enhancement are generated near noble metallic nanoparticles, and the resulting energy transfer shows potential applications in microlasers, quantum information storage devices and micro-/nanoprocessing. In this review, we present the basic principle of the characteristics of noble metallic nanoparticles, as well as the representative progress in resonance energy transfer involving noble metallic nanoparticles, such as fluorescence resonance energy transfer, nanometal surface energy transfer, plasmon-induced resonance energy transfer, metal-enhanced fluorescence, surface-enhanced Raman scattering and cascade energy transfer. We end this review with an outlook on the development and applications of the transfer process. This will offer theoretical guidance for further optical methods in distance distribution analysis and microscopic detection.
Collapse
Affiliation(s)
- Zhicong He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
- School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
| | - Fang Li
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hong Tian
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|