1
|
Divecha YA, Rampes S, Tromp S, Boyanova ST, Fleckney A, Fidanboylu M, Thomas SA. The microcirculation, the blood-brain barrier, and the neurovascular unit in health and Alzheimer disease: The aberrant pericyte is a central player. Pharmacol Rev 2025; 77:100052. [PMID: 40215558 DOI: 10.1016/j.pharmr.2025.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/28/2025] [Indexed: 05/27/2025] Open
Abstract
High fidelity neuronal signaling is enabled by a stable local microenvironment. A high degree of homeostatic regulation of the brain microenvironment, and its separation from the variable and potentially neurotoxic contents of the blood, is brought about by the central nervous system barriers. Evidence from clinical and preclinical studies implicates brain microcirculation, cerebral hypoperfusion, blood-brain barrier dysfunction, and reduced amyloid clearance in Alzheimer pathophysiology. Studying this dysregulation is key to understanding Alzheimer disease (AD), identifying drug targets, developing treatment strategies, and improving prescribing to this vulnerable population. This review has 2 parts: part 1 describes the cerebral microcirculation, cerebral blood flow, extracellular fluid drainage, and the neurovascular unit components with an emphasis on the blood-brain barrier, and part 2 summarizes how each aspect is altered in AD. Discussing the neurovascular unit structures separately allows us to conclude that aberrant pericytes are an early contributor and central to understanding AD pathophysiology. Pericytes have multiple functions including maintenance of blood-brain barrier integrity and the control of capillary blood flow, capillary stalling, neurovascular coupling, intramural periarterial drainage, glia-lymphatic (glymphatic) drainage, and consequently amyloid and tau clearance. Pericytes are vasoactive, express cholinergic and adrenergic receptors, and exhibit apolipoprotein E isoform-specific transport pathways. Hypoperfusion in AD is linked to a pericyte-mediated response. Deficient endothelial cell-pericyte (PDGBB-PDGFRβ) signaling loops cause pericyte dysfunction, which contributes and even initiates AD degeneration. We conclude that pericytes are central to understanding AD pathophysiology, are an interesting therapeutic target in AD, and have an emerging role in regenerative therapy. SIGNIFICANCE STATEMENT: Dysregulation and dysfunction of the neurovascular unit and fluid circulation (including blood, cerebrospinal fluid, and interstitial fluid) occurs in Alzheimer disease. A central player is the aberrant pericyte. This has fundamental implications to understanding disease pathophysiology and the development of therapies.
Collapse
Affiliation(s)
- Yasmin Amy Divecha
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sanketh Rampes
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sabine Tromp
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sevda T Boyanova
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Alice Fleckney
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Mehmet Fidanboylu
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sarah Ann Thomas
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom.
| |
Collapse
|
2
|
Snyder PJ, Maruff PT. Cognition and modulation of the cholinergic system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:55-61. [PMID: 40340067 DOI: 10.1016/b978-0-443-19088-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The role of the cholinergic system in the mediation of an entire complex hierarchy of interdependent cognitive functions, from the maintenance of arousal, to directed attention, to decision-making and problem-solving, and to new learning and memory, has been exceptionally well-studied over the past four decades. Disruption of cholinergic transmission has been implicated in the emergence of cognitive deficits for a range of neurodegenerative diseases, with disruption of cholinergic tone and neural circuitry in Alzheimer disease being the most common and most exhaustively explored of these diseases. Moreover, the use of pharmacologic probes in human studies to either upregulate or downregulate cholinergic tone in real time, and paired with appropriate and sensitive cognitive tasks, has led to a robust body of evidence. This evidence shows improvements vs impairments, respectively (e.g., enhanced vs degraded decision-making speed and efficiency), which confirm the complex and varied roles of cholinergic activity on cognitive functions in both health and disease states.
Collapse
Affiliation(s)
- Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States; Department of Neurology, Alpert Medical School of Brown University, Providence, RI, United States.
| | - Paul T Maruff
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Iyen B, Coupland C, Bell BG, Ashcroft DM, Orrell MW, Bishara D, Dening T, Avery AJ. Risk of dementia associated with anticholinergic drugs for overactive bladder in adults aged ≥55 years: nested case-control study. BMJ MEDICINE 2024; 3:e000799. [PMID: 39574420 PMCID: PMC11580265 DOI: 10.1136/bmjmed-2023-000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
ABSTRACT Objective To investigate whether different anticholinergic drug treatments for overactive bladder have differential risks for incident dementia, in a large representative population of older adults in England. Design Nested case-control study. Setting General practices in England providing data to the Clinical Practice Research Datalink (CPRD) GOLD database, with linked patient admission records from secondary care (Hospital Episode Statistics), 1 January 2006 and 16 February 2022. Participants 170 742 patients aged ≥55 years, with a first reported diagnosis of dementia during the study period, matched by age, sex, and general practice with 804 385 individuals without dementia (controls). Interventions Cumulative drug use (defined using total standardised daily dose) of different anticholinergic drugs used for the treatment of an overactive bladder, and a non-anticholinergic drug, mirabegron, in the period 3-16 years before a diagnosis of dementia (or equivalent date in matched controls). Main outcome measures Odds ratios for onset of dementia associated with the different anticholinergic drugs used for the treatment of an overactive bladder, adjusted for sociodemographic characteristics, clinical comorbidities, and use of other anticholinergic drug treatments. Results The study population comprised 62.6% women, and median age was 83 (interquartile range 77-87) years. 15 418 (9.0%) patients with dementia and 63 369 (7.9%) controls without dementia had used anticholinergic drugs for the treatment of an overactive bladder in the 3-16 years before diagnosis (or equivalent date for controls). The adjusted odds ratio for dementia associated with the use of any anticholinergic drug used to treat an overactive bladder was 1.18 (95% confidence interval (CI) 1.16 to 1.20), and was higher in men (1.22, 1.18 to 1.26) than women (1.16, 1.13 to 1.19). The risk of dementia was substantially increased with the use of oxybutynin hydrochloride (adjusted odds ratio 1.31, 95% CI 1.21 to 1.42 and 1.28, 1.15 to 1.43 for use of 366-1095 and >1095 total standardised daily doses, respectively), solifenacin succinate (1.18, 1.09 to 1.27 and 1.29, 1.19 to 1.39), and tolterodine tartrate (1.27, 1.19 to 1.37 and 1.25, 1.17 to 1.34). No significant increases in the risk of dementia associated with darifenacin, fesoterodine fumarate, flavoxate hydrochloride, propiverine hydrochloride, and trospium chloride were found. The association between mirabegron, a non-anticholinergic drug, and dementia was variable across the dose categories and might be caused by previous use of anticholinergic drugs for the treatment of an overactive bladder in these individuals. Conclusions Of the different anticholinergic drugs used to treat an overactive bladder, oxybutynin hydrochloride, solifenacin succinate, and tolterodine tartrate were found to be most strongly associated with the risk of dementia in older adults. This finding emphasises the need for clinicians to take into account the possible long term risks and consequences of the available treatment options for an overactive bladder in older adults, and to consider prescribing alternative treatments that might be associated with a lower risk of dementia.
Collapse
Affiliation(s)
- Barbara Iyen
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Carol Coupland
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Brian Gregory Bell
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Darren M Ashcroft
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
- National Institute for Health and Care Research (NIHR) Greater Manchester Patient Safety Research Collaboration (PSRC), University of Manchester, Manchester, UK
| | - Martin William Orrell
- Institute of Mental Health, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Delia Bishara
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Tom Dening
- Institute of Mental Health, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Anthony J Avery
- Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health and Care Research (NIHR) Greater Manchester Patient Safety Research Collaboration (PSRC), University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
5
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Ehrenberg AJ, Kelberman MA, Liu KY, Dahl MJ, Weinshenker D, Falgàs N, Dutt S, Mather M, Ludwig M, Betts MJ, Winer JR, Teipel S, Weigand AJ, Eschenko O, Hämmerer D, Leiman M, Counts SE, Shine JM, Robertson IH, Levey AI, Lancini E, Son G, Schneider C, Egroo MV, Liguori C, Wang Q, Vazey EM, Rodriguez-Porcel F, Haag L, Bondi MW, Vanneste S, Freeze WM, Yi YJ, Maldinov M, Gatchel J, Satpati A, Babiloni C, Kremen WS, Howard R, Jacobs HIL, Grinberg LT. Priorities for research on neuromodulatory subcortical systems in Alzheimer's disease: Position paper from the NSS PIA of ISTAART. Alzheimers Dement 2023; 19:2182-2196. [PMID: 36642985 PMCID: PMC10182252 DOI: 10.1002/alz.12937] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023]
Abstract
The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies.
Collapse
Affiliation(s)
- Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
| | - Shubir Dutt
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Alexandra J Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| | - Oxana Eschenko
- Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Marina Leiman
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Michigan Alzheimer's Disease Research Center, Ann Arbor, Michigan, USA
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Ian H Robertson
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Goizueta Institute, Emory University, Atlanta, Georgia, USA
| | - Elisa Lancini
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine, and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Agusta University, Agusta, Georgia, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Lena Haag
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Whitney M Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Mihovil Maldinov
- Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
| | - Jennifer Gatchel
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abhijit Satpati
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer,", Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| | - William S Kremen
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine, and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
7
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
8
|
Stevenson TK, Moore SJ, Murphy GG, Lawrence DA. Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Semin Thromb Hemost 2021; 48:288-300. [DOI: 10.1055/s-0041-1740265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shannon J. Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
9
|
Mckean NE, Handley RR, Snell RG. A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. Int J Mol Sci 2021; 22:13168. [PMID: 34884970 PMCID: PMC8658123 DOI: 10.3390/ijms222313168] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the looming health crises of the near future. Increasing lifespans and better medical treatment for other conditions mean that the prevalence of this disease is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have been beset by challenges, and no mouse model fully captures the symptomatology of AD without multiple genetic mutations and/or transgenes, some of which have never been implicated in human AD. Over 25 years later, many mouse models have been given an AD-like disease and then 'cured' in the lab, only for the treatments to fail in clinical trials. This review argues that small animal models are insufficient for modelling complex disorders such as AD. In order to find effective treatments for AD, we need to create large animal models with brains and lifespan that are closer to humans, and underlying genetics that already predispose them to AD-like phenotypes.
Collapse
Affiliation(s)
- Natasha Elizabeth Mckean
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Renee Robyn Handley
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Russell Grant Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Nur İH, Keleş H, Ünlükal N, Solmaz M, Erdoğan E, Pérez W. A new definition about the relationship of intercellular fluid in the brain with the mandibular and parotid lymph nodes. Microsc Res Tech 2021; 85:220-232. [PMID: 34369631 DOI: 10.1002/jemt.23898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/12/2022]
Abstract
This study was carried out to reveal the relationship of the brain with both the mandibular lymph node (MLN) and parotid lymph node (PLN) by the hyperspectral fluorescence imaging techniques of Qdot 800 (QD) nanoparticles using in vivo. This relationship of the brain with both lymph nodes offers the preliminary morphological definition of lymphatic drainage. QD was injected into the left parietal brain lobe of each rat at a depth of 2.50 mm. In 65% of the rats that were imaged in vivo, signals were received first from the right MLN and PLN, and then from the left MLN and PLN. In contrast, in two female rats, the first signal was received from the right PLN. There was no difference between the female and male rats overall. The most noteworthy finding of this study was that the tracer injected into the left parietal lobe reached the right mandibular and parotid lymph nodules earlier. This result indicates a different and unknown pathway in the brain that communicates with the lymph nodes. Moreover, this study shows that these lymph nodes pathways can be used in the treatment of diseases such as brain trauma, cerebral edema, and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- İsmail Hakkı Nur
- Department of Anatomy, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Hacı Keleş
- Department of Anatomy, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Nejat Ünlükal
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Merve Solmaz
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ender Erdoğan
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - William Pérez
- Unidad de Anatomia, Facultad de Veterinaria, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
11
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
12
|
Korabecny J, Spilovska K, Mezeiova E, Benek O, Juza R, Kaping D, Soukup O. A Systematic Review on Donepezil-based Derivatives as Potential Cholinesterase Inhibitors for Alzheimer’s Disease. Curr Med Chem 2019; 26:5625-5648. [DOI: 10.2174/0929867325666180517094023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023]
Abstract
:
Alzheimer’s Disease (AD) is a multifactorial progressive neurodegenerative disorder
characterized by memory loss, disorientation, and gradual deterioration of intellectual capacity.
Its etiology has not been elucidated yet. To date, only one therapeutic approach has
been approved for the treatment of AD. The pharmacotherapy of AD has relied on noncompetitive
N-methyl-D-aspartate (NMDA) receptor antagonist - memantine, and acetylcholinesterase
(AChE) inhibitors (AChEIs) - tacrine, donepezil, rivastigmine and galantamine.
Donepezil was able to ameliorate the symptoms related to AD mainly via AChE, but also
through reduction of β-amyloid burden. This review presents the overview of donepezilrelated
compounds as potential anti-AD drugs developed on the basis of cholinergic hypothesis
to act as solely AChE and butyrylcholinesterase (BChE) inhibitors.
Collapse
Affiliation(s)
- Jan Korabecny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Katarina Spilovska
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Eva Mezeiova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Benek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Radomir Juza
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Soukup
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
13
|
Aldebert G, Faillie JL, Hillaire-Buys D, Mura T, Carrière I, Delcourt C, Creuzot-Garcher C, Villain M, Daien V. Association of Anticholinergic Drug Use With Risk for Late Age-Related Macular Degeneration. JAMA Ophthalmol 2019; 136:770-778. [PMID: 29800005 DOI: 10.1001/jamaophthalmol.2018.1719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Importance Amyloid-β is a major component of retinal drusen, the primary lesions of age-related macular degeneration (AMD), and autopsy and animal models suggested that anticholinergic drug (ACD) use increased brain amyloid-β deposition. Objective To investigate the association between exposure to ACDs and late AMD (features of neovascular AMD or geographic atrophy of the retinal pigment epithelium in at least 1 eye). Design, Setting and Participants A multicenter case-control study in 4 French ophthalmologic centers comprising 200 cases with late AMD and 200 controls enrolled from July 2016 to June 2017. Exposures Exposure to at least 3 months of ACDs started before AMD diagnosis was recorded during a specific interview. A dose-effect association with cumulative exposure duration and Anticholinergic Burden Score was explored. The association between ACD exposure and AMD was assessed by multivariate logistic regression analysis adjusted for age, sex, smoking status, family history of AMD, alcohol consumption, and use of anticoagulant and anti-inflammatory drugs. Odds ratios (ORs) and 95% confidence intervals were estimated. Main Outcomes and Measures Association between exposure to ACDs and late AMD. Results Among case participants, the mean (SD) age was 74.8 (9.2) years, 129 (64.5%) were women, 192 (96%) were white, 65 (32.5%) had geographic atrophy, 135 (67.5%) had neovascular AMD, 116 (58%) had unilateral AMD, and 84 (42%) had bilateral AMD. Among control participants, the mean (SD) age was 75.5 (7.2) years, with 116 (58%) women and 187 (93.5%) white participants. Twenty-six cases (13%) and 10 controls (5%) were exposed to ACDs throughout life for at least 3 months before AMD onset. Risk of AMD was increased with ever exposure to ACDs (adjusted OR [aOR], 2.84; 95% CI, 1.33-6.06; P = .007), high Anticholinergic Burden Score (≥3) (aOR, 6.42; 95% CI, 1.38-29.92; P = .02), and longest cumulative exposure to ACD (≥15 years) (aOR, 5.88; 95% CI, 1.22-28.31; P = .03). Conclusions and Relevance Risk of late AMD may be increased with at least 3 months' use of ACDs. A dose-effect association was suggested by a greater association with prolonged use and high Anticholinergic Burden Score. Further studies, in particular those with longitudinal design, are needed to confirm this association.
Collapse
Affiliation(s)
- Gauthier Aldebert
- Department of Ophthalmology, Gui De Chauliac Hospital, Montpellier, France
| | - Jean-Luc Faillie
- Department of Medical Pharmacology and Toxicology, Lapeyronie Hospital, Montpellier, France
| | | | - Thibault Mura
- Department of Epidemiologic and Clinical Reserch, La Colombière Hospital, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Isabelle Carrière
- Institut National de la Santé et de la Recherche Médicale, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Cécile Delcourt
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | | | - Max Villain
- Department of Ophthalmology, Gui De Chauliac Hospital, Montpellier, France
| | - Vincent Daien
- Department of Ophthalmology, Gui De Chauliac Hospital, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France.,The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Mohajeri M, Behnam B, Barreto GE, Sahebkar A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer's disease? Pharmacol Res 2019; 143:186-203. [DOI: 10.1016/j.phrs.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023]
|
15
|
Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain. Front Aging Neurosci 2019; 11:1. [PMID: 30740048 PMCID: PMC6357927 DOI: 10.3389/fnagi.2019.00001] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA.
Collapse
Affiliation(s)
- Roxana Aldea
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Giles Richardson
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
16
|
Animal models of cerebral amyloid angiopathy. Clin Sci (Lond) 2017; 131:2469-2488. [PMID: 28963121 DOI: 10.1042/cs20170033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023]
Abstract
Cerebral amyloid angiopathy (CAA), due to vascular amyloid β (Aβ) deposition, is a risk factor for intracerebral haemorrhage and dementia. CAA can occur in sporadic or rare hereditary forms, and is almost invariably associated with Alzheimer's disease (AD). Experimental (animal) models are of great interest in studying mechanisms and potential treatments for CAA. Naturally occurring animal models of CAA exist, including cats, dogs and non-human primates, which can be used for longitudinal studies. However, due to ethical considerations and low throughput of these models, other animal models are more favourable for research. In the past two decades, a variety of transgenic mouse models expressing the human Aβ precursor protein (APP) has been developed. Many of these mouse models develop CAA in addition to senile plaques, whereas some of these models were generated specifically to study CAA. In addition, other animal models make use of a second stimulus, such as hypoperfusion or hyperhomocysteinemia (HHcy), to accelerate CAA. In this manuscript, we provide a comprehensive review of existing animal models for CAA, which can aid in understanding the pathophysiology of CAA and explore the response to potential therapies.
Collapse
|
17
|
Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol 2017; 18:123-131. [DOI: 10.1038/ni.3666] [Citation(s) in RCA: 643] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
|
18
|
Does the difference between PART and Alzheimer's disease lie in the age-related changes in cerebral arteries that trigger the accumulation of Aβ and propagation of tau? Acta Neuropathol 2015; 129:763-6. [PMID: 25814152 DOI: 10.1007/s00401-015-1416-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 02/06/2023]
|
19
|
Gray SL, Anderson ML, Dublin S, Hanlon JT, Hubbard R, Walker R, Yu O, Crane PK, Larson EB. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med 2015; 175:401-7. [PMID: 25621434 PMCID: PMC4358759 DOI: 10.1001/jamainternmed.2014.7663] [Citation(s) in RCA: 702] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Many medications have anticholinergic effects. In general, anticholinergic-induced cognitive impairment is considered reversible on discontinuation of anticholinergic therapy. However, a few studies suggest that anticholinergics may be associated with an increased risk for dementia. OBJECTIVE To examine whether cumulative anticholinergic use is associated with a higher risk for incident dementia. DESIGN, SETTING, AND PARTICIPANTS Prospective population-based cohort study using data from the Adult Changes in Thought study in Group Health, an integrated health care delivery system in Seattle, Washington. We included 3434 participants 65 years or older with no dementia at study entry. Initial recruitment occurred from 1994 through 1996 and from 2000 through 2003. Beginning in 2004, continuous replacement for deaths occurred. All participants were followed up every 2 years. Data through September 30, 2012, were included in these analyses. EXPOSURES Computerized pharmacy dispensing data were used to ascertain cumulative anticholinergic exposure, which was defined as the total standardized daily doses (TSDDs) dispensed in the past 10 years. The most recent 12 months of use was excluded to avoid use related to prodromal symptoms. Cumulative exposure was updated as participants were followed up over time. MAIN OUTCOMES AND MEASURES Incident dementia and Alzheimer disease using standard diagnostic criteria. Statistical analysis used Cox proportional hazards regression models adjusted for demographic characteristics, health behaviors, and health status, including comorbidities. RESULTS The most common anticholinergic classes used were tricyclic antidepressants, first-generation antihistamines, and bladder antimuscarinics. During a mean follow-up of 7.3 years, 797 participants (23.2%) developed dementia (637 of these [79.9%] developed Alzheimer disease). A 10-year cumulative dose-response relationship was observed for dementia and Alzheimer disease (test for trend, P < .001). For dementia, adjusted hazard ratios for cumulative anticholinergic use compared with nonuse were 0.92 (95% CI, 0.74-1.16) for TSDDs of 1 to 90; 1.19 (95% CI, 0.94-1.51) for TSDDs of 91 to 365; 1.23 (95% CI, 0.94-1.62) for TSDDs of 366 to 1095; and 1.54 (95% CI, 1.21-1.96) for TSDDs greater than 1095. A similar pattern of results was noted for Alzheimer disease. Results were robust in secondary, sensitivity, and post hoc analyses. CONCLUSIONS AND RELEVANCE Higher cumulative anticholinergic use is associated with an increased risk for dementia. Efforts to increase awareness among health care professionals and older adults about this potential medication-related risk are important to minimize anticholinergic use over time.
Collapse
Affiliation(s)
- Shelly L Gray
- School of Pharmacy, University of Washington, Seattle
| | | | - Sascha Dublin
- Group Health Research Institute, Seattle, Washington3Department of Epidemiology, University of Washington, Seattle
| | - Joseph T Hanlon
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca Hubbard
- Group Health Research Institute, Seattle, Washington5Department of Biostatistics, University of Washington, Seattle6currently with the Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Rod Walker
- Group Health Research Institute, Seattle, Washington
| | - Onchee Yu
- Group Health Research Institute, Seattle, Washington
| | - Paul K Crane
- Division of General Internal Medicine, University of Washington, Seattle
| | - Eric B Larson
- Group Health Research Institute, Seattle, Washington7Division of General Internal Medicine, University of Washington, Seattle
| |
Collapse
|
20
|
Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013; 39:593-611. [DOI: 10.1111/nan.12042] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
Affiliation(s)
- R. O. Carare
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - C. A. Hawkes
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - M. Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA); Bush Loan Penicuik; Edinburgh; UK
| | - R. N. Kalaria
- Centre for Brain Ageing & Vitality; Institute for Ageing and Health; Newcastle University; Newcastle Upon Tyne; UK
| | - R. O. Weller
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| |
Collapse
|
21
|
Nashawi H, Bartl T, Bartl P, Novotny L, Oriowo M, Kombian S. TH-9 (a theophylline derivative) induces long-lasting enhancement in excitatory synaptic transmission in the rat hippocampus that is occluded by frequency-dependent plasticity in vitro. Neuroscience 2012; 220:70-84. [DOI: 10.1016/j.neuroscience.2012.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022]
|
22
|
Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease. PLoS One 2012; 7:e36893. [PMID: 22615835 PMCID: PMC3353981 DOI: 10.1371/journal.pone.0036893] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/12/2012] [Indexed: 01/01/2023] Open
Abstract
Key pathological hallmarks of Alzheimer's disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.
Collapse
|
23
|
Yamada M, Naiki H. Cerebral Amyloid Angiopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:41-78. [DOI: 10.1016/b978-0-12-385883-2.00006-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Broader considerations of higher doses of donepezil in the treatment of mild, moderate, and severe Alzheimer's disease. Int J Alzheimers Dis 2011; 2012:707468. [PMID: 22191061 PMCID: PMC3235571 DOI: 10.1155/2012/707468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/29/2011] [Indexed: 11/17/2022] Open
Abstract
Donepezil, a highly selective acetylcholinesterase inhibitor (AChEI), is approved as a symptomatic treatment mild, moderate, and severe Alzheimer's disease (AD). Donepezil exerts its treatment effect through multiple mechanisms of action including nicotinic receptor stimulation, mitigation of excitotoxicity, and influencing APP processing. The use of donepezil at higher doses is justified given the worsening cholinergic deficit as the disease advances. Donepezil has been investigated in several clinical trials of subjects with moderate-to-severe AD. While the side effects are class specific (cholinergically driven), demonstrable benefit has been shown at the 10 mg dose and the 23 mg doses. Here, we review the clinical justification, efficacy, safety, and tolerability of use of donepezil in the treatment of moderate-to-severe AD.
Collapse
|
25
|
Potter PE, Rauschkolb PK, Pandya Y, Sue LI, Sabbagh MN, Walker DG, Beach TG. Pre- and post-synaptic cortical cholinergic deficits are proportional to amyloid plaque presence and density at preclinical stages of Alzheimer's disease. Acta Neuropathol 2011; 122:49-60. [PMID: 21533854 DOI: 10.1007/s00401-011-0831-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/19/2011] [Accepted: 04/23/2011] [Indexed: 12/23/2022]
Abstract
Amyloid imaging has identified cognitively normal older people with plaques as a group possibly at increased risk for developing Alzheimer's disease-related dementia. It is important to begin to thoroughly characterize this group so that preventative therapies might be tested. Existing cholinotropic agents are a logical choice for preventative therapy as experimental evidence suggests that they are anti-amyloidogenic and clinical trials have shown that they delay progression of mild cognitive impairment to dementia. A detailed understanding of the status of the cortical cholinergic system in preclinical AD is still lacking, however. For more than 30 years, depletion of the cortical cholinergic system has been known to be one of the characteristic features of AD. Reports to date have suggested that some cholinergic markers are altered prior to cognitive impairment while others may show changes only at later stages of dementia. These studies have generally been limited by relatively small sample sizes, long postmortem intervals and insufficient definition of control and AD subjects by the defining histopathology. We, therefore, examined pre- and post-synaptic elements of the cortical cholinergic system in frontal and parietal cortex in 87 deceased subjects, including non-demented elderly with and without amyloid plaques as well as demented persons with neuropathologically confirmed AD. Choline acetyltransferase (ChAT) activity was used as a presynaptic marker while displacement of (3)H-pirenzepine binding by oxotremorine-M in the presence and absence of GppNHp was used to assess postsynaptic M1 receptor coupling. The results indicate that cortical ChAT activity as well as M1 receptor coupling are both significantly decreased in non-demented elderly subjects with amyloid plaques and are more pronounced in subjects with AD and dementia. These findings confirm that cortical cholinergic dysfunction in AD begins at the preclinical stage of disease and suggest that cholinotropic agents currently used for AD treatment are a logical choice for preventative therapy.
Collapse
Affiliation(s)
- Pamela E Potter
- Department of Pharmacology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ionov ID, Pushinskaya II. Amyloid-beta production in aged guinea pigs: atropine-induced enhancement is reversed by naloxone. Neurosci Lett 2010; 480:83-6. [PMID: 20540990 DOI: 10.1016/j.neulet.2010.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/15/2010] [Accepted: 06/02/2010] [Indexed: 11/29/2022]
Abstract
Advanced age, cholinergic deficit, and elevated brain levels of enkephalin are associated with sporadic Alzheimer's disease. The influence of these factors on production of amyloidogenic peptides (Abeta) is uncertain. In the present experiments, the levels of 40/42 amino acid-residue Abeta were measured in the brain cortex of guinea pigs aged 15-16 weeks (young) and 25-26 months (aged). As was found, injections of atropine (21 days, 5mg/kg/day) increase Abeta levels in aged but not young animals. This atropine-induced effect was antagonized by simultaneous injections of naloxone (3mg/kg/day) whereas naloxone alone failed to affect Abeta accumulation. These results are discussed in the light of a possible "acetylcholine - Abeta" feedback loop and an influence of enkephalin on the loop function.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Leninsky Prospect 123-4-63, Moscow 117513, Russia.
| | | |
Collapse
|
27
|
Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 2010; 30:4190-6. [PMID: 20335454 PMCID: PMC2855655 DOI: 10.1523/jneurosci.6393-09.2010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 01/27/2010] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that causes dementia and poses a major public health crisis as the population ages. Aberrant processing of the amyloid precursor protein (APP) is strongly implicated as a proximal event in AD pathophysiology, but the neurochemical signals that regulate APP processing in the brain are not completely understood. Activation of muscarinic acetylcholine receptors (mAChRs) has been shown to affect APP processing and AD pathology, but less is known about the roles of specific mAChR subtypes. In this study, we used M(1) mAChR knock-out mice (M(1)KO) to isolate the effects of the M(1) mAChR on APP processing in primary neurons and on the development of amyloid pathology in a transgenic mouse model of AD. We demonstrate that the loss of M(1) mAChRs increases amyloidogenic APP processing in neurons, as evidenced by decreased agonist-regulated shedding of the neuroprotective APP ectodomain APPsalpha and increased production of toxic Abeta peptides. Expression of M(1) mAChRs on the M(1)KO background rescued this phenotype, indicating that M(1) mAChRs are sufficient to modulate nonamyloidogenic APP processing. In APP(Swe/Ind) transgenic mice, the loss of M(1) mAChRs resulted in increased levels of brain Abeta and greater accumulation of amyloid plaque pathology. Analysis of APP metabolites in APP(Swe/Ind) brain tissue indicates that the loss of M(1) mAChRs increases amyloidogenic APP processing. These results indicate that the M(1) mAChR is an important regulator of amyloidogenesis in the brain and provide strong support for targeting the M(1) mAChR as a therapeutic candidate in AD.
Collapse
Affiliation(s)
- Albert A. Davis
- Center for Neurodegenerative Disease and
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Jason J. Fritz
- Center for Neurodegenerative Disease and
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Jürgen Wess
- Molecular Signaling Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James J. Lah
- Center for Neurodegenerative Disease and
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Allan I. Levey
- Center for Neurodegenerative Disease and
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| |
Collapse
|
28
|
Sabbagh MN, Farlow MR, Relkin N, Beach TG. Do cholinergic therapies have disease-modifying effects in Alzheimer's disease? Alzheimers Dement 2009; 2:118-25. [PMID: 19595868 DOI: 10.1016/j.jalz.2006.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
The most widely studied and used therapies for Alzheimer's disease (AD) are based on improving cholinergic function in the central nervous system. The acetylcholine-esterase inhibitors (ChEIs) tacrine, donepezil, rivastigmine, and galantamine are all approved, and the latter three are widely used for the symptomatic treatment of mild to moderate AD. Recent research has found that these drugs may act by a variety of other mechanisms including inhibition of butylcholinesterase, regulation of nicotinic receptors, decreasing amyloid precursor protein (APP) and A beta production, and regulation of tau phosphorylation that may influence disease progression. There is also emerging evidence from clinical trials that the ChEIs may delay cognitive and functional progression. Other cholinergic drugs such as muscarinic agonists have been explored, and although they are not approved, there is robust preclinical evidence for a beneficial, perhaps disease-modifying effect. This review summarizes evidence suggesting that these drugs may do more than improve symptoms; they may delay biological progression of the disease.
Collapse
Affiliation(s)
- Marwan N Sabbagh
- Cleo Roberts Center for Clinical Research, Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | |
Collapse
|
29
|
Weller RO, Boche D, Nicoll JAR. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer's disease and their potential impact on therapy. Acta Neuropathol 2009; 118:87-102. [PMID: 19234858 DOI: 10.1007/s00401-009-0498-z] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/08/2009] [Accepted: 02/09/2009] [Indexed: 12/25/2022]
Abstract
The introduction of immunotherapy and its ultimate success will require re-evaluation of the pathogenesis of Alzheimer's disease particularly with regard to the role of the ageing microvasculature and the effects of APOE genotype. Arteries in the brain have two major functions (a) delivery of blood and (b) elimination of interstitial fluid and solutes, including amyloid-beta (Abeta), along perivascular pathways (lymphatic drainage). Both these functions fail with age and particularly severely in Alzheimer's disease and vascular dementia. Accumulation of Abeta as plaques in brain parenchyma and artery walls as cerebral amyloid angiopathy (CAA) is associated with failure of perivascular elimination of Abeta from the brain in the elderly and in Alzheimer's disease. High levels of soluble Abeta in the brain correlate with cognitive decline in Alzheimer's disease and reflect the failure of perivascular drainage of solutes from the brain and loss of homeostasis of the neuronal environment. Clinically and pathologically, there is a spectrum of disease related to functional failure of the ageing microvasculature with "pure" Alzheimer's disease at one end of the spectrum and vascular dementia at the other end. Changes in the cerebral microvasculature with age have a potential impact on therapy with cholinesterase inhibitors and especially on immunotherapy that removes Abeta from plaques in the brain, but results in an increase in severity of CAA and no clear improvement in cognition. Drainage of Abeta along perivascular pathways in ageing artery walls may need to be improved to maximise the potential for improvement of cognitive function with immunotherapy.
Collapse
Affiliation(s)
- Roy O Weller
- Clinical Neurosciences, University of Southampton School of Medicine, LD74, South Laboratory & Pathology Block, Southampton General Hospital, Southampton SO166YD, UK.
| | | | | |
Collapse
|
30
|
Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 2009; 117:1-14. [PMID: 19002474 DOI: 10.1007/s00401-008-0457-0] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 12/25/2022]
Abstract
There are no conventional lymphatics in the brain but physiological studies have revealed a substantial and immunologically significant lymphatic drainage from brain to cervical lymph nodes. Cerebrospinal fluid drains via the cribriform plate and nasal mucosa to cervical lymph nodes in rats and sheep and to a lesser extent in humans. More significant for a range of human neurological disorders is the lymphatic drainage of interstitial fluid (ISF) and solutes from brain parenchyma along capillary and artery walls. Tracers injected into grey matter, drain out of the brain along basement membranes in the walls of capillaries and cerebral arteries. Lymphatic drainage of antigens from the brain by this route may play a significant role in the immune response in virus infections, experimental autoimmune encephalomyelitis and multiple sclerosis. Neither antigen-presenting cells nor lymphocytes drain to lymph nodes by the perivascular route and this may be a factor in immunological privilege of the brain. Vessel pulsations appear to be the driving force for the lymphatic drainage along artery walls, and as vessels stiffen with age, amyloid peptides deposit in the drainage pathways as cerebral amyloid angiopathy (CAA). Blockage of lymphatic drainage of ISF and solutes from the brain by CAA may result in loss of homeostasis of the neuronal environment that may contribute to neuronal malfunction and dementia. Facilitating perivascular lymphatic drainage of amyloid-beta (Abeta) in the elderly may prevent the accumulation of Abeta in the brain, maintain homeostasis and provide a therapeutic strategy to help avert cognitive decline in Alzheimer's disease.
Collapse
|
31
|
Jacobson SA, Sabbagh MN. Donepezil: potential neuroprotective and disease-modifying effects. Expert Opin Drug Metab Toxicol 2008; 4:1363-9. [DOI: 10.1517/17425255.4.10.1363] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Cassel JC, Mathis C, Majchrzak M, Moreau PH, Dalrymple-Alford JC. Coexisting cholinergic and parahippocampal degeneration: a key to memory loss in dementia and a challenge for transgenic models? NEURODEGENER DIS 2008; 5:304-17. [PMID: 18520165 DOI: 10.1159/000135615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 10/31/2007] [Indexed: 12/25/2022] Open
Abstract
One century after Alzheimer's initial report, a variety of animal models of Alzheimer's disease (AD) are being used to mimic one or more pathological signs viewed as critical for the evolution of cognitive decline in dementia. Among the most common are, (a) traditional lesion models aimed at reproducing the degeneration of one of two key brain regions affected in AD, namely the cholinergic basal forebrain (CBF) and the transentorhinal region, and (b) transgenic mouse models aimed at reproducing AD histopathological hallmarks, namely amyloid plaques and neurofibrillary tangles. These models have provided valuable insights into the development and consequences of the pathology, but they have not consistently reproduced the severity of memory deficits exhibited in AD. The reasons for this lack of correspondence with the severity of expected deficits may include the limited replication of multiple neuropathology in potentially key brain regions. A recent lesion model in the rat found that severe memory impairment was obtained only when the two traditional lesions were combined together (i.e. conjoint CBF and entorhinal cortex lesions), indicative of a dramatic impact on cognitive function when there is coexisting, rather than isolated, damage in these two brain regions. It is proposed that combining AD transgenic mouse models with additional experimental damage to both the CBF and entorhinal regions might provide a unique opportunity to further understand the evolution of the disease and improve treatments of severe cognitive dysfunction in neurodegenerative dementias.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- LINC UMR 7191, Université Louis Pasteur, CNRS, Institut Fédératif de Recherche IFR 37, GDR CNRS 2905, Strasbourg, France.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Weller RO, Subash M, Preston SD, Mazanti I, Carare RO. SYMPOSIUM: Clearance of Aβ from the Brain in Alzheimer's Disease: Perivascular Drainage of Amyloid-β Peptides from the Brain and Its Failure in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Brain Pathol 2007; 18:253-66. [PMID: 18363936 DOI: 10.1111/j.1750-3639.2008.00133.x] [Citation(s) in RCA: 512] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Roy O Weller
- Clinical Neurosciences, School of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
| | | | | | | | | |
Collapse
|
35
|
Claassen JAHR, Jansen RWMM. Cholinergically Mediated Augmentation of Cerebral Perfusion in Alzheimer's Disease and Related Cognitive Disorders: The Cholinergic-Vascular Hypothesis. J Gerontol A Biol Sci Med Sci 2006; 61:267-71. [PMID: 16567376 DOI: 10.1093/gerona/61.3.267] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of Alzheimer's disease (AD) with cholinesterase inhibitors (ChEIs) is based on the cholinergic hypothesis. This hypothesis fails to account for the global nature of the clinical effects of ChEIs, for the replication of these effects in other dementias, and for the strong and unpredictable intraindividual variation in response to treatment. These findings may be better explained by the premise that ChEIs primarily act by augmenting cerebral perfusion: the cholinergic-vascular hypothesis. This article will review the evidence from preclinical and clinical investigations on the vascular role of the cholinergic neural system. The clinical relevance of this hypothesis is discussed with respect to its interactions with the vascular and amyloid hypotheses of AD. Implications for treatment are indicated. Finally, we propose that the role of the cholinergic system in neurovascular regulation and functional hyperemia elucidates how the cholinergic deficit in AD contributes to the clinical and pathological features of this disease.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
36
|
Kamke MR, Brown M, Irvine DRF. Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex. Hear Res 2005; 206:89-106. [PMID: 16081001 DOI: 10.1016/j.heares.2004.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 12/09/2004] [Indexed: 11/17/2022]
Abstract
Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BF were cholinergic, with the vast majority of these cells arising from the more lateral BF nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity.
Collapse
Affiliation(s)
- Marc R Kamke
- Department of Psychology, School of Psychology, Psychiatry and Psychological Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Vic. 3800, Australia.
| | | | | |
Collapse
|
37
|
Leclercq PD, Murray LS, Smith C, Graham DI, Nicoll JAR, Gentleman SM. Cerebral amyloid angiopathy in traumatic brain injury: association with apolipoprotein E genotype. J Neurol Neurosurg Psychiatry 2005; 76:229-33. [PMID: 15654038 PMCID: PMC1739505 DOI: 10.1136/jnnp.2003.025528] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE In view of the association of the apolipoprotein E (APOE) epsilon 4 allele with poor outcome after traumatic brain injury we determined the frequency of cerebral amyloid angiopathy (CAA) and the extent of haemorrhagic pathology in relation to APOE genotype in an autopsy series of 88 head injured cases. METHODS Tissue sections from the frontal and temporal lobes were immunostained for amyloid-beta peptide (A beta) and stained for Congo red to identify vascular amyloid pathology. A semiquantitative assessment of contusions, the total contusion index, was used to estimate the severity of the haemorrhagic pathology. APOE genotypes were determined by polymerase chain reaction of genomic DNA extracted from paraffin embedded tissue sections. RESULTS CAA was present in 7/40 (18%) epsilon 4 carriers compared with 1/48 (2%) non-epsilon 4 carriers (p = 0.021, 95% confidence interval (CI) for difference in proportions with CAA 3% to 29%) with 6/40 (4 with CAA) epsilon 4 carriers being homozygotes. Thus the risk of having CAA for epsilon 4 carriers was 8.4 times that for the non-epsilon 4 carriers. However, there was no clear tendency for patients with CAA to have more severe or more numerous contusions (median contusion index 19 (CAA) v 14.5, p = 0.23, 95% CI for difference in medians -5 to 14). CONCLUSIONS Presence of CAA in head injured cases was significantly associated with possession of an APOE epsilon 4 allele but not with the severity of contusions.
Collapse
Affiliation(s)
- P D Leclercq
- Division of Neuroscience and Psychological Medicine, Imperial College London, London W6 8RP, UK
| | | | | | | | | | | |
Collapse
|
38
|
Sarter M, Bruno JP. Developmental origins of the age-related decline in cortical cholinergic function and associated cognitive abilities. Neurobiol Aging 2004; 25:1127-39. [PMID: 15312959 DOI: 10.1016/j.neurobiolaging.2003.11.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 10/01/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
Ontogenetic abnormalities in the regulation of the cortical cholinergic input system are hypothesized to mediate early-life cognitive limitations (ECL) that later escalate, based on reciprocal interactions between a dysregulated cholinergic system and age-related neuronal and vascular processes, to mild cognitive impairment (MCI) and, subsequently, for a majority of subjects, senile dementia. This process is speculated to begin with the disruption of trophic factor support of the basal forebrain ascending cholinergic system early in life, leading to dysregulation of cortical cholinergic transmission during the initial decades of life and associated limitations in cognitive capacities. Results from neurochemical and behavioral experiments support the possibility that aging reveals the vulnerability of an abnormally regulated cortical cholinergic input system. The decline of the cholinergic system is further accelerated as a result of interactions with amyloid precursor protein metabolism and processing, and with cerebral microvascular abnormalities. The determination of the developmental variables that render the cortical cholinergic input system vulnerable to age-related processes represents an important step toward the understanding of the role of this neuronal system in the age-related decline in cognitive functions.
Collapse
Affiliation(s)
- Martin Sarter
- Departments of Psychology and Neuroscience, Ohio State University, 27 Townshend Hall, 1885 Neil Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
39
|
Nicoll JAR, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO. Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease. Neurobiol Aging 2004; 25:589-97; discussion 603-4. [PMID: 15172734 DOI: 10.1016/j.neurobiolaging.2004.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 01/19/2004] [Accepted: 02/06/2004] [Indexed: 11/21/2022]
Abstract
For the purposes of this debate here we argue the case that cerebral amyloid angiopathy (CAA) has a direct role in the pathogenesis of Alzheimer's disease (AD). Firstly, there is a very close relationship between CAA and AD and they share genetic risk factors. Secondly, we propose a specific mechanism which puts age-related cerebrovascular degeneration at a crucial point in the pathogenesis of AD as follows. Amyloid beta-protein (Abeta) is normally eliminated from the brain along with extracellular fluid by bulk flow along the perivascular pathway. Age-related fibrosis of cerebral cortical and meningeal arteries leads to impaired drainage of Abeta along the perivascular pathway and, together with the production of Abeta by smooth muscle cells and perivascular cells, is responsible for accumulation of Abeta as CAA. Reduced elimination leads to increased concentration of soluble Abeta in the extracellular fluid of the brain parenchyma. Increased concentration of soluble Abeta leads to the formation of insoluble Abeta plaques, other features of AD pathology, and dementia.
Collapse
Affiliation(s)
- James A R Nicoll
- Clinical Neurosciences, University of Southampton, Southampton General Hospital, Mailpoint 813, Southampton, SO 16 6YD, UK.
| | | | | | | | | |
Collapse
|
40
|
Varga C, Härtig W, Grosche J, Keijser J, Luiten PGM, Seeger J, Brauer K, Harkany T. Rabbit forebrain cholinergic system: morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus. J Comp Neurol 2003; 460:597-611. [PMID: 12717717 DOI: 10.1002/cne.10673] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective cholinergic neurons in the rabbit forebrain. The density of ChAT-immunoreactive terminals in layer V of distinct neocortical territories and in hippocampal subfields was also measured. Another cholinergic marker, the low-affinity neurotrophin receptor (p75(NTR)), was also employed to identify subsets of cholinergic neurons. Double-immunofluorescence labeling of ChAT and p75(NTR), calbindin D-28k (CB), parvalbumin, calretinin, neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase, or substance P was used to elucidate the neuroanatomical borders of cholinergic nuclei and to analyze the neurochemical complexity of cholinergic cell populations. Cholinergic projection neurons with heterogeneous densities were found in the medial septum, vertical and horizontal diagonal bands of Broca, ventral pallidum, and magnocellular nucleus basalis (MBN)/substantia innominata (SI) complex; cholinergic interneurons were observed in the caudate nucleus, putamen, accumbens nucleus, and olfactory tubercule, whereas the globus pallidus was devoid of cholinergic nerve cells. Cholinergic interneurons were frequently present in the hippocampus and to a lesser extent in cerebral cortex. Cholinergic projection neurons, except those localized in SI, abundantly expressed p75(NTR), and a subset of cholinergic neurons in posterior MBN was immunoreactive for CB and nNOS. A strict laminar distribution pattern of cholinergic terminals was recorded both in the cerebral cortex and in CA1-CA3 and dentate gyrus of the hippocampus. In summary, the structural organization and chemoarchitecture of rabbit basal forebrain may be considered as a transition between that of rodents and that of primates.
Collapse
Affiliation(s)
- Csaba Varga
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Härtig W, Bauer A, Brauer K, Grosche J, Hortobágyi T, Penke B, Schliebs R, Harkany T. Functional recovery of cholinergic basal forebrain neurons under disease conditions: old problems, new solutions? Rev Neurosci 2003; 13:95-165. [PMID: 12160262 DOI: 10.1515/revneuro.2002.13.2.95] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recognition of the involvement of cholinergic neurons in the modulation of cognitive functions and their severe dysfunction in neurodegenerative disorders, such as Alzheimer's disease, initiated immense research efforts aimed at unveiling the anatomical organization and cellular characteristics of the basal forebrain (BFB) cholinergic system. Concomitant with our unfolding knowledge about the structural and functional complexity of the BFB cholinergic projection system, multiple pharmacological strategies were introduced to rescue cholinergic nerve cells from noxious attacks; however, a therapeutic breakthrough is still awaited. In this review, we collected recent findings that significantly contributed to our better understanding of cholinergic functions under disease conditions, and to the design of effective means to restore lost or damaged cholinergic functions. To this end, we first provide a brief survey of the neuroanatomical organization of BFB nuclei with emphasis on major evolutionary differences among mammalian species, in particular rodents and primates, and discuss limitations of the translation of experimental data to human therapeutic applications. Subsequently, we summarize the involvement of cholinergic dysfunction in the pathogenesis of severe neurological conditions, including stroke, traumatic brain injury, virus encephalitis and Alzheimer's disease, and emphasize the critical role of pro-inflammatory cytokines as common mediators of cholinergic neuronal damage. Moreover, we review leading functional concepts on the limited recovery of cholinergic neurons and their impaired plastic re-modeling, as well as on the hampered interplay of the ascending cholinergic and monoaminergic projection systems under neurodegenerative conditions. In addition, recent advances in the dynamic labeling of living cholinergic neurons by fluorochromated antibodies, referred to as in vivo labeling, and novel neuroimaging approaches as potential diagnostic tools of progressive cholinergic decline are surveyed. Finally, the potential of cell replacement strategies using embryonic and adult stem cells, and multipotent neural progenitors, as a means to recover damaged cholinergic functions, is discussed.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Robinson SR, Bishop GM. Abeta as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease. Neurobiol Aging 2002; 23:1051-72. [PMID: 12470802 DOI: 10.1016/s0197-4580(01)00342-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Research into Alzheimer's disease (AD) has been guided by the view that deposits of fibrillar amyloid-beta peptide (Abeta) are neurotoxic and are largely responsible for the neurodegeneration that accompanies the disease. This 'amyloid hypothesis' has claimed support from a wide range of molecular, genetic and animal studies. We critically review these observations and highlight inconsistencies between the predictions of the amyloid hypothesis and the published data. We show that the data provide equal support for a 'bioflocculant hypothesis', which posits that Abeta is normally produced to bind neurotoxic solutes (such as metal ions), while the precipitation of Abeta into plaques may be an efficient means of presenting these toxins to phagocytes. We conclude that if the deposition of Abeta represents a physiological response to injury then therapeutic treatments aimed at reducing the availability of Abeta may hasten the disease process and associated cognitive decline in AD.
Collapse
Affiliation(s)
- Stephen R Robinson
- Department of Psychology, Monash University, Clayton, Vic. 3800, Australia.
| | | |
Collapse
|
43
|
Liu L, Ikonen S, Tapiola T, Tanila H, van Groen T. Fimbria-fornix lesion does not affect APP levels and amyloid deposition in the hippocampus of APP+PS1 double transgenic mice. Exp Neurol 2002; 177:565-74. [PMID: 12429202 DOI: 10.1006/exnr.2002.8015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The deposition of amyloid beta peptides (Abeta) and cholinergic dysfunction are two characteristic features of Alzheimer's disease. Several studies have suggested that a compromised cholinergic transmission can increase the amount of amyloid precursor protein (APP) in the denervated cortex (or hippocampus); however, whether this will increase Abeta production is unknown. To investigate the relation between cholinergic neurotransmission and APP metabolism, and the possible role of cholinergic dysfunction in the development of amyloid neuropathology, we lesioned the fimbria-fornix pathway in APP+PS1 double transgenic mice, at 5 and 7 months of age. Three months and 11 months postlesion, the mice were sacrificed for biochemical and histopathological analyses. The fimbria-fornix transection resulted in a substantial depletion of cholinergic markers in the hippocampus at both time points. Three months postlesion, hippocampal APP and Abeta levels were not significantly changed. At 11 months postlesion, the fimbria-fornix lesion did not result in an alteration in either the hippocampal Abeta levels or the extent of Abeta deposition, as assessed by amyloid plaque counts and image analysis of Abeta load in the 18-month-old APP+PS1 mice. Our findings indicate that APP metabolism in mice may be dissociated from cholinergic neurotransmission rather than related as previously suggested in other mammalian species.
Collapse
Affiliation(s)
- Li Liu
- Department of Neuroscience and Neurology, University of Kuopio, FIN 70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
44
|
Härtig W, Varga C, Kacza J, Grosche J, Seeger J, Luiten PGM, Brauer K, Harkany T. In vivo labeling of rabbit cholinergic basal forebrain neurons with fluorochromated antibodies. Neuroreport 2002; 13:1395-8. [PMID: 12167760 DOI: 10.1097/00001756-200208070-00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cholinergic basal forebrain neurons (CBFN) expressing the low-affinity neurotrophin receptor p75 (p75(NTR)) were previously selectively labeled in vivo with carbocyanine 3 (Cy3)-tagged anti-p75(NTR), but the applied 192IgG-conjugates recognized p75(NTR) only in rat. The antibody ME 20.4 raised against human p75(NTR) had been shown to cross-react with the receptor in monkey, raccoon, sheep, cat, dog, pig and rabbit. Hence, for in vivo labeling of rabbit CBFN in the present study, ME 20.4 was fluorochromated with Cy3-N-hydroxysuccinimide ester and purified Cy3-ME 20.4 was injected intracerebroventricularly. Two days post-injection, clusters of Cy3-ME 20.4 were found in CBFN displaying choline acetyltrans-ferase-immunoreactivity. Following photoconversion, electron microscopy revealed fluorochromated antibodies in secondary lysosomes. In conclusion, Cy3-ME 20.4 might become an appropriate marker for CBFN in live and fixed tissues of various mammalian species.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder that is characterized by extracellular deposits of amyloid-beta peptide (Abeta) and a severe depletion of the cholinergic system, although the relationship between these two events is poorly understood. In the neocortex, there is a loss of cholinergic fibers and receptors and a decrease of both choline acetyltransferase (ChAT) and acetylcholinesterase enzyme activities. The nucleus basalis of Meynert (NBM), which provides the major cholinergic input to the neocortex, undergoes profound neuron loss in AD. In the present study, we have examined the cholinergic alterations in amyloid precursor protein transgenic mice (APP23), a mouse model of cerebral beta-amyloidosis. In aged APP23 mice, our results reveal modest decreases in cortical cholinergic enzyme activity compared with age-matched wild-type mice. Total cholinergic fiber length was more severely affected, with 29 and 35% decreases in the neocortex of aged APP23 mice compared with age-matched wild-type mice and young transgenic mice, respectively. However, there was no loss of cholinergic basal forebrain neurons in these aged APP23 mice, suggesting that the cortical cholinergic deficit in APP23 mice is locally induced by the deposition of amyloid and is not caused by a loss of cholinergic basal forebrain neurons. To study the impact of cholinergic basal forebrain degeneration on cortical amyloid deposition, we performed unilateral NBM lesions in adult APP23 mice. Three to 8 months after lesioning, a 38% reduction in ChAT activity and significant cholinergic fiber loss were observed in the ipsilateral frontal cortex. There was a 19% decrease in Abeta levels of the ipsilateral compared with contralateral frontal cortex with no change in the ratio of Abeta40 to Abeta42. We conclude that the severe cholinergic deficit in AD is caused by both the loss of cholinergic basal forebrain neurons and locally by cerebral amyloidosis in the neocortex. Moreover, our results suggest that disruption of the basal cholinergic forebrain system does not promote cerebral amyloidosis in APP23 transgenic mice.
Collapse
|
47
|
Woodruff-Pak DS, Green JT, Pak JT, Heifets B, Pak MH. The effect of scopolamine in older rabbits tested in the 750 ms delay eyeblink classical conditioning procedure. Integr Psychol Behav Sci 2002; 37:103-13. [PMID: 12186305 DOI: 10.1007/bf02688823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effect of several doses of scopolamine in older rabbits that were trained for 20 days in the 750 ms delay eyeblink classical conditioning procedure. Our aim was to determine if the scopolamine-injected older rabbit would be a useful model for testing drugs for cognition enhancement in Alzheimer's disease (AD). A total of 39 rabbits with a mean age of 31 months received classical eyeblink conditioning with daily injections of 0.25, 0.75, or 1.5 mg/kg scopolamine hydrobromide or sterile saline vehicle. Doses of 0.75 and 1.5 mg/kg scopolamine significantly impaired acquisition, whereas acquisition was not significantly impaired with 0.25 mg/kg scopolamine. Results exhibit parallels in performance on delay eyeblink classical conditioning between scopolamine-treated older rabbits and human patients diagnosed with AD.
Collapse
Affiliation(s)
- Diana S Woodruff-Pak
- Cognitive Neuroscience Laboratory, Albert Einstein Healthcare Network, Philadelphia, PA, USA. woodrufd@.einstein.edu
| | | | | | | | | |
Collapse
|
48
|
Kalback W, Watson MD, Kokjohn TA, Kuo YM, Weiss N, Luehrs DC, Lopez J, Brune D, Sisodia SS, Staufenbiel M, Emmerling M, Roher AE. APP transgenic mice Tg2576 accumulate Abeta peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer's disease senile plaques. Biochemistry 2002; 41:922-8. [PMID: 11790115 DOI: 10.1021/bi015685+] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloid (Abeta) peptides generated in Hsiao's APP Tg2576 transgenic (Tg) mice are physically and chemically distinct from those characteristic of Alzheimer's disease (AD). Transgenic mouse Abeta peptides were purified using sequential size-exclusion and reverse-phase chromatographic systems and subjected to amino acid sequencing and mass spectrometry analyses. The mouse Abeta peptides lacked the extensive N-terminal degradations, posttranslational modifications, and cross-linkages abundant in the stable Abeta peptide deposits observed in AD. Truncated Abeta molecules appear to be generated in vivo by hydrolysis at multiple sites rather than by post-mortem C-terminal degradation. In contrast to AD amyloid cores, the Tg mice peptides were soluble in Tris-SDS-EDTA solutions, revealing both monomeric and SDS-stable oligomeric species of Abeta. In contrast to our report on Novartis Pharma APP23 Tg mice [Kuo et al. (2001) J. Biol. Chem. 276, 12991], which maintain high levels of soluble Abeta early on with later development of extensive vascular amyloid, Tg2576 mice exhibited an age-related elevation of soluble Abeta with relatively limited vascular amyloid deposition. The transgenic mouse levels of carboxy-terminal (CT) APP fragments were nearly 10-fold greater than those of human brains, and this condition may contribute to the unique pathology observed in these animals. Immunization of transgenic mice may act to prevent the pathological effects of betaAPP overproduction by binding CT molecules or halting their processing to toxic forms, in addition to having any effects on Abeta itself. Thus, differences in disease evolution and biochemistry must be considered when using transgenic animals to evaluate drugs or therapeutic interventions intended to reduce the Abeta burden in Alzheimer's disease.
Collapse
Affiliation(s)
- Walter Kalback
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona 85351, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tracking the decline in cerebral glucose metabolism in persons and laboratory animals at genetic risk for Alzheimer's disease. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1566-2772(01)00006-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Pepeu G. Overview and perspective on the therapy of Alzheimer's disease from a preclinical viewpoint. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:193-209. [PMID: 11263752 DOI: 10.1016/s0278-5846(01)00146-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Drugs effective in Alzheimer's disease (AD) should have several aims: to improve the cognitive impairment, control the behavioural and neurological symptoms, delay the progression of the disease, and prevent the onset. In order to attain these targets, cell and animal models are needed on which to test pathogenetic hypothesis and demonstrate the potential effectiveness of new drugs. This overview examines the results obtained in animal models. They are the link between the molecular and biochemical studies on the disease and the reality of human pathology. 2. The development of animal models reproducing the complexity of AD pathogenetic mechanisms and clinical symptoms still represents a challenge for the preclinical investigators. Moreover, the succession of different animal models well documents the progressive widening of our knowledge of the disease with the identification of new therapeutic targets. 3. The main animal models are listed, and their contribution to the understanding of the pathogenic mechanisms and development of the drugs presently used in AD therapy is described. Moreover, their role in the study of future drugs is analysed 4. Preclinical studies on cholinesterases and animal models mimicking the cholinergic hypofunction occurring in AD have been instrumental in developing cholinesterase inhibitors, which are the only recognised drugs for the symptomatic treatment of AD. 5. Artificially created beta-amyloid (A beta) deposits in normal rats, and transgenic mice overexpressing amyloid precursor protein (APP) are the models on which the future treatment are tested. They are aimed to prevent formation of A beta deposits or its transformation in neuritic plaques. 6. Models of brain inflammation, aging animals, and models of brain glucose and energy metabolism impairment make it possible to identify and assess the activity of anti-inflammatory agents, antioxidants, ampakines and other potentially active agents. 7. It is concluded that the present level of information on AD could never have been reached without preclinical studies, and the development of new drugs will always require extensive preclinical investigations.
Collapse
Affiliation(s)
- G Pepeu
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy.
| |
Collapse
|