1
|
Pirahmadi S, Zargar M, Pourhashem Z, Vand-Rajabpour H, Sani JJ, Yousefi H, Afzali S, Zakeri S, Mehrizi AA. Selection of combination adjuvants for enhanced immunogenicity of a recombinant CelTOS vaccine against Plasmodium falciparum. Biochem Biophys Res Commun 2025; 748:151310. [PMID: 39809136 DOI: 10.1016/j.bbrc.2025.151310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Recently, there has been significant interest in developing combination adjuvants to achieve efficient vaccines. However, it remains uncertain which combinations of adjuvants could best enhance the immune response to the recombinant antigen. In the current study, to improve the immunogenicity of Plasmodium falciparum cell traversal protein for ookinetes and sporozoites (PfCelTOS), we tested three different adjuvants: MPL, Poly I:C, and QS-21 alone or in a triple mixture (MPL/Poly I:C/QS-21; MPQ) and a dual mixture (Poly I:C/QS-21; PQ). BALB/c mice were immunized with recombinant PfCelTOS, either alone or combined with MPL, Poly I:C, QS-21, or with dual and triple adjuvant mixtures. Humoral and cellular immune responses were assessed in the various mouse groups, along with the functional activity of anti-PfCelTOS antibodies in oocyst inhibition. The results showed that administering the PfCelTOS antigen with triple or dual adjuvant mixtures significantly increased specific antibody levels, as well as IFN-ɣ and TNF cytokine production (P < 0.05), compared to PfCelTOS alone or combined with single adjuvants. These vaccine adjuvant mixtures also enhanced transmission-reducing activity (TRA), resulting in 76%-84% reductions in oocyst intensity in functional assays. Interestingly, comparable antibody levels and functional inhibitory activity were observed in the groups that received antigen with both dual and triple adjuvants (P > 0.05). The findings indicate that the dual mixture of Poly I:C and QS-21 is the most effective formulation for a vaccine against PfCelTOS. This discovery has important cost and safety implications by minimizing the adjuvants required to achieve an optimal immune response.
Collapse
MESH Headings
- Animals
- Plasmodium falciparum/immunology
- Malaria Vaccines/immunology
- Malaria Vaccines/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Mice, Inbred BALB C
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/immunology
- Mice
- Antibodies, Protozoan/immunology
- Poly I-C/administration & dosage
- Female
- Vaccines, Synthetic/immunology
- Protozoan Proteins/immunology
- Immunogenicity, Vaccine
- Antigens, Protozoan/immunology
- Lipid A/analogs & derivatives
- Lipid A/administration & dosage
- Saponins/administration & dosage
- Immunity, Cellular
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Zargar
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hediyeh Vand-Rajabpour
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Jafar J Sani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hemn Yousefi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shima Afzali
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Yuan W, Wang Z, Zou Y, Zheng G. Design and Synthesis of Immunoadjuvant QS-21 Analogs and Their Biological Evaluation. Biomedicines 2024; 12:469. [PMID: 38398070 PMCID: PMC10887094 DOI: 10.3390/biomedicines12020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A series of novel immunoadjuvant QS-21 analogs were synthesized, and their effects on the in vitro hemolysis of red blood cells were evaluated using QS-21 as a control and hemolytic properties as an index. Our results show that all the QS-21 analogs had lower hemolytic effects than QS-21, and their concentrations exhibited a certain quantitative effect relationship with the hemolysis rate. Notably, saponin compounds L1-L8 produced minimal hemolysis and showed lower hemolytic effects, warranting further investigation.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Y.); (Z.W.)
| | - Ziming Wang
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Y.); (Z.W.)
| | - Yening Zou
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Y.); (Z.W.)
| |
Collapse
|
3
|
Tang D, Liu X, Lu J, Fan H, Xu X, Sun K, Wang R, Li C, Dan D, Du H, Wang Z, Li X, Yang X. Recombinant proteins A29L, M1R, A35R, and B6R vaccination protects mice from mpox virus challenge. Front Immunol 2023; 14:1203410. [PMID: 37435062 PMCID: PMC10331816 DOI: 10.3389/fimmu.2023.1203410] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Since May 2022, mutant strains of mpox (formerly monkeypox) virus (MPXV) have been rapidly spreading among individuals who have not traveled to endemic areas in multiple locations, including Europe and the United States. Both intracellular and extracellular forms of mpox virus have multiple outer membrane proteins that can stimulate immune response. Here, we investigated the immunogenicity of MPXV structural proteins such as A29L, M1R, A35R, and B6R as a combination vaccine, and the protective effect against the 2022 mpox mutant strain was also evaluated in BALB/c mice. After mixed 15 μg QS-21 adjuvant, all four virus structural proteins were administered subcutaneously to mice. Antibody titers in mouse sera rose sharply after the initial boost, along with an increased capacity of immune cells to produce IFN-γ alongside an elevated level of cellular immunity mediated by Th1 cells. The vaccine-induced neutralizing antibodies significantly inhibited the replication of MPXV in mice and reduced the pathological damage of organs. This study demonstrates the feasibility of a multiple recombinant vaccine for MPXV variant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zejun Wang
- *Correspondence: Zejun Wang, ; Xinguo Li, ; Xiaoming Yang,
| | - Xinguo Li
- *Correspondence: Zejun Wang, ; Xinguo Li, ; Xiaoming Yang,
| | - Xiaoming Yang
- *Correspondence: Zejun Wang, ; Xinguo Li, ; Xiaoming Yang,
| |
Collapse
|
4
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
5
|
Krauss SR, Barbateskovic M, Klingenberg SL, Djurisic S, Petersen SB, Kenfelt M, Kong DZ, Jakobsen JC, Gluud C. Aluminium adjuvants versus placebo or no intervention in vaccine randomised clinical trials: a systematic review with meta-analysis and Trial Sequential Analysis. BMJ Open 2022; 12:e058795. [PMID: 35738649 PMCID: PMC9226993 DOI: 10.1136/bmjopen-2021-058795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/19/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES To assess the benefits and harms of aluminium adjuvants versus placebo or no intervention in randomised clinical trials in relation to human vaccine development. DESIGN Systematic review with meta-analysis and trial sequential analysis assessing the certainty of evidence with Grading of Recommendations Assessment, Development and Evaluation (GRADE). DATA SOURCES We searched CENTRAL, MEDLINE, Embase, LILACS, BIOSIS, Science Citation Index Expanded and Conference Proceedings Citation Index-Science until 29 June 2021, and Chinese databases until September 2021. ELIGIBILITY CRITERIA Randomised clinical trials irrespective of type, status and language of publication, with trial participants of any sex, age, ethnicity, diagnosis, comorbidity and country of residence. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted data and assessed risk of bias with Cochrane's RoB tool 1. Dichotomous data were analysed as risk ratios (RRs) and continuous data as mean differences. We explored both fixed-effect and random-effects models, with 95% CI. Heterogeneity was quantified with I2 statistic. We GRADE assessed the certainty of the evidence. RESULTS We included 102 randomised clinical trials (26 457 participants). Aluminium adjuvants versus placebo or no intervention may have no effect on serious adverse events (RR 1.18, 95% CI 0.97 to 1.43; very low certainty) and on all-cause mortality (RR 1.02, 95% CI 0.74 to 1.41; very low certainty). No trial reported on quality of life. Aluminium adjuvants versus placebo or no intervention may increase adverse events (RR 1.13, 95% CI 1.07 to 1.20; very low certainty). We found no or little evidence of a difference between aluminium adjuvants versus placebo or no intervention when assessing serology with geometric mean titres or concentrations or participants' seroprotection. CONCLUSIONS Based on evidence at very low certainty, we were unable to identify benefits of aluminium adjuvants, which may be associated with adverse events considered non-serious.
Collapse
Affiliation(s)
- Sara Russo Krauss
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marija Barbateskovic
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Klingenberg
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Snezana Djurisic
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sesilje Bondo Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - De Zhao Kong
- The Evidence-Based Medicine Research Center of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Department of Evidence-based Chinese Medicine Research Centre, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Janus C Jakobsen
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Christian Gluud
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Patarroyo MA, Patarroyo ME, Pabón L, Alba MP, Bermudez A, Rugeles MT, Díaz-Arevalo D, Zapata-Builes W, Zapata MI, Reyes C, Suarez CF, Agudelo W, López C, Aza-Conde J, Melo M, Escamilla L, Oviedo J, Guzmán F, Silva Y, Forero M, Flórez-Álvarez L, Aguilar-Jimenez W, Moreno-Vranich A, Garry J, Avendaño C. SM-COLSARSPROT: Highly Immunogenic Supramutational Synthetic Peptides Covering the World's Population. Front Immunol 2022; 13:859905. [PMID: 35693819 PMCID: PMC9175637 DOI: 10.3389/fimmu.2022.859905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Fifty ~20-amino acid (aa)-long peptides were selected from functionally relevant SARS-CoV-2 S, M, and E proteins for trial B-21 and another 53 common ones, plus some new ones derived from the virus' main genetic variants for complementary trial C-21. Peptide selection was based on tremendous SARS-CoV-2 genetic variability for analysing them concerning vast human immunogenetic polymorphism for developing the first supramutational, Colombian SARS-protection (SM-COLSARSPROT), peptide mixture. Specific physicochemical rules were followed, i.e., aa predilection for polyproline type II left-handed (PPIIL) formation, replacing β-branched, aromatic aa, short-chain backbone H-bond-forming residues, π-π interactions (n→π* and π-CH), aa interaction with π systems, and molecular fragments able to interact with them, disrupting PPIIL propensity formation. All these modified structures had PPIIL formation propensity to enable target peptide interaction with human leukocyte antigen-DRβ1* (HLA-DRβ1*) molecules to mediate antigen presentation and induce an appropriate immune response. Such modified peptides were designed for human use; however, they induced high antibody titres against S, M, and E parental mutant peptides and neutralising antibodies when suitably modified and chemically synthesised for immunising 61 major histocompatibility complex class II (MHCII) DNA genotyped Aotus monkeys (matched with their corresponding HLA-DRβ1* molecules), predicted to cover 77.5% to 83.1% of the world's population. Such chemically synthesised peptide mixture represents an extremely pure, stable, reliable, and cheap vaccine for COVID-19 pandemic control, providing a new approach for a logical, rational, and soundly established methodology for other vaccine development.
Collapse
Affiliation(s)
- Manuel A. Patarroyo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel E. Patarroyo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Laura Pabón
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha P. Alba
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Adriana Bermudez
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Diana Díaz-Arevalo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María Isabel Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - César Reyes
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Carlos F. Suarez
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - William Agudelo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Carolina López
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jorge Aza-Conde
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Miguel Melo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Luis Escamilla
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jairo Oviedo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Fanny Guzmán
- Núcleo de Biotecnología, Pontificia U. Católica de Valparaíso, Valparaíso, Chile
| | - Yolanda Silva
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha Forero
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Armando Moreno-Vranich
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jason Garry
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Facultad de Ciencias Agropecualrias, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| |
Collapse
|
7
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
8
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Islam MSB, Miah M, Hossain ME, Kibria KMK. A conserved multi-epitope-based vaccine designed by targeting hemagglutinin protein of highly pathogenic avian H5 influenza viruses. 3 Biotech 2020; 10:546. [PMID: 33251084 PMCID: PMC7682764 DOI: 10.1007/s13205-020-02544-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022] Open
Abstract
The highly pathogenic avian H5N1 influenza viruses have been recognized as a potential pandemic threat to humans, and to the poultry industry since 1997. H5 viruses consist of a high mutation rate, so universal vaccine designing is very challenging. Here, we describe a vaccinomics approach to design a novel multi-epitope influenza vaccine, based on the highly conserved regions of surface glycoprotein, Hemagglutinin (HA). Initially, the HA protein sequences from Bangladeshi origin were retrieved and aligned by ClustalW. The sequences of 100% conserved regions extracted and analyzed to select the highest potential T-cell and B-cell epitope. The HTL and CTL analyses using IEDB tools showed that DVWTYNAELLVLMEN possesses the highest affinity with MHC class I and II alleles, and it has the highest population coverage. The docking simulation study suggests that this epitope has the potential to interact with both MHC class I and MHC class II. The B-cell epitope prediction provides a potential peptide, GAIAGFIEGGWQGM. We further retrieved HA sequences of 3950 avian and 250 human H5 isolates from several populations of the world, where H5 was an epidemic. Surprisingly, these epitopes are more than 98% conserved in those regions which indicate their potentiality as a conserved vaccine. We have proposed a multi-epitope vaccine using these sequences and assess its stability and potentiality to induce B-cell immunity. In vivo study is necessary to corroborate this epitope as a vaccine, however, setting forth groundwork for wet-lab studies essential to mitigate pandemic threats and provide cross-protection of both avian and humans against H5 influenza viruses.
Collapse
Affiliation(s)
- Md. Shaid Bin Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - Mojnu Miah
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Enayet Hossain
- Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - K. M. Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| |
Collapse
|
10
|
Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 2020; 16:2944-2953. [PMID: 33295829 PMCID: PMC7738204 DOI: 10.1080/21645515.2020.1833579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
11
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
12
|
Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines. Adv Drug Deliv Rev 2020; 158:91-115. [PMID: 32598970 PMCID: PMC7318960 DOI: 10.1016/j.addr.2020.06.019] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Vaccines are one of the most powerful technologies supporting public health. The adaptive immune response induced by immunization arises following appropriate activation and differentiation of T and B cells in lymph nodes. Among many parameters impacting the resulting immune response, the presence of antigen and inflammatory cues for an appropriate temporal duration within the lymph nodes, and further within appropriate subcompartments of the lymph nodes- the right timing and location- play a critical role in shaping cellular and humoral immunity. Here we review recent advances in our understanding of how vaccine kinetics and biodistribution impact adaptive immunity, and the underlying immunological mechanisms that govern these responses. We discuss emerging approaches to engineer these properties for future vaccines, with a focus on subunit vaccines.
Collapse
Affiliation(s)
- Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Techawiwattanaboon T, Barnier-Quer C, Palaga T, Jacquet A, Collin N, Sangjun N, Komanee P, Piboonpocanun S, Patarakul K. Reduced Renal Colonization and Enhanced Protection by Leptospiral Factor H Binding Proteins as a Multisubunit Vaccine Against Leptospirosis in Hamsters. Vaccines (Basel) 2019; 7:vaccines7030095. [PMID: 31443566 PMCID: PMC6789851 DOI: 10.3390/vaccines7030095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Subunit vaccines conferring complete protection against leptospirosis are not currently available. The interactions of factor H binding proteins (FHBPs) on pathogenic leptospires and host factor H are crucial for immune evasion by inhibition of complement-mediated killing. The inhibition of these interactions may be a potential strategy to clear leptospires in the host. This study aimed to evaluate a multisubunit vaccine composed of four known leptospiral FHBPs: LigA domain 7–13 (LigAc), LenA, LcpA, and Lsa23, for its protective efficacy in hamsters. The mono and multisubunit vaccines formulated with LMQ adjuvant, a combination of neutral liposome, monophosphoryl lipid A, and Quillaja saponaria fraction 21, induced high and comparable specific antibody (IgG) production against individual antigens. Hamsters immunized with the multisubunit vaccine showed 60% survival following the challenge by 20× LD50 of Leptospira interrogans serovar Pomona. No significant difference in survival rate and pathological findings of target organs was observed after vaccinations with multisubunit or mono-LigAc vaccines. However, the multisubunit vaccine significantly reduced leptospiral burden in surviving hamsters in comparison with the monosubunit vaccines. Therefore, the multisubunit vaccine conferred partial protection and reduced renal colonization against virulence Leptospira infection in hamsters. Our multisubunit formulation could represent a promising vaccine against leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alain Jacquet
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Nicolas Collin
- Vaccine Formulation Laboratory (VFL), University of Lausanne, 1066 Epalinges, Switzerland
| | - Noppadon Sangjun
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Pat Komanee
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Surapon Piboonpocanun
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 2016; 16:55-63. [DOI: 10.1080/14760584.2016.1213632] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Gianchecchi E, Trombetta C, Piccirella S, Montomoli E. Evaluating influenza vaccines: progress and perspectives. Future Virol 2016. [DOI: 10.2217/fvl-2016-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe influenza infections are responsible for 3–5 million cases worldwide and 250,000–500,000 deaths per year. Although vaccination is the primary and most effective means of inducing protection against influenza viruses, it also presents limitations. This review outlines the promising steps that have been taken toward the development of a broadly protective influenza virus vaccine through the use of new technologies. The future challenge is to develop a broadly protective vaccine that is able to induce long-term protection against antigenically variant influenza viruses, regardless of antigenic shift and drift, and thus to protect against seasonal and pandemic influenza viruses.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi Srl, Enterprise of Service in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy
| | - Claudia Trombetta
- Department of Molecular & Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Simona Piccirella
- VisMederi Srl, Enterprise of Service in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy
| | - Emanuele Montomoli
- VisMederi Srl, Enterprise of Service in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy
- Department of Molecular & Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| |
Collapse
|
16
|
Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, West K, MacMicking JD, Chee JD, Wang S, Lu S, Lien E. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants. J Biol Chem 2015; 291:1123-36. [PMID: 26555265 DOI: 10.1074/jbc.m115.683011] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo.
Collapse
Affiliation(s)
- Robyn Marty-Roix
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Gregory I Vladimer
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Kimberly Pouliot
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Dan Weng
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Rachel Buglione-Corbett
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Kim West
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - John D MacMicking
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Jonathan D Chee
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Shixia Wang
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Shan Lu
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Egil Lien
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and the Centre of Molecular Inflammation Research, Department of Cancer and Molecular Medicine, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
17
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
18
|
Epitope-based approaches to a universal influenza vaccine. J Autoimmun 2014; 54:15-20. [DOI: 10.1016/j.jaut.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022]
|
19
|
Patarroyo ME, Bermúdez A, Moreno-Vranich A. Towards the development of a fully protectivePlasmodium falciparumantimalarial vaccine. Expert Rev Vaccines 2014; 11:1057-70. [DOI: 10.1586/erv.12.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Croft NP, Purcell AW. Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines 2014; 10:211-26. [DOI: 10.1586/erv.10.161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Drane D, Gittleson C, Boyle J, Maraskovsky E. ISCOMATRIX™ adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines 2014; 6:761-72. [DOI: 10.1586/14760584.6.5.761] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
|
23
|
Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282913. [PMID: 23710439 PMCID: PMC3655447 DOI: 10.1155/2013/282913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
There is no malaria vaccine currently available, and the most advanced candidate has recently reported a modest 30% efficacy against clinical malaria. Although many efforts have been dedicated to achieve this goal, the research was mainly directed to identify antigenic targets. Nevertheless, the latest progresses on understanding how immune system works and the data recovered from vaccination studies have conferred to the vaccine formulation its deserved relevance. Additionally to the antigen nature, the manner in which it is presented (delivery adjuvants) as well as the immunostimulatory effect of the formulation components (immunostimulants) modulates the immune response elicited. Protective immunity against malaria requires the induction of humoral, antibody-dependent cellular inhibition (ADCI) and effector and memory cell responses. This review summarizes the status of adjuvants that have been or are being employed in the malaria vaccine development, focusing on the pharmaceutical and immunological aspects, as well as on their immunization outcomings at clinical and preclinical stages.
Collapse
|
24
|
Singh M. Strategies for the Nonclinical Safety Assessment of Vaccines. NOVEL IMMUNE POTENTIATORS AND DELIVERY TECHNOLOGIES FOR NEXT GENERATION VACCINES 2013. [PMCID: PMC7120100 DOI: 10.1007/978-1-4614-5380-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Over the past century, vaccines have made a large impact on public health. Prophylactic vaccines prevent disability and disease, saving millions of dollars in potential health-care spending. Since prophylactic vaccines are administered to healthy individuals, including infants and children, it is important to demonstrate the safety of vaccines preclinically prior to testing the vaccine in clinical studies. A benefit-to-risk profile is considered for each individual vaccine and depends on many factors including preclinical and clinical toxicities that are observed, frequency of administration and intended target population. For prophylactic vaccines, in particular, the concerns about potential risks often outweigh the perception of benefit [1]. Therefore, over the past decade, there has been an increased focus on nonclinical safety assessment of vaccines, including toxicity testing.
Collapse
Affiliation(s)
- Manmohan Singh
- Novartis Vaccines Research, Cambridge, 02139 Massachusetts USA
| |
Collapse
|
25
|
Dakshinamoorthy G, Samykutty AK, Munirathinam G, Shinde GB, Nutman T, Reddy MV, Kalyanasundaram R. Biochemical characterization and evaluation of a Brugia malayi small heat shock protein as a vaccine against lymphatic filariasis. PLoS One 2012; 7:e34077. [PMID: 22496777 PMCID: PMC3320633 DOI: 10.1371/journal.pone.0034077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/21/2012] [Indexed: 12/15/2022] Open
Abstract
Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Helminth/blood
- Antibodies, Helminth/immunology
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Helminth/immunology
- Brugia malayi/immunology
- Cell Proliferation
- Cytokines/metabolism
- Elephantiasis, Filarial/immunology
- Elephantiasis, Filarial/prevention & control
- Heat-Shock Proteins, Small/genetics
- Heat-Shock Proteins, Small/immunology
- Heat-Shock Proteins, Small/metabolism
- Humans
- Immunoglobulin G/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Male
- Mast Cells/cytology
- Mast Cells/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/immunology
- Receptors, Interleukin-10/immunology
- Receptors, Interleukin-10/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Vaccination
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Gajalakshmi Dakshinamoorthy
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| | - Abhilash Kumble Samykutty
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| | - Gangadhar Bhaurao Shinde
- Department of Biochemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Thomas Nutman
- Helminth Immunology Section, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maryada Venkatarami Reddy
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| |
Collapse
|
26
|
Safety and Immunogenicity of Multimeric-001—a Novel Universal Influenza Vaccine. J Clin Immunol 2012; 32:595-603. [DOI: 10.1007/s10875-011-9632-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/04/2011] [Indexed: 11/26/2022]
|
27
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
28
|
Amorij JP, Kersten GFA, Saluja V, Tonnis WF, Hinrichs WLJ, Slütter B, Bal SM, Bouwstra JA, Huckriede A, Jiskoot W. Towards tailored vaccine delivery: needs, challenges and perspectives. J Control Release 2012; 161:363-76. [PMID: 22245687 DOI: 10.1016/j.jconrel.2011.12.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/30/2022]
Abstract
The ideal vaccine is a simple and stable formulation which can be conveniently administered and provides life-long immunity against a given pathogen. The development of such a vaccine, which should trigger broad and strong B-cell and T-cell responses against antigens of the pathogen in question, is highly dependent on tailored vaccine delivery approaches. This review addresses vaccine delivery in its broadest scope. We discuss the needs and challenges in the area of vaccine delivery, including restrictions posed by specific target populations, potentials of dedicated stable formulations and devices, and the use of adjuvants. Moreover, we address the current status and perspectives of vaccine delivery via several routes of administration, including non- or minimally invasive routes. Finally we suggest possible directions for future vaccine delivery research and development.
Collapse
Affiliation(s)
- Jean-Pierre Amorij
- Vaccinology, National Institute for Public Health and Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
da Cunha IAL, Zulpo DL, Bogado ALG, de Barros LD, Taroda A, Igarashi M, Navarro IT, Garcia JL. Humoral and cellular immune responses in pigs immunized intranasally with crude rhoptry proteins of Toxoplasma gondii plus Quil-A. Vet Parasitol 2011; 186:216-21. [PMID: 22137347 DOI: 10.1016/j.vetpar.2011.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/25/2022]
Abstract
We evaluated the humoral and cellular immune responses in pigs immunized intranasally with crude rhoptry proteins of Toxoplasma gondii plus Quil-A. The experiment used 13 mixed-breed pigs divided into the following three groups: G1 (vaccinated-challenged, n=6), which received the rhoptry vaccine (200(g/dose); G2 (adjuvant-challenged, n=4), which received PBS plus Quil-A; and G3 (unvaccinated-challenged, n=3), which was the control group. The treatments were performed intranasally at days 0, 21, and 42. Three pigs from G1 produced IgG and IgM antibody levels above the cut-off in the ELISA on the challenge day. Partial protection was observed in G1 at the chronic phase of infection when compared with G3. The preventable fractions were 41.6% and 6.5%, in G1 and G2, respectively. The results of this study suggest that rhoptry proteins plus Quil-A stimulated humoral, local, and systemic immune responses, which were able to partially protect the brain from cyst formation.
Collapse
Affiliation(s)
- Ivo Alexandre Leme da Cunha
- Laboratório de Protozoologia, Departamento de Medicina Veterinária Preventiva, Universidade de Londrina - UEL, Postal Box 6001, 86050-970 Londrina, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chiang CLL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol 2011; 30:150-82. [PMID: 21557641 DOI: 10.3109/08830185.2011.572210] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Whole tumor cell lysates can serve as excellent multivalent vaccines for priming tumor-specific CD8(+) and CD4(+) T cells. Whole cell vaccines can be prepared with hypochlorous acid oxidation, UVB-irradiation and repeat cycles of freeze and thaw. One major obstacle to successful immunotherapy is breaking self-tolerance to tumor antigens. Clinically approved adjuvants, including Montanide™ ISA-51 and 720, and keyhole-limpet proteins can be used to enhance tumor cell immunogenicity by stimulating both humoral and cellular anti-tumor responses. Other potential adjuvants, such as Toll-like receptor agonists (e.g., CpG, MPLA and PolyI:C), and cytokines (e.g., granulocyte-macrophage colony stimulating factor), have also been investigated.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Ovarian Cancer Research Center, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | |
Collapse
|
31
|
Gin DY, Slovin SF. Enhancing Immunogenicity of Cancer Vaccines: QS-21 as an Immune Adjuvant. CURRENT DRUG THERAPY 2011; 6:207-212. [PMID: 25473385 DOI: 10.2174/157488511796391988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saponins comprise a class of plant natural products that incorporate a lipophilic terpenoid core, to which is appended one or more carbohydrate residues. They are amphiphilic molecules and often exhibit toxic biological profiles, likely as a result of their roles as vital components in protective coatings to defend against phytopathogen infection and insect predation. The most notable of adjuvant-active saponins investigated for vaccine development come from the Chilean Soapbark Tree, Quillaja saponaria (i.e., QS). More than 30 years ago, semi-purified extracts (i.e., Quil A) from the cortex of Quillaja saponaria were found to be highly effective as adjuvants in veterinary vaccines. However, due to significant and variable toxicity effects, Quil A was not deemed appropriate for human vaccines. More refined purification methods have led to multiple fractions which are derived from the original plant extract. As such, QS-21 to date appears to be one of the more scientifically interesting and robust adjuvants in use in vaccinology. The role of QS-21 as an adjuvant for use in a variety of cancer vaccine trials and its comparison to other adjuvants is discussed in this review.
Collapse
Affiliation(s)
- David Y Gin
- Member, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, NY
| | - Susan F Slovin
- Associate Attending Physician, Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan-Kettering Cancer Center, NY, and Associate Professor of Medicine, Weill-Cornell Medical College, NY
| |
Collapse
|
32
|
Abstract
Adjuvants are becoming the key players of vaccine formulations to enhance the immunogenicity of subunit (peptides, proteins, virus-like particles (VLPs)) and DNA vaccines, as well as to reach the current new goals of preventing and/or treating chronic infectious diseases and cancers. Induction of humoral response, in particular neutralizing antibodies able to inhibit the binding of pathogens to their cellular receptors, remains a major goal of vaccines targeted to prevent acute lytic infections; induction/modulation of cellular immunity is, however, critical to fight latently/chronically infected cells as well as cancer cells. The new adjuvants, included in vaccine preparations, are currently able to modify the presentation of epitopes to the immune system with a specific T(H)1 versus T(H)2 polarization efficacy. A paradigm of the relevance of these new adjuvants is the immunological result obtained with the inclusion of monophosphoryl lipid A in the formulation of L1-based human papillomavirus (HPV)-naked VLPs. In the May issue of this journal, Garcon and colleagues describe the highly enhanced humoral and memory B cellular immunity of the AS04-adjuvanted HPV vaccine, which results in a long-lasting and broad spectrum immunity.
Collapse
Affiliation(s)
- Franco M Buonaguro
- Molecular Biology and Viral Oncology, Dpt of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Napoli, Italy.
| | | | | |
Collapse
|
33
|
Ragupathi G, Gardner JR, Livingston PO, Gin DY. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 2011; 10:463-70. [PMID: 21506644 PMCID: PMC3658151 DOI: 10.1586/erv.11.18] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Seasonal influenza is a common and highly transmissible disease, characterized by frequent and unpredictable mutations occurring in the viral envelope glycoproteins. Owing to this high variability, annual reformulation and immunization are required and still, the vaccine is not effective enough when there is an antigenic mismatch with circulating strains. A solution could come from the construction of a universal vaccine that would be based on highly conserved antigens and would be effective against many strains: some universal vaccine developers focus on the Matrix 2 protein, whereas others use additional conserved proteins, such as the nucleoprotein and Matrix 1, or even a range of peptides from these proteins and others to induce cross-strain immunity. This article aims to highlight recent significant advances in the development of a universal vaccine against influenza and focuses mainly on studies using the epitope-based approach that have also entered the clinical trial stage; it includes a brief summary of current vaccines against influenza as well as the ongoing efforts to develop a universal vaccine.
Collapse
Affiliation(s)
- Tamar Ben-Yedidia
- BiondVax Pharmaceuticals Ltd, 14 Einstein Street, Ness Ziona, Israel
| |
Collapse
|
35
|
Tan L, Lu H, Zhang D, Tian M, Hu B, Wang Z, Jin N. Protection against H1N1 influenza challenge by a DNA vaccine expressing H3/H1 subtype hemagglutinin combined with MHC class II-restricted epitopes. Virol J 2010; 7:363. [PMID: 21134292 PMCID: PMC3014916 DOI: 10.1186/1743-422x-7-363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/07/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Multiple subtypes of avian influenza viruses have crossed the species barrier to infect humans and have the potential to cause a pandemic. Therefore, new influenza vaccines to prevent the co-existence of multiple subtypes within a host and cross-species transmission of influenza are urgently needed. METHODS Here we report a multi-epitope DNA vaccine targeted towards multiple subtypes of the influenza virus. The protective hemagglutinin (HA) antigens from H5/H7/H9 subtypes were screened for MHC II class-restricted epitopes overlapping with predicted B cell epitopes. We then constructed a DNA plasmid vaccine, pV-H3-EHA-H1, based on HA antigens from human influenza H3/H1 subtypes combined with the H5/H7/H9 subtype Th/B epitope box. RESULTS Epitope-specific IFN-γ ELISpot responses were significantly higher in the multi-epitope DNA group than in other vaccine and control groups (P < 0.05). The multi-epitope group significantly enhanced Th2 cell responses as determined by cytokine assays. The survival rate of mice given the multi-epitope vaccine was the highest among the vaccine groups, but it was not significantly different compared to those given single antigen expressing pV-H1HA1 vaccine and dual antigen expressing pV-H3-H1 vaccine (P > 0.05). No measurable virus titers were detected in the lungs of the multi-epitope immunized group. The unique multi-epitope DNA vaccine enhanced virus-specific antibody and cellular immunity as well as conferred complete protection against lethal challenge with A/New Caledonia/20/99 (H1N1) influenza strain in mice. CONCLUSIONS This approach may be a promising strategy for developing a universal influenza vaccine to prevent multiple subtypes of influenza virus and to induce long-term protective immune against cross-species transmission.
Collapse
Affiliation(s)
- Lei Tan
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, Changchun 130062, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Lozano JM, Lesmes LP, Carreño LF, Gallego GM, Patarroyo ME. Development of designed site-directed pseudopeptide-peptido-mimetic immunogens as novel minimal subunit-vaccine candidates for malaria. Molecules 2010; 15:8856-89. [PMID: 21135800 PMCID: PMC6259129 DOI: 10.3390/molecules15128856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 10/28/2010] [Indexed: 11/16/2022] Open
Abstract
Synthetic vaccines constitute the most promising tools for controlling and preventing infectious diseases. When synthetic immunogens are designed from the pathogen native sequences, these are normally poorly immunogenic and do not induce protection, as demonstrated in our research. After attempting many synthetic strategies for improving the immunogenicity properties of these sequences, the approach consisting of identifying high binding motifs present in those, and then performing specific changes on amino-acids belonging to such motifs, has proven to be a workable strategy. In addition, other strategies consisting of chemically introducing non-natural constraints to the backbone topology of the molecule and modifying the α-carbon asymmetry are becoming valuable tools to be considered in this pursuit. Non-natural structural constraints to the peptide backbone can be achieved by introducing peptide bond isosters such as reduced amides, partially retro or retro-inverso modifications or even including urea motifs. The second can be obtained by strategically replacing L-amino-acids with their enantiomeric forms for obtaining both structurally site-directed designed immunogens as potential vaccine candidates and their Ig structural molecular images, both having immuno-therapeutic effects for preventing and controlling malaria.
Collapse
MESH Headings
- Animals
- Haplorhini
- Humans
- Malaria Vaccines/chemical synthesis
- Malaria Vaccines/chemistry
- Malaria Vaccines/immunology
- Malaria Vaccines/pharmacology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Peptidomimetics/chemical synthesis
- Peptidomimetics/chemistry
- Peptidomimetics/immunology
- Peptidomimetics/pharmacology
- Vaccines, Subunit/chemical synthesis
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- José Manuel Lozano
- Fundación Instituto de Inmunología de Colombia (FIDIC), Universidad del Rosario and Universidad Nacional de Colombia, Bogotá DC, Colombia.
| | | | | | | | | |
Collapse
|
37
|
Ragupathi G, Damani P, Deng K, Adams MM, Hang J, George C, Livingston PO, Gin DY. Preclinical evaluation of the synthetic adjuvant SQS-21 and its constituent isomeric saponins. Vaccine 2010; 28:4260-7. [PMID: 20450868 DOI: 10.1016/j.vaccine.2010.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/10/2010] [Accepted: 04/15/2010] [Indexed: 11/19/2022]
Abstract
The saponin fraction QS-21 from Quillaja saponaria has been demonstrated to be a potent immunological adjuvant when mixed with keyhole limpet hemocyanin conjugate vaccines, as well as with other classes of subunit antigen vaccines. QS-21 adjuvant is composed of two isomers that include the apiose and xylose forms in a ratio of 65:35, respectively. The chemical syntheses of these two isomers in pure form have recently been disclosed. Herein we describe detailed in vivo immunological evaluations of these synthetic QS-21 isomeric constituents, employing the GD3-KLH melanoma antigen. With this vaccine construct, high antibody titers against GD3 ganglioside and KLH were elicited when GD3-KLH was co-administered with adjuvant, either as the individual separate synthetic QS-21 isomers (SQS-21-Api or SQS-21-Xyl), or as its reconstituted 65:35 isomeric mixture (SQS-21). These antibody titer levels were comparable to that elicited by vaccinations employing naturally derived QS-21 (PQS-21). Moreover, toxicities of the synthetic saponin adjuvants were also found to be comparable to that of naturally derived PQS-21. These findings demonstrate unequivocally that the adjuvant activity of QS-21 resides in these two principal isomeric forms, and not in trace contaminants within the natural extracts. This lays the foundation for future exploration of structure-function correlations to enable the discovery of novel saponins with increased potency, enhanced stability, and attenuated toxicity.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Melanoma and Sarcoma Service, Department of Medicine, 1275 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
The first safe inactivated equine influenza vaccine formulation adjuvanted with ISCOM-Matrix that closes the immunity gap. Vaccine 2009; 27:5530-7. [DOI: 10.1016/j.vaccine.2009.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/02/2009] [Accepted: 06/25/2009] [Indexed: 11/22/2022]
|
39
|
Adar Y, Singer Y, Levi R, Tzehoval E, Perk S, Banet-Noach C, Nagar S, Arnon R, Ben-Yedidia T. A universal epitope-based influenza vaccine and its efficacy against H5N1. Vaccine 2009; 27:2099-107. [DOI: 10.1016/j.vaccine.2009.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 01/25/2009] [Accepted: 02/02/2009] [Indexed: 01/21/2023]
|
40
|
Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine 2009; 27:1787-96. [PMID: 19208455 DOI: 10.1016/j.vaccine.2009.01.091] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/18/2009] [Accepted: 01/19/2009] [Indexed: 12/24/2022]
Abstract
Saponins are natural glycosides of steroid or triterpene which exhibited many different biological and pharmacological activities. Notably, saponins can also activate the mammalian immune system, which have led to significant interest in their potential as vaccine adjuvants. The most widely used saponin-based adjuvants are Quil A and its derivatives QS-21, isolated from the bark of Quillaja saponaria Molina, which have been evaluated in numerous clinical trials. Their unique capacity to stimulate both the Th1 immune response and the production of cytotoxic T-lymphocytes (CTLs) against exogenous antigens makes them ideal for use in subunit vaccines and vaccines directed against intracellular pathogens as well as for therapeutic cancer vaccines. However, Quillaja saponins have serious drawbacks such as high toxicity, undesirable haemolytic effect and instability in aqueous phase, which limits their use as adjuvant in vaccination. It has driven much research for saponin-based adjuvant from other kinds of natural products. This review will summarize the current advances concerning adjuvant effects of different kinds of saponins. The structure-activity relationship of saponin adjuvants will also be discussed in the light of recent findings. It is hoped that the information collated here will provide the reader with information regarding the adjuvant potential applications of saponins and stimulate further research into these compounds.
Collapse
Affiliation(s)
- Hong-Xiang Sun
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, PR China.
| | | | | |
Collapse
|
41
|
Deng K, Adams MM, Damani P, Livingston PO, Ragupathi G, Gin DY. Synthesis of QS-21-xylose: establishment of the immunopotentiating activity of synthetic QS-21 adjuvant with a melanoma vaccine. Angew Chem Int Ed Engl 2008; 47:6395-8. [PMID: 18624313 DOI: 10.1002/anie.200801885] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Deng
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
42
|
Dorosko SM, Ayres SL, Connor RI. Induction of HIV-1 MPR(649-684)-specific IgA and IgG antibodies in caprine colostrum using a peptide-based vaccine. Vaccine 2008; 26:5416-22. [PMID: 18708113 DOI: 10.1016/j.vaccine.2008.07.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 12/21/2022]
Abstract
Induction of antigen-specific antibodies against HIV-1 in colostrum and milk may help prevent breast milk transmission of the virus. A peptide vaccine against the HIV-1 gp41 membrane proximal region (MPR(649-684)) was evaluated as proof-of-principle in a caprine model. Pregnant Alpine/Saanen goats were immunized with MPR(649-684) peptide conjugated to KLH using alum adjuvant. Immunizations were intramuscular, intranasal, and in the supramammary lymph node region. Samples collected after parturition demonstrated the presence of MPR(649-684)-specific antibodies in colostrum and serum. These results support the concept that a peptide vaccine can effectively induce MPR(649-684)-specific sIgA and IgG in the colostrum of a lactating species.
Collapse
Affiliation(s)
- Stephanie M Dorosko
- Department of Microbiology & Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
43
|
Deng K, Adams M, Damani P, Livingston P, Ragupathi G, Gin D. Synthesis of QS-21-Xylose: Establishment of the Immunopotentiating Activity of Synthetic QS-21 Adjuvant with a Melanoma Vaccine. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Deng K, Adams MM, Gin DY. Synthesis and structure verification of the vaccine adjuvant QS-7-Api. Synthetic access to homogeneous Quillaja saponaria immunostimulants. J Am Chem Soc 2008; 130:5860-1. [PMID: 18410100 DOI: 10.1021/ja801008m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
QS-7-Api is an exceedingly potent immuno-adjuvant isolated from the bark of Quillaja saponaria. It is significantly less toxic than QS-21, a related saponin that is currently the favored adjuvant in anticancer and antiviral vaccine clinical trials. Tedious isolation/purification protocols and uncertainty in its structural constitution have hindered the clinical development of QS-7. A chemical synthesis of QS-7-Api is described, providing structural verification of the adjuvant. A novel semisynthetic sequence to QS-7-Api has also been established, greatly facilitating access to QS-7 for preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Kai Deng
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
45
|
Improved T cell responses to Plasmodium falciparum circumsporozoite protein in mice and monkeys induced by a novel formulation of RTS,S vaccine antigen. Vaccine 2008; 26:1072-82. [DOI: 10.1016/j.vaccine.2007.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/07/2007] [Accepted: 12/16/2007] [Indexed: 11/20/2022]
|
46
|
Vandepapelière P, Horsmans Y, Moris P, Van Mechelen M, Janssens M, Koutsoukos M, Van Belle P, Clement F, Hanon E, Wettendorff M, Garçon N, Leroux-Roels G. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine 2008; 26:1375-86. [PMID: 18272264 DOI: 10.1016/j.vaccine.2007.12.038] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/30/2007] [Accepted: 12/16/2007] [Indexed: 12/24/2022]
Abstract
A randomised, double-blind study assessing the potential of four adjuvants in combination with recombinant hepatitis B surface antigen has been conducted to evaluate humoral and cell-mediated immune responses in healthy adults after three vaccine doses at months 0, 1 and 10. Three Adjuvant Systems (AS) contained 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21, formulated either with an oil-in-water emulsion (AS02B and AS02V) or with liposomes (AS01B). The fourth adjuvant was CpG oligonucleotide. High levels of antibodies were induced by all adjuvants, whereas cell-mediated immune responses, including cytolytic T cells and strong and persistent CD4(+) T cell response were mainly observed with the three MPL/QS21-containing Adjuvant Systems. The CD4(+) T cell response was characterised in vitro by vigorous lymphoproliferation, high IFN-gamma and moderate IL-5 production. Antigen-specific T cell immune response was further confirmed ex vivo by detection of IL-2- and IFN-gamma-producing CD4(+) T cells, and in vivo by measuring increased levels of IFN-gamma in the serum and delayed-type hypersensitivity (DTH) responses. The CpG adjuvanted vaccine induced consistently lower immune responses for all parameters. All vaccine adjuvants were shown to be safe with acceptable reactogenicity profiles. The majority of subjects reported local reactions at the injection site after vaccination while general reactions were recorded less frequently. No vaccine-related serious adverse event was reported. Importantly, no increase in markers of auto-immunity and allergy was detected over the whole study course. In conclusion, the Adjuvant Systems containing MPL/QS21, in combination with hepatitis B surface antigen, induced very strong humoral and cellular immune responses in healthy adults. The AS01B-adjuvanted vaccine induced the strongest and most durable specific cellular immune responses after two doses. These Adjuvant Systems, when added to recombinant protein antigens, can be fundamental to develop effective prophylactic vaccines against complex pathogens, e.g. malaria, HIV infection and tuberculosis, and for special target populations such as subjects with an impaired immune response, due to age or medical conditions.
Collapse
|
47
|
Dubovsky F, Malkin E. Malaria vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
48
|
A randomized placebo-controlled phase Ia malaria vaccine trial of two virosome-formulated synthetic peptides in healthy adult volunteers. PLoS One 2007; 2:e1018. [PMID: 17925866 PMCID: PMC2001290 DOI: 10.1371/journal.pone.0001018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/25/2007] [Indexed: 11/19/2022] Open
Abstract
Background and Objectives Influenza virosomes represent an innovative human-compatible antigen delivery system that has already proven its suitability for subunit vaccine design. The aim of the study was to proof the concept that virosomes can also be used to elicit high titers of antibodies against synthetic peptides. The specific objective was to demonstrate the safety and immunogenicity of two virosome-formulated P. falciparum protein derived synthetic peptide antigens given in two different doses alone or in combination. Methodology/Principal Findings The design was a single blind, randomized, placebo controlled, dose-escalating study involving 46 healthy Caucasian volunteers aged 18–45 years. Five groups of 8 subjects received virosomal formulations containing 10 µg or 50 µg of AMA 49-CPE, an apical membrane antigen-1 (AMA-1) derived synthetic phospatidylethanolamine (PE)-peptide conjugate or 10 ug or 50 ug of UK39, a circumsporozoite protein (CSP) derived synthetic PE-peptide conjugate or 50 ug of both antigens each. A control group of 6 subjects received unmodified virosomes. Virosomal formulations of the antigens (designated PEV301 and PEV302 for the AMA-1 and the CSP virosomal vaccine, respectively) or unmodified virosomes were injected i. m. on days 0, 60 and 180. In terms of safety, no serious or severe adverse events (AEs) related to the vaccine were observed. 11/46 study participants reported 16 vaccine related local AEs. Of these 16 events, all being pain, 4 occurred after the 1st, 7 after the 2nd and 5 after the 3rd vaccination. 6 systemic AEs probably related to the study vaccine were reported after the 1st injection, 10 after the 2nd and 6 after the 3rd. Generally, no difference in the distribution of the systemic AEs between either the doses applied (10 respectively 50 µg) or the synthetic antigen vaccines (PEV301 and PEV302) used for immunization was found. In terms of immunogenicity, both PEV301 and PEV302 elicited already after two injections a synthetic peptide-specific antibody response in all volunteers immunized with the appropriate dose. In the case of PEV301 the 50 µg antigen dose was associated with a higher mean antibody titer and seroconversion rate than the 10 µg dose. In contrast, for PEV302 mean titer and seroconversion rate were higher with the lower dose. Combined delivery of PEV301 and PEV302 did not interfere with the development of an antibody response to either of the two antigens. No relevant antibody responses against the two malaria antigens were observed in the control group receiving unmodified virosomes. Conclusions The present study demonstrates that three immunizations with the virosomal malaria vaccine components PEV301 or/and PEV302 (containing 10 µg or 50 µg of antigen) are safe and well tolerated. At appropriate antigen doses seroconversion rates of 100% were achieved. Two injections may be sufficient for eliciting an appropriate immune response, at least in individuals with pre-existing anti-malarial immunity. These results justify further development of a final multi-stage virosomal vaccine formulation incorporating additional malaria antigens. Trial Registration ClinicalTrials.gov NCT00400101
Collapse
|
49
|
Miura K, Keister DB, Muratova OV, Sattabongkot J, Long CA, Saul A. Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer. Malar J 2007; 6:107. [PMID: 17686163 PMCID: PMC1971714 DOI: 10.1186/1475-2875-6-107] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 08/08/2007] [Indexed: 11/30/2022] Open
Abstract
Background Mosquito stage malaria vaccines are designed to induce an immune response in the human host that will block the parasite's growth in the mosquito and consequently block transmission of the parasite. A mosquito membrane-feeding assay (MFA) is used to test transmission-blocking activity (TBA), but in this technique cannot accommodate many samples. A clear understanding of the relationship between antibody levels and TBA may allow ELISA determinations to be used to predict TBA and assist in planning vaccine development. Methods Rabbit anti-Pfs25 sera and monkey anti-Pvs25 sera were generated and the antibody titers were determined by a standardized ELISA. The biological activity of the same sera was tested by MFA using Plasmodium gametocytes (cultured Plasmodium falciparum or Plasmodium vivax from malaria patients) and Anopheles mosquitoes. Results Anti-Pfs25 and anti-Pvs25 sera showed that ELISA antibody units correlate with the percent reduction in the oocyst density per mosquito (Spearman Rank correlations: 0.934 and 0.616, respectively), and fit a hyperbolic curve when percent reduction in oocyst density is plotted against antibody units of the tested sample. Antibody levels also correlated with the number of mosquitoes that failed to become infected, and this proportion can be calculated from the reduction in oocyst numbers and the distribution of oocysts per infected mosquito in control group. Conclusion ELISA data may be used as a surrogate for the MFA to evaluate transmission-blocking vaccine efficacy. This will facilitate the evaluation of transmission-blocking vaccines and implementation of this malaria control strategy.
Collapse
MESH Headings
- Animals
- Anopheles/parasitology
- Anopheles/physiology
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/physiology
- Antigens, Protozoan/immunology
- Antigens, Surface/immunology
- Cell Count
- Culicidae/parasitology
- Culicidae/physiology
- Disease Transmission, Infectious/prevention & control
- Female
- Humans
- Immunization
- Immunization Schedule
- Injections, Intramuscular
- Macaca mulatta
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/immunology
- Malaria, Falciparum/blood
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/blood
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Male
- Oocytes/cytology
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protozoan Proteins/immunology
- Rabbits
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | - David B Keister
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | - Olga V Muratova
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | - Jetsumon Sattabongkot
- Department of Entomology, United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carole A Long
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | - Allan Saul
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| |
Collapse
|
50
|
Abstract
BACKGROUND Four types of malaria vaccine, SPf66 and MSP/RESA vaccines (against the asexual stages of the Plasmodium parasite) and CS-NANP and RTS,S vaccines (against the sporozoite stages), have been tested in randomized controlled trials in endemic areas. OBJECTIVES To assess malaria vaccines against Plasmodium falciparum, P. vivax, P. malariae and P ovale in preventing infection, disease and death. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register (April 2004), CENTRAL (The Cochrane Library Issue 2, 2004), MEDLINE (1966 to April 2004), EMBASE (1980 to April 2004), Science Citation Index (1981 to April 2004), and reference lists of articles. We also contacted organizations and researchers in the field. SELECTION CRITERIA Randomized controlled trials comparing vaccines against Plasmodium falciparum, P. vivax, P. malariae or P. ovale with placebo or routine antimalarial control measures in people of any age receiving a challenge malaria infection. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed trial quality and extracted data. MAIN RESULTS Eighteen efficacy trials involving 10,971 participants were included. There were ten trials of SPf66 vaccine, four trials of CS-NANP vaccines, two trials of RTS,S vaccine, and two of MSP/RESA vaccine. Results with SPf66 in reducing new malaria infections (P. falciparum) were heterogeneous: it was not effective in four African trials (Peto odds ratio (OR) 0.96, 95% confidence interval (CI) 0.81 to 1.14), but in five trials outside Africa the number of first attacks was reduced (Peto OR 0.77, 95% CI 0.67 to 0.88). Trials to date have not indicated any serious adverse events with SPf66 vaccine. In three trials of CS-NANP vaccines, there was no evidence for protection by these vaccines against P. falciparum malaria (Peto OR 1.12, 95% CI 0.64 to 1.93). In a small trial in non-immune adults in the USA, RTS,S gave strong protection against experimental infection with P. falciparum. In a trial in an endemic area of the Gambia in semi-immune people, there was a reduction in clinical malaria episodes in the second year of follow up, corresponding to a vaccine efficacy of 66% (CI 14% to 85%). In a trial in Papua New Guinea, MSP/RESA had no protective effect against episodes of clinical malaria. There was evidence of an effect on parasite density, but this differed according to whether the participants had been pretreated with sulfadoxine/pyrimethamine or not. The prevalence of infections with the parasite subtype of MSP2 in the vaccine was reduced compared with the other subtype (Peto OR 0.35, CI 0.23 to 0.53). AUTHORS' CONCLUSIONS There is no evidence for protection by SPf66 vaccines against P. falciparum in Africa. There is a modest reduction in attacks of P. falciparum malaria following vaccination with SPf66 in other regions. Further research with SPf66 vaccines in South America or with new formulations of SPf66 may be justified. There was not enough evidence to evaluate the use of CS-NANP vaccines. The RTS,S vaccine showed promising result, as did the MSP/RESA vaccine, but it should include the other main allelic form of MSP2. The MSP/RESA trial demonstrated that chemotherapy during a vaccine trial may reduce vaccine efficacy, and trials should consider very carefully whether this practice is justified.
Collapse
Affiliation(s)
- P Graves
- EpiVec Consulting, 606 Kimberly Lane NE, Atlanta, GA 30306, USA.
| | | |
Collapse
|