1
|
Morano AA, Ali I, Dvorin JD. Elucidating the spatio-temporal dynamics of the Plasmodium falciparum basal complex. PLoS Pathog 2024; 20:e1012265. [PMID: 38829893 PMCID: PMC11175456 DOI: 10.1371/journal.ppat.1012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Asexual replication of Plasmodium falciparum occurs via schizogony, wherein 16-36 daughter cells are produced within the parasite during one semi-synchronized cytokinetic event. Schizogony requires a divergent contractile ring structure known as the basal complex. Our lab has previously identified PfMyoJ (PF3D7_1229800) and PfSLACR (PF3D7_0214700) as basal complex proteins recruited midway through segmentation. Using ultrastructure expansion microscopy, we localized both proteins to a novel basal complex subcompartment. While both colocalize with the basal complex protein PfCINCH upon recruitment, they form a separate, more basal subcompartment termed the posterior cup during contraction. We also show that PfSLACR is recruited to the basal complex prior to PfMyoJ, and that both proteins are removed unevenly as segmentation concludes. Using live-cell microscopy, we show that actin dynamics are dispensable for basal complex formation, expansion, and contraction. We then show that EF-hand containing P. falciparum Centrin 2 partially localizes to this posterior cup of the basal complex and that it is essential for growth and replication, with variable defects in basal complex contraction and synchrony. Finally, we demonstrate that free intracellular calcium is necessary but not sufficient for basal complex contraction in P. falciparum. Thus, we demonstrate dynamic spatial compartmentalization of the Plasmodium falciparum basal complex, identify an additional basal complex protein, and begin to elucidate the unique mechanism of contraction utilized by P. falciparum, opening the door for further exploration of Apicomplexan cellular division.
Collapse
Affiliation(s)
- Alexander A. Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Ilzat Ali
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Adeoye AO, Falode JA, Oladipupo OC, Obafemi TO, Oso BJ, Olaoye IF. Modulation of mitochondrial permeability transition pore opening by Myricetin and prediction of its-drug-like potential using in silico approach. Drug Chem Toxicol 2023; 46:1004-1014. [PMID: 36036089 DOI: 10.1080/01480545.2022.2117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Myricetin has been demonstrated to have multiple biological functions with promising research and development prospects. This study investigated the effect of myricetin on liver mitochondrial membrane permeability transition pores and its inhibitory potential on proteins that are important in the apoptotic process in silico. Mitochondrial swelling was assessed as changes in absorbance under succinate-energized conditions. Cytochrome c release, mitochondrial-lipid peroxidation, caspase 3 and 9 expressions, as well as calcium ATPase, were assessed. Pharmacokinetic properties of myricetin were predicted through the SwissADME server while the binding affinity of myricetin toward the proteins was computed using the AutodockVina Screening tool. The conformational stability of protein-ligand interactions was evaluated using molecular dynamics simulations analysis through the iMODS server. Myricetin inhibited the opening of the mitochondrial permeability transition pore and also reversed the increase in mitochondrial lipid peroxidation caused by calcium and other toxicants. Myricetin also caused a reduction in the expression of caspase 3 and 9 as well as calcium ATPase activity. The molecular docking results revealed that myricetin had a considerable binding affinity to the pocket site of caspase 3 and 9 as well as calcium ATPase. Myricetin showed a good drug-likeness based on the predicted pharmacokinetic properties as revealed by low CYP 450 inhibitory promiscuity and relatively low toxicity. It could therefore be suggested that myricetin could be useful in the management of diseases where too many apoptosis occur characterized by excessive tissue wastage such as neurodegenerative conditions and could as well play a role in protecting the physicochemical properties of membrane bilayers from free radical-induced severe cellular damage.
Collapse
Affiliation(s)
- Akinwunmi O Adeoye
- Department of Biochemistry, Faculty of Science, Federal University Oye Ekiti, Oye, Nigeria
| | - John A Falode
- Department of Biochemistry, Faculty of Science, Federal University Oye Ekiti, Oye, Nigeria
| | - Olabimpe C Oladipupo
- Department of Biochemistry, Faculty of Science, Federal University Oye Ekiti, Oye, Nigeria
| | | | - Babatunde J Oso
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| | - Ige F Olaoye
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| |
Collapse
|
3
|
Chia W, Gomez-Lorenzo MG, Castellote I, Tong JX, Chandramohanadas R, Thu Chu TT, Shen W, Go ML, de Cozar C, Crespo B, Almela MJ, Neria-Serrano F, Franco V, Gamo FJ, Tan KSW. High-Content Phenotypic Screen of a Focused TCAMS Drug Library Identifies Novel Disruptors of the Malaria Parasite Calcium Dynamics. ACS Chem Biol 2021; 16:2348-2372. [PMID: 34609851 DOI: 10.1021/acschembio.1c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics. Disruption of the calcium homeostasis is associated with compromised digestive vacuole membrane integrity and release of its contents, leading to programmed cell death-like features characterized by loss of mitochondrial membrane potential and DNA degradation. Intriguingly, chloroquine (CQ)-treated parasites were previously reported to exhibit such cellular features. Using a high-throughput phenotypic screen, we identified 158 physiological disruptors (hits) of parasite calcium distribution from a small subset of approximately 3000 compounds selected from the GSK TCAMS (Tres Cantos Anti-Malarial Set) compound library. These compounds were then extensively profiled for biological activity against various CQ- and artemisinin-resistant Plasmodium falciparum strains and stages. The hits were also examined for cytotoxicity, speed of antimalarial activity, and their possible inhibitory effects on heme crystallization. Overall, we identified three compounds, TCMDC-136230, -125431, and -125457, which were potent in inducing calcium redistribution but minimally inhibited heme crystallization. Molecular superimposition of the molecules by computational methods identified a common pharmacophore, with the best fit assigned to TCMDC-125457. There were low cytotoxicity or CQ cross-resistance issues for these three compounds. IC50 values of these three compounds were in the low micromolar range. In addition, TCMDC-125457 demonstrated high efficacy when pulsed in a single-dose combination with artesunate against tightly synchronized artemisinin-resistant ring-stage parasites. These results should add new drug options to the current armament of antimalarial drugs as well as provide promising starting points for development of drugs with non-classical modes of action.
Collapse
Affiliation(s)
- Wanni Chia
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Maria G. Gomez-Lorenzo
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Isabel Castellote
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Jie Xin Tong
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Rajesh Chandramohanadas
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Trang Thi Thu Chu
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Wanxiang Shen
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, S117543, Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, S117543, Singapore
| | - Cristina de Cozar
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Benigno Crespo
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Maria J. Almela
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Fernando Neria-Serrano
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Virginia Franco
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Francisco-Javier Gamo
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Kevin S. W. Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| |
Collapse
|
4
|
Mukherjee P, Burgio G, Heitlinger E. Dual RNA Sequencing Meta-analysis in Plasmodium Infection Identifies Host-Parasite Interactions. mSystems 2021; 6:e00182-21. [PMID: 33879496 PMCID: PMC8546971 DOI: 10.1128/msystems.00182-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Dual RNA sequencing (RNA-Seq) is the simultaneous transcriptomic analysis of interacting symbionts, for example, in malaria. Potential cross-species interactions identified by correlated gene expression might highlight interlinked signaling, metabolic, or gene regulatory pathways in addition to physically interacting proteins. Often, malaria studies address one of the interacting organisms-host or parasite-rendering the other "contamination." Here we perform a meta-analysis using such studies for cross-species expression analysis. We screened experiments for gene expression from host and Plasmodium. Out of 171 studies in Homo sapiens, Macaca mulatta, and Mus musculus, we identified 63 potential studies containing host and parasite data. While 16 studies (1,950 samples) explicitly performed dual RNA-Seq, 47 (1,398 samples) originally focused on one organism. We found 915 experimental replicates from 20 blood studies to be suitable for coexpression analysis and used orthologs for meta-analysis across different host-parasite systems. Centrality metrics from the derived gene expression networks correlated with gene essentiality in the parasites. We found indications of host immune response to elements of the Plasmodium protein degradation system, an antimalarial drug target. We identified well-studied immune responses in the host with our coexpression networks, as our approach recovers known broad processes interlinked between hosts and parasites in addition to individual host and parasite protein associations. The set of core interactions represents commonalities between human malaria and its model systems for prioritization in laboratory experiments. Our approach might also allow insights into the transferability of model systems for different pathways in malaria studies.IMPORTANCE Malaria still causes about 400,000 deaths a year and is one of the most studied infectious diseases. The disease is studied in mice and monkeys as lab models to derive potential therapeutic intervention in human malaria. Interactions between Plasmodium spp. and its hosts are either conserved across different host-parasite systems or idiosyncratic to those systems. Here we use correlation of gene expression from different RNA-Seq studies to infer common host-parasite interactions across human, mouse, and monkey studies. First, we find a set of very conserved interactors, worth further scrutiny in focused laboratory experiments. Second, this work might help assess to which extent experiments and knowledge on different pathways can be transferred from models to humans for potential therapy.
Collapse
Affiliation(s)
- Parnika Mukherjee
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gaétan Burgio
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| |
Collapse
|
5
|
Tougan T, Edula JR, Morita M, Takashima E, Honma H, Tsuboi T, Horii T. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malar J 2020; 19:155. [PMID: 32295584 PMCID: PMC7161009 DOI: 10.1186/s12936-020-03229-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum is a protozoan that develops in red blood cells (RBCs) and requires various host factors. For its development in RBCs, nutrients not only from the RBC cytosol but also from the extracellular milieu must be acquired. Although the utilization of host nutrients by P. falciparum has been extensively analysed, only a few studies have reported its utilization of host serum proteins. Hence, the aim of the current study was to comprehensively identify host serum proteins taken up by P. falciparum parasites and to elucidate their role in pathogenesis. Methods Plasmodium falciparum was cultured with human serum in vitro. Uptake of serum proteins by parasites was comprehensively determined via shotgun liquid chromatography–mass spectrometry/mass spectrometry and western blotting. The calcium ion concentration in serum was also evaluated, and coagulation activity of the parasite lysate was assessed. Results Three proteins, vitamin K-dependent protein S, prothrombin, and vitronectin, were selectively internalized under sufficient Ca2+ levels in the culture medium. The uptake of these proteins was initiated before DNA replication, and increased during the trophozoite and schizont stages, irrespective of the assembly/disassembly of actin filaments. Coagulation assay revealed that prothrombin was activated and thereby induced blood coagulation. Conclusions Serum proteins were taken up by parasites under culture conditions with sufficient Ca2+ levels. This uptake phenomenon was associated with their pathogenicity.
Collapse
Affiliation(s)
- Takahiro Tougan
- Research Centre for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Jyotheeswara R Edula
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Hajime Honma
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Adeoye AO, Olanlokun JO, Tijani H, Lawal SO, Babarinde CO, Akinwole MT, Bewaji CO. Molecular docking analysis of apigenin and quercetin from ethylacetate fraction of Adansonia digitata with malaria-associated calcium transport protein: An in silico approach. Heliyon 2019; 5:e02248. [PMID: 31687530 PMCID: PMC6819832 DOI: 10.1016/j.heliyon.2019.e02248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/20/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022] Open
Abstract
Background The investigation and knowledge of calcium handling mechanisms in the plasmodium has been considered as a potential biological target against malaria. Objective This study deals with the evaluation of inhibitory activity of secondary metabolites of ethylacetate partitioned-fraction of Adansonia digitata stem bark extract on malaria-associated protein using in silico docking studies. Materials and methods Molecular docking and virtual screening was performed to understand the mechanism of ligand binding and to identify potent calcium transporter inhibitors. The stem bark extracts of A. digitata contains rich sources of phytochemicals. The secondary metabolites were determined by HPLC-DAD and HRGC-MS analysis. The major chemical constituent present in the ethylacetate partitioned-fraction of A. digitata stem bark extract were examined for their antiplasmodial activity and were also involved in docking study. Results The secondary metabolites, quercetin and apigenin inhibited the formation of β-hematin. The results showed that all the selected compounds in the A. digitata showed binding energy ranging between -6.5 kcal/mol and -7.1 kcal/mol. Among the two chemical constituents, apigenin has the highest docking score along with the highest number of hydrogen bonds formed when compared to quercetin. Analysis of the results suggests that apigenin and quercetin could act as an anti-malaria agent. Conclusion Molecular docking analysis could lead to further development of potent calcium transporter inhibitors for the prevention and treatment of malaria and related conditions.
Collapse
Affiliation(s)
- Akinwunmi O Adeoye
- Department of Biochemistry, Federal University Oye Ekiti, Ekiti State, Nigeria.,Department of Biochemistry, University of Ilorin, Kwara State, Nigeria
| | - John O Olanlokun
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Habib Tijani
- Department of Biochemistry, University of Ilorin, Kwara State, Nigeria
| | - Segun O Lawal
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Cecilia O Babarinde
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Mobolaji T Akinwole
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Clement O Bewaji
- Department of Biochemistry, University of Ilorin, Kwara State, Nigeria
| |
Collapse
|
7
|
Singh S, Chitnis CE. Molecular Signaling Involved in Entry and Exit of Malaria Parasites from Host Erythrocytes. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026815. [PMID: 28507195 DOI: 10.1101/cshperspect.a026815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the blood stage, Plasmodium spp. merozoites invade host red blood cells (RBCs), multiply, exit, and reinvade uninfected RBCs in a continuing cycle that is responsible for all the clinical symptoms associated with malaria. Entry into (invasion) and exit from (egress) RBCs are highly regulated processes that are mediated by an array of parasite proteins with specific functional roles. Many of these parasite proteins are stored in specialized apical secretory vesicles, and their timely release is critical for successful invasion and egress. For example, the discharge of parasite protein ligands to the apical surface of merozoites is required for interaction with host receptors to mediate invasion, and the timely discharge of proteases and pore-forming proteins helps in permeabilization and dismantling of limiting membranes during egress. This review focuses on our understanding of the signaling mechanisms that regulate apical organelle secretion during host cell invasion and egress by malaria parasites. The review also explores how understanding key signaling mechanisms in the parasite can open opportunities to develop novel strategies to target Plasmodium parasites and eliminate malaria.
Collapse
Affiliation(s)
- Shailja Singh
- Department of Parasites and Insect Vectors, Institut Pasteur, 75015 Paris, France.,Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Chetan E Chitnis
- Department of Parasites and Insect Vectors, Institut Pasteur, 75015 Paris, France.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| |
Collapse
|
8
|
Cruz LN, Wu Y, Ulrich H, Craig AG, Garcia CRS. Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites. Biochim Biophys Acta Gen Subj 2016; 1860:1489-97. [PMID: 27080559 PMCID: PMC4876768 DOI: 10.1016/j.bbagen.2016.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
Background Plasmodium has a complex biology including the ability to interact with host signals modulating their function through cellular machinery. Tumor necrosis factor (TNF) elicits diverse cellular responses including effects in malarial pathology and increased infected erythrocyte cytoadherence. As TNF levels are raised during Plasmodium falciparum infection we have investigated whether it has an effect on the parasite asexual stage. Methods Flow cytometry, spectrofluorimetric determinations, confocal microscopy and PCR real time quantifications were employed for characterizing TNF induced effects and membrane integrity verified by wheat germ agglutinin staining. Results TNF is able to decrease intracellular parasitemia, involving calcium as a second messenger of the pathway. Parasites incubated for 48 h with TNF showed reduced erythrocyte invasion. Thus, TNF induced rises in intracellular calcium concentration, which were blocked by prior addition of the purinergic receptor agonists KN62 and A438079, or interfering with intra- or extracellular calcium release by thapsigargin or EGTA (ethylene glycol tetraacetic acid). Importantly, expression of PfPCNA1 which encodes the Plasmodium falciparum Proliferating-Cell Nuclear Antigen 1, decreased after P. falciparum treatment of TNF (tumor necrosis factor) or 6-Bnz cAMP (N6-benzoyladenosine-3′,5′-cyclic monophosphate sodium salt). Conclusions This is potentially interesting data showing the relevance of calcium in downregulating a gene involved in cellular proliferation, triggered by TNF. General significance The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host. TNF is able to decrease parasitemia in P. falciparum‐infected RBCs. TNF induced rises in intracellular calcium concentration, which were blocked by the purinergic receptor agonists KN62 and A438079. Interfering with intra‐ or extracellular calcium release by thapsigargin or EGTA also block TNF‐induce calcium release in P. falciparum. Expression of the P. falciparum Proliferating‐Cell Nuclear Antigen 1 (PfPCNA1) decreased after P. falciparum treatment with TNF or 6‐Bnz cAMP. The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host.
Collapse
Affiliation(s)
- Laura N Cruz
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n321, CEP 05508-900 São Paulo, SP, Brazil
| | - Yang Wu
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Célia R S Garcia
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n321, CEP 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Rahul CN, Shiva Krishna K, Pawar AP, Rajesh V. In silico approach to ascertain the calcium dependent role of Plasmodium falciparum SERA5. J Biomol Struct Dyn 2016; 35:17-25. [PMID: 26725489 DOI: 10.1080/07391102.2015.1129988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The P. falciparum serine repeat antigen (PfSERA5) is the most abundantly expressed protein in the parasitophorous vacuole during the asexual blood stage and serves as both drug and vaccine target. The processed central fragment (56 KDa) of PfSERA5 is implicated to play an important role in parasite exit (egress) during schizont rupture from erythrocytes. Structural characterization of its enzymatic domain supports protease-like function for this central domain. The understanding of exact functional role of PfSERA5 in parasite egress remains unconfirmed as recent studies also indicate an indispensable non-catalytic role for PfSERA5 putative enzyme domain in the blood stage. No structural insight into PfSERA5 prodomain is available. Structure prediction of PfSERA5 prodomain using in silico approach in our study, showed it to have structural similarity with calcium-binding proteins. An earlier observation of steep rise in intracellular calcium concentration as an important factor in egress makes the prodomain calcium-binding role significant. The implication of calcium on structure and activity of PfSERA5 putative enzyme domain is also unknown, and such information would aid to substantiating any calcium-dependent effects on PfSERA5. To understand this, we performed molecular dynamic (MD) simulation both in the presence and absence of calcium. MD results show secondary structure conformational differences in local regions of protein structure. Our results support calcium to be an important parameter for stability and function of PfSERA5. This computational assessment suggest a need to design future experiments like calcium-dependent inhibition studies to reveal exact functional role of PfSERA5 in parasite egress.
Collapse
Affiliation(s)
- C N Rahul
- a Department of Biological Sciences, Birla Institute of Technology and Science, Pilani , Hyderabad Campus , Andhra Pradesh , India
| | - K Shiva Krishna
- a Department of Biological Sciences, Birla Institute of Technology and Science, Pilani , Hyderabad Campus , Andhra Pradesh , India
| | - Atul P Pawar
- a Department of Biological Sciences, Birla Institute of Technology and Science, Pilani , Hyderabad Campus , Andhra Pradesh , India
| | - Vidya Rajesh
- a Department of Biological Sciences, Birla Institute of Technology and Science, Pilani , Hyderabad Campus , Andhra Pradesh , India
| |
Collapse
|
10
|
Budu A, Gomes MM, Melo PM, El Chamy Maluf S, Bagnaresi P, Azevedo MF, Carmona AK, Gazarini ML. Calmidazolium evokes high calcium fluctuations in Plasmodium falciparum. Cell Signal 2015; 28:125-135. [PMID: 26689736 DOI: 10.1016/j.cellsig.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Calcium and calmodulin (CaM) are important players in eukaryote cell signaling. In the present study, by using a knockin approach, we demonstrated the expression and localization of CaM in all erythrocytic stages of Plasmodium falciparum. Under extracellular Ca(2+)-free conditions, calmidazolium (CZ), a potent CaM inhibitor, promoted a transient cytosolic calcium ([Ca(2+)]cyt) increase in isolated trophozoites, indicating that CZ mobilizes intracellular sources of calcium. In the same extracellular Ca(2+)-free conditions, the [Ca(2+)]cyt rise elicited by CZ treatment was ~3.5 fold higher when the endoplasmic reticulum (ER) calcium store was previously depleted ruling out the mobilization of calcium from the ER by CZ. The effects of the Ca(2+)/H(+) ionophore ionomycin (ION) and the Na(+)/H(+) ionophore monensin (MON) suggest that the [Ca(2+)]cyt-increasing effect of CZ is driven by the removal of Ca(2+) from at least one Ca(2+)-CaM-related (CaMR) protein as well as by the mobilization of Ca(2+) from intracellular acidic calcium stores. Moreover, we showed that the mitochondrion participates in the sequestration of the cytosolic Ca(2+) elicited by CZ. Finally, the modulation of membrane Ca(2+) channels by CZ and thapsigargin (THG) was demonstrated. The opened channels were blocked by the unspecific calcium channel blocker Co(2+) but not by 2-APB (capacitative calcium entry inhibitor) or nifedipine (L-type Ca(2+) channel inhibitor). Taken together, the results suggested that one CaMR protein is an important modulator of calcium signaling and homeostasis during the Plasmodium intraerythrocytic cell cycle, working as a relevant intracellular Ca(2+) reservoir in the parasite.
Collapse
Affiliation(s)
- Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mayrim M Gomes
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Pollyana M Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Piero Bagnaresi
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mauro F Azevedo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
11
|
Mott BT, Eastman RT, Guha R, Sherlach KS, Siriwardana A, Shinn P, McKnight C, Michael S, Lacerda-Queiroz N, Patel PR, Khine P, Sun H, Kasbekar M, Aghdam N, Fontaine SD, Liu D, Mierzwa T, Mathews-Griner LA, Ferrer M, Renslo AR, Inglese J, Yuan J, Roepe PD, Su XZ, Thomas CJ. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Sci Rep 2015; 5:13891. [PMID: 26403635 PMCID: PMC4585899 DOI: 10.1038/srep13891] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy.
Collapse
Affiliation(s)
- Bryan T. Mott
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Richard T. Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Katy S. Sherlach
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
| | - Amila Siriwardana
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Sam Michael
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Norinne Lacerda-Queiroz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paresma R. Patel
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Pwint Khine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hongmao Sun
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Monica Kasbekar
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Nima Aghdam
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
| | - Shaun D. Fontaine
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA
| | - Dongbo Liu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Tim Mierzwa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Lesley A. Mathews-Griner
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jing Yuan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
- Department of Biochemistry, Cellular and Molecular Biology and Center for Infectious Diseases, Georgetown University, 37th and O St., NW, Washington, DC
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| |
Collapse
|
12
|
Gomes MM, Budu A, Ventura PDS, Bagnaresi P, Cotrin SS, Cunha RLOR, Carmona AK, Juliano L, Gazarini ML. Specific calpain activity evaluation in Plasmodium parasites. Anal Biochem 2014; 468:22-7. [PMID: 25281458 DOI: 10.1016/j.ab.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 01/26/2023]
Abstract
In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening.
Collapse
Affiliation(s)
- Mayrim M Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Piero Bagnaresi
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Simone S Cotrin
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
13
|
Zipprer EM, Neggers M, Kushwaha A, Rayavara K, Desai SA. A kinetic fluorescence assay reveals unusual features of Ca⁺⁺ uptake in Plasmodium falciparum-infected erythrocytes. Malar J 2014; 13:184. [PMID: 24885754 PMCID: PMC4078004 DOI: 10.1186/1475-2875-13-184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 05/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background To facilitate development within erythrocytes, malaria parasites increase their host cell uptake of diverse solutes including Ca++. The mechanism and molecular basis of increased Ca++ permeability remains less well studied than that of other solutes. Methods Based on an appropriate Ca++ affinity and its greater brightness than related fluorophores, Fluo-8 was selected and used to develop a robust fluorescence-based assay for Ca++ uptake by human erythrocytes infected with Plasmodium falciparum. Results Both uninfected and infected cells exhibited a large Ca++-dependent fluorescence signal after loading with the Fluo-8 dye. Probenecid, an inhibitor of erythrocyte organic anion transporters, abolished the fluorescence signal in uninfected cells; in infected cells, this agent increased fluorescence via mechanisms that depend on parasite genotype. Kinetic fluorescence measurements in 384-well microplates revealed that the infected cell Ca++ uptake is not mediated by the plasmodial surface anion channel (PSAC), a parasite nutrient channel at the host membrane; it also appears to be distinct from mammalian Ca++ channels. Imaging studies confirmed a low intracellular Ca++ in uninfected cells and higher levels in both the host and parasite compartments of infected cells. Parasite growth inhibition studies revealed a conserved requirement for extracellular Ca++. Conclusions Nondestructive loading of Fluo-8 into human erythrocytes permits measurement of Ca++ uptake kinetics. The greater Ca++ permeability of cells infected with malaria parasites is apparent when probenecid is used to inhibit Fluo-8 efflux at the host membrane. This permeability is mediated by a distinct pathway and may be essential for intracellular parasite development. The miniaturized assay presented here should help clarify the precise transport mechanism and may identify inhibitors suitable for antimalarial drug development.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Furuyama W, Enomoto M, Mossaad E, Kawai S, Mikoshiba K, Kawazu SI. An interplay between 2 signaling pathways: melatonin-cAMP and IP3-Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum. Biochem Biophys Res Commun 2014; 446:125-31. [PMID: 24607908 DOI: 10.1016/j.bbrc.2014.02.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca(2+)) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca(2+) imaging showed that LZ treatment completely abolished Ca(2+) oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP3-Ca(2+) and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.
Collapse
Affiliation(s)
- Wakako Furuyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Ehab Mossaad
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
15
|
Ahmed A, Gaadhe K, Sharma GP, Kumar N, Neculai M, Hui R, Mohanty D, Sharma P. Novel insights into the regulation of malarial calcium-dependent protein kinase 1. FASEB J 2012; 26:3212-21. [PMID: 22539638 DOI: 10.1096/fj.12-203877] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) are major effectors of calcium signaling in apicomplexan parasites like Toxoplasma and Plasmodium and control important processes of the parasite life cycle. Despite recently reported crystal structures of Toxoplasma gondii (Tg)CDPKs, several important questions about their regulation remain unanswered. Plasmodium falciparum (Pf)CDPK1 has emerged as a key player in the life cycle of the malaria parasite, as it may be involved in the invasion of the host cells. Molecular modeling and site-directed mutagenesis studies on PfCDPK1 suggested that several residues in the regulatory domain play a dual role, as they seem to contribute to the stabilization of both the active and inactive kinase. Mass spectrometry revealed that PfCDPK1 was autophosphorylated at several sites; some of these were placed at strategic locations and therefore were found to be critical for kinase activation. The N-terminal extension of PfCDPK1 was found to be important for PfCDPK1 activation. Unexpectedly, an ATP binding site in the NTE of PfCDPK1 was identified. Our studies highlight several novel features of PfCDPK1 regulation, which may be shared by other members of the CDPK family. These findings may also aid design of inhibitors against these important targets, which are absent from the host.
Collapse
Affiliation(s)
- Anwar Ahmed
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Holder AA, Mohd Ridzuan MA, Green JL. Calcium dependent protein kinase 1 and calcium fluxes in the malaria parasite. Microbes Infect 2012; 14:825-30. [PMID: 22584104 DOI: 10.1016/j.micinf.2012.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/20/2023]
Abstract
Calcium dependent protein kinases (CDPKs) are found only in plants and alveolates and are distinguished from other kinases by an activation domain that binds calcium directly. Plants contain families of these kinases and their functions are modulated by post translational modifications as well as calcium activation. Apicomplexan parasites also contain CDPK families and this review is focused on CDPK1 in Plasmodium spp. This enzyme has been implicated in parasite motility and host cell invasion and at least two substrates associated with the actomyosin motor complex have been identified. By analogy with the plant CDPKs we propose that its activity is modulated both by post translational modifications and by its subcellular location in a compartment within the parasite's pellicle, which may regulate the calcium concentration required for activation.
Collapse
Affiliation(s)
- Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | |
Collapse
|
17
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
To investigate the part played by undernutrition in malaria severity, some biomarkers of nutritional status were assessed in children with severe malarial anaemia (MA) and cerebral malaria (CM) in comparison with healthy children or those with uncomplicated malaria. Undernutrition was assessed using the weight-for-age Z score (WAZ). Retinol was determined by HPLC; lipid profile, Ca, Mg and albumin were determined by spectrophotometry. Severe and moderate undernutritions were more prevalent in children with MA and those with the combined symptoms of CM and MA, but not in those with CM alone. Some perturbations were noticed in the lipid profile, but most of the values remained within the normal ranges. The risk of vitamin A deficiency, as assessed by plasma retinol concentration, was noteworthy in children with severe malaria: 0.48 × 10(-6) and 0.50 × 10(-6) mol/l, respectively, in children with MA and CM (reference value: >0.7 × 10(-6) mol/l). A significant difference was obtained for retinol values after an ANOVA of all the groups (P = 0.0029), with the value in the MA group being significantly low than that in the control group (P < 0.05); likewise, a significant difference was obtained after comparison of all the groups for Mg and albumin (P = 0.0064 and 0.0082, respectively). Despite their low number (n 6), fatal cases of CM had a normal mean WAZ on admission, but low values of retinol, albumin and HDL:LDL ratio. Despite these associations, undernutrition itself did not appear to be a primary factor associated with fatal outcome.
Collapse
|
19
|
Rotmann A, Sanchez C, Guiguemde A, Rohrbach P, Dave A, Bakouh N, Planelles G, Lanzer M. PfCHA is a mitochondrial divalent cation/H+ antiporter in Plasmodium falciparum. Mol Microbiol 2010; 76:1591-606. [PMID: 20487273 DOI: 10.1111/j.1365-2958.2010.07187.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human malaria parasite Plasmodium falciparum is capable of adapting to vastly different extracellular Ca(2+) environments while maintaining tight control of its intracellular Ca(2+) concentration. The mechanisms underpinning Ca(2+) homeostasis in this important pathogen are only partly understood. Here we have functionally expressed the putative Ca(2+)/H(+) antiporter PfCHA in Xenopus laevis oocytes. Our data suggest that PfCHA mediates H(+)-coupled Ca(2+) and Mn(2+) exchange. The apparent dissociation constant K(M) for Ca(2+) of 2.2 +/- 0.7 mM and the maximal velocity V(max) of 0.6 +/- 0.1 nmol per oocyte per hour are consistent with PfCHA being a low-affinity high-capacity Ca(2+) carrier. In the parasite, PfCHA was found to localize to the mitochondrion. Physiological studies conducted with live parasitized erythrocytes, and using Fluo-4 and Rhod-2 to monitor cytoplasmic and mitochondrial Ca(2+) dynamics, suggest that the mitochondrion serves as a dynamic Ca(2+) store and that PfCHA functions as a Ca(2+) efflux system expelling excess Ca(2+) from the mitochondrion. PfCHA lacks appreciable homologies to the human mitochondrial Ca(2+)/H(+) exchanger and might represent an evolutionary divergent class of mitochondrial cation antiporter, which, in turn, might provide novel opportunities for intervention.
Collapse
Affiliation(s)
- Alexander Rotmann
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rohrbach P. Imaging ion flux and ion homeostasis in blood stage malaria parasites. Biotechnol J 2009; 4:812-25. [DOI: 10.1002/biot.200900084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Carmargo LM, de Oliveira S, Basano S, Garcia CR. Antimalarials and the fight against malaria in Brazil. Ther Clin Risk Manag 2009; 5:311-7. [PMID: 19753125 PMCID: PMC2690974 DOI: 10.2147/tcrm.s4571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Malaria, known as the “fevers,” has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named “Jesuits’ powder.” Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira–Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.
Collapse
|
22
|
Ranjan R, Ahmed A, Gourinath S, Sharma P. Dissection of mechanisms involved in the regulation of Plasmodium falciparum calcium-dependent protein kinase 4. J Biol Chem 2009; 284:15267-76. [PMID: 19307175 DOI: 10.1074/jbc.m900656200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent studies have demonstrated that calcium-dependent protein kinases (CDPKs) are used by calcium to regulate a variety of biological processes in the malaria parasite Plasmodium. CDPK4 has emerged as an important enzyme for parasite development, because its gene disruption in rodent parasite Plasmodium berghei causes major defects in sexual differentiation of the parasite ( Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B., and Brinkmann, V. (2004) Cell 117, 503-514 ). Despite these findings, it is not very clear how PfCDPK4 or any other PfCDPK is regulated by calcium at the molecular level. We report the biochemical characterization and elucidation of molecular mechanisms involved in the regulation of PfCDPK4. PfCDPK4 was detected on gametocyte periphery, and its activity in the parasite was regulated by phospholipase C. Even though the Junction Domain (JD) of PfCDPK4 shares moderate sequence homology with that of the plant CDPKs, it plays a pivotal role in PfCDPK4 regulation as previously reported for some plant CDPKs. The regions of the J-domain involved in interaction with both the kinase domain and the calmodulin-like domain were mapped. We propose a model for PfCDPK regulation by calcium, which may also prove useful for design of inhibitors against PfCDPK4 and other members of the PfCDPK family.
Collapse
Affiliation(s)
- Ravikant Ranjan
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | | |
Collapse
|
23
|
Kato N, Sakata T, Breton G, Le Roch KG, Nagle A, Andersen C, Bursulaya B, Henson K, Johnson J, Kumar KA, Marr F, Mason D, McNamara C, Plouffe D, Ramachandran V, Spooner M, Tuntland T, Zhou Y, Peters EC, Chatterjee A, Schultz PG, Ward GE, Gray N, Harper J, Winzeler EA. Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat Chem Biol 2008; 4:347-56. [PMID: 18454143 PMCID: PMC11892688 DOI: 10.1038/nchembio.87] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 04/04/2008] [Indexed: 01/26/2023]
Abstract
Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.
Collapse
Affiliation(s)
- Nobutaka Kato
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, ICND202 La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Garcia CRS, de Azevedo MF, Wunderlich G, Budu A, Young JA, Bannister L. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:85-156. [PMID: 18544493 DOI: 10.1016/s1937-6448(07)66003-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.
Collapse
Affiliation(s)
- Celia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Beraldo FH, Almeida FM, da Silva AM, Garcia CRS. Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle. ACTA ACUST UNITED AC 2007; 170:551-7. [PMID: 16103224 PMCID: PMC2171486 DOI: 10.1083/jcb.200505117] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The host hormone melatonin increases cytoplasmic Ca(2+) concentration and synchronizes Plasmodium cell cycle (Hotta, C.T., M.L. Gazarini, F.H. Beraldo, F.P. Varotti, C. Lopes, R.P. Markus, T. Pozzan, and C.R. Garcia. 2000. Nat. Cell Biol. 2:466-468). Here we show that in Plasmodium falciparum melatonin induces an increase in cyclic AMP (cAMP) levels and cAMP-dependent protein kinase (PKA) activity (40 and 50%, respectively). When red blood cells infected with P. falciparum are treated with cAMP analogue adenosine 3',5'-cyclic monophosphate N6-benzoyl/PKA activator (6-Bz-cAMP) there is an alteration of the parasite cell cycle. This effect appears to depend on activation of PKA (abolished by the PKA inhibitors adenosine 3',5'-cyclic monophosphorothioate/8 Bromo Rp isomer, PKI [cell permeable peptide], and H89). An unexpected cross talk was found to exist between the cAMP and the Ca(2+)-dependent signaling pathways. The increases in cAMP by melatonin are inhibited by blocker of phospholipase C U73122, and addition of 6-Bz-cAMP increases cytosolic Ca(2+) concentration, through PKA activation. These findings suggest that in Plasmodium a highly complex interplay exists between the Ca(2+) and cAMP signaling pathways, but also that the control of the parasite cell cycle by melatonin requires the activation of both second messenger controlled pathways.
Collapse
Affiliation(s)
- Flávio H Beraldo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
26
|
Bagnaresi P, Rodrigues MT, Garcia CRS. Calcium signaling in lizard red blood cells. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:779-787. [PMID: 17095273 DOI: 10.1016/j.cbpa.2006.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/16/2022]
Abstract
The ion calcium is a ubiquitous second messenger, present in all eukaryotic cells. It modulates a vast number of cellular events, such as cell division and differentiation, fertilization, cell volume, decodification of external stimuli. To process this variety of information, the cells display a number of calcium pools, which are capable of mobilization for signaling purposes. Here we review the calcium signaling on lizards red blood cells, an interesting model that has been receiving an increasing notice recently. These cells possess a complex machinery to regulate calcium, and display calcium responses to extracellular agonists. Interestingly, the pattern of calcium handling and response are divergent in different lizard families, which enforces the morphological data to their phylogenetic classification, and suggest the radiation of different calcium signaling models in lizards evolution.
Collapse
Affiliation(s)
- Piero Bagnaresi
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
27
|
Iwalokun B, . YO, . KO, . EI. A Study of Calcium Dynamics in Infected Erythrocytes of Nigerian Children with Plasmodium falciparum Malaria. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2007.565.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Kugelstadt D, Winter D, Plückhahn K, Lehmann WD, Kappes B. Raf kinase inhibitor protein affects activity of Plasmodium falciparum calcium-dependent protein kinase 1. Mol Biochem Parasitol 2006; 151:111-7. [PMID: 17123645 DOI: 10.1016/j.molbiopara.2006.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 12/28/2022]
Abstract
Proteins, such as the raf kinase inhibitory protein (RKIP), serve as modulators of signalling pathways by either promoting or inhibiting the formation of productive signalling complexes through protein-protein interactions. In the present study, the plasmodial RKIP ortholog, PfPE-PB1, was cloned, recombinantly expressed and purified to homogeneity. The purified protein was used to investigate the effect of plasmodial RKIP on the autophosphorylation and substrate phosphorylation activity of Plasmodium falciparum calcium-dependent protein kinase 1, PfCDPK1. Phosphorylation of RKIP by PfCDPK1 in in vitro kinase assays suggests that RKIP may be an in vivo substrate of this kinase, although the specific activity of PfCDPK1 is approximately seven-fold lower when RKIP, instead of casein, an exogenous substrate of this enzyme, is used as a substrate. In addition to the observed phosphorylation of RKIP itself, its presence in the assays greatly enhanced the autophosphorylation capacity of PfCDPK1 by approximately 5.5-fold. This substantial increase in autophosphorylation activity was associated with a diminished substrate phosphorylation activity of PfCDPK1 when casein was used. At the same time, RKIP phosphorylation slightly increased when casein was included into the assays. Thus, RKIP is recognized as a substrate under in vitro conditions and appears to act as a regulator of PfCDPK1 kinase activity, which possibly is one of its actual functions in the parasite.
Collapse
Affiliation(s)
- Dominik Kugelstadt
- Universitätsklinikum Heidelberg, Abteilung für Parasitologie, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Vaid A, Sharma P. PfPKB, a protein kinase B-like enzyme from Plasmodium falciparum: II. Identification of calcium/calmodulin as its upstream activator and dissection of a novel signaling pathway. J Biol Chem 2006; 281:27126-33. [PMID: 16809343 DOI: 10.1074/jbc.m601914200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intracellular cell signaling cascades of protozoan parasite Plasmodium falciparum are not clearly understood. We have reported previously (Kumar, A., Vaid, A., Syin, C., and Sharma, P. (2004) J. Biol. Chem. 279, 24255-24264) the identification and characterization of a protein kinase B-like enzyme in P. falciparum (PfPKB). PfPKB lacks the phosphoinositide-interacting pleckstrin homology domain present in mammalian protein kinase B. Therefore, the mechanism of PfPKB regulation was expected to be different from that of the host and had remained unknown. We have identified calmodulin (CaM) as the regulator of PfPKB activity. A CaM binding domain was mapped in the N-terminal region of PfPKB. CaM, in a calcium-dependent manner, interacts with this domain and activates PfPKB. CaM associates with PfPKB in the parasite and regulates its activity. Furthermore phospholipase C acts as an upstream regulator of this cascade as it facilitates the release of calcium from intracellular stores. This is one of the first multicomponent signaling pathways to be dissected in the malaria parasite.
Collapse
Affiliation(s)
- Ankush Vaid
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India
| | | |
Collapse
|
30
|
Farias SL, Gazarini ML, Melo RL, Hirata IY, Juliano MA, Juliano L, Garcia CRS. Cysteine-protease activity elicited by Ca2+ stimulus in Plasmodium. Mol Biochem Parasitol 2005; 141:71-9. [PMID: 15811528 DOI: 10.1016/j.molbiopara.2005.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/11/2005] [Accepted: 01/26/2005] [Indexed: 11/26/2022]
Abstract
Bloodstage malaria parasites require proteolytic activity for key processes as invasion, hemoglobin degradation and merozoite escape from red blood cells (RBCs). We investigated by confocal microscopy the presence of cysteine-protease activity elicited by calcium stimulus in Plasmodium chabaudi and Plasmodium falciparum in free trophozoites or for the later parasite within RBC using fluorescence resonance energy transfer (FRET) peptides. Peptide probes access, to either free or intraerythrocytic parasites, was also tested by selecting a range of fluorescent peptides (653-3146 Da molecular mass) labeled with Abz or FITC. In the present work we show that Ca2+ stimulus elicited by treatment with either melatonin, thapsigargin, ionomicin or nigericin, promotes an increase of substrate hydrolysis, which was blocked by the specific cysteine-protease inhibitor E-64 and the intracellular Ca2+ chelator, BAPTA. When parasites were treated with cytoplasmic Ca2+ releasing compounds, a cysteine-protease was labeled in the parasite cytoplasm by the fluorescent specific irreversible inhibitor, Ethyl-Eps-Leu-Tyr-Cap-Lys(Abz)-NH2, where Ethyl-Eps is Ethyl-(2S,3S)-oxirane-2,3-dicarboxylate. In summary, we demonstrate that P. chabaudi and P. falciparum have a cytoplasmic dependent cysteine-protease activity elicited by Ca2+.
Collapse
Affiliation(s)
- Shirley L Farias
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Rohrbach P, Friedrich O, Hentschel J, Plattner H, Fink RHA, Lanzer M. Quantitative Calcium Measurements in Subcellular Compartments of Plasmodium falciparum-infected Erythrocytes. J Biol Chem 2005; 280:27960-9. [PMID: 15927958 DOI: 10.1074/jbc.m500777200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acidic food vacuole exerts several important functions during intraerythrocytic development of the human malarial parasite Plasmodium falciparum. Hemoglobin taken up from the host erythrocyte is degraded in the food vacuole, and the heme liberated during this process is crystallized to inert hemozoin. Several anti-malarial drugs target food vacuolar pathways, such as hemoglobin degradation and heme crystallization. Resistance and sensitization to some antimalarials is associated with mutations in food vacuolar membrane proteins. Other studies suggest a role of the food vacuole in ion homeostasis, and release of Ca2+ from the food vacuole may mediate adopted physiological responses. To investigate whether the food vacuole is an intracellular Ca2+ store, which in turn may affect other physiological functions in which this organelle partakes, we have investigated total and exchangeable Ca2+ within the parasite's food vacuole using x-ray microanalysis and quantitative confocal live cell Ca2+ imaging. Apparent free Ca2+ concentrations of approximately 90, approximately 350, and approximately 400 nM were found in the host erythrocyte cytosol, the parasite cytoplasm, and the food vacuole, respectively. In our efforts to determine free intracellular Ca2+ concentrations, we evaluated several Ca2+-sensitive fluorochromes in a live cell confocal setting. We found that the ratiometric Ca2+ indicator Fura-Red provides reliable determinations, whereas measurements using the frequently used Fluo-4 are compromised due to problems arising from phototoxicity, photobleaching, and the strong pH dependence of the dye. Our data suggest that the food vacuole contains only moderate amounts of Ca2+, disfavoring a role as a major intracellular Ca2+ store.
Collapse
Affiliation(s)
- Petra Rohrbach
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Gazarini ML, Garcia CRS. The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations. Biochem Biophys Res Commun 2004; 321:138-44. [PMID: 15358226 DOI: 10.1016/j.bbrc.2004.06.141] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Indexed: 10/26/2022]
Abstract
By using the fluorescent dye Rhod-2, we have investigated the ability of Plasmodium mitochondria to participate in cellular Ca2+ homeostasis. To this end, isolated parasites were simultaneously loaded with the mitochondrial Ca2+ probe Rhod-2 and the cytosolic Ca2+ dye Fluo-3 and their fluorescent intensities were monitored in the same cells by confocal microscopy. We here demonstrate that Ca2+ increases, as elicited by treatment of parasites with sarco-endoplasmic reticulum Ca2+ ATPase inhibitors or the hormone melatonin, induce rapid and reversible increases of the Ca2+ concentration in the mitochondria of both human and murine parasites. Pre-treatment of parasites with the mitochondrial uncoupler, FCCP, suppresses mitochondrial Ca2+ accumulation. Our data demonstrate that mitochondria of malaria parasites are able to reversibly accumulate part of the Ca2+ released in the cytoplasm by pharmacological and physiological agents and thus suggest that this organelle participate in the maintenance of Ca2+ homeostasis of Plasmodia.
Collapse
Affiliation(s)
- Marcos L Gazarini
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Lineu Prestes 1374, Brazil
| | | |
Collapse
|
33
|
Ward P, Equinet L, Packer J, Doerig C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 2004; 5:79. [PMID: 15479470 PMCID: PMC526369 DOI: 10.1186/1471-2164-5-79] [Citation(s) in RCA: 376] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 10/12/2004] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Malaria, caused by the parasitic protist Plasmodium falciparum, represents a major public health problem in the developing world. The P. falciparum genome has been sequenced, which provides new opportunities for the identification of novel drug targets. Eukaryotic protein kinases (ePKs) form a large family of enzymes with crucial roles in most cellular processes; hence malarial ePKS represent potential drug targets. We report an exhaustive analysis of the P. falciparum genomic database (PlasmoDB) aimed at identifying and classifying all ePKs in this organism. RESULTS Using a variety of bioinformatics tools, we identified 65 malarial ePK sequences and constructed a phylogenetic tree to position these sequences relative to the seven established ePK groups. Predominant features of the tree were: (i) that several malarial sequences did not cluster within any of the known ePK groups; (ii) that the CMGC group, whose members are usually involved in the control of cell proliferation, had the highest number of malarial ePKs; and (iii) that no malarial ePK clustered with the tyrosine kinase (TyrK) or STE groups, pointing to the absence of three-component MAPK modules in the parasite. A novel family of 20 ePK-related sequences was identified and called FIKK, on the basis of a conserved amino acid motif. The FIKK family seems restricted to Apicomplexa, with 20 members in P. falciparum and just one member in some other Apicomplexan species. CONCLUSION The considerable phylogenetic distance between Apicomplexa and other Eukaryotes is reflected by profound divergences between the kinome of malaria parasites and that of yeast or mammalian cells.
Collapse
Affiliation(s)
- Pauline Ward
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | - Leila Equinet
- INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | - Jeremy Packer
- Division of Advanced Technologies, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Christian Doerig
- INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| |
Collapse
|
34
|
Gazarini ML, Garcia CRS. Interruption of the blood-stage cycle of the malaria parasite, Plasmodium chabaudi, by protein tyrosine kinase inhibitors. Braz J Med Biol Res 2003; 36:1465-9. [PMID: 14576900 DOI: 10.1590/s0100-879x2003001100003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37 degrees C with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 microM - 75%), staurosporine (1 microM - 58%), R03 (1 microM - 75%), and tyrphostins B44 (100 microM - 66%) and B46 (100 microM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.
Collapse
Affiliation(s)
- M L Gazarini
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|
35
|
Madeira L, DeMarco R, Gazarini ML, Verjovski-Almeida S, Garcia CRS. Human malaria parasites display a receptor for activated C kinase ortholog. Biochem Biophys Res Commun 2003; 306:995-1001. [PMID: 12821141 DOI: 10.1016/s0006-291x(03)01074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Receptors for activated C kinases (RACKs) are scaffold proteins that anchor diverse signaling proteins and are involved in modulating cell cycle. We report the cloning and cellular localization of a RACK ortholog (PfRACK) in the human malaria parasite Plasmodium falciparum. The full-length transcript obtained by 3(') and 5(') RACE has 1.4 kbp with a predicted ORF of 972 bp, coding for a protein with 323 residues of 35.8 kDa molecular weight and pI 6.38. PfRACK has 59% and 60% identity at the amino acid level to Chlamydomonas reinhardtii and Danio rerio RACKs, respectively, presenting seven WD40 motifs and retaining the conserved domains in repeats III (DVFSVSF) and VI (STINSLCF) that are important for PKC binding. Semi-quantitative RT-PCR revealed that PfRACK is constitutively expressed in the intraerythrocytic stages of P. falciparum. Using confocal microscopy, PfRACK was immunolocalized in all parasite stages, being conspicuously spread throughout the schizont. The high similarity of PfRACK to those previously described in other organisms, as well as its constitutive expression in Plasmodium asexual stages, suggests that it might play a key role in the regulatory processes of malaria parasite life cycle.
Collapse
Affiliation(s)
- Luciana Madeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
36
|
Abstract
The parasite responsible for malaria, Plasmodium falciparum, spends much of its life in the RBC under conditions of low cytosolic Ca2+. This poses an interesting problem for a parasite that depends on a Ca2+ signaling system to carry out its vital functions. This long standing puzzle has now been resolved by a clever series of experiments performed by Gazarini et al. (2003). Using advances in fluorescent Ca2+ imaging (Grynkiewics, G., M. Poenie, and R.Y. Tsien. 1985. J. Biol. Chem. 260:3440-3450; Hofer, A., and T. Machen. 1994. Am. J. Physiol. 267:G442-G451; Hofer, A.M., B. Landolfi, L. Debellis, T. Pozzan, and S. Curci. 1998. EMBO J. 17:1986-1995), these authors have elucidated the source of the Ca2+ gradient that allows the accumulation of intracellular Ca2+ within the parasite.
Collapse
Affiliation(s)
- Patricia Camacho
- Department of Physiology, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA.
| |
Collapse
|
37
|
Gazarini ML, Thomas AP, Pozzan T, Garcia CRS. Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. J Cell Biol 2003; 161:103-10. [PMID: 12682086 PMCID: PMC2172890 DOI: 10.1083/jcb.200212130] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria parasites, Plasmodia, spend most of their asexual life cycle within red blood cells, where they proliferate and mature. The erythrocyte cytoplasm has very low [Ca2+] (<100 nM), which is very different from the extracellular environment encountered by most eukaryotic cells. The absence of extracellular Ca2+ is usually incompatible with normal cell functions and survival. In the present work, we have tested the possibility that Plasmodia overcome the limitation posed by the erythrocyte intracellular environment through the maintenance of a high [Ca2+] within the parasitophorous vacuole (PV), the compartment formed during invasion and within which the parasites grow and divide. Thus, Plasmodia were allowed to invade erythrocytes in the presence of Ca2+ indicator dyes. This allowed selective loading of the Ca2+ probes within the PV. The [Ca2+] within this compartment was found to be approximately 40 microM, i.e., high enough to be compatible with a normal loading of the Plasmodia intracellular Ca2+ stores, a prerequisite for the use of a Ca2+-based signaling mechanism. We also show that reduction of extracellular [Ca2+] results in a slow depletion of the [Ca2+] within the PV. A transient drop of [Ca2+] in the PV for a period as short as 2 h affects the maturation process of the parasites within the erythrocytes, with a major reduction 48 h later in the percentage of schizonts, the form that re-invades the red blood cells.
Collapse
Affiliation(s)
- Marcos L Gazarini
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil
| | | | | | | |
Collapse
|
38
|
Abstract
P-ATPases are transmembrane proteins that hydrolyse ATP to drive cations or other substances across biomembranes. In this study we present the characterisation of a novel P-ATPase from the apicomplexan parasite Cryptosporidium parvum (CpATPase3), an opportunistic pathogen in autoimmune deficiency syndrome patients, for which no treatment is available. The single copy gene encodes 1488 amino acids, predicting a protein of 169.7 kDa. Primary sequence analysis, as well as an extensive phylogenetic reconstruction, indicated CpATPase3 belongs to a novel class of eukaryotic-specific P-ATPases (Type V) with undefined substrate preferences. Transcription and translation of the gene were confirmed by reverse-transcriptase polymerase chain reaction, and Western blot analysis of sporozoite protein extracts. Immunofluorescent microscopy of C. parvum sporozoites using rabbit antiserum raised against a glutathione-S-transferase-CpATPase3 (GST-ATP3) fusion protein showed that the parasite transporter was located within the apical complex associated with the parasite host-invasion machinery. Overall, these data demonstrate the diversity of C. parvum transporters, and raise the potential of Type V P-ATPases as apicomplexan-specific drug targets.
Collapse
Affiliation(s)
- Michael J LaGier
- Wadsworth Center, New York State Department of Health and SUNY Albany School of Public Health, Department of Biomedical Sciences, P.O. Box 22002, 12201-2002, USA
| | | | | |
Collapse
|
39
|
Silva-Neto MAC, Atella GC, Shahabuddin M. Inhibition of Ca2+/calmodulin-dependent protein kinase blocks morphological differentiation of plasmodium gallinaceum zygotes to ookinetes. J Biol Chem 2002; 277:14085-91. [PMID: 11827960 DOI: 10.1074/jbc.m107903200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Once ingested by mosquitoes, malaria parasites undergo complex cellular changes. These include zygote formation, transformation of zygote to ookinete, and differentiation from ookinete to oocyst. Within the oocyst, the parasite multiplies into numerous sporozoites. Modulators of intracellular calcium homeostasis, MAPTAM, and TMB-8 blocked ookinete development as did the calmodulin (CaM) antagonists W-7 and calmidazolium. Ca(2+)/CaM-dependent protein kinase inhibitor KN-93 also blocked zygote elongation, while its ineffective analog KN-92 did not have such effect. In vitro both zygote and ookinete extracts efficiently phosphorylated autocamtide-2, a classic CaM kinase substrate, which could be blocked by calmodulin antagonists W-7 and calmidazolium and CaM kinase inhibitor KN-93. These results demonstrated the presence of calmodulin-dependent CaM kinase activity in the parasite. KN-93-treated parasites, however, expressed the ookinete-specific enzyme chitinase and the ookinete surface antigen Pgs28 normally, suggesting that the morphologically untransformed parasites are biochemically mature ookinetes. In mosquitoes, KN-93-treated parasites did not develop as oocysts, while KN-92-treated parasites produced similar numbers of oocysts as controls. These data suggested that in Plasmodium gallinaceum morphological development of zygote to ookinete, but not its biochemical maturation, relies on Ca(2+)/CaM-dependent protein kinase activity and demonstrated that the morphological differentiation is essential for the further development of the parasite in infected blood-fed mosquitoes.
Collapse
Affiliation(s)
- Mário A C Silva-Neto
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
40
|
Beraldo FH, Sartorello R, Gazarini ML, Caldeira W, Garcia CRS. Red blood cells of the lizards Ameiva ameiva (Squamata, Teiidae) display multiple mechanisms to control cytosolic calcium. Cell Calcium 2002; 31:79-87. [PMID: 11969248 DOI: 10.1054/ceca.2002.0258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously reported that lizard red blood cells control their cytosolic calcium concentration by sequestering calcium ions in pools, which could be discharged by thapsigargin, by the Na+/H+ ionophore, monensin, by the K+/H+ ionophore, nigericin and by the proton pump inhibitor, bafilomycin A1 [1]. We have now demonstrated, with the aid of confocal microscopy, the presence in these cells of organelles, which accumulate the dye acridine orange and are thus by inference the sites of proton pools. We have found, moreover, that monensin, nigericin and bafilomycin all act to discharge these pools. We further show that calcium release ensues when the calcium ionophore, ionomycin, is added after thapsigargin and monensin; this implies the existence of a third pool, besides the acidic pool and the Endoplasmic Reticulum (ER), which participates in calcium homeostasis. The ER calcium pool can de discharged by the addition of the second messenger, IP3, and we present evidence, based on confocal microscopy, that the IP3 receptors are located in or close to the nucleus.
Collapse
Affiliation(s)
- F H Beraldo
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
41
|
Alleva LM, Kirk K. Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2001; 117:121-8. [PMID: 11606221 DOI: 10.1016/s0166-6851(01)00338-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The regulation of intracellular Ca(2+) in the intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, was investigated using parasites 'isolated' from their host cells by saponin-permeabilisation of the erythrocyte membrane. The isolated parasites maintained tight control over their resting cytosolic Ca(2+) concentration which ranged from approximately 100 nM in the absence of extracellular Ca(2+) to approximately 700 nM in the presence of 1 mM extracellular Ca(2+). The parasite has two functionally discrete intracellular Ca(2+) stores. One is an 'endoplasmic reticulum (ER)-like' store, the other an 'acidic store'. The ER-like store was discharged by cyclopiazonic acid (CPA), an inhibitor of sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) of animal and plant cells, but not by thapsigargin (TG), a more specific inhibitor of SERCAs of animal cells. The acidic store was discharged by nigericin and by NH(4)(+). The amount of Ca(2+) in the ER-like store increased with increasing extracellular Ca(2+) concentration, whereas the amount of Ca(2+) in the acidic store did not. Ca(2+) released from the ER-like store by CPA was cleared from the parasite cytosol by uptake into the acidic store (over a range of extracellular Ca(2+) concentrations), consistent with the acidic store serving as a Ca(2+) reservoir within the intracellular parasite.
Collapse
Affiliation(s)
- L M Alleva
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
42
|
Garcia CR, Markus RP, Madeira L. Tertian and quartan fevers: temporal regulation in malarial infection. J Biol Rhythms 2001; 16:436-43. [PMID: 11669417 DOI: 10.1177/074873001129002114] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The periodicity in the development of Plasmodium parasites in infected animals, including man, has been known for almost 100 years. In turn, this periodicity is a consequence of the synchronous maturation of the parasite during its intracellular development. The cyclic fever that characterizes malarial infections is the outward manifestation of the parasite development. Until recently, little was known about the mechanisms by which parasite synchronicity is established and maintained. This review surveys the recent literature bearing on two main questions. (1) What are the mechanisms involved in the process of parasite synchronicity? (2) Do the circadian rhythms of the host interfere with the parasite cycle?
Collapse
Affiliation(s)
- C R Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | | | | |
Collapse
|
43
|
Krishna S, Webb R, Woodrow C. Transport proteins of Plasmodium falciparum: defining the limits of metabolism. Int J Parasitol 2001; 31:1331-42. [PMID: 11566301 DOI: 10.1016/s0020-7519(01)00254-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review we give an account of transport processes occurring at the membrane interface that separates the asexual stage of Plasmodium falciparum from its host, the infected erythrocyte, and also describe proteins whose activities may be important at this location. We explain the potential clinical value of such studies in the light of the current spread of parasite resistance to conventional antimalarial strategies. We discuss the uptake of substrates critical to the survival of the intracellular malaria parasite, and also the parasite's homeostatic and disposal mechanisms. The use of the Xenopus laevis expression system in the characterisation of a hexose transporter ("PfHT1") and a Ca(2+) ATPase ("PfATP4") of the parasite plasma membrane are described in detail.
Collapse
Affiliation(s)
- S Krishna
- Department of Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
44
|
Rozmajzl PJ, Kimura M, Woodrow CJ, Krishna S, Meade JC. Characterization of P-type ATPase 3 in Plasmodium falciparum. Mol Biochem Parasitol 2001; 116:117-26. [PMID: 11522345 DOI: 10.1016/s0166-6851(01)00319-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the nucleotide sequence, derived amino acid sequence and expression profile of P-type ATPase 3 (PfATPase3) from Plasmodium falciparum. An open reading frame of 7362 nucleotides, interrupted by a single intron of 168 nt, encoded a protein product of 2394 amino acids with a predicted MW of 282791 Da. Hydropathy analysis of PfATPase3 revealed six amino-terminal and six carboxyl-terminal membrane spanning regions (M1-12) flanking a large hydrophilic domain with a smaller hydrophilic loop between M4 and M5. Based on a phylogenetic comparison of conserved domains present in P-type ATPases from other organisms, PfATPase3 resembled a Type-V ATPase for which the transport affinity is unknown. The PfATPase3 topology was interrupted by four regions, termed 'inserts', unique to malarial P-type ATPases, which were high in asparagine residues and charged amino acids (inserts I1-I4). Inserts I1 and I3 also contained repeated amino acid motifs. The number and composition of repeated amino acid motifs in insert I3 were variable in seven P. falciparum strains tested. PfATPase3 was 80.2% similar to the non-insert portions of P. yoelii ATPase3, although their inserts differed in length and composition. PfATPase3 mRNA was most abundant relative to beta-tubulin during the latter half of the erythrocytic cycle and was also present in gametocytes. Using affinity-purified antibody to a 14 amino acid PfATPase3 epitope, a 260 kDa protein was detected by Western analysis. Based on immunofluorescence, the PfATPase3 protein was located intracellularly in gametocytes and, to a lesser extent, in late erythrocytic stages.
Collapse
Affiliation(s)
- P J Rozmajzl
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | | | | | |
Collapse
|
45
|
Beraldo FH, Sartorello R, Lanari RD, Garcia CR. Signal transduction in red bloodcells of the lizards Ameiva ameiva and Tupinambis merianae (Squamata, Teiidae). Cell Calcium 2001; 29:439-45. [PMID: 11352509 DOI: 10.1054/ceca.2001.0207] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fluorescent calcium probe, Fluo-3, AM was used to measure the intracellular calcium concentration in red blood cells (RBCs) of the teiid lizards Ameiva ameiva and Tupinambis merianae. The cytosolic [Ca2+] is maintained around 20 nM and the cells contain membrane-bound Ca2+ pools. One pool appears to be identifiable with the endoplasmic reticulum (ER) inasmuch as addition of the sarco-endoplasmic reticulum Ca2+ ATPase, SERCA, inhibitor thapsigargin induces an increase in cytosolic [Ca2+ both in the presence and in the absence of extracellular Ca2+. In addition to the ER, an acidic compartment appears to be involved in Ca2+ storage, as collapse of intracellular pHgradients by monensin, a Na+ -H+ exchanger, and nigericin, a K+ -H+ exchanger, induce the release of Ca2+ from internal pools. A vacuolar H+ pump, sensitive to NBD-Cl and bafilomycin appears to be necessary to load the acidic Ca2+ pools. Finally, the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c in the cells from both lizard species, mostly by mobilization of the cation from internal stores.
Collapse
Affiliation(s)
- F H Beraldo
- Departamento de Fisiologia, Universidade de São Paulo, Instituto de Biociências, São Paulo, Brazil
| | | | | | | |
Collapse
|
46
|
Caldas ML, Wasserman M. Cytochemical localisation of calcium ATPase activity during the erythrocytic cell cycle of Plasmodium falciparum. Int J Parasitol 2001; 31:776-82. [PMID: 11403768 DOI: 10.1016/s0020-7519(01)00189-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using a cytochemical technique, we evaluated the levels of Ca(2+)-ATPase activity in the plasmatic and in the parasitophorous vacuole membrane through the different developmental stages of the Plasmodium falciparum parasitised erythrocyte. We found that the activity is detectable and remains unaltered in the plasma membrane throughout the 48 h cell cycle. However, in the parasitophorous membrane, although the activity was very similar to that measured in the plasma membrane of the young stages (younger than 20-h-old parasites), it diminished gradually with maturation and in schizonts it was almost undetectable. These data suggest that the plasma membrane Ca(2+)-ATPase is important in the maintenance of a low erythrocyte cytoplasmic Ca(2+) concentration, and that in addition it could be a way to supply the vital cation to the parasite at the beginning of the infection, when other transport mechanisms have not yet developed.
Collapse
Affiliation(s)
- M L Caldas
- Image Analysis and Microscopy Unit, Instituto Nacional de Salud, Av. Eldorado Cra. 50, Bogota, Colombia
| | | |
Collapse
|
47
|
Abstract
The malaria parasite is a unicellular eukaryotic organism which, during the course of its complex life cycle, invades the red blood cells of its vertebrate host. As it grows and multiplies within its host blood cell, the parasite modifies the membrane permeability and cytosolic composition of the host cell. The intracellular parasite is enclosed within a so-called parasitophorous vacuolar membrane, tubular extensions of which radiate out into the host cell compartment. Like all eukaryote cells, the parasite has at its surface a plasma membrane, as well as having a variety of internal membrane-bound organelles that perform a range of functions. This review focuses on the transport properties of the different membranes of the malaria-infected erythrocyte, as well as on the role played by the various membrane transport systems in the uptake of solutes from the extracellular medium, the disposal of metabolic wastes, and the origin and maintenance of electrochemical ion gradients. Such systems are of considerable interest from the point of view of antimalarial chemotherapy, both as drug targets in their own right and as routes for targeting cytotoxic agents into the intracellular parasite.
Collapse
Affiliation(s)
- K Kirk
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
48
|
Hotta CT, Gazarini ML, Beraldo FH, Varotti FP, Lopes C, Markus RP, Pozzan T, Garcia CR. Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat Cell Biol 2000; 2:466-8. [PMID: 10878815 DOI: 10.1038/35017112] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- C T Hotta
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Brasil
| | | | | | | | | | | | | | | |
Collapse
|