1
|
Pisuttu C, Risoli S, Cotrozzi L, Nali C, Pellegrini E, Hoshika Y, Baesso Moura B, Paoletti E. Untangling the role of leaf age specific osmoprotectant and antioxidant responses of two poplar clones under increasing ozone concentrations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108450. [PMID: 38402800 DOI: 10.1016/j.plaphy.2024.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Plants possess different degrees of tolerance to abiotic stress, which can mitigate the detrimental effect of environmental inputs affecting carbon balance. Less is known about the functions of osmoprotectants in scavenging of reactive oxygen species (ROS), generated at different sites depending on leaf age. This study aimed to clarify the osmotic adjustments adopted by old and young leaves of Oxford and I-214 poplar clones [differing in ozone (O3) sensitivity] to cope with three levels of O3 [ambient (AA), and two elevated O3 levels]. In both clones, the impact of intermediate O3 concentrations (1.5 × AA) on ROS production appeared to be leaf age-specific, given the accumulation of hydrogen peroxide (H2O2) observed only in old leaves of the Oxford plants and in young leaves of the I-214 ones (2- fold higher than AA and +79%, respectively). The induction of an oxidative burst was associated with membrane injury, indicating an inadequate response of the antioxidative systems [decrease of lutein and β-carotene (-37 and -85% in the old leaves of the Oxford plants), accumulation of proline and tocopherols (+60 and +12% in the young leaves of the I-214 ones)]. Intermediate O3 concentrations reacted with unsaturated lipids of the plasma membrane in old and young leaves of the Oxford plants, leading to an increase of malondialdehyde by-products (more than 2- fold higher than AA), while no effect was recorded for I-214. The impact of the highest O3 concentrations (2.0 × AA) on ROS production did not appear clone-specific, which may react with cell wall components by leading to oxidative pressure. Outcomes demonstrated the ability of young leaves of I-214 plants in contain O3 phytotoxic effects.
Collapse
Affiliation(s)
- Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; University of School for Advanced Studies IUSS, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy.
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
2
|
Cotrozzi L, Conti B, Lorenzini G, Pellegrini E, Nali C. In the tripartite combination ozone-poplar-Chrysomela populi, the pollutant alters the plant-insect interaction via primary metabolites of foliage. ENVIRONMENTAL RESEARCH 2021; 201:111581. [PMID: 34174255 DOI: 10.1016/j.envres.2021.111581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O3)-induced metabolic changes in leaves are relevant and may have several ecological significances. Here, variations in foliar chemistry of two poplar clones (Populus deltoides × maximowiczii, Eridano, and P. × euramericana, I-214) under a chronic O3 treatment (80 ppb, 5 h d-1 for 10 consecutive days) were investigated. The aim was to elucidate if leaf age and/or O3-sensitivity (considering Eridano and I-214 as O3-sensitive and O3-resistant, respectively) can affect suitability of poplar foliage for Chrysomela populi L. (Coleoptera Chrysomelidae), in terms of palatability. Comparing controls, only low amino acid (AA) contents were reported in Eridano [about 3- and 4-fold in mature and young leaves (ML and YL, respectively)], and all the investigated primary metabolites [i.e. water soluble carbohydrates (WSC), proteins (Prot) and AA] were higher in YL than in ML of I-214 (+23, +54 and + 20%, respectively). Ozone increased WSC only in YL of Eridano (+24%, i.e. highest values among samples; O3 effects are always reported comparing O3-treated plants with the related controls). A concomitant decrease of Prot was observed in both ML and YL of Eridano, while only in YL of I-214 (-41, -45 and -51%, respectively). In addition, O3 decreased AA in YL of Eridano and in ML of I-214 (-40 and -14%, respectively). Comparing plants maintained under charcoal-filtered air, total ascorbate (Asc) was lower in Eridano in both ML and YL (around -22%), and abscisic acid (ABA) was similar between clones; furthermore, higher levels of Asc were reported in YL than in ML of Eridano (+19%). Ozone increased Asc and ABA (about 2- and 3-fold, respectively) in both ML and YL of Eridano, as well as ABA in YL of I-214 (about 2-fold). Comparing leaves maintained under charcoal-filtered air, the choice feeding test showed that the 2nd instar larvae preferred YL, and the quantity of YL consumed was 9 and 4-fold higher than ML in Eridano and I-214, respectively. Comparing leaves exposed to O3-treatment, a significant feeding preference for YL disks was also observed, regardless of the clone. The no-choice feeding test showed that larval growth was slightly higher on untreated YL than on untreated ML (+19 and + 10% in Eridano and I-214, respectively). The body mass of larvae fed with O3-treated YL was also significantly higher than that of larvae fed with untreated YL (3- and 2-fold in Eridano and I-214). This study highlights that realistic O3 concentrations can significantly impact the host/insect interactions, a phenomenon dependent on leaf age and O3-sensitivity of the host.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy.
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| |
Collapse
|
3
|
Kask K, Kaurilind E, Talts E, Kännaste A, Niinemets Ü. Combined Acute Ozone and Water Stress Alters the Quantitative Relationships between O 3 Uptake, Photosynthetic Characteristics and Volatile Emissions in Brassica nigra. Molecules 2021; 26:molecules26113114. [PMID: 34070994 PMCID: PMC8197083 DOI: 10.3390/molecules26113114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Ozone (O3) entry into plant leaves depends on atmospheric O3 concentration, exposure time and openness of stomata. O3 negatively impacts photosynthesis rate (A) and might induce the release of reactive volatile organic compounds (VOCs) that can quench O3, and thereby partly ameliorate O3 stress. Water stress reduces stomatal conductance (gs) and O3 uptake and can affect VOC release and O3 quenching by VOC, but the interactive effects of O3 exposure and water stress, as possibly mediated by VOC, are poorly understood. Well-watered (WW) and water-stressed (WS) Brassica nigra plants were exposed to 250 and 550 ppb O3 for 1 h, and O3 uptake rates, photosynthetic characteristics and VOC emissions were measured through 22 h recovery. The highest O3 uptake was observed in WW plants exposed to 550 ppb O3 with the greatest reduction and poorest recovery of gs and A, and elicitation of lipoxygenase (LOX) pathway volatiles 10 min-1.5 h after exposure indicating cellular damage. Ozone uptake was similar in 250 ppb WW and 550 ppb WS plants and, in both treatments, O3-dependent reduction in photosynthetic characteristics was moderate and fully reversible, and VOC emissions were little affected. Water stress alone did not affect the total amount and composition of VOC emissions. The results indicate that drought ameliorated O3 stress by reducing O3 uptake through stomatal closure and the two stresses operated in an antagonistic manner in B. nigra.
Collapse
Affiliation(s)
- Kaia Kask
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
- Correspondence:
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
| | - Eero Talts
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
| | - Astrid Kännaste
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia; (E.K.); (E.T.); (A.K.); (Ü.N.)
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
4
|
Sen Gupta G, Tiwari S. Role of antioxidant pool in management of ozone stress through soil nitrogen amendments in two cultivars of a tropical legume. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:371-385. [PMID: 33256894 DOI: 10.1071/fp20159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
The present experiment was done on two different cultivars of a tropical legume, Cymopsis tetragonoloba L. Taub. (cluster bean) cvv. Pusa-Naubahar (PUSA-N) and Selection-151 (S-151). The experiment was conducted under ambient ozone (O3) conditions with inputs of three different doses of inorganic nitrogen (N1, recommended; N2, 1.5-times recommended and N3, 2-times recommended) as well as control plants. The objective of this study was to evaluate the effectiveness of soil nitrogen amendments in management of ambient ozone stress in the two cultivars of C. tetragonoloba. Our experiment showed that nitrogen amendments can be an efficient measure to manage O3 injury in plants. Stimulation of antioxidant enzyme activities under nitrogen amendments is an important feature of plants that help plants cope with ambient O3 stress. Nitrogen amendments strengthened the antioxidant machinery in a more effective way in the tolerant cultivar PUSA-N, while in the sensitive cultivar S-151, avoidance strategy marked by more reduction in stomatal conductance was more prominent. Enzymes of the Halliwell-Asada pathway, especially ascorbate peroxidase and glutathione reductase, were more responsive and synchronised in PUSA-N than S-151, under similar nitrogen amendment regimes and were responsible for the differential sensitivities of the two cultivars of C. tetragonoloba. The present study shows that 1.5-times recommended dose of soil nitrogen amendments was sufficient in partial mitigation of O3 injury and the higher nitrogen dose (2-times recommended, in our case), did not provide any extra advantage to the plant's metabolism compared with plants treated with the lower nitrogen dose (1.5-times recommended).
Collapse
Affiliation(s)
- Gereraj Sen Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India; and Corresponding author.
| |
Collapse
|
5
|
Dusart N, Vaultier MN, Olry JC, Buré C, Gérard J, Jolivet Y, Le Thiec D. Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1687-1697. [PMID: 31284211 DOI: 10.1016/j.envpol.2019.06.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
Collapse
Affiliation(s)
- Nicolas Dusart
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | | | - Jean-Charles Olry
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Cyril Buré
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Joëlle Gérard
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Didier Le Thiec
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France.
| |
Collapse
|
6
|
Singh AA, Fatima A, Mishra AK, Chaudhary N, Mukherjee A, Agrawal M, Agrawal SB. Assessment of ozone toxicity among 14 Indian wheat cultivars under field conditions: growth and productivity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:190. [PMID: 29502252 DOI: 10.1007/s10661-018-6563-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Tropospheric ozone (O3) is a well-known threat to global agricultural production. Wheat (Triticum aestivum L.) is the second most important staple crop in India, although little is known about intra-specific variability of Indian wheat cultivars in terms of their sensitivity against O3. In this study, 14 wheat cultivars widely grown in India were exposed to 30 ppb elevated O3 above ambient level using open top chambers to evaluate their response against O3 stress. Different growth and physiological parameters, foliar injury and grain yield were evaluated to assess the sensitivity of cultivars and classified them on the basis of their cumulative stress response index (CSRI). Due to elevated O3, growth parameters, plant biomass, and photosynthetic rates were negatively affected, whereas variable reductions in yield were observed among the test cultivars. Based on CSRI values, HD 2987, DBW 50, DBW 77, and PBW 550 were classified as O3 sensitive; HD 2967, NIAW 34, HD 3059, PBW 502, HUW 213, and HUW 251 as intermediately sensitive, while HUW12, KUNDAN, HUW 55, and KHARCHIYA 65 were found to be O3-tolerant cultivars. Cultivars released after year 2000 were found to be more sensitive compared to earlier released cultivars. Path analysis approach showed that leaf area, plant biomass, stomatal conductance, net assimilation rate, and absolute growth rate were the most important variables influencing yield under O3 stress. Findings of the current study highlight the importance of assessing differential sensitivity and tolerance of wheat cultivars and response of different traits in developing resistance against elevated O3.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, Delhi, India
| | - Adeeb Fatima
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Kumar Mishra
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Life Sciences, Ben-Gurion University of the Negev, Rager Blvd, 8410501, Beer Sheva, Israel
| | - Nivedita Chaudhary
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Field Crops and Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Gilat Research Centre, 85280, M.P. Negev, Israel
| | - Arideep Mukherjee
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Kanagendran A, Pazouki L, Li S, Liu B, Kännaste A, Niinemets Ü. Ozone-triggered surface uptake and stress volatile emissions in Nicotiana tabacum 'Wisconsin'. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:681-697. [PMID: 29301045 PMCID: PMC5853501 DOI: 10.1093/jxb/erx431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/17/2017] [Indexed: 05/04/2023]
Abstract
Ozone is a strong oxidant and a key stress elicitor. The immediate and longer term impacts of ozone are poorly understood in species with emission of both de novo synthesized and stored volatiles, such a tobacco (Nicotiana tabacum), which has terpene-containing glandular trichomes on the leaf surface. In this study, we exposed N. tabacum 'Wisconsin' leaves to acute ozone doses of 0 (control), 400, 600, 800, and 1000 ppb for 30 min and studied the effects of ozone exposure on ozone uptake, gas-exchange characteristics, and emissions of lipoxygenase pathway volatiles, monoterpenes, and sesquiterpenes. Foliage emissions of lipoxygenase pathway volatiles were quantitatively related to the severity of ozone exposure, but the stress dose vs. emission relationship was weaker for terpenoids. Analysis of leaf terpene content and composition indicated that several monoterpenes and sesquiterpenes were not stored in leaves and were synthesized de novo upon ozone exposure. The highest degree of elicitation for each compound was observed immediately after ozone treatment and it declined considerably during recovery. Leaf ozone uptake was dominated by non-stomatal deposition, and the emissions of total lipoxygenase pathway volatiles and mono- and sesquiterpenes were positively correlated with non-stomatal ozone deposition. Overall, this study demonstrates remarkably high ozone resistance of the studied tobacco cultivar and indicates that ozone's effects on volatile emissions primarily reflect modifications in the release of stored volatiles and reaction of ozone with the leaf surface structure.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Shuai Li
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
8
|
Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland. ATMOSPHERE 2017. [DOI: 10.3390/atmos8090175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Hu E, Gao F, Xin Y, Jia H, Li K, Hu J, Feng Z. Concentration- and flux-based ozone dose-response relationships for five poplar clones grown in North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:21-30. [PMID: 26340296 DOI: 10.1016/j.envpol.2015.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 05/10/2023]
Abstract
Concentration- and flux-based O3 dose-response relationships were developed for poplars in China. Stomatal conductance (gs) of five poplar clones was measured to parameterize a Jarvis-type multiplicative gs model. The maximum gs and other model parameters varied between clones. The strongest relationship between stomatal O3 flux and total biomass was obtained when phytotoxic ozone dose (POD) was integrated using an uptake rate threshold of 7 nmol m(-2) s(-1). The R(2) value was similar between flux-based and concentration-based dose-response relationships. Ozone concentrations above 28-36 nmol mol(-1) contributed to reducing the biomass production of poplar. Critical levels of AOT40 (accumulated O3 exposure over 40 nmol mol(-1)) and POD7 in relation to 5% reduction in total biomass for poplar were 12 μmol mol(-1) h and 3.8 mmol m(-2), respectively.
Collapse
Affiliation(s)
- Enzhu Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Yue Xin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Haidian District, Beijing, 100091, China
| | - Kaihui Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Haidian District, Beijing, 100091, China.
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
| |
Collapse
|
10
|
Pellegrini E, Francini A, Lorenzini G, Nali C. Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13083-93. [PMID: 25925147 DOI: 10.1007/s11356-015-4569-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/19/2015] [Indexed: 05/27/2023]
Abstract
Ecophysiological and antioxidant traits were evaluated in sage (Salvia officinalis) plants exposed to 120 ppb of ozone for 90 consecutive days (5 h day(-1)). At the end of fumigation, plants showed slight leaf yellowing that could be considered the first visual symptom of leaf senescence. Ozone-stressed leaves showed (1) reduced photosynthetic activity (-70 % at the end of exposure), (2) chlorophyll loss (-59 and -56 % of chlorophyll a and b concentrations, starting from 30 days from the beginning of exposure), and (3) cellular water deficit (-12 % of the relative water content at the end of the fumigation). These phenomena are indicative of oxidative stress in the chloroplasts (as confirmed by the strong degradation of β-carotene) despite the photoprotection conferred by xanthophyll cycle [as demonstrated by the significant rise of de-epoxidation index, reaching the maximum value at the end of the treatment (+69 %)], antioxidant compounds [as confirmed by the increase of phenols (in particular caffeic acid and rosmarinic acid)], and water-soluble carbohydrates (especially monosaccharides). By means of combined ecophysiological and biochemical approaches, this study demonstrates that S. officinalis is able to activate an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | | | | | | |
Collapse
|
11
|
Maamar B, Maatoug M, Iriti M, Dellal A, Ait hammou M. Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12124-32. [PMID: 25877902 DOI: 10.1007/s11356-015-4490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/05/2015] [Indexed: 05/13/2023]
Abstract
The sensitivity of two tomato (Solanum lycopersicum L.) cultivars, Rechaiga II and De Colgar, to 50, 80, and 100 ppb ozone (O3) exposures was assessed in fumigation chamber, during 4 h per day over a period of 7 days. The Rechaiga II variety was shown to be sensitive to the dose of 50 ppb, showing chlorotic spots on the adaxial leaf surface and alterations of some physiological parameters. During 1-week fumigation, ozone caused a decrease in stomatal conductance, chlorophylls a and b, total chlorophylls, and carotenoids, although soluble sugars and membrane integrity were significantly increased in fumigated plants compared to controls. This trend was similar for the three pollutant doses used in fumigation. The De Colgar tomato remained asymptomatic.
Collapse
Affiliation(s)
- Benchohra Maamar
- Laboratory of Agro-Biotechnology and Nutrition on Semi-arid Areas, Faculty of Natural and Life Sciences, Ibn khaldoun University of Tiaret, Tiaret, Algeria,
| | | | | | | | | |
Collapse
|
12
|
Singh AA, Singh S, Agrawal M, Agrawal SB. Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 233:129-184. [PMID: 25367135 DOI: 10.1007/978-3-319-10479-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Urbanization, industrialization and unsustainable utilization of natural resources have made tropospheric ozone (03) one of the world's most significant air pollutants. Past studies reveal that 0 3 is a phytotoxic air pollutant that causes or enhances food insecurity across the globe. Plant sensitivity, tolerance and resistance to 0 3 involve a wide array of responses that range from growth to the physiological, biochemical and molecular. Although plants have an array of defense systems to combat oxidative stress from 0 3 exposure, they still suffer sizable yield reductions. In recent years, the ground-level 0 3 concentrations to which crop plants have been exposed have caused yield loses that are economically damaging. Several types of chemicals have been applied or used to mitigate the effects produced by 0 3 on plants. These include agrochemicals (fungicides, insecticides, plant growth regulators), natural antioxidants, and others. Such treatments have been effective to one degree to another, in ameliorating Or generated stress in plants. Ethylene diurea (EDU) has been the most effective protectant used and has also served as a monitoring agent for assessing plant yield losses from 0 3 exposure. In this review, we summarize the data on how EDU has been used, the treatment methods tested, and application doses found to be both protective and toxic in plants. We have also summarized data that address the nature and modes of action (biophysical and biochemical) of EDU. In general, the literature discloses that EDU is effective in reducing ozone damage to plants, and indicates that EDU should be more widely used on 0 3 sensitive plants as a tool for biomonitoring of 0 3 concentrations. Biomonitoring studies that utilize EDU are very useful for rural and remote areas and in developing countries where 0 3 monitoring is constrained from unavailability of electricity. The mechanism(s) by which EDU prevents 0 3 toxicity in plants is still not completely known. EDU possesses great utility for screening plant sensitivity under field conditions in areas that experience high 0 3 concentrations, because EDU prevents 0 3 toxicity only in 0 3 sensitive plants. Ozone-resistant plants do not respond positively to EDU applications. However, EDU application dose and frequency must be standardized before it can be effectively and widely used for screening 0 3 sensitivity in plants. EDU acts primarily by enhancing biochemical plant defense and delaying Or induced senescence, thereby reducing chlorophyll loss, and maintaining physiological efficiency and primary metabolites; these actions enhance growth, biomass and yield of plants. We believe that future studies are needed to better address the EDU dose response relationship for many plant species, and to screen for new cultivars that can resist 0 3 stress. Although some research on the physiological and biochemical mechanisms of action of EDU have been performed, the new 'omics' tools have not been utilized to evaluate EDUs mechanism of action. Such data are needed, as is gene expression and proteome profiling studies on EDU-treated and -untreated plants.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Lab of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | |
Collapse
|
13
|
Ismail IM, Basahi JM, Hassan IA. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:585-593. [PMID: 25169873 DOI: 10.1016/j.scitotenv.2014.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009-2013) at a rural site in northern Egypt. Net photosynthetic rates (PN), stomatal conductance (gs), intercellular CO2 (Ci) and chlorophyll fluorescence were measured. Ozone (O3) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. PN of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O3. The maximum impairment in PN was recorded in the cultivar Victory (46%) in 2013 when the highest O3 levels were recorded (90 nL L(-1)). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between PN and Ci, indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The PN vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (ΦPSII) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively.
Collapse
Affiliation(s)
- I M Ismail
- Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - J M Basahi
- Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - I A Hassan
- Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Department of Botany, Faculty of Science, Alexandria University, 21526 El Shatby, Alexandria, Egypt.
| |
Collapse
|
14
|
Silva SF, Meirelles ST, Moraes RM. The guava tree as bioindicator during the process of fuel replacement of an oil refinery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 91:39-45. [PMID: 23391563 DOI: 10.1016/j.ecoenv.2013.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
This study was performed to verify whether the exchange of the fuel used in the boilers of a crude oil refinery located in Cubatão (SE Brazil) would result in alterations on gas exchange, growth and leaf injuries in saplings of Psidium guajava 'Paluma'. The purpose of the refinery was to reduce the SO2 emission, but using natural gas as fuel could increase the concentrations of O3 precursors in the atmosphere. Thus a biomonitoring was performed with a native species sensitive to O3. The plants were exposed in five areas (CM1, CM5, CEPEMA, Centro, and RP) at different distances to the refinery, both before and after the fuel exchange. We performed six exposures under environmental conditions, with length of ca. 90 days each. With the utilization of natural gas, the saplings presented reductions in carbon assimilation rate under saturating light conditions (Asat, μmolCO2m(-2)s(-1)) and the stomatal conductance (gs, molH2Om(-2)s(-1)), and increase in height, number of leaves, and dry mass of leaves and shoots. There were also reductions in root dry mass and in the root/shoot ratio. The saplings also presented O3-induced leaf injuries. The responses of P. guajava 'Paluma' were altered after the fuel exchange as a result of a new combination of pollutants in the atmosphere. The fuel exchange has not resulted in environmental benefit to the surrounding forest; it has only altered the contamination profile of the region.
Collapse
Affiliation(s)
- Simone F Silva
- Instituto de Botânica, Caixa Postal 3005, 01061-970 São Paulo, SP, Brazil.
| | | | | |
Collapse
|
15
|
Tripathi R, Agrawal SB. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 85:1-12. [PMID: 22986091 DOI: 10.1016/j.ecoenv.2012.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 06/01/2023]
Abstract
Tropospheric ozone (O(3)) has become a serious threat to growth and yield of important agricultural crops over Asian regions including India. Effect of elevated O(3) (ambient+10ppb) was studied on Brassica campestris L. (cv. Sanjukta and Vardan) in open top chambers under natural field conditions. Eight hourly mean ambient O(3) concentration varied from 26.3ppb to 69.5ppb during the growth period. Plants under O(3) exposure showed reductions in photosynthetic rate, reproductive parameters, yield as well as seed and oil quality. Cultivar Sanjukta showed more reduction in photosynthetic characteristics, reproductive structures and seed and oil quality. However, total yield was more affected in Vardan. Exposure of O(3) increased the degree of unsaturation and level of PUFA, ω-6fatty acid, linolenic acid and erucic acid in oil indicating the deterioration of its quality. The study further confirmed that there is a correspondence between O(3) induced change in photosynthetic processes, reproductive development and yield and did not find any compensatory response in the final yield.
Collapse
Affiliation(s)
- Ruchika Tripathi
- Lab of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
16
|
Volatiles emission patterns in poplar clones varying in response to ozone. J Chem Ecol 2012; 38:924-32. [PMID: 22811004 DOI: 10.1007/s10886-012-0162-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
The volatiles emitted from young and old leaves of two poplar clones (Populus deltoides x maximowiczii, Eridano, and P. x euramericana, I-214) were sampled after exposure to ozone (80 ppb, 5 h d(-1), for 10 consecutive days) by solid phase microextraction and characterized by GC-MS. Only mature leaves of the ozone-sensitive Eridano clone developed necrosis in response to ozone exposure, and their membrane integrity was significantly affected by ozone (+86 and +18 % of levels of thiobarbituric acid reactive substances in mature and young leaves). The headspace of the poplar clones studied here contained mono- and sesquiterpenes, both hydrocarbons and oxygenated ones in Eridano, and only hydrocarbons in the clone I-214. Furthermore, some non-terpenes, such as C(9)-C(15) straight-chain aldehydes and C(12)-C(16) saturated and unsaturated aliphatic hydrocarbons, were detected. Other common non-terpene volatiles were oxygenated aliphatic compounds, mainly C(6)-alcohols and their acetates. Ozone exposure induced a strong change in volatile profiles, depending on clones and leaf age. Regardless of leaf age, in clone I-214, quantities of oxygenated monoterpenes tended to increase after ozone exposure, however, "O(3) x leaf age" was not significant. In clone Eridano, increases were observed in emissions of hydrocarbons and oxygenated sesquiterpenes in response to ozone treatment. (Z)-3-Hexen-1-ol and (Z)-3-hexenol acetate were present in traces in the headspace of untreated Eridano mature leaves, but quantities slightly increased after ozone treatment. Quantities of non-terpene oxygenated compounds dropped in the headspace of young leaves of both clones (-24 and -44 % in Eridano and I-214) and also in mature ones of I-214 (-50 %) after ozone exposure. Similarly, quantities of non-terpene hydrocarbons in the emissions from mature leaves of both clones (-58 and -49 %, respectively) decreased, while these compounds increased in young leaves of Eridano (+83 %). We suggest that the resistance of the poplar clone I-214 to O(3) is achieved by: i) monoterpenes constitutively present in young leaves and ii) increase of monoterpene content induced by O(3) in mature leaves.
Collapse
|
17
|
Tiwari S, Agrawal M. Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 175:443-454. [PMID: 20582740 DOI: 10.1007/s10661-010-1542-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
The present investigation was done to evaluate the effects of ambient air pollutants on physiological and biochemical characteristics of radish (Raphnus sativa L. var. Pusa Reshmi) and brinjal (Solanum melongena L. var. Pusa hybrid-6) plants grown in open-top chambers with filtered (FCs) and non-filtered (NFCs) treatments at a suburban site in Varanasi, India. Eight hourly mean concentrations of 11.8, 20.8, and 40.8 ppb for SO2, NO2, and O3, respectively, were recorded. O3 was the most significant pollutant affecting the plant performance. Photosynthetic rate and stomatal conductance declined in both the test plants in NFCs as compared to FCs. Lipid peroxidation was higher in NFCs, but the increase was more in radish compared to brinjal. The constitutive levels of the antioxidants as well as their increments upon O3 exposure were of higher magnitude in brinjal as compared to radish. Reduction in Fv/Fm ratio of the plants in NFCs was a regulatory mechanism to cope with the inefficiency of Calvin cycle. The data indicate that O3 triggered the protective mechanisms in plants which resulted in increments in enzymatic and non-enzymatic antioxidants of O3-exposed plants. The variability of the magnitude of responses in radish and brinjal due to O3 stress suggests that radish is more susceptible to ambient O3 injury compared to brinjal.
Collapse
Affiliation(s)
- Supriya Tiwari
- Department of Botany, S.S.S.V.S. Government PG College, Chunar, Mirzapur, India
| | | |
Collapse
|
18
|
Cho K, Tiwari S, Agrawal SB, Torres NL, Agrawal M, Sarkar A, Shibato J, Agrawal GK, Kubo A, Rakwal R. Tropospheric ozone and plants: absorption, responses, and consequences. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 212:61-111. [PMID: 21432055 DOI: 10.1007/978-1-4419-8453-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ozone is now considered to be the second most important gaseous pollutant in our environment. The phytotoxic potential of O₃ was first observed on grape foliage by B.L. Richards and coworkers in 1958 (Richards et al. 1958). To date, unsustainable resource utilization has turned this secondary pollutant into a major component of global climate change and a prime threat to agricultural production. The projected levels to which O₃ will increase are critically alarming and have become a major issue of concern for agriculturalists, biologists, environmentalists and others plants are soft targets for O₃. Ozone enters plants through stomata, where it disolves in the apoplastic fluid. O₃ has several potential effects on plants: direct reaction with cell membranes; conversion into ROS and H₂O₂ (which alters cellular function by causing cell death); induction of premature senescence; and induction of and up- or down-regulation of responsive components such as genes , proteins and metabolites. In this review we attempt to present an overview picture of plant O₃ interactions. We summarize the vast number of available reports on plant responses to O₃ at the morphological, physiological, cellular, biochemical levels, and address effects on crop yield, and on genes, proteins and metabolites. it is now clear that the machinery of photosynthesis, thereby decreasing the economic yield of most plants and inducing a common morphological symptom, called the "foliar injury". The "foliar injury" symptoms can be authentically utilized for biomonitoring of O₃ under natural conditions. Elevated O₃ stress has been convincingly demonstrated to trigger an antioxidative defense system in plants. The past several years have seen the development and application of high-throughput omics technologies (transcriptomics, proteomics, and metabolomics) that are capable of identifying and prolifiling the O₃-responsive components in model and nonmodel plants. Such studies have been carried out ans have generated an inventory of O₃-Responsive components--a great resource to the scientific community. Recently, it has been shown that certain organic chemicals ans elevated CO₂ levels are effective in ameliorating O₃-generated stress. Both targeted and highthroughput approaches have advanced our knowledge concerning what O₃-triggerred signaling and metabolic pathways exist in plants. Moreover, recently generated information, and several biomarkers for O₃, may, in the future, be exploited to better screen and develop O₃-tolerant plants.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu, Nepal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bohler S, Sergeant K, Lefèvre I, Jolivet Y, Hoffmann L, Renaut J, Dizengremel P, Hausman JF. Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. TREE PHYSIOLOGY 2010; 30:1415-32. [PMID: 21030406 DOI: 10.1093/treephys/tpq082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Populus tremula L. × Populus alba L. (Populus ×c anescens (Aiton) Smith) - clone INRA 717-1-B4 saplings (50 cm apex to base and carrying 19 leaves on average) - were followed for 28 days. Half of the trees were grown in charcoal-filtered air while the other half were exposed to 120 ppb ozone for 11 h a day during the light period. The expanding leaf number 4 was tagged at the beginning of the experiment and finished expansion between 7 and 14 days. These leaves were harvested weekly for biochemical and proteome analyses using quantitative bidimensional electrophoresis (DiGE). Independent of the ozone treatment, all the analyses allowed a distinction between expanding and adult leaves. The results indicate that during the expansion phase (Days 0-7) the enzymatic machinery of the leaves is set up, and remains dynamically stable in the adult leaves (Days 14-28). Although ozone had no apparent effect on expanding leaves, the metabolic stability in fully expanded leaves observed in ozone-free plants was disturbed after 2 weeks of exposure and a stress-induced response became apparent.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of Environment and Agro-biotechnologies, CRP-Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, GD Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Fares S, Oksanen E, Lännenpää M, Julkunen-Tiitto R, Loreto F. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. PHOTOSYNTHESIS RESEARCH 2010; 104:61-74. [PMID: 20407831 DOI: 10.1007/s11120-010-9549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.
Collapse
Affiliation(s)
- Silvano Fares
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome, Italy.
| | | | | | | | | |
Collapse
|
21
|
Singh E, Tiwari S, Agrawal M. Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11 Suppl 1:101-8. [PMID: 19778374 DOI: 10.1111/j.1438-8677.2009.00263.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Global climatic change scenarios predict a significant increase in future tropospheric ozone (O(3)) concentrations. The present investigation was done to assess the effects of elevated O(3) (70 and 100 ppb) on electron transport, carbon fixation, stomatal conductance and pigment concentrations in two tropical soybean (Glycine max L.) varieties, PK 472 and Bragg. Plants were exposed to O(3) for 4 h.day(-1) from 10:00 to 14:00 from germination to maturity. Photosynthesis of both varieties were adversely affected, but the reduction was higher in PK 472 than Bragg. A comparison of chlorophyll a fluorescence kinetics with carbon fixation suggested greater sensitivity of dark reactions than light reactions of photosynthesis to O(3) stress. The O(3)-induced uncoupling between photosynthesis and stomatal conductance in PK 472 suggests the reduction in photosynthesis may be attributed to a factor other than reduced stomatal conductance. An increase in internal CO(2) concentration in both O(3)-treated soybean varieties compared suggests that the reduction in photosynthesis was due to damage to the photosynthetic apparatus, leading to accumulation of internal CO(2) and stomatal closure. The adverse impact of O(3) stress increased at higher O(3) concentrations in both soybean varieties leading to large reductions in photosynthesis. This study suggests that O(3)-induced reductions in photosynthesis in tropical and temperate varieties are similar.
Collapse
Affiliation(s)
- E Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
22
|
Miles GP, Samuel MA, Ellis BE. Suppression of MKK5 reduces ozone-induced signal transmission to both MPK3 and MPK6 and confers increased ozone sensitivity in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2009; 4:687-92. [PMID: 19820329 PMCID: PMC2801376 DOI: 10.4161/psb.4.8.9298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, ozone-induced signaling has been shown to involve the mitogen-activated protein kinases (MAPKs) MPK3 and MPK6. To identify a possible ozone-induced mitogen-activated protein kinase kinase (MAPKK) involved in the activation of these specific MAPKs, we employed RNA interference-(RNAi)-based suppression of MKK5, a known cognate MAPKK to both MPK3 and MPK6. When exposed to ozone, activation of both MPK3 and MPK6 was markedly reduced in the MKK5-suppressed plants compared to WT. Additionally, the MKK5-suppressed plants were found to be highly sensitive to ozone as determined by visible leaf damage concomitant with elevated levels of leaf-localised H(2)O(2). Taken together, our data suggest MKK5 functions both in ozone-induced activation of MPK3 and MPK6 and in integrating ROS homeostasis during ozone stress.
Collapse
Affiliation(s)
- Godfrey P Miles
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, CA.
| | | | | |
Collapse
|
23
|
Castagna A, Ranieri A. Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1461-1469. [PMID: 18954925 DOI: 10.1016/j.envpol.2008.09.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/12/2008] [Indexed: 05/27/2023]
Abstract
Plants react to O(3) threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O(3) uptake, differences in O(3) tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O(3)-driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O(3) sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed.
Collapse
Affiliation(s)
- A Castagna
- Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | | |
Collapse
|
24
|
Renaut J, Bohler S, Hausman JF, Hoffmann L, Sergeant K, Ahsan N, Jolivet Y, Dizengremel P. The impact of atmospheric composition on plants: a case study of ozone and poplar. MASS SPECTROMETRY REVIEWS 2009; 28:495-516. [PMID: 18985755 DOI: 10.1002/mas.20202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tropospheric ozone is the main atmospheric pollutant that causes damages to trees. The estimation of the threshold for ozone risk assessment depends on the evaluation of the means that this pollutant impacts the plant and, especially, the foliar organs. The available results show that, before any visible symptom appears, carbon assimilation and the underlying metabolic processes are decreased under chronic ozone exposure. By contrast, the catabolic pathways are enhanced, and contribute to the supply of sufficient reducing power necessary to feed the detoxification processes. Reactive oxygen species delivered during ozone exposure serve as toxic compounds and messengers for the signaling system. In this review, we show that the contribution of genomic tools (transcriptomics, proteomics, and metabolomics) for a better understanding of the mechanistic cellular responses to ozone largely relies on spectrometric measurements.
Collapse
Affiliation(s)
- Jenny Renaut
- Centre de Recherche Public-Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), Belvaux, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Ryan A, Cojocariu C, Possell M, Davies WJ, Hewitt CN. Defining hybrid poplar (Populus deltoides x Populus trichocarpa) tolerance to ozone: identifying key parameters. PLANT, CELL & ENVIRONMENT 2009; 32:31-45. [PMID: 19076530 DOI: 10.1111/j.1365-3040.2008.01897.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study examined whether two genotypes of hybrid poplar (Populus deltoides x Populus trichocarpa), previously classified as ozone tolerant and ozone sensitive, had differing physiological and biochemical responses when fumigated with 120 nL L(-1) ozone for 6 h per day for eight consecutive days. Isoprene emission rate, ozone uptake and a number of physiological and biochemical parameters were investigated before, during and after fumigation with ozone. Previous studies have shown that isoprene protects plants against oxidative stress. Therefore, it was hypothesized that these two genotypes would differ in either their basal isoprene emission rates or in the response of isoprene to fumigation by ozone. Our results showed that the basal emission rates of isoprene, physiological responses and ozone uptake rates were all similar. However, significant differences were found in visible damage, carotenoids, hydrogen peroxide (H(2)O(2)), thiobarbituric acid reactions (TBARS) and post-fumigation isoprene emission rates. It is shown that, although the classification of ozone tolerance or sensitivity had been previously clearly and carefully defined using one particular set of parameters, assessment of other key variables does not necessarily lead to the same conclusions. Thus, it may be necessary to reconsider the way in which plants are classified as ozone tolerant or sensitive.
Collapse
Affiliation(s)
- A Ryan
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | | | | |
Collapse
|
27
|
Clebsch CC, Divan Junior AM, Oliveira PL, Nicolau M. Physiological disturbances promoted by ozone in five cultivars of Phaseolus vulgaris L. ACTA ACUST UNITED AC 2009. [DOI: 10.1590/s1677-04202009000400008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bean seedlings of Fepagro 26, Guapo Brilhante, Iraí, Macotaço and US Pinto 111 cultivars were submitted to treatments with or without addition of ozone to the ambient air, in order to evaluate the effects of exposure on photosynthesis, relative electrolyte leakage, foliar abscission and biomass of the seedlings. Exposure to ozone caused significant decreases in the net assimilation of all cultivars except Iraí. It also caused a significant increase in electrolyte leakage from the Pinto cultivar, but only when AOT40 was the highest. It also produced significant anticipation in the time of foliar abscission in the Pinto, Fepagro and Guapo cultivars. The variability observed in the biomass measurements reflected the limitations to perform long-term controlled-environment studies, one of the major challengers yet to be overcome in order to obtain more conclusive data on damages induced on crop species resulting from tropospheric ozone enrichment.
Collapse
|
28
|
Cheng FY, Burkey KO, Robinson JM, Booker FL. Leaf extracellular ascorbate in relation to O(3) tolerance of two soybean cultivars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 150:355-62. [PMID: 17442469 DOI: 10.1016/j.envpol.2007.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 01/22/2007] [Accepted: 01/27/2007] [Indexed: 05/14/2023]
Abstract
Soybean [Glycine max (L.) Merr.] cultivars Essex and Forrest that exhibit differences in ozone (O(3)) sensitivity were used in greenhouse experiments to investigate the role of leaf extracellular antioxidants in O(3) injury responses. Charcoal-filtered air and elevated O(3) conditions were used to assess genetic, leaf age, and O(3) effects. In both cultivars, the extracellular ascorbate pool consisted of 80-98% dehydroascorbic acid, the oxidized form of ascorbic acid (AA) that is not an antioxidant. For all combinations of genotype and O(3) treatments, extracellular AA levels were low (1-30nmolg(-1) FW) and represented 3-30% of the total antioxidant capacity. Total extracellular antioxidant capacity was twofold greater in Essex compared with Forrest, consistent with greater O(3) tolerance of Essex. The results suggest that extracellular antioxidant metabolites in addition to ascorbate contribute to detoxification of O(3) in soybean leaves and possibly affect plant sensitivity to O(3) injury.
Collapse
Affiliation(s)
- Fang-Yi Cheng
- USDA-ARS Plant Science Research Unit and Department of Crop Science, North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607, USA
| | | | | | | |
Collapse
|
29
|
Bohler S, Bagard M, Oufir M, Planchon S, Hoffmann L, Jolivet Y, Hausman JF, Dizengremel P, Renaut J. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 2007; 7:1584-99. [PMID: 17486556 DOI: 10.1002/pmic.200600822] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tropospheric ozone pollution is described as having major negative effects on plants, compromising plant survival. Carbon metabolism is especially affected. In the present work, the effects of chronic ozone exposure were evaluated at the proteomic level in developing leaves of young poplar plants exposed to 120 ppb of ozone for 35 days. Soluble proteins (excluding intrinsic membrane proteins) were extracted from leaves after 3, 14 and 35 days of ozone exposure, as well as 10 days after a recovery period. Proteins (pI 4 to 7) were analyzed by 2-D DIGE experiments, followed by MALDI-TOF-TOF identification. Additional observations were obtained on growth, lesion formation, and leaf pigments analysis. Although treated plants showed large necrotic spots and chlorosis in mature leaves, growth decreased only slightly and plant height was not affected. The number of abscised leaves was higher in treated plants, but new leaf formation was not affected. A decrease in chlorophylls and lutein contents was recorded. A large number of proteins involved in carbon metabolism were identified. In particular, proteins associated with the Calvin cycle and electron transport in the chloroplast were down-regulated. In contrast, proteins associated with glucose catabolism increased in response to ozone exposure. Other identified enzymes are associated with protein folding, nitrogen metabolism and oxidoreductase activity.
Collapse
Affiliation(s)
- Sacha Bohler
- Centre de Recherche Public--Gabriel Lippmann, Département Environnement et Agrobiotechnologies, Belvaux, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ferretti M, Fagnano M, Amoriello T, Badiani M, Ballarin-Denti A, Buffoni A, Bussotti F, Castagna A, Cieslik S, Costantini A, De Marco A, Gerosa G, Lorenzini G, Manes F, Merola G, Nali C, Paoletti E, Petriccione B, Racalbuto S, Rana G, Ranieri A, Tagliaferri A, Vialetto G, Vitale M. Measuring, modelling and testing ozone exposure, flux and effects on vegetation in southern European conditions--what does not work? A review from Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 146:648-58. [PMID: 16889878 DOI: 10.1016/j.envpol.2006.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/09/2006] [Accepted: 05/11/2006] [Indexed: 05/11/2023]
Abstract
Ozone (O3) exposure at Italian background sites exceeds UN/ECE concentration-based critical levels (CLe(c)), if expressed in terms of AOT40. Yet the occurrence of adverse effects of O3 on forests and crops is controversial. Possible reasons include (i) ability of response indicators to provide an unbiased estimate of O3 effects, (ii) setting of current CLe(c) in terms of cut-off value and accumulation level, (iii) response functions adopted to infer a critical level, (iv) environmental limitation to O3 uptake and (v) inherent characteristics of Mediterranean vegetation. In particular, the two latter points suggest that critical levels based on accumulated stomatal flux (CLe(f)) can be a better predictor of O3 risk than CLe(c). While this concept is largely acknowledged, a number of factors may limit its applicability for routine monitoring. This paper reviews levels, uptake and vegetation response to O3 in Italy over recent years to discuss value, uncertainty and feasibility of different approaches to risk assessment.
Collapse
Affiliation(s)
- M Ferretti
- DBV, Università di Firenze, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Iglesias DJ, Calatayud A, Barreno E, Primo-Millo E, Talon M. Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid peroxidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:125-31. [PMID: 16644230 DOI: 10.1016/j.plaphy.2006.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Indexed: 05/08/2023]
Abstract
The effects of ozone upon 3-year-old trees of Clementina mandarin (Citrus clementina Hort. ex Tan.) cv. Marisol exposed for 12 months to ambient (10 nl l(-1)) and high (30 and 65 nl l(-1)) concentrations in open top chambers (OTCs) were investigated. The data showed that in leaves, ozone reduced total chlorophylls, carotenoid and carbohydrate concentration, and increased 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production. In treated plants, the ascorbate leaf pool was decreased, while lipid peroxidation and solute leakage were significantly higher than in ozone-free controls. The data indicated that ozone triggered protective mechanisms against oxidative stress in citrus.
Collapse
Affiliation(s)
- Domingo J Iglesias
- Department Citricultura y Otros Frutales, Instituto Valenciano de Investigaciones Agrarias. Apartado Oficial, 46113 Moncada, Valencia, Spain.
| | | | | | | | | |
Collapse
|
33
|
Calatayud A, Barreno E. Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:549-55. [PMID: 15246069 DOI: 10.1016/j.plaphy.2004.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 05/06/2004] [Indexed: 05/03/2023]
Abstract
The effect of different O3 concentrations on two lettuce (Lactuca sativa L.) varieties (Valladolid and Morella) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthetic pigments (Chl a, b and total carotenoid), lipid peroxidation and crop yield. Ozone fumigation caused: a decrease in maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm) in mature leaves, a reduction in the non-cyclic electron flow (phiPSII) and a lower capacity to reoxidize the QA pool (qP). These reductions were significant in the Valladolid var. but not in the Morella var. A significant decrease in Chl a, b and in the total carotenoids was observed in the Valladolid var. but not in the Morella var. mainly under O3 fumigation conditions. We observed that the NPQ parameter did not increase in parallel to the qP reduction seen in the Valladolid var. O3 fumigation with respect to air charcoal filtered air conditions. This fact could be associated with a lower capacity for dissipation of non-radiative excess energy and it may be closely correlated with significant decreases in photosynthetic pigment concentration. A decrease in NPQ from air ozone-free to ozone fumigation in the Morella var. can be explained by the need to maintain the photochemical quenching under O3 stress. It may also be associated with a slight increase in photosynthetic pigments. The differences between the two varieties may indicate that the Valladolid var. is more susceptible to O3 damage.
Collapse
Affiliation(s)
- Angeles Calatayud
- Departamento de Biología Vegetal, Facultad de Ciencias Biológicas, Universidad de Valencia, C/Dr. Moliner, 50 Burjasot, 46100 Valencia, Spain.
| | | |
Collapse
|
34
|
Schreuder MDJ, Van Hove LWA, Brewer CA. Ozone exposure affects leaf wettability and tree water balance. THE NEW PHYTOLOGIST 2001; 152:443-454. [PMID: 33862996 DOI: 10.1046/j.0028-646x.2001.00272.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Relatively little is known about the influences of growing-season background ozone (O3 ) concentrations on leaf cuticles and foliar water loss. • Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer, Pseudotsuga menziesii, under three O3 regimes; control (approx. 1 ppbv O3 ), urban O3 exposure (13-41 ppbv O3 ), and montane O3 exposure (30-45 ppbv O3 ). • Urban O3 exposure delayed a decrease in droplet contact angles over time in Populus leaves by 2-4 wk, and decreased droplet contact angles of P. menziesii foliage. Ozone exposure increased foliar water loss and minimal conductance to water vapour for P. euramericana, but not P. nigra and P. menziesii. Both Populus species had lower photosynthetic biomass in O3 treatments, due to production of fewer new leaves, premature leaf abscission and decreased leaf size (P. euramericana only). Leaf abscission was preceded by foliar injury symptoms characteristic of O3 exposure. • Results suggest that exposure to [O3 ] common during the growing season can increase water loss in Populus saplings, but this effect might be offset by decreased foliar biomass. Importantly, responses were highly species specific in a given O3 treatment.
Collapse
Affiliation(s)
| | - Lambertus W A Van Hove
- Department of Environmental Sciences, Meteorology and Air Quality Group, Wageningen University and Research Centre, Duivendaal 2, 6701 AP Wageningen, The Netherlands
| | - Carol A Brewer
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|