1
|
Kelliny S, Zhou X, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. J Neurosci Res 2025; 103:e70046. [PMID: 40387258 PMCID: PMC12087441 DOI: 10.1002/jnr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating form of dementia, with the number of affected individuals rising sharply. The main hallmarks of the disease include amyloid-beta plaque deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein, besides other pathological features that contribute to the disease's complexity. The causes of sporadic AD are multifactorial and mostly age-related and involve risk factors such as diabetes and cardiovascular or cerebrovascular disorders. Frontotemporal dementia (FTD) is another type of dementia characterized by a spectrum of behaviors, memory, and motor abnormalities and associated with abnormal depositions of protein aggregation, including tau protein. Currently approved medications are symptomatic, and no disease-modifying therapy is available to halt the disease progression. Therefore, the development of multi-targeted therapeutic approaches could hold promise for the treatment of AD and other neurodegenerative disorders, including tauopathies. In this article, we will discuss the pathophysiology of AD and FTD, the proposed hypotheses, and current therapeutic approaches, highlighting the development of novel drug candidates and the progress of clinical trials in this field of research.
Collapse
Affiliation(s)
- Sally Kelliny
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Faculty of PharmacyAssiut UniversityAssiutEgypt
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Hossen F, Geng X, Sun GY, Yao X, Lee JC. Oligomeric Amyloid-β and Tau Alter Cell Adhesion Properties and Induce Inflammatory Responses in Cerebral Endothelial Cells Through the RhoA/ROCK Pathway. Mol Neurobiol 2024; 61:8759-8776. [PMID: 38561558 PMCID: PMC11445398 DOI: 10.1007/s12035-024-04138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Dysfunction of cerebral endothelial cells (CECs) has been implicated in the pathology of Alzheimer's disease (AD). Despite evidence showing cytotoxic effects of oligomeric amyloid-β (oAβ) and Tau (oTau) in the central nervous system, their direct effects on CECs have not been fully investigated. In this study, we examined the direct effects of oAβ, oTau, and their combination on cell adhesion properties and inflammatory responses in CECs. We found that both oAβ and oTau increased cell stiffness, as well as the p-selectin/Sialyl-LewisX (sLeX) bonding-mediated membrane tether force and probability of adhesion in CECs. Consistent with these biomechanical alterations, treatments with oAβ or oTau also increased actin polymerization and the expression of p-selectin at the cell surface. These toxic oligomeric peptides also triggered inflammatory responses, including upregulations of p-NF-kB p65, IL-1β, and TNF-α. In addition, they rapidly activated the RhoA/ROCK pathway. These biochemical and biomechanical changes were further enhanced by the treatment with the combination of oAβ and oTau, which were significantly suppressed by Fasudil, a specific inhibitor for the RhoA/ROCK pathway. In conclusion, our data suggest that oAβ, oTau, and their combination triggered subcellular mechanical alterations and inflammatory responses in CECs through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Faruk Hossen
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xue Geng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Xincheng Yao
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James C Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
Amyloid beta and its naturally occurring N-terminal variants are potent activators of human and mouse formyl peptide receptor 1. J Biol Chem 2022; 298:102642. [PMID: 36309087 PMCID: PMC9694488 DOI: 10.1016/j.jbc.2022.102642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Formyl peptide receptors (FPRs) may contribute to inflammation in Alzheimer's disease through interactions with neuropathological Amyloid beta (Aβ) peptides. Previous studies reported activation of FPR2 by Aβ1-42, but further investigation of other FPRs and Aβ variants is needed. This study provides a comprehensive overview of the interactions of mouse and human FPRs with different physiologically relevant Aβ-peptides using transiently transfected cells in combination with calcium imaging. We observed that, in addition to hFPR2, all other hFPRs also responded to Aβ1-42, Aβ1-40, and the naturally occurring variants Aβ11-40 and Aβ17-40. Notably, Aβ11-40 and Aβ17-40 are very potent activators of mouse and human FPR1, acting at nanomolar concentrations. Buffer composition and aggregation state are extremely crucial factors that critically affect the interaction of Aβ with different FPR subtypes. To investigate the physiological relevance of these findings, we examined the effects of Aβ11-40 and Aβ17-40 on the human glial cell line U87. Both peptides induced a strong calcium flux at concentrations that are very similar to those obtained in experiments for hFPR1 in HEK cells. Further immunocytochemistry, qPCR, and pharmacological experiments verified that these responses were primarily mediated through hFPR1. Chemotaxis experiments revealed that Aβ11-40 but not Aβ17-40 evoked cell migration, which argues for a functional selectivity of different Aβ peptides. Together, these findings provide the first evidence that not only hFPR2 but also hFPR1 and hFPR3 may contribute to neuroinflammation in Alzheimer's disease through an interaction with different Aβ variants.
Collapse
|
4
|
Structural basis of FPR2 in recognition of Aβ 42 and neuroprotection by humanin. Nat Commun 2022; 13:1775. [PMID: 35365641 PMCID: PMC8976073 DOI: 10.1038/s41467-022-29361-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Formyl peptide receptor 2 (FPR2) has been shown to mediate the cytotoxic effects of the β amyloid peptide Aβ42 and serves as a receptor for humanin, a peptide that protects neuronal cells from damage by Aβ42, implying its involvement in the pathogenesis of Alzheimer’s disease (AD). However, the interaction pattern between FPR2 and Aβ42 or humanin remains unknown. Here we report the structures of FPR2 bound to Gi and Aβ42 or N-formyl humanin (fHN). Combined with functional data, the structures reveal two critical regions that govern recognition and activity of Aβ42 and fHN, including a polar binding cavity within the receptor helical bundle and a hydrophobic binding groove in the extracellular region. In addition, the structures of FPR2 and FPR1 in complex with different formyl peptides were determined, providing insights into ligand recognition and selectivity of the FPR family. These findings uncover key factors that define the functionality of FPR2 in AD and other inflammatory diseases and would enable drug development. The formyl peptide receptor 2 (FPR2) is involved in the pathogenesis of Alzheimer’s disease. Structures of FPR2 bound to Aβ42, humanin, or formyl peptides offer insight into Aβ42 neurotoxicity, humanin neuroprotection, and FPR ligand selectivity
Collapse
|
5
|
Busch L, Vieten S, Brödel S, Endres K, Bufe B. Emerging contributions of formyl peptide receptors to neurodegenerative diseases. Biol Chem 2021; 403:27-41. [PMID: 34505459 DOI: 10.1515/hsz-2021-0258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Inflammation is a central element of many neurodegenerative diseases. Formyl peptide receptors (FPRs) can trigger several receptor-dependent signal transduction pathways that play a key role in neuroinflammation and neurodegeneration. They are chemotactic receptors that help to regulate pro- and anti-inflammatory responses in most mammals. FPRs are primarily expressed in the immune and nervous systems where they interact with a complex pattern of pathogen-derived and host-endogenous molecules. Mounting evidence points towards a contribution of FPRs - via neuropathological ligands such as Amyloid beta, and neuroprotective ligands such as Humanin, Lipoxin A4, and Annexin A1 - to multiple pathological aspects of neurodegenerative diseases. In this review, we aim to summarize the interplay of FPRs with neuropathological and neuroprotective ligands. Next, we depict their capability to trigger a number of ligand-dependent cell signaling pathways and their potential to interact with additional intracellular cofactors. Moreover, we highlight first studies, demonstrating that a pharmacological inhibition of FPRs helps to ameliorate neuroinflammation, which may pave the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Stefan Vieten
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Susan Brödel
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
6
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
7
|
Wickstead ES, Irving MA, Getting SJ, McArthur S. Exploiting formyl peptide receptor 2 to promote microglial resolution: a new approach to Alzheimer's disease treatment. FEBS J 2021; 289:1801-1822. [PMID: 33811735 DOI: 10.1111/febs.15861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease and dementia are among the most significant current healthcare challenges given the rapidly growing elderly population, and the almost total lack of effective therapeutic interventions. Alzheimer's disease pathology has long been considered in terms of accumulation of amyloid beta and hyperphosphorylated tau, but the importance of neuroinflammation in driving disease has taken greater precedence over the last 15-20 years. Inflammatory activation of the primary brain immune cells, the microglia, has been implicated in Alzheimer's pathogenesis through genetic, preclinical, imaging and postmortem human studies, and strategies to regulate microglial activity may hold great promise for disease modification. Neuroinflammation is necessary for defence of the brain against pathogen invasion or damage but is normally self-limiting due to the engagement of endogenous pro-resolving circuitry that terminates inflammatory activity, a process that appears to fail in Alzheimer's disease. Here, we discuss the potential for a major regulator and promoter of resolution, the receptor FPR2, to restrain pro-inflammatory microglial activity, and propose that it may serve as a valuable target for therapeutic investigation in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Murray A Irving
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| | - Stephen J Getting
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Simon McArthur
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| |
Collapse
|
8
|
Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep 2021; 40:222089. [PMID: 32043530 PMCID: PMC7033313 DOI: 10.1042/bsr20193629] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Abnormal aggregation of pathological tau protein is a neuropathological feature of Alzheimer's disease (AD). In the AD patients, the abnormal tau accumulation first appeared in entorhinal cortex (EC) and then propagated to the hippocampus with microglia activation and inflammation, but the mechanism is elusive. Here, we studied the role and mechanisms underlying periphery inflammation on brain tau transmission. By intraperitoneal injection of lipopolysaccharide (LPS) with brain medial entorhinal cortex (MEC)-specific overexpressing P301L human tau (P301L-hTau), we found that both acute and chronic administration of LPS remarkably promoted P301L-hTau transmission from MEC to the hippocampal subsets. Interestingly, the chronic LPS-induced P301L-hTau transmission was still apparent after blocking microglia activation. Further studies demonstrated that LPS disrupted the integrity of blood-brain barrier (BBB) and simultaneous intraperitoneal administration of glucocorticoid (GC) attenuated LPS-promoted P301L-hTau transmission. These data together suggest that a non-microglia-dependent BBB disruption contributes to peripheral LPS-promoted brain P301L-hTau transmission, therefore, maintaining the integrity of BBB can be a novel strategy for preventing pathological tau propagation in AD and other tauopathies.
Collapse
|
9
|
Zhang S, Gong H, Ge Y, Ye RD. Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro- and anti-inflammatory signaling. Pharmacol Res 2020; 161:105117. [PMID: 32768626 DOI: 10.1016/j.phrs.2020.105117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Formyl peptide receptor 2 (FPR2) is a Class A G protein-coupled receptor (GPCR) that interacts with multiple ligands and transduces both proinflammatory and anti-inflammatory signals. These ligands include weak agonists and modulators that are produced during inflammation. The present study investigates how prolonged exposure to FPR2 modulators influence receptor signaling. EXPERIMENTAL APPROACH Fluorescent biosensors of FPR2 were constructed based on single-molecule fluorescent resonance energy transfer (FRET) and used for measurement of ligand-induced receptor conformational changes. These changes were combined with FPR2-mediated signaling events and used as parameters for the conformational states of FPR2. Ternary complex models were developed to interpret ligand concentration-dependent changes in FPR2 conformational states. KEY RESULTS Incubation with Ac2-26, an anti-inflammatory ligand of FPR2, decreased FRET intensity at picomolar concentrations. In comparison, WKYMVm (W-pep) and Aβ42, both proinflammatory agonists of FPR2, increased FRET intensity. Preincubation with Ac2-26 at 10 pM diminished W-pep-induced Ca2+ flux but potentiated W-pep-stimulated β-arrestin2 membrane translocation and p38 MAPK phosphorylation. The opposite effects were observed with 10 pM of Aβ42. Neither Ac2-26 nor Aβ42 competed for W-pep binding at the picomolar concentrations. CONCLUSIONS AND IMPLICATIONS The results support the presence of two allosteric binding sites on FPR2, each for Ac2-26 and Aβ42, with high and low affinities. Sequential binding of the two allosteric ligands at increasing concentrations induce different conformational changes in FPR2, providing a novel mechanism by which biased allosteric modulators alter receptor conformations and generate pro- and anti-inflammatory signals.
Collapse
Affiliation(s)
- Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Gong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunjun Ge
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China; Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
10
|
Schröder N, Schaffrath A, Welter JA, Putzka T, Griep A, Ziegler P, Brandt E, Samer S, Heneka MT, Kaddatz H, Zhan J, Kipp E, Pufe T, Tauber SC, Kipp M, Brandenburg LO. Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. J Neuroinflammation 2020; 17:131. [PMID: 32331524 PMCID: PMC7181500 DOI: 10.1186/s12974-020-01816-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background An important hallmark of Alzheimer’s disease (AD) is the increase of Aβ1-42 burden and its accumulation to senile plaques, leading the reactive gliosis and neurodegeneration. The modulation of glia cell function represents an attractive therapeutic strategy, but is currently limited by an incomplete understanding of its relevance for AD. The chemotactic G-protein coupled formyl peptide receptor (FPR), which is known to modulate Aβ1-42 uptake and signal transduction, might be one candidate molecule regulating glia function in AD. Here, we investigate whether the modulation of FPR exerts beneficial effects in an AD preclinical model. Methods To address this question, APP/PS1 double-transgenic AD mice were treated for 20 weeks with either the pro-inflammatory FPR agonist fMLF, the FPR1/2 antagonist Boc2 or the anti-inflammatory FPR2 agonist Ac2-26. Spatial learning and memory were evaluated using a Morris water maze test. Immunohistological staining, gene expression studies, and flow cytometry analyses were performed to study neuronal loss, gliosis, and Aß-load in the hippocampus and cortex, respectively. Results FPR antagonism by Boc2-treatment significantly improved spatial memory performance, reduced neuronal pathology, induced the expression of homeostatic growth factors, and ameliorated microglia, but not astrocyte, reactivity. Furthermore, the elevated levels of amyloid plaques in the hippocampus were reduced by Boc2-treatment, presumably by an induction of amyloid degradation. Conclusions We suggest that the modulation of FPR signaling cascades might be considered as a promising therapeutic approach for alleviating the cognitive deficits associated with early AD. Additional studies are now needed to address the downstream effectors as well as the safety profile of Boc2.
Collapse
Affiliation(s)
- Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Anja Schaffrath
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Josua A Welter
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Putzka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Angelika Griep
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Elisa Brandt
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Sebastian Samer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Eugenia Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany. .,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Chilakala RR, Manchikalapudi AL, Kumar A, Sunkaria A. Sulforaphane Attenuates Aβ Oligomers Mediated Decrease in Phagocytic Activity of Microglial Cells. Neuroscience 2020; 429:225-234. [PMID: 31982468 DOI: 10.1016/j.neuroscience.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
Abstract
Microglia are the brain mononuclear phagocytes which plays a key role in neurodegenerative diseases, like Alzheimer's. Till date, microglia have been explored mostly for their neuro-inflammatory functions. Recent studies have shifted their focus towards less explored functions which involve non-autonomous clearance of protein aggregates. However, these functions are significantly affected by aging and neurodegeneration. In Alzheimer's disease (AD), microglia have been reported to clear amyloid beta (Aβ) deposits via phagocytosis or release various pro-inflammatory cytokines. Whether microglia could be beneficial or detrimental to the brain, it all depends upon the type and strength of stimulus. So, if their beneficial properties could be selectively harnessed without activating pro-inflammatory response, a potential therapeutic strategy could be developed to check the formation of protein aggregates like Aβ. In the present study, we have checked the effect of toxic amyloid beta oligomers (Aβo) on the microglial phagocytic activity. Our findings revealed that at lower concentrations, Aβo are not toxic to the cells and they can survive even with longer exposures but with decreased phagocytic activity. However, at higher concentrations Aβo become toxic and resulted in modulation of various genes which regulates microglial phagocytic activity. Sulforaphane (SFN) treatment has shown to induce the phagocytic activity of Aβo treated microglial cells. In addition, low dose Aβo and SFN treatment have not shown modulation in the levels of pro-inflammatory mediators of microglia. Taken together, these findings suggest that SFN treatment may ameliorate the Aβo mediated decrease in microglial phagocytic activity.
Collapse
Affiliation(s)
- Rajasekhar Reddy Chilakala
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Aparna Lakshmi Manchikalapudi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Ashok Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar 382355, Gujarat, India; Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
12
|
Wang Z, Chen Y, Li X, Sultana P, Yin M, Wang Z. Amyloid-β 1-42 dynamically regulates the migration of neural stem/progenitor cells via MAPK-ERK pathway. Chem Biol Interact 2018; 298:96-103. [PMID: 30399361 DOI: 10.1016/j.cbi.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/15/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Neural stem/progenitor cell (NSPC) based therapy represents an attractive treatment for Alzheimer's disease (AD), the most common neurodegenerative disorder with no effective treatment to date. This can be achieved by stimulating endogenous NSPCs and/or administrating exogenously produced NSPCs. Successful repair requires the migration of NSPCs to the loci where neuronal loss occurs, differentiation and integration into neural networks. However, the progressive loss of neurons in the brain of AD patients suggests that the repair by endogenous NSPCs in the setting of AD may be defective. The production and deposition of amyloid-β1-42 (Aβ1-42) peptides is thought to be a central event in the pathogenesis of AD. Here we report that Aβ1-42 peptides inhibit the migration of in vitro cultured NSPCs by disturbing the ERK-MAPK signal pathway. We found that the migratory capacity of NSPCs was compromised upon treatment with oligomeric Aβ1-42; the inhibitory effect occurred in a dose-dependent manner. Our previous studies have shown that Aβ1-42 triggers the expression of GRK2 by unknown mechanism. Herein we found that the Aβ1-42 evoked upregulation of GRK2 expression was attenuated upon treatment with the ERK inhibitor SCH772984 at 2.5 μM, but not with inhibitors for p38 or JNK. We detected a dose-dependent increase in levels of phosphorylated ERK1/2 after incubation of cells with oligomeric Aβ1-42 peptides for 3 days. We observed that an increase in the phosphorylation of p38 and JNK coincided with reduced phosphorylation of ERK1/2 upon treatment with Aβ1-42 for 6 and/or 9 days. We hypothesize that the divergence of the activation of the MAPK family of pathways may contribute to the inhibition of NSPCs migration after the long-term incubation with Aβ1-42. Pretreatment with 1 μM MEK inhibitor U0126 reversed the effects of Aβ1-42 on GRK2 expression of and NSPC migration. Together, our results suggest that Aβ1-42 oligomers compromise the migratory capacity of NSPCs through the MEK-ERK pathway.
Collapse
Affiliation(s)
- Zhu Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yantian Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 the 16th Street, Charlestown, MA, 02129, USA
| | - Pinky Sultana
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
13
|
Liu J, Chan KKJ, Chan W. Identification of Protein Thiazolidination as a Novel Molecular Signature for Oxidative Stress and Formaldehyde Exposure. Chem Res Toxicol 2016; 29:1865-1871. [DOI: 10.1021/acs.chemrestox.6b00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingjing Liu
- Environmental Science Programs and ‡Department of
Chemistry, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong
| | - K. K. Jason Chan
- Environmental Science Programs and ‡Department of
Chemistry, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Environmental Science Programs and ‡Department of
Chemistry, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong
| |
Collapse
|
14
|
Puig KL, Lutz BM, Urquhart SA, Rebel AA, Zhou X, Manocha GD, Sens M, Tuteja AK, Foster NL, Combs CK. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J Alzheimers Dis 2015; 44:1263-78. [PMID: 25408221 PMCID: PMC6295343 DOI: 10.3233/jad-142259] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder histologically characterized by amyloid-β (Aβ) protein accumulation and activation of associated microglia. Although these features are well described in the central nervous system, the process and consequences of Aβ accumulation in the enteric nervous system have not been extensively studied. We hypothesized that Aβ also may accumulate in the enteric nervous system and lead to immune cell activation and neuronal dysfunction in the digestive tract not unlike that observed in diseased brain. To test this hypothesis, ileums of the small intestine of thirteen month old AβPP/PS1 and C57BL/6 (wild type) mice were collected and analyzed using immunohistochemistry, western blot analysis, cytokine arrays, and ELISA. AβPP/PS1 mice demonstrated no differences in intestinal motility or water absorption but elevated luminal IgA levels compared to wild type mice. They also had increased protein levels of AβPP and the proteolytic enzyme, BACE, corresponding to an increase in Aβ1-40 in the intestinal lysate as well as an increase in both Aβ1-40 and Aβ1-42 in the stool. This correlated with increased protein markers of proinflammatory and immune cell activation. Histologic analysis localized AβPP within enteric neurons but also intestinal epithelial cells with elevated Aβ immunoreactivity in the AβPP/PS1 mice. The presence of AβPP, Aβ, and CD68 immunoreactivity in the intestines of some patients with neuropathologically-confirmed AD are consistent with the findings in this mouse model. These data support the hypothesis that in AD the intestine, much like the brain, may develop proinflammatory and immune changes related to AβPP and Aβ.
Collapse
Affiliation(s)
- Kendra L. Puig
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Brianna M. Lutz
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Siri A. Urquhart
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Andrew A. Rebel
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xudong Zhou
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Gunjan D. Manocha
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - MaryAnn Sens
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Ashok K. Tuteja
- Division of Gastroenterology, University of Utah, Salt Lake City, UT, USA
| | - Norman L. Foster
- Center for Alzheimer’s Care, Imaging and Research, Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Colin K. Combs
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
15
|
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer's disease. Cell Mol Neurobiol 2015; 35:71-83. [PMID: 25149075 PMCID: PMC11486233 DOI: 10.1007/s10571-014-0101-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Amyloid β (Aβ) plays a pivotal role in the progression of Alzheimer's disease (AD) through its neurotoxic and inflammatory effects. On one hand, Aβ binds to microglia and activates them to produce inflammatory mediators. On the other hand, Aβ is cleared by microglia through receptor-mediated phagocytosis and degradation. This review focuses on microglial membrane receptors that bind Aβ and contribute to microglial activation and/or Aβ phagocytosis and clearance. These receptors can be categorized into several groups. The scavenger receptors (SRs) include scavenger receptor A-1 (SCARA-1), MARCO, scavenger receptor B-1 (SCARB-1), CD36 and the receptor for advanced glycation end product (RAGE). The G protein-coupled receptors (GPCRs) are formyl peptide receptor 2 (FPR2) and chemokine-like receptor 1 (CMKLR1). There are also toll-like receptors (TLRs) including TLR2, TLR4, and the co-receptor CD14. Functionally, SCARA-1 and CMKLR1 are involved in the uptake of Aβ, and RAGE is responsible for the activation of microglia and production of proinflammatory mediators following Aβ binding. CD36, CD36/CD47/α6β1-intergrin, CD14/TLR2/TLR4, and FPR2 display both functions. Additionally, MARCO and SCARB-1 also exhibit the ability to bind Aβ and may be involved in the progression of AD. Here, we focus on the expression and distribution of these receptors in microglia and their roles in microglia interaction with Aβ. Finally, we discuss the potential therapeutic value of these receptors in AD.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China,
| | | |
Collapse
|
16
|
Gaur S, Agnihotri R. Alzheimer's disease and chronic periodontitis: is there an association? Geriatr Gerontol Int 2014; 15:391-404. [PMID: 25511390 DOI: 10.1111/ggi.12425] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease, an affliction of old age, is one of the leading causes for dementia worldwide. Various risk factors including family history, genetics and infections have been implicated in its pathogenesis. The cognitive decline in this condition is mainly a result of the formation of amyloid deposits that provoke neuroinflammation, ultimately resulting in cell death. Recently, an association between peripheral inflammation and Alzheimer's disease was hypothesized. It was suggested that chronic systemic inflammation worsened the inflammatory processes in the brain. This was mainly attributed to increased levels of pro-inflammatory mediators, such as interleukin-1, interleukin -6 and tumor necrosis factor-α in the plasma. As chronic periodontitis is a widespread peripheral immunoinflammatory condition, it has been proposed to play a significant role in the aggravation of Alzheimer's disease. With this background, the current review focuses on the relationship between Alzheimer's disease and chronic periodontitis, and its therapeutic implications.
Collapse
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal University, Manipal, Karnataka, India
| | | |
Collapse
|
17
|
McLarnon JG. Correlated inflammatory responses and neurodegeneration in peptide-injected animal models of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:923670. [PMID: 24822221 PMCID: PMC4005142 DOI: 10.1155/2014/923670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022]
Abstract
Animal models of Alzheimer's disease (AD) which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid- β (A β ) into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ 1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furthermore, pharmacological inhibition of inflammatory reactivity is demonstrated by a broad spectrum of drugs with a common endpoint in conferring neuroprotection in peptide-injected animals. Peptide-injection models provide a focus on glial cell responses to direct peptide injection in rat brain and offer advantages in the study of the mechanisms underlying neuroinflammation in AD brain.
Collapse
Affiliation(s)
- James G. McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1W3
| |
Collapse
|
18
|
Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. J Neuroinflammation 2014; 11:48. [PMID: 24625061 PMCID: PMC3975152 DOI: 10.1186/1742-2094-11-48] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/24/2014] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a major public health problem with substantial economic and social impacts around the world. The hallmarks of AD pathogenesis include deposition of amyloid β (Aβ), neurofibrillary tangles, and neuroinflammation. For many years, research has been focused on Aβ accumulation in senile plaques, as these aggregations were perceived as the main cause of the neurodegeneration found in AD. However, increasing evidence suggests that inflammation also plays a critical role in the pathogenesis of AD. Microglia cells are the resident macrophages of the brain and act as the first line of defense in the central nervous system. In AD, microglia play a dual role in disease progression, being essential for clearing Aβ deposits and releasing cytotoxic mediators. Aβ activates microglia through a variety of innate immune receptors expressed on these cells. The mechanisms through which amyloid deposits provoke an inflammatory response are not fully understood, but it is believed that these receptors cooperate in the recognition, internalization, and clearance of Aβ and in cell activation. In this review, we discuss the role of several receptors expressed on microglia in Aβ recognition, uptake, and signaling, and their implications for AD pathogenesis.
Collapse
Affiliation(s)
- Deborah Doens
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Edificio 219, Clayton, Ciudad del Saber, República de Panamá
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Patricia L Fernández
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Edificio 219, Clayton, Ciudad del Saber, República de Panamá
| |
Collapse
|
19
|
CCAAT-enhancer binding protein-β expression and elevation in Alzheimer's disease and microglial cell cultures. PLoS One 2014; 9:e86617. [PMID: 24466171 PMCID: PMC3899300 DOI: 10.1371/journal.pone.0086617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/24/2023] Open
Abstract
CCAAT-enhancer binding proteins are transcription factors that help to regulate a wide range of inflammatory mediators, as well as several key elements of energy metabolism. Because C/EBPs are expressed by rodent astrocytes and microglia, and because they are induced by pro-inflammatory cytokines that are chronically upregulated in the Alzheimer’s disease (AD) cortex, we have investigated whether C/EBPs are expressed and upregulated in the AD cortex. Here, we demonstrate for the first time that C/EBPβ can be detected by Western blots in AD and nondemented elderly (ND) cortex, and that it is significantly increased in AD cortical samples. In situ, C/EBPβ localizes immunohistochemically to microglia. In microglia cultured from rapid autopsies of elderly patient’s brains and in the BV-2 murine microglia cell line, we have shown that C/EBPβ can be upregulated by C/EBP-inducing cytokines or lipopolysaccharide and exhibits nuclear translocation possibly indicating functional activity. Given the known co-regulatory role of C/EBPs in pivotal inflammatory mechanisms, many of which are present in AD, we propose that upregulation of C/EBPs in the AD brain could be an important orchestrator of pathogenic changes.
Collapse
|
20
|
Moon MY, Kim HJ, Li Y, Kim JG, Jeon YJ, Won HY, Kim JS, Kwon HY, Choi IG, Ro E, Joe EH, Choe M, Kwon HJ, Kim HC, Kim YS, Park JB. Involvement of small GTPase RhoA in the regulation of superoxide production in BV2 cells in response to fibrillar Aβ peptides. Cell Signal 2013; 25:1861-9. [PMID: 23707391 DOI: 10.1016/j.cellsig.2013.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/12/2013] [Indexed: 11/16/2022]
Abstract
Fibrillar amyloid-beta (fAβ) peptide causes neuronal cell death, which is known as Alzheimer's disease. One of the mechanisms for neuronal cell death is the activation of microglia which releases toxic compounds like reactive oxygen species (ROS) in response to fAβ. We observed that fAβ rather than soluble form blocked BV2 cell proliferation of microglial cell line BV2, while N-acetyl-l-cysteine (NAC), a scavenger of superoxide, prevented the cells from death, suggesting that cell death is induced by ROS. Indeed, both fAβ1-42 and fAβ25-35 induced superoxide production in BV2 cells. fAβ25-35 produced superoxide, although fAβ25-35 is not phagocytosed into BV2 cells. Thus, superoxide production by fAβ does not seem to be dependent on phagocytosis of fAβ. Herein we studied how fAβ produces superoxide in BV2. Transfection of dominant negative (DN) RhoA (N19) cDNA plasmid, small hairpin (sh)-RhoA forming plasmid, and Y27632, an inhibitor of Rho-kinase, abrogated the superoxide formation in BV2 cells stimulated by fAβ. Furthermore, fAβ elevated GTP-RhoA level as well as Rac1 and Cdc42. Tat-C3 toxin, sh-RhoA, and Y27632 inhibited the phosphorylation of p47(PHOX). Moreover, peritoneal macrophages from p47(PHOX) (-/-) knockout mouse could not produce superoxide in response to fAβ. These results suggest that RhoA closely engages in the regulation of superoxide production induced by fAβ through phosphorylation of p47(PHOX) in microglial BV2 cells.
Collapse
Affiliation(s)
- Mi-Young Moon
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-Do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
McHugh D. GPR18 in microglia: implications for the CNS and endocannabinoid system signalling. Br J Pharmacol 2013; 167:1575-82. [PMID: 22563843 DOI: 10.1111/j.1476-5381.2012.02019.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A review of what is presently known about the G protein coupled receptor GPR18 in terms of its expression and distribution, pharmacology and potential implications for central nervous system and endocannabinoid system signalling. LINKED ARTICLES This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.
Collapse
Affiliation(s)
- D McHugh
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
22
|
Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS One 2012; 7:e30378. [PMID: 22276186 PMCID: PMC3261903 DOI: 10.1371/journal.pone.0030378] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022] Open
Abstract
Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur.
Collapse
|
23
|
Pei L, Zhang J, Zhao F, Su T, Wei H, Tian J, Li M, Shi J. Annexin 1 exerts anti-nociceptive effects after peripheral inflammatory pain through formyl-peptide-receptor-like 1 in rat dorsal root ganglion. Br J Anaesth 2011; 107:948-58. [PMID: 21990306 DOI: 10.1093/bja/aer299] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Annexin 1 (ANXA1) has analgesic effects in inflammatory pain. We aimed to investigate the anti-nociceptive role of ANXA1, at the dorsal root ganglion (DRG) level, through an interaction with formyl-peptide-receptor-like 1 (FPR2/ALX). METHODS Inflammatory pain was evoked by injecting complete Freund's adjuvant (CFA, 50 μl) into the hindpaw of male Sprague-Dawley rats. The distribution of ANXA1 and FPR2/ALX in L4/5 DRGs was evaluated by immunofluorescence. The expression of ANXA1 was measured by western blot. The involvement of FPR2/ALX in the anti-nociception of ANXA1 was investigated by thermal (irradiant heat) and mechanical (von Frey filament) pain tests with intrathecal (i.t.) ANXA1-derived peptide (Anxa1(2-26)), FPR2/ALX agonist 5(S)-6(R)-7-trihydroxyheptanoic-acid-methyl-ester (BML-111), and antagonist N-t-Boc-Phe-Leu-Phe-Leu-Phe (Boc1). RESULTS ANXA1 and FPR2/ALX localized in the satellite glial cells and neurones in L4/5 DRGs. CFA treatment (n=20) increased ANXA1 expression in L4/5 DRGs within 7 days (P<0.01). I.T. Anxa1(2-26) (20 and 100 µg µl(-1)) and BML-111 (10 and 100 nmol) reduced CFA-induced thermal and mechanical nociception within 48 h (n=40) (P<0.05). However, i.t. Boc1 10 µg intensified inflammatory pain (P<0.05) and reversed the anti-nociceptive effect of Anxa1(2-26) (n=25) (P<0.05). Moreover, ANXA1 expression increased in L4/5 DRGs after i.t. Anxa1(2-26) (20 µg µl(-1)) (P<0.05) and BML-111 (10 nmol) (P<0.01) but decreased after i.t. Boc1 (10 and 100 µg) alone (P<0.01) or Boc1 (10 µg) co-injection with Anxa1(2-26) (20 µg µl(-1)) (P<0.05). CONCLUSIONS Endogenous ANXA1 expression at the DRG level is involved in CFA-induced inflammatory pain, and i.t. ANXA1 20 µg µl(-1) produces its anti-nociceptive effect through FPR2/ALX.
Collapse
Affiliation(s)
- L Pei
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Howlett DR, Bate ST, Collier S, Lawman A, Chapman T, Ashmeade T, Marshall I, Anderson PJB, Philpott KL, Richardson JC, Hille CJ. Characterisation of amyloid-induced inflammatory responses in the rat retina. Exp Brain Res 2011; 214:185-97. [PMID: 21850448 DOI: 10.1007/s00221-011-2819-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 07/27/2011] [Indexed: 11/29/2022]
Abstract
Amyloid-induced inflammation is thought to play a critical and early role in the pathophysiology of Alzheimer's disease. As such, robust models with relevant and accessible compartments that provide a means of assessing anti-inflammatory agents are essential for the development of therapeutic agents. In the present work, we have characterised the induction of inflammation in the rat retina following intravitreal administration of amyloid-beta protein (Aβ). Histology and mRNA endpoints in the retina demonstrate Aβ1-42-, but not Aβ42-1-, induced inflammatory responses characterised by increases in markers for microglia and astrocytes (ionised calcium-binding adaptor molecule 1 (iba-1), GFAP and nestin) and increases in mRNA for inflammatory cytokines and chemokines such as IL1-β, MIP1α and TNFα. Likewise, analysis of vitreal cytokines also revealed increases in inflammatory cytokines and chemokines, including IL1-β, MIP1α and MCP1, induced by Aβ1-42 but not Aβ42-1. This profile of pro-inflammatory gene and protein expression is consistent with that observed in the Alzheimer's disease brain and suggest that this preclinical model may provide a useful relevant tool in the development of anti-inflammatory approaches directed towards Alzheimer's disease therapy.
Collapse
Affiliation(s)
- D R Howlett
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D Limited, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hensley K. Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis 2010; 21:1-14. [PMID: 20182045 DOI: 10.3233/jad-2010-1414] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The concept of neuroinflammation has evolved over the past two decades from an initially controversial viewpoint to its present status as a generally accepted idea whose mechanisms and consequences are still actively under research and debate, particularly with regard to Alzheimer's disease (AD). This review summarizes the current status of neuroinflammation research as it specifically relates to AD. Neuroinflammation is discussed mechanistically with emphasis on the role of redox signal transduction linked to the activation of central nervous system-relevant innate immune pathways. Redox signaling is presented both as a causal factor and a consequence of sustained neuroinflammation. Functional relationships are discussed that connect distinct neuroinflammatory components such as cytokines, eicosanoids, classic AD pathology (amyloid plaques and neurofibrillary tangles), and the recently emergent notion of "damage-associated molecular patterns". The interaction of these paracrine factors likely can produce positive as well as negative effects on the AD brain, ranging from plaque clearance by microglia in the short term to glial dysfunction and neuronal compromise if the neuroinflammation is chronically sustained and unmitigated. Recent disappointments in AD clinical trials of anti-inflammatory drugs are discussed with reference to possible explanations and potential avenues for future pharmacological approaches to the disease.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Health Sciences Center, Toledo, OH 43614-2598, USA.
| |
Collapse
|
26
|
Heurtaux T, Michelucci A, Losciuto S, Gallotti C, Felten P, Dorban G, Grandbarbe L, Morga E, Heuschling P. Microglial activation depends on beta-amyloid conformation: role of the formylpeptide receptor 2. J Neurochem 2010; 114:576-86. [DOI: 10.1111/j.1471-4159.2010.06783.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
McHugh D, Hu SSJ, Rimmerman N, Juknat A, Vogel Z, Walker JM, Bradshaw HB. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 2010; 11:44. [PMID: 20346144 PMCID: PMC2865488 DOI: 10.1186/1471-2202-11-44] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/26/2010] [Indexed: 01/10/2023] Open
Abstract
Background Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD) and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly) is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration. Results Using Boyden chamber migration experiments, yellow tetrazolium (MTT) conversion, In-cell Western, qPCR and immunocytochemistry we show that NAGly, at sub-nanomolar concentrations, and Abn-CBD potently drive cellular migration in both BV-2 microglia and HEK293-GPR18 transfected cells, but neither induce migration in HEK-GPR55 or non-transfected HEK293 wildtype cells. Migration effects are blocked or attenuated in both systems by the 'Abn-CBD' receptor antagonist O-1918, and low efficacy agonists N-arachidonoyl-serine and cannabidiol. NAGly promotes proliferation and activation of MAP kinases in BV-2 microglia and HEK293-GPR18 cells at low nanomolar concentrations - cellular responses correlated with microglial migration. Additionally, BV-2 cells show GPR18 immunocytochemical staining and abundant GPR18 mRNA. qPCR demonstrates that primary microglia, likewise, express abundant amounts of GPR18 mRNA. Conclusions NAGly is the most effective lipid recruiter of BV-2 microglia currently reported and its effects mimic those of Abn-CBD. The data generated from this study supports the hypothesis that GPR18 is the previously unidentified 'Abn-CBD' receptor. The marked potency of NAGly acting on GPR18 to elicit directed migration, proliferation and perhaps other MAPK-dependent phenomena advances our understanding of the lipid-based signaling mechanisms employed by the CNS to actively recruit microglia to sites of interest. It offers a novel research avenue for developing therapeutics to elicit a self-renewing population of neuroregenerative microglia, or alternatively, to prevent the accumulation of misdirected, pro-inflammatory microglia which contribute to and exacerbate neurodegenerative disease.
Collapse
Affiliation(s)
- Douglas McHugh
- The Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Brandenburg LO, Konrad M, Wruck CJ, Koch T, Lucius R, Pufe T. Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1-42-induced signal transduction in glial cells. J Neurochem 2010; 113:749-60. [PMID: 20141570 DOI: 10.1111/j.1471-4159.2010.06637.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies suggest that the chemotactic G protein-coupled receptor formyl-peptide-receptor-like-1 (FPRL1) or the scavenger receptor MARCO (macrophage receptor with collagenous structure) plays an essential role in the inflammatory response of host defense mechanisms and neurodegenerative disorders such as Alzheimer's disease. We therefore analyzed the involvement of FPRL1 and MARCO in amyloid beta1-42 (Abeta1-42)-induced signalling by extracellular-signal regulated kinases 1/2 (ERK1/2) phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia) and in transfected HEK293 cells. Receptors were inhibited by small interference RNA and the consequences in Abeta1-42- and MARCO agonist fucoidan-induced signal transduction were determined. Receptor deactivation by antagonists or small interference RNA verified the importance of FPRL1 for Abeta1-42-mediated signal transduction by ERK1/2 phosphorylation and cAMP level measurement in glial cells. Furthermore, for the first time, we have demonstrated a functional interaction between FPRL1 and scavenger receptors in fucoidan-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition, co-immunoprecipitation data and fluorescence microscopy measurements revealed a physical interaction between FPR, FPRL1 and MARCO. These results suggest that FPRL1 plays a pivotal role for Abeta1-42-induced signal transduction in glial cells and the interaction with MARCO could explain the broad ligand spectrum of formyl peptide receptors.
Collapse
Affiliation(s)
- Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Wilms H, Rosenstiel P, Romero-Ramos M, Arlt A, Schäfer H, Seegert D, Kahle P, Odoy S, Claasen J, Holzknecht C, Brandenburg L, Deuschl G, Schreiber S, Kirik D, Lucius R. Suppression of Map Kinases Inhibits Microglial Activation and Attenuates Neuronal Cell Death Induced by α-Synuclein Protofibrils. Int J Immunopathol Pharmacol 2009; 22:897-909. [DOI: 10.1177/039463200902200405] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein (α-Syn) accounts, as a major component of Lewy bodies (LB), for the filamentous deposits in many cases of neurodegenerative diseases. Yet, little is known about the molecular mechanisms of neuronal loss in these diseases. The correlation between α-Syn oligomerization/aggregation and pathologies raises the key question of which molecular form of α-Syn (i.e. monomeric α-Syn, protofibrils or mature fibrils) represents the damage-inducing culprit in the scenario of synucleinopathies. We show that human α-Syn protofibrils (PFs) are potent activators of parallel proinflammatory signalling pathways (p38 and ERK1/2 MAP kinases and NF-κB) in microglial cells in vitro. Furthermore, stereotactic injection of α-Syn PFs into the substantia nigra of adult rats leads to a profound activation of microglia and adjacent neuronal cell loss, which can be attenuated by the MAP kinase inhibitor semapimod. We propose that the neurodegenerative process of α-synucleinopathies involves microglial activation through α-Syn released or extruded from cells with pathogenic α-Syn metabolism. Compounds that inhibit the MAPK/NF-κB pathways might be a promising pharmacological strategy for the treatment of the inflammatory component of synucleinopathies including PD.
Collapse
Affiliation(s)
| | - P. Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Sweden
| | | | - A. Arlt
- Department of General Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel
| | - H. Schäfer
- Department of General Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel
| | | | - P.J. Kahle
- Adolf Butenandt Institute, LMU München
- present address: Laboratory of Functional Neurogenetics, University Clinics Tübingen
| | - S. Odoy
- Adolf Butenandt Institute, LMU München
| | - J.H. Claasen
- Institute of Anatomy, Christian-Albrechts-University Kiel, Campus Kiel, Germany
| | - C. Holzknecht
- Institute of Anatomy, Christian-Albrechts-University Kiel, Campus Kiel, Germany
| | - L.O. Brandenburg
- Institute of Anatomy, Christian-Albrechts-University Kiel, Campus Kiel, Germany
| | - G. Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | - D. Kirik
- Wallenberg Neuroscience Center, Lund University, Sweden
| | - R. Lucius
- Institute of Anatomy, Christian-Albrechts-University Kiel, Campus Kiel, Germany
| |
Collapse
|
30
|
Huang WC, Yen FC, Shiao YJ, Shie FS, Chan JL, Yang CN, Sung YJ, Huang FL, Tsay HJ. Enlargement of Abeta aggregates through chemokine-dependent microglial clustering. Neurosci Res 2009; 63:280-7. [PMID: 19367788 DOI: 10.1016/j.neures.2009.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The number of microglia surrounding senile plaques is correlated with the size of plaques in Alzheimer's disease (AD). It is unclear whether more microglia are passively recruited toward larger senile plaques or, conversely, microglia recruited to senile plaques directly contribute to the growth of plaques. In this study, BV-2 microglia were used to delineate the role of microglia in the growth of plaques using time-lapse recording. Aggregated beta amyloid peptide (Abeta)-induced BV-2 microglia to form clusters. The recruitment of BV-2 microglia bearing membrane-adhered Abeta enlarged preexisting Abeta aggregates. The receptors involved in the microglial uptake of Abeta, including integrin, formyl peptide like receptor 1, and scavenger receptors, also mediated the microglial clustering. Neutralization antibodies against chemokines significantly attenuated Abeta-induced microglial clustering and the enlargement of Abeta aggregates. Our results reveal a novel role of microglia in directly increasing the size of Abeta aggregates and suggest the targeting of Abeta-mediated microglial chemotactic migration in developing therapeutic interventions for AD.
Collapse
Affiliation(s)
- Wei-Chao Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Over the last 2 decades, numerous innate inflammatory mediators have been reported to be upregulated in pathologically vulnerable regions of the brain in Alzheimer's disease (AD). These data have led to a reexamination of the dogma of brain immunologic privilege and to new studies that examine the role of the innate inflammatory response in a number of other neurologic disorders, particularly Parkinson's disease and human immunodeficiency virus dementia. In addition, basic science discoveries about neuroinflammation are now beginning to move to the clinic. More than 20 epidemiologic surveys have consistently demonstrated that common non-steroidal anti-inflammatory drugs may protect against the development of AD. By contrast, anti-inflammatory treatment trials for existing AD have typically shown little to no effect on halting or reversing the disorder, although the agents tested have often been at odds with those suggested by the epidemiologic and basic science results. The extensive literature on innate inflammation and neurologic disease notwithstanding, three fundamental questions still remain to be answered fully. First, are innate inflammatory responses a cause of neurologic disease or merely a more sophisticated means than previously imagined for removing the detritus left by more primary pathogenic mechanisms? Second, can anti-inflammatory agents effectively treat existing neurologic disease, or is a protective strategy in high-risk patients the only reasonable option? Third, whether for protection or treatment, what is the best choice of anti-inflammatory agent given the basic science mechanisms and epidemiologic results that have been reported?
Collapse
Affiliation(s)
- Joseph Rogers
- Sun Health Research Institute, Sun City, AZ 85372, USA.
| |
Collapse
|
32
|
Brandenburg LO, Konrad M, Wruck C, Koch T, Pufe T, Lucius R. Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1-42 in glial cells. Neuroscience 2008; 156:266-76. [PMID: 18723082 DOI: 10.1016/j.neuroscience.2008.07.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/03/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Recent studies suggest that the formyl-peptide-receptor-like-1 (FPRL1) plays an essential role in the inflammatory responses of host defense mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). We therefore analyzed whether amyloid beta1-42 (Abeta1-42) increased the activity of phospholipase D (PLD) via FPRL1, which is an enzyme involved in the secretion, endocytosis and receptor signaling. PLD activity was determined using a transphosphatidylation assay. The internalization of Abeta1-42 via FPRL1 was visualized using fluorescence microscopy and quantified by ELISA (Enzyme Linked Immunosorbent Assay). Determining receptor activity by extracellular-signal regulated kinases 1/2 (ERK1/2) phosphorylation and cAMP level measurement verified the Abeta1-42-induced activation of FPRL1. We were able to show that Abeta1-42 is rapidly internalized via FPRL1 in astrocytes and microglia. PLD was additionally activated by Abeta1-42 and via FPRL1 in rat glial cells. Furthermore, the ERK1/2 phosphorylation by FPRL1 agonists was dependent on the PLD product phosphatidic acid (PA). Together, these data suggest that PLD plays an important role in the regulation of Abeta1-42-induced endocytosis and FPRL1 receptor signaling.
Collapse
Affiliation(s)
- L-O Brandenburg
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Gao X, Hu X, Qian L, Yang S, Zhang W, Zhang D, Wu X, Fraser A, Wilson B, Flood PM, Block M, Hong JS. Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:593-598. [PMID: 18470306 PMCID: PMC2367670 DOI: 10.1289/ehp.11031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/28/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD. OBJECTIVES We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD. METHODS We measured DA neurotoxicity using a DA uptake assay and immunocytochemical staining (ICC) in primary mesencephalic cultures from rodents. Microglial activation was observed via ICC, flow cytometry, and superoxide measurement. RESULTS fMLP can cause selective DA neuronal loss at concentrations as low as 10(-13) M. Further, fMLP (10(-13) M) led to a significant reduction in DA uptake capacity in neuron/glia (N/G) cultures, but not in microglia-depleted cultures, indicating an indispensable role of microglia in fMLP-induced neurotoxicity. Using ICC of a specific microglial marker, OX42, we observed morphologic changes in activated microglia after fMLP treatment. Microglial activation after fMLP treatment was confirmed by flow cytometry analysis of major histocompatibility antigen class II expression on a microglia HAPI cell line. Mechanistic studies revealed that fMLP (10(-13) M)-induced increase in the production of extracellular superoxide from microglia is critical in mediating fMLP-elicited neurotoxicity. Pharmacologic inhibition of NADPH oxidase (PHOX) with diphenylene-iodonium or apocynin abolished the DA neurotoxicity of fMLP. N/G cultures from PHOX-deficient (gp91PHOX-/ -) mice were also insensitive to fMLP-induced DA neurotoxicity. CONCLUSION fMLP (10(-13) M) induces DA neurotoxicity through activation of microglial PHOX and subsequent production of superoxide, suggesting a role of fMLP in the central nervous system inflammatory process.
Collapse
Affiliation(s)
- Xi Gao
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Xiaoming Hu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sufen Yang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Wei Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Dan Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Xuefei Wu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison Fraser
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Belinda Wilson
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Patrick M Flood
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michelle Block
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
34
|
Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A. Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:235-46. [PMID: 17678964 DOI: 10.1016/s0074-7742(07)82012-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microglial activation similar to that which occurs in peripheral macrophages during inflammatory attack was first demonstrated in the Alzheimer's disease (AD) brain two decades ago. Localization to pathologically vulnerable regions of AD cortex, localization to sites of specific AD pathology such as amyloid-beta peptide (Abeta) deposits, and the ability of activated microglia to release toxic inflammatory factors suggested that the activation of microglia in AD might play a pathogenic role. However, proving this hypothesis in a disease in which so many profound pathologies occur (e.g., Abeta deposition, neurofibrillary tangle formation, inflammation, neuronal loss, neuritic loss, synaptic loss, neuronal dysfunction, vascular alterations) has proven difficult. Although investigations of microglia in Parkinson's disease (PD) are more recent and therefore less extensive, demonstration of a pathogenic role for microglial activation may actually be much simpler in PD than AD because the root pathological event in PD, loss of dopamine (DA)-secreting substantia nigra neurons, is already well established. Indeed, indirect but converging evidence of a pathogenic role for activated microglia in PD has already begun to emerge. The nigra reportedly has the highest density of microglia in brain, and, in PD, nigral microglia are not only highly activated but also highly clustered around dystrophic DA neurons. 6-OHDA and MPTP models of PD in rodents induce substantia nigra microglial activation. More cogent, injections of the classic microglial/macrophage activator lipopolysaccharide into or near the rodent nigra cause a specific loss of DA neurons there. Culture models with human microglia and human cellular targets replicate this phenomenon. Notably, nearly all the proposed etiologies of PD, including brain bacterial and viral exposure, pesticides, drug contaminants, and repeated head trauma, are known to cause brain inflammation. A mechanism by which activated microglia might specifically target DA neurons remains a critical missing link in the proof of a pathogenic role for activated microglia in PD. If such a link could be established, however, clinical intervention trials with agents that dampen microglial activation might be warranted in PD.
Collapse
Affiliation(s)
- Joseph Rogers
- The L. J. Roberts Center for Alzheimer's Research, Sun Health Research Institute Sun City, Arizona 85351, USA
| | | | | | | | | |
Collapse
|
35
|
Franciosi S, Ryu JK, Choi HB, Radov L, Kim SU, McLarnon JG. Broad-spectrum effects of 4-aminopyridine to modulate amyloid beta1-42-induced cell signaling and functional responses in human microglia. J Neurosci 2006; 26:11652-64. [PMID: 17093087 PMCID: PMC6674791 DOI: 10.1523/jneurosci.2490-06.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/21/2006] [Accepted: 09/27/2006] [Indexed: 11/21/2022] Open
Abstract
We investigated the modulating actions of the nonselective K(+) channel blocker 4-aminopyridine (4-AP) on amyloid beta (Abeta(1-42))-induced human microglial signaling pathways and functional processes. Whole-cell patch-clamp studies showed acute application of Abeta(1-42) (5 mum) to human microglia led to rapid expression of a 4-AP-sensitive, non-inactivating outwardly rectifying K(+) current (I(K)). Intracellular application of the nonhydrolyzable analog of GTP, GTPgammaS, induced an outward K(+) current with similar properties to the Abeta(1-42)-induced I(K) including sensitivity to 4-AP (IC(50) = 5 mm). Reverse transcriptase-PCR showed a rapid expression of a delayed rectifier Kv3.1 channel in Abeta(1-42)-treated microglia. Abeta(1-42) peptide also caused a slow, progressive increase in levels of [Ca(2+)](i) (intracellular calcium) that was partially blocked by 4-AP. Chronic exposure of human microglia to Abeta(1-42) led to enhanced p38 mitogen-activated protein kinase and nuclear factor kappaB expression with factors inhibited by 4-AP. Abeta(1-42) also induced the expression and production of the pro-inflammatory cytokines interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha, the chemokine IL-8, and the enzyme cyclooxygenase-2; 4-AP was effective in reducing all of these pro-inflammatory mediators. Additionally, toxicity of supernatant from Abeta(1-42)-treated microglia on cultured rat hippocampal neurons was reduced if 4-AP was included with peptide. In vivo, injection of Abeta(1-42) into rat hippocampus induced neuronal damage and increased microglial activation. Daily administration of 1 mg/kg 4-AP was found to suppress microglial activation and exhibited neuroprotection. The overall results suggest that 4-AP modulation of an Abeta(1-42)-induced I(K) (candidate channel Kv3.1) and intracellular signaling pathways in human microglia could serve as a therapeutic strategy for neuroprotection in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Sonia Franciosi
- Departments of Anesthesiology, Pharmacology, and Therapeutics and
| | - Jae K. Ryu
- Departments of Anesthesiology, Pharmacology, and Therapeutics and
| | - Hyun B. Choi
- Departments of Anesthesiology, Pharmacology, and Therapeutics and
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Lesley Radov
- Astra Zeneca CNS Discovery, Wilmington, Delaware 19850
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Brain Disease Research Center, Ajou University, Suwon 443-749, Korea, and
| | | |
Collapse
|
36
|
Panaro MA, Acquafredda A, Sisto M, Lisi S, Maffione AB, Mitolo V. Biological role of the N-formyl peptide receptors. Immunopharmacol Immunotoxicol 2006; 28:103-27. [PMID: 16684671 DOI: 10.1080/08923970600625975] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ligation of N-formyl-methionyl-leucyl-phenylalanine (fMLP) to its specific cell surface receptors triggers different cascades of biochemical events, eventually leading to cellular activation. The formyl peptide receptors (FPRs) are members of the seven-transmembrane, G-protein coupled receptors superfamily, expressed at high levels on polymorphonuclear and mononuclear phagocytes. The main responses elicited upon ligation of formylated peptides, referred to as cellular activation, are those of morphological polarization, locomotion, production of reactive-oxygen species and release of proteolytic enzymes. FPRs have in recent years been shown to be expressed also in several non myelocytic populations, suggesting other unidentified functions for this receptor family, independent of the inflammatory response. Finally, a number of ligands acting as exogenous or host-derived agonists for FPRs, as well as ligands acting as FPRs antagonists, have been described, indicating that these receptors may be differentially modulated by distinct molecules.
Collapse
Affiliation(s)
- M A Panaro
- Department of Human Anatomy and Histology, University of Bari, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Reale M, Iarlori C, Gambi F, Feliciani C, Isabella L, Gambi D. The acetylcholinesterase inhibitor, Donepezil, regulates a Th2 bias in Alzheimer's disease patients. Neuropharmacology 2006; 50:606-13. [PMID: 16445950 DOI: 10.1016/j.neuropharm.2005.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 11/30/2022]
Abstract
The increased pro-inflammatory cytokine production was previously observed in Alzheimer's disease (AD). We sought to explore whether acetylcholinesterase inhibitor (AChEI) therapy ameliorates clinical symptoms in AD through down-regulation of inflammation. Expression and release of monocyte chemotactic protein-1 (MCP-1), a positive regulator of Th2 differentiation, and interleukin (IL)-4, an anti-inflammatory cytokine from peripheral blood mononuclear cells (PBMC) in AD patients, were investigated. PBMC were purified from AD patients at time of enrollment (T0) and after 1 month of treatment with AChEI (T1) and from healthy controls (HC). Supernatants were analyzed for cytokine levels by ELISA methods. mRNA expression were determined by RT-PCR. Expression and production of MCP-1 and IL-4 were significantly increased in AD subjects under therapy with the AChEI Donepezil, compared to the same AD patients at time of enrollment (P < 0.001). Our data suggest another possible explanation for the ability of Donepezil [diethyl(3,5-di-ter-butyl-4-hydroxybenzyl)phosphonate] to delay the progression of AD; in fact, Donepezil may modulate MCP-1 and IL-4 production, which may reflect a general shift towards type Th0/Th2 cytokines which could be protective in AD disease. The different amounts of MCP-1 and IL-4 observed might reflect the different states of activation and/or responsiveness of PBMC, that in AD patients could be kept in an activated state by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Oncology and Neuroscience, Unit of Immunology, University G. d'Annunzio, Via dei Vestini 31, 66123 Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Joo SS, Lee DI. Potential effects of microglial activation induced by ginsenoside Rg3 in rat primary culture: Enhancement of type a macrophage scavenger receptor expression. Arch Pharm Res 2005; 28:1164-9. [PMID: 16276974 DOI: 10.1007/bf02972981] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain microglia are phagocytic cells that are the major inflammatory response cells of the central nervous system and widely held to play important pathophysiologic roles in Alzheimer's disease (AD) in both potentially neurotoxic responses and potentially beneficial phagocytic responses. In the study, we examined whether ginsonoside Rg3, a by-product of red ginseng, enhances the microglial phagocytosis of Abeta. We found that Rg3 promoted Abeta uptake, internalization, and digestion. Increased maximal Abeta uptake was observed at 4 and 8 h after Rg3 pre-treatment (25 microg/mL), and the internalized Abeta was almost completely digested from cells within 36 h when pretreated with Rg3 comparing with single non-Rg3-treated groups. The expression of MSRA (type A MSR) was also up-regulated by Rg3 treatment in a dose- and time-dependent manner which was coincidently identified in western blots for MSRA proteins in cytosol. These results indicate that microglial phagocytosis of Abeta may be enhanced by Rg3 and the effect of Rg3 on promoting clearance of Abeta may be related to the MSRA-associated action of Rg3. Thus, stimulation of the MSRA might contribute to the therapeutic potentials of Rg3 in microglial phagocytosis and digestion in the treatment of AD.
Collapse
MESH Headings
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/pharmacokinetics
- Animals
- Animals, Newborn
- Blotting, Western
- Carbocyanines/chemistry
- Cells, Cultured
- Dose-Response Relationship, Drug
- Fluorescent Dyes/chemistry
- Gene Expression/drug effects
- Ginsenosides/pharmacology
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/pharmacokinetics
- Mice
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Microscopy, Fluorescence
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacokinetics
- Phagocytosis/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
Affiliation(s)
- Seong Soo Joo
- Department of Immunology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | |
Collapse
|
39
|
Tokay T, Masmoudi O, Gandolfo P, Leprince J, Pelletier G, Vaudry H, Tonon MC. Beta-amyloid peptides stimulate endozepine biosynthesis in cultured rat astrocytes. J Neurochem 2005; 94:607-16. [PMID: 16033417 DOI: 10.1111/j.1471-4159.2005.03102.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulation of beta-amyloid peptide (Abeta), which is a landmark of Alzheimer's disease, may alter astrocyte functions before any visible symptoms of the disease occur. Here, we examined the effects of Abeta on biosynthesis and release of diazepam-binding inhibitor (DBI), a polypeptide primarily expressed by astroglial cells in the CNS. Quantitative RT-PCR and specific radioimmunoassay demonstrated that aggregated Abeta(25-35), at concentrations up to 10(-4) m, induced a dose-dependent increase in DBI mRNA expression and DBI-related peptide release from cultured rat astrocytes. These effects were totally suppressed when aggregation of Abeta(25-35) was prevented by Congo red. Measurement of the number of living cells revealed that Abeta(25-35) induced a trophic rather than a toxic effect on astrocytes. Administration of cycloheximide blocked Abeta(25-35)-induced increase of DBI gene expression and endozepine accumulation in astrocytes, indicating that protein synthesis is required for DBI gene expression. Altogether, the present data suggest that Abeta-induced activation of endozepine biosynthesis and release may contribute to astrocyte proliferation associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Tursonjan Tokay
- INSERM U413, European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Strohmeyer R, Kovelowski CJ, Mastroeni D, Leonard B, Grover A, Rogers J. Microglial responses to amyloid beta peptide opsonization and indomethacin treatment. J Neuroinflammation 2005; 2:18. [PMID: 16111494 PMCID: PMC1199616 DOI: 10.1186/1742-2094-2-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Accepted: 08/19/2005] [Indexed: 11/17/2022] Open
Abstract
Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ) antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID), had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.
Collapse
Affiliation(s)
- Ronald Strohmeyer
- L.J. Roberts Center, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351 USA
| | - Carl J Kovelowski
- L.J. Roberts Center, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351 USA
| | - Diego Mastroeni
- L.J. Roberts Center, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351 USA
| | - Brian Leonard
- L.J. Roberts Center, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351 USA
| | - Andrew Grover
- L.J. Roberts Center, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351 USA
| | - Joseph Rogers
- L.J. Roberts Center, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351 USA
| |
Collapse
|
41
|
Kim SH, Smith CJ, Van Eldik LJ. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 2004; 25:431-9. [PMID: 15013563 DOI: 10.1016/s0197-4580(03)00126-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 04/29/2003] [Accepted: 06/03/2003] [Indexed: 01/03/2023]
Abstract
In Alzheimer's disease (AD), chronically activated glia contribute to neuronal dysfunction through production of neuroinflammatory molecules like interleukin (IL)-1beta. As a first step to address the signaling pathways important for pro-inflammatory cytokine induction, and whether different activators use distinct pathways, we tested the involvement of mitogen-activated protein kinase (MAPK) pathways in microglial IL-1beta production. Microglial cultures stimulated with lipopolysaccharide, S100B, or beta-amyloid showed rapid activation of three different MAPKs (p38, ERK1/2, and JNK) and a later increase in IL-1beta levels, consistent with a possible mechanistic relationship between MAPK and IL-1beta. To more directly test this possibility, we stimulated microglia in the presence of selective MAPK inhibitors, and found that inhibition of each of the three MAPK pathways inhibited IL-1beta production in a concentration-dependent manner. In addition, the relative importance of each MAPK to IL-1beta production depended on the activating stimulus. These data demonstrate that MAPK pathways are important for microglial IL-1beta production, and suggest that different glial activators use distinct sets of signaling pathways to induce the same disease-relevant end-point in microglia.
Collapse
Affiliation(s)
- Seon H Kim
- Drug Discovery Program, Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 4-202, Chicago, IL 60611-3008, USA.
| | | | | |
Collapse
|
42
|
Laporte V, Lombard Y, Levy-Benezra R, Tranchant C, Poindron P, Warter JM. Uptake of Abeta 1-40- and Abeta 1-42-coated yeast by microglial cells: a role for LRP. J Leukoc Biol 2004; 76:451-61. [PMID: 15136588 DOI: 10.1189/jlb.1203620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Artificial diffuse and amyloid core of neuritic plaques [beta-amyloid peptide (Abeta) deposits] could be prepared using heat-killed yeast particles opsonized with Abeta 1-40 or Abeta 1-42 peptides. Interaction and fate of these artificial deposits with microglial cells could be followed using a method of staining that allows discrimination of adherent and internalized, heat-killed yeast particles. Using this system, it was possible to show that nonfibrillar or fibrillar (f)Abeta peptides, formed in solution upon heating (aggregates), could not impair the internalization of heat-killed yeast particles opsonized with fAbeta 1-40 or fAbeta 1-42. This indicated that depending on their physical state, Abeta peptide(s) do not recognize the same receptors and probably do not follow the same internalization pathway. Using competitive ligands of class A scavenger receptors (SR-A) or low-density lipoprotein-related receptor protein (LRP), it has been shown that SR-A were not involved in the recognition of amyloid peptide deposits, whereas LRP specifically recognized deposits of fAbeta 1-42 (but not fAbeta 1-40) and mediated their phagocytosis.
Collapse
Affiliation(s)
- Vincent Laporte
- Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires, EA 3429, Faculté de Pharmacie, Université Louis Pasteur, 74, route du Rhin-BP 24, F-67401 Illkirch, Cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Rogers J, Lue LF, Walker DG, Yan SD, Stern D, Strohmeyer R, Kovelowski CJ. Elucidating molecular mechanisms of Alzheimer's disease in microglial cultures. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:25-44. [PMID: 12066415 DOI: 10.1007/978-3-662-05073-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- J Rogers
- Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Neuroinflammation is now recognized as a prominent feature in Alzheimer's pathology and a potential target for therapy aimed at treatment and prevention of disease. This review provides a synopsis of current information about cellular and molecular mediators involved in Alzheimer's neuroinflammation as well as interactions between these mediators that influence pathology. Anti-inflammatory therapies, particularly nonsteroidal anti-inflammatory drugs, are considered from experimental and clinical perspectives and potential mechanisms underlying their apparent benefits are discussed. Finally, possible protective effects of the inflammatory response in Alzheimer's are described. Taken all together, evidence presented in this review suggests a scheme for Alzheimer's pathogenesis, with neuroinflammation playing a crucial role influencing and linking beta-amyloid deposition to neuronal damage and clinical disease.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Neurobiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | | |
Collapse
|
45
|
Pocock JM, Liddle AC, Hooper C, Taylor DL, Davenport CM, Morgan SC. Activated microglia in Alzheimer's disease and stroke. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:105-32. [PMID: 12066408 DOI: 10.1007/978-3-662-05073-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J M Pocock
- Cell Signalling Laboratory, Institute of Neurology, University College, 1 Wakefield Street, London WC1NPJ, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Rogers J, Strohmeyer R, Kovelowski CJ, Li R. Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 2002; 40:260-269. [PMID: 12379913 DOI: 10.1002/glia.10153] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is now abundant evidence that brain microglia, when activated, have the lineage, receptors, and synthetic capacity to participate in both potentially neurotoxic inflammatory responses and potentially beneficial phagocytic responses. Amyloid beta peptide (Abeta) forms highly insoluble, beta-pleated aggregates that are widely deposited in the Alzheimer's disease (AD) cortex and limbic system. Aggregated Abeta also activates the classical and alternative complement cascades. These properties make Abeta an excellent target for microglial phagocytosis, a view supported by multiple reports, through well established mechanisms of phagocyte clearance.
Collapse
Affiliation(s)
| | | | | | - Rena Li
- Sun Health Research Institute, Sun City, Arisona
| |
Collapse
|
47
|
Cui Y, Le Y, Yazawa H, Gong W, Wang JM. Potential role of the formyl peptide receptor‐like 1 (FPRL1) in inflammatory aspects of Alzheimer’s disease. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.4.628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Youhong Cui
- Biochemistry Section, Lanzhou Military Medical University, Lanzhou, People’s Republic of China; and
- Laboratory of Molecular Immunoregulation, National Cancer Institute at Frederick, Maryland and
| | - Yingying Le
- Laboratory of Molecular Immunoregulation, National Cancer Institute at Frederick, Maryland and
| | - Hiroshi Yazawa
- Laboratory of Molecular Immunoregulation, National Cancer Institute at Frederick, Maryland and
| | - Wanghua Gong
- Intramural Research Support Program, SAIC Frederick, Center for Cancer Research, National Cancer Institute at Frederick, Maryland
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, National Cancer Institute at Frederick, Maryland and
| |
Collapse
|
48
|
Strohmeyer R, Ramirez M, Cole GJ, Mueller K, Rogers J. Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer's disease brain. J Neuroimmunol 2002; 131:135-46. [PMID: 12458045 DOI: 10.1016/s0165-5728(02)00272-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Factor H, a regulatory protein of the alternative pathway of complement (APC), is present in amyloid-beta (Abeta) plaques in Alzheimer's disease (AD). Abeta plaques also contain significant amounts of heparan sulfate proteoglycans (HSPGs), such as agrin, as well as numerous activated microglia expressing increased levels complement receptor 3 (CR3). Here, we show the colocalization of each of these molecules in the AD brain and the functional capacity for these molecules to bind to one another in vitro. We propose that CR3 receptors expressed by microglia are used for ligand binding to factor H bound to HSPGs and Abeta in plaques in the AD brain.
Collapse
Affiliation(s)
- Ron Strohmeyer
- L.J. Roberts Alzheimer's Center, Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Microglia, residential macrophages in the central nervous system, can release a variety of factors including cytokines, chemokines, etc. to regulate the communication among neuronal and other types of glial cells. Microglia play immunological roles in mechanisms underlying the phagocytosis of invading microorganisms and removal of dead or damaged cells. When microglia are hyperactivated due to a certain pathological imbalance, they may cause neuronal degeneration. Pathological activation of microglia has been reported in a wide range of conditions such as cerebral ischemia, Alzheimer's disease, prion diseases, multiple sclerosis, AIDS dementia, and others. Nearly 5000 papers on microglia can be retrieved on the Web site PubMed at present (November 2001) and half of them were published within the past 5 years. Although it is not possible to read each paper in detail, as many factors as possible affecting microglial functions in in vitro culture systems are presented in this review. The factors are separated into "activators" and "inhibitors," although it is difficult to classify many of them. An overview on these factors may help in the development of a new strategy for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University; Sakai, Japan.
| |
Collapse
|
50
|
Cui YH, Le Y, Zhang X, Gong W, Abe K, Sun R, Van Damme J, Proost P, Wang JM. Up-Regulation of FPR2, a Chemotactic Receptor for Amyloid β 1–42 (Aβ42), in Murine Microglial Cells by TNFα. Neurobiol Dis 2002; 10:366-77. [PMID: 12270697 DOI: 10.1006/nbdi.2002.0517] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human FPRL1 and its mouse homologue FPR2 are functional receptors for several exogenous and host-derived chemotactic peptides, including amyloid beta(42) (A beta(42)), a critical pathogenic factor in Alzheimer's disease. We investigated the effect of TNF alpha on the expression and function of FPR2 in mouse microglial cells, a crucial inflammatory cell type in the CNS. Primary murine microglia and a cell line N9 in resting state expressed low levels of FPR2 gene and lacked the response to chemotactic agonists for this receptor. Incubation with TNF alpha, however, increased microglial expression of FPR2 gene, in association with potent chemotactic responses to FPR2-specific agonists including A beta(42). The effect of TNF alpha was dependent on the p55 TNF alpha receptor and activation of MAP kinase p38. TNF alpha concomitantly down-regulated microglial response to the chemokine SDF-1 alpha. Thus, by selectively up-regulating FPR2 in microglia, TNF alpha has the capacity to amplify host response in inflammatory diseases in the CNS.
Collapse
Affiliation(s)
- Y H Cui
- Laboratory of Molecular immunoregulation, Center for Cancer Research, SAIC Frederick, National Cancer Institute at Frederick, National Institutes of Health, MD 27110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|