1
|
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27:669-686. [PMID: 33963288 PMCID: PMC8691189 DOI: 10.1038/s41380-021-01112-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different emotional and motivational inputs to the reward system by processing convergent glutamatergic projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal projection neurons in the NAc, which can be divided into two major subpopulations, namely dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core versus shell), and related input and output projections, or any combination of these factors. Detailed characterization of these cellular adaptations has been greatly facilitated by the recent development of optogenetic/chemogenetic techniques combined with transgenic tools. In this review, we discuss such cell type- and projection-specific adaptations induced by cocaine experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine experience differentially changes the synaptic transmission at different afferent projections onto NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different at NAc-ventral pallidum versus NAc-ventral tegmental area synapses, and (4) the input, output, subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the NAc. In light of the projection- and cell-type specificity, we also briefly discuss ensemble and circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
Collapse
Affiliation(s)
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
2
|
Tubert C, Murer MG. What’s wrong with the striatal cholinergic interneurons in Parkinson’s disease? Focus on intrinsic excitability. Eur J Neurosci 2020; 53:2100-2116. [DOI: 10.1111/ejn.14742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilia Tubert
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Mario Gustavo Murer
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
3
|
Aono Y, Watanabe Y, Ishikawa M, Kuboyama N, Waddington JL, Saigusa T. In vivo neurochemical evidence that stimulation of accumbal GABAAand GABABreceptors each reduce acetylcholine efflux without affecting dopamine efflux in the nucleus accumbens of freely moving rats. Synapse 2018; 73:e22081. [DOI: 10.1002/syn.22081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yuri Aono
- Department of Pharmacology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Yuriko Watanabe
- Oral surgery; Nihon University Graduate School of Dentistry at Matsudo; Chiba Japan
| | - Manabu Ishikawa
- Department of Anesthesiology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Noboru Kuboyama
- Department of Pharmacology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - John L. Waddington
- Molecular and Cellular Therapeutics; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Tadashi Saigusa
- Department of Pharmacology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| |
Collapse
|
4
|
p11 in Cholinergic Interneurons of the Nucleus Accumbens Is Essential for Dopamine Responses to Rewarding Stimuli. eNeuro 2018; 5:eN-NWR-0332-18. [PMID: 30417079 PMCID: PMC6223111 DOI: 10.1523/eneuro.0332-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
A recent study showed that p11 expressed in cholinergic interneurons (CINs) of the nucleus accumbens (NAc) is a key regulator of depression-like behaviors. Dopaminergic neurons projecting to the NAc are responsible for reward-related behaviors, and their function is impaired in depression. The present study investigated the role of p11 in NAc CINs in dopamine responses to rewarding stimuli. The extracellular dopamine and acetylcholine (ACh) levels in the NAc were determined in freely moving male mice using in vivo microdialysis. Rewarding stimuli (cocaine, palatable food, and female mouse encounter) induced an increase in dopamine efflux in the NAc of wild-type (WT) mice. The dopamine responses were attenuated (cocaine) or abolished (food and female mouse encounter) in constitutive p11 knock-out (KO) mice. The dopamine response to cocaine was accompanied by an increase in ACh NAc efflux, whereas the attenuated dopamine response to cocaine in p11 KO mice was restored by activation of nicotinic or muscarinic ACh receptors in the NAc. Dopamine responses to rewarding stimuli and ACh release in the NAc were attenuated in mice with deletion of p11 from cholinergic neurons (ChAT-p11 cKO mice), whereas gene delivery of p11 to CINs restored the dopamine responses. Furthermore, chemogenetic studies revealed that p11 is required for activation of CINs in response to rewarding stimuli. Thus, p11 in NAc CINs plays a critical role in activating these neurons to mediate dopamine responses to rewarding stimuli. The dysregulation of mesolimbic dopamine system by dysfunction of p11 in NAc CINs may be involved in pathogenesis of depressive states.
Collapse
|
5
|
Wiss DA, Avena N, Rada P. Sugar Addiction: From Evolution to Revolution. Front Psychiatry 2018; 9:545. [PMID: 30464748 PMCID: PMC6234835 DOI: 10.3389/fpsyt.2018.00545] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
The obesity epidemic has been widely publicized in the media worldwide. Investigators at all levels have been looking for factors that have contributed to the development of this epidemic. Two major theories have been proposed: (1) sedentary lifestyle and (2) variety and ease of inexpensive palatable foods. In the present review, we analyze how nutrients like sugar that are often used to make foods more appealing could also lead to habituation and even in some cases addiction thereby uniquely contributing to the obesity epidemic. We review the evolutionary aspects of feeding and how they have shaped the human brain to function in "survival mode" signaling to "eat as much as you can while you can." This leads to our present understanding of how the dopaminergic system is involved in reward and its functions in hedonistic rewards, like eating of highly palatable foods, and drug addiction. We also review how other neurotransmitters, like acetylcholine, interact in the satiation processes to counteract the dopamine system. Lastly, we analyze the important question of whether there is sufficient empirical evidence of sugar addiction, discussed within the broader context of food addiction.
Collapse
Affiliation(s)
- David A. Wiss
- Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicole Avena
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pedro Rada
- School of Medicine, University of Los Andes, Mérida, Venezuela
| |
Collapse
|
6
|
van den Brink WJ, Palic S, Köhler I, de Lange ECM. Access to the CNS: Biomarker Strategies for Dopaminergic Treatments. Pharm Res 2018; 35:64. [PMID: 29450650 PMCID: PMC5814527 DOI: 10.1007/s11095-017-2333-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022]
Abstract
Despite substantial research carried out over the last decades, it remains difficult to understand the wide range of pharmacological effects of dopaminergic agents. The dopaminergic system is involved in several neurological disorders, such as Parkinson's disease and schizophrenia. This complex system features multiple pathways implicated in emotion and cognition, psychomotor functions and endocrine control through activation of G protein-coupled dopamine receptors. This review focuses on the system-wide effects of dopaminergic agents on the multiple biochemical and endocrine pathways, in particular the biomarkers (i.e., indicators of a pharmacological process) that reflect these effects. Dopaminergic treatments developed over the last decades were found to be associated with numerous biochemical pathways in the brain, including the norepinephrine and the kynurenine pathway. Additionally, they have shown to affect peripheral systems, for example the hypothalamus-pituitary-adrenal (HPA) axis. Dopaminergic agents thus have a complex and broad pharmacological profile, rendering drug development challenging. Considering the complex system-wide pharmacological profile of dopaminergic agents, this review underlines the needs for systems pharmacology studies that include: i) proteomics and metabolomics analysis; ii) longitudinal data evaluation and mathematical modeling; iii) pharmacokinetics-based interpretation of drug effects; iv) simultaneous biomarker evaluation in the brain, the cerebrospinal fluid (CSF) and plasma; and v) specific attention to condition-dependent (e.g., disease) pharmacology. Such approach is considered essential to increase our understanding of central nervous system (CNS) drug effects and substantially improve CNS drug development.
Collapse
Affiliation(s)
- Willem Johan van den Brink
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Semra Palic
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Isabelle Köhler
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth Cunera Maria de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2016; 68:816-71. [PMID: 27363441 PMCID: PMC4931870 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
8
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Müller CP. Episodic memories and their relevance for psychoactive drug use and addiction. Front Behav Neurosci 2013; 7:34. [PMID: 23734106 PMCID: PMC3661997 DOI: 10.3389/fnbeh.2013.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023] Open
Abstract
The majority of adult people in western societies regularly consume psychoactive drugs. While this consumption is integrated in everyday life activities and controlled in most consumers, it may escalate and result in drug addiction. Non-addicted drug use requires the systematic establishment of highly organized behaviors, such as drug-seeking and -taking. While a significant role for classical and instrumental learning processes is well established in drug use and abuse, declarative drug memories have largely been neglected in research. Episodic memories are an important part of the declarative memories. Here a role of episodic drug memories in the establishment of non-addicted drug use and its transition to addiction is suggested. In relation to psychoactive drug consumption, episodic drug memories are formed when a person prepares for consumption, when the drug is consumed and, most important, when acute effects, withdrawal, craving, and relapse are experienced. Episodic drug memories are one-trial memories with emotional components that can be much stronger than "normal" episodic memories. Their establishment coincides with drug-induced neuronal activation and plasticity. These memories may be highly extinction resistant and influence psychoactive drug consumption, in particular during initial establishment and at the transition to "drug instrumentalization." In that, understanding how addictive drugs interact with episodic memory circuits in the brain may provide crucial information for how drug use and addiction are established.
Collapse
Affiliation(s)
- Christian P. Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-NurembergErlangen, Germany
| |
Collapse
|
10
|
Noori HR, Fliegel S, Brand I, Spanagel R. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: A meta-analysis. Synapse 2012; 66:893-901. [DOI: 10.1002/syn.21581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/19/2012] [Indexed: 01/23/2023]
|
11
|
Ikeda H, Kamei J, Koshikawa N, Cools AR. Nucleus Accumbens and Dopamine-Mediated Turning Behavior of the Rat: Role of Accumbal Non-dopaminergic Receptors. J Pharmacol Sci 2012; 120:152-64. [DOI: 10.1254/jphs.12r02cr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Casini A, Vivacqua G, Pontieri FE, Kimura H, Bellier JP, D’Este L, Renda TG. Choline acetyltransferase of the common type immunoreactivity in the rat brain following different heroin treatments: A pilot study. J Chem Neuroanat 2011; 41:111-21. [DOI: 10.1016/j.jchemneu.2010.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
|
13
|
Abstract
Changes in the brain's cholinergic receptor systems underlie several neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. An emerging preclinical literature also reveals that acetylcoholine may have an important function in addictive processes, including reward, learning, and memory. This study was designed to assess alterations in cholinergic receptor systems in limbic regions of abstinent cocaine-addicted subjects compared with healthy controls. On three separate days, 23 1- to 6-week abstinent, cocaine- (and mostly nicotine-) addicted subjects and 22 sex-, age-, and race-matched control subjects were administered the muscarinic and nicotinic cholinergic agonist physostigmine, the muscarinic antagonist scopolamine, and saline. Regional cerebral blood flow (rCBF) after each infusion was determined using single photon emission-computed tomography. Both cholinergic probes induced rCBF changes (p<0.005) in relatively distinct, cholinergic-rich, limbic brain regions. After physostigmine, cocaine-addicted subjects showed altered rCBF, relative to controls, in limbic regions, including the left hippocampus, left amygdala, and right insula. Group differences in the right dorsolateral prefrontal cortex, posterior cingulate, and middle temporal gyrus were also evident. Scopolamine also revealed group differences in the left hippocampus and right insula as well as the posterior cingulate and middle temporal gyrus. Cocaine addicted and controls differ in their subcortical, limbic, and cortical response to cholinergic probes in areas relevant to craving, learning, and memory. Cholinergic systems may offer a pharmacologic target for cocaine addiction treatment.
Collapse
|
14
|
Madayag A, Kau KS, Lobner D, Mantsch JR, Wisniewski S, Baker DA. Drug-induced plasticity contributing to heightened relapse susceptibility: neurochemical changes and augmented reinstatement in high-intake rats. J Neurosci 2010; 30:210-7. [PMID: 20053903 PMCID: PMC2823262 DOI: 10.1523/jneurosci.1342-09.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/21/2022] Open
Abstract
A key in understanding the neurobiology of addiction and developing effective pharmacotherapies is revealing drug-induced plasticity that results in heightened relapse susceptibility. Previous studies have demonstrated that increased extracellular glutamate, but not dopamine, in the nucleus accumbens core (NAcc) is necessary for cocaine-induced reinstatement. In this report, we examined whether drug-induced adaptations that are necessary to generate cocaine-induced reinstatement also determine relapse vulnerability. To do this, rats were assigned to self-administer cocaine under conditions resulting in low (2 h/d; 0.5 mg/kg/infusion, i.v.) or high (6 h/d; 1.0 mg/kg/infusion, i.v.) levels of drug intake since these manipulations produce groups of rats exhibiting differences in the magnitude of cocaine-induced reinstatement. Approximately 19 d after the last session, cocaine-induced drug seeking and extracellular levels of glutamate and dopamine in the NAcc were measured. Contrary to our hypothesis, high-intake rats exhibited a more robust cocaine-induced increase in extracellular levels of dopamine but not glutamate. Further, increased reinstatement in high-intake rats was no longer observed when the D(1) receptor antagonist SCH-23390 was infused into the NAcc. The sensitized dopamine response to cocaine in high-intake rats may involve blunted cystine-glutamate exchange by system x(c(-)). Reduced (14)C-cystine uptake through system x(c(-)) was evident in NAcc tissue slices obtained from high-intake rats, and the augmented dopamine response in these rats was no longer observed when subjects received the cysteine prodrug N-acetyl cysteine. These data reveal a role for drug-induced NAcc dopamine in heightened relapse vulnerability observed in rats with a history of high levels of drug intake.
Collapse
Affiliation(s)
- Aric Madayag
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Kristen S. Kau
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Samantha Wisniewski
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
15
|
Abstract
Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery. Ultimately, ACh modulation may be a potential target for pharmacological treatment interventions in cocaine-addicted subjects. However, the complicated neurocircuitry of the cholinergic system, the multiple ACh receptor subtypes, the confluence of excitatory and inhibitory ACh inputs, and the unique properties of the striatal cholinergic interneurons suggest that a precise target of cholinergic manipulation will be required to impact substance use in the clinical population.
Collapse
Affiliation(s)
- Mark J Williams
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8564, USA.
| | | |
Collapse
|
16
|
Hussain RJ, Taraschenko OD, Glick SD. Effects of nicotine, methamphetamine and cocaine on extracellular levels of acetylcholine in the interpeduncular nucleus of rats. Neurosci Lett 2008; 440:270-4. [PMID: 18583043 DOI: 10.1016/j.neulet.2008.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 11/27/2022]
Abstract
There is increasing evidence that the cholinergic habenulo-interpeduncular pathway and the dopaminergic mesolimbic pathway may jointly mediate the reinforcing properties of addictive drugs. However, the effects of addictive drug on the functioning of the habenulo-interpeduncular pathway have not been well-characterized. Thus, several drugs of abuse (i.e., nicotine, cocaine, amphetamine) have been shown to alter the morphology of the habenulo-interpeduncular pathway, causing selective degeneration of the cholinergic neurons in this area. On the other hand, morphine was shown to alter the neurochemistry of the habenulo-interpeduncular pathway, inducing biphasic changes in acetylcholine release in the interpeduncular nucleus. In order to determine the effects of cocaine, amphetamine and nicotine on cholinergic neurotransmission in the habenulo-interpeduncular pathway, levels of acetylcholine were assessed during microdialysis in freely moving rats. Nicotine (0.1 and 0.4 mg/kg s.c.) produced a dose-dependent decrease in extracellular levels of acetylcholine, while methamphetamine (1 and 4 mg/kg i.p.) produced an increase in acetylcholine release in the interpeduncular nucleus. Cocaine (5 and 20 mg/kg i.p.) produced a biphasic effect on extracellular acetylcholine release, i.e., a low dose enhanced the release of acetylcholine and a high dose decreased its release. These results suggest that the habenulo-intepeduncular pathway may be a common target for drugs of abuse and, by modulating the mesolimbic pathway, may mediate unique aspects of the rewarding effects of different drugs.
Collapse
Affiliation(s)
- Rifat J Hussain
- Center for Neuropharmacology and Neuroscience, MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | | | | |
Collapse
|
17
|
Hernández LF, Segovia G, Mora F. Chronic treatment with a dopamine uptake blocker changes dopamine and acetylcholine but not glutamate and GABA concentrations in prefrontal cortex, striatum and nucleus accumbens of the awake rat. Neurochem Int 2007; 52:457-69. [PMID: 17881090 DOI: 10.1016/j.neuint.2007.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/08/2007] [Accepted: 08/12/2007] [Indexed: 11/19/2022]
Abstract
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.
Collapse
Affiliation(s)
- L F Hernández
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
18
|
Brudzynski SM. Ultrasonic calls of rats as indicator variables of negative or positive states: acetylcholine-dopamine interaction and acoustic coding. Behav Brain Res 2007; 182:261-73. [PMID: 17467067 DOI: 10.1016/j.bbr.2007.03.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/28/2007] [Accepted: 03/09/2007] [Indexed: 02/07/2023]
Abstract
Adult rats produce two distinct types of ultrasonic vocalizations referred to as 22- and 50-kHz calls, respectively. Emission of the respective calls represents signaling a negative or positive state of the rat organism. The signaling has an adaptive value for survival and/or well-being of rats and their social groups. Literature is reviewed from studies on cats and rats, which indicates that the positive or negative states constitute a complex and integrated set of somatic, autonomic, endocrine, affective, and cognitive correlates. The basic states and their correlates are initiated, integrated, and maintained by activity of the subsets of the ascending cholinergic and dopaminergic systems originating from the reticular brainstem core. The cholinergic and dopaminergic systems interact mutually to form a dynamic balance, which is involved in a decision-making process of initiating and maintaining one or the other of these states. Activation of the relevant portion of the ascending cholinergic system invariably induces the negative state and releases 22-kHz calls while activation of the ascending dopaminergic system induces the positive state with 50-kHz calls. The 22- and 50-kHz calls have distinct and mostly non-overlapping acoustic parameters, which ensure unambiguous recognition of the calls and thus, the state of the emitter. The animal may only signal one of the states at any given time and emission of 22- or 50-kHz calls is mutually exclusive. It is postulated, therefore, that these two main types of ultrasonic calls are reliable indicator variables of two opposing states of the adult rat organism: negative or positive.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology and Centre for Neuroscience, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
19
|
Zanetti L, Picciotto MR, Zoli M. Differential effects of nicotinic antagonists perfused into the nucleus accumbens or the ventral tegmental area on cocaine-induced dopamine release in the nucleus accumbens of mice. Psychopharmacology (Berl) 2007; 190:189-99. [PMID: 17061109 DOI: 10.1007/s00213-006-0598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 09/21/2006] [Indexed: 11/29/2022]
Abstract
RATIONALE The mesolimbic dopamine (DA) system is considered a principal site for nicotine-cocaine interactions. OBJECTIVES AND METHODS The aim of this paper is to study the effects of local perfusions (through the microdialysis cannula) of nicotinic acetylcholine receptor (nAChR) antagonists in the ventral tegmental area (VTA, where mesolimbic DA cell bodies are located) or nucleus accumbens (nAc, where mesolimbic DA nerve terminals project) on cocaine-elicited increase in DA levels in the nAc of mice using intracerebral microdialysis. RESULTS Intra-nAc perfusion of mecamylamine (a nonselective central nicotinic antagonist) or coperfusion of methyllycaconitine (MLA, 10 nM) and dihydro-beta-erythroidine (DHbetaE, 10-100 muM) decreased cocaine-elicited increase in DA perfusate levels. In contrast, intra-nAc perfusion of MLA alone (a relatively selective antagonist of alpha7 subunit-containing nAChRs) increased, while DHbetaE (a relatively selective antagonist of heteromeric nAChR subtypes) did not alter, cocaine-elicited increase in DA perfusate levels. Intra-VTA perfusion of MLA (100 nM) or DHbetaE (100 micro M) significantly increased the cocaine-elicited increase of DA levels in the nAc or VTA, whereas DHbetaE and MLA coperfusion or mecamylamine perfusion had no significant effect. CONCLUSIONS These results show that intra-nAc and intra-VTA perfusion of nAChR antagonists differentially affect cocaine-elicited increase in DA levels in a region and subtype-specific manner. This suggests that multiple cholinergic/nicotinic pathways influence the effects of cocaine on mesolimbic DA neurons in complex, and sometimes opposing, patterns.
Collapse
Affiliation(s)
- Lara Zanetti
- Department of Biomedical Sciences, Section of Physiology, University of Modena and Reggio Emilia, via Campi 287, 41100, Modena, Italy
| | | | | |
Collapse
|
20
|
Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Prog Neurobiol 2007; 81:133-78. [PMID: 17316955 DOI: 10.1016/j.pneurobio.2007.01.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 01/03/2023]
Abstract
Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.
Collapse
Affiliation(s)
- Christian P Müller
- Institute of Physiological Psychology I, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
21
|
Rada P, Colasante C, Skirzewski M, Hernandez L, Hoebel B. Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience 2006; 141:67-76. [PMID: 16677771 DOI: 10.1016/j.neuroscience.2006.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/17/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022]
Abstract
The nucleus accumbens may play a role in acquisition and expression of behavioral depression as measured using the inescapable swim test. Previous work shows that a local injection of a cholinergic muscarinic-1 receptor agonist increases immobility and a specific muscarinic-1 antagonist acts as an antidepressant-like drug by increasing swimming escape efforts. The present study used microdialysis to monitor extracellular acetylcholine levels in the accumbens, fluorescent labeled toxins to monitor changes in acetylcholinesterase and muscarinic-1 receptors, and semiquantitative-polymerase chain reaction to detect changes in gene expression for the muscarinic-1 receptor. Microdialysis showed that acetylcholine levels did not change while an animal was swimming; however, a significant transient decrease occurred when the rat was returned to the dialysis cage, followed by a long-lasting increase that reached a maximum three hours after the test. Acetylcholine levels stayed high even 24 h after the initial test as evidenced by a significant elevation in basal level prior to the second swim. This increase in neurotransmitter may have been partially compensated by a significant increase in the degradative enzyme, acetylcholinesterase, and by a decrease in muscarinic-1 receptors and their gene expression. These results further demonstrate the importance of accumbens cholinergic function in the appearance of a depression-like state.
Collapse
Affiliation(s)
- P Rada
- Laboratory of Behavioral Physiology, Medical School, University of Los Andes, Merida, Venezuela.
| | | | | | | | | |
Collapse
|
22
|
Berlanga ML, Simpson TK, Alcantara AA. Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release. J Comp Neurol 2006; 492:34-49. [PMID: 16175554 DOI: 10.1002/cne.20684] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of dopaminergic influences on acetylcholine release is especially useful for the understanding of a wide range of brain functions and neurological disorders, including schizophrenia, Parkinson's disease, Alzheimer's disease, and drug addiction. These disorders are characterized by a neurochemical imbalance of a variety of neurotransmitter systems, including the dopamine and acetylcholine systems. Dopamine modulates acetylcholine levels in the brain by binding to dopamine receptors located directly on cholinergic cells. The dopamine D5 receptor, a D1-class receptor subtype, potentiates acetylcholine release and has been investigated as a possible substrate underlying a variety of brain functions and clinical disorders. This receptor subtype, therefore, may prove to be a putative target for pharmacotherapeutic strategies and cognitive-behavioral treatments aimed at treating a variety of neurological disorders. The present study investigated whether cholinergic cells in the dopamine targeted areas of the cerebral cortex, striatum, basal forebrain, and diencephalon express the dopamine D5 receptor. These receptors were localized on cholinergic neurons with dual labeling immunoperoxidase or immunofluorescence procedures using antibodies directed against choline acetyltransferase (ChAT) and the dopamine D5 receptor. Results from this study support previous findings indicating that striatal cholinergic interneurons express the dopamine D5 receptor. In addition, cholinergic neurons in other critical brain areas also show dopamine D5 receptor expression. Dopamine D5 receptors were localized on the somata, dendrites, and axons of cholinergic cells in each of the brain areas examined. These findings support the functional importance of the dopamine D5 receptor in the modulation of acetylcholine release throughout the brain.
Collapse
Affiliation(s)
- Monica Lisa Berlanga
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
23
|
Moribe S, Ikeda H, Sato M, Akiyama G, Matsuzaki S, Hasegawa K, Koshikawa N, Cools AR. Acetylcholine receptor effects on accumbal shell dopamine-mediated turning behaviour in rats. Neuropharmacology 2005; 49:514-24. [PMID: 15935407 DOI: 10.1016/j.neuropharm.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/03/2005] [Accepted: 04/12/2005] [Indexed: 11/21/2022]
Abstract
The nature of acetylcholine receptor effects on dopaminergic functions within the nucleus accumbens shell was studied in rats, using turning behaviour as read-out parameter. Unilateral injections of the acetylcholine receptor agonist, carbachol (1.0-5.0 microg), into the nucleus accumbens shell dose-dependently elicited contraversive circling. Unilateral injections of the combination of a fixed dose of the dopamine D(2) receptor agonist, quinpirole (10.0 microg), with increasing doses of the dopamine D(1) receptor agonist, SKF 38393 (1.0-5.0 microg), into the nucleus accumbens shell dose-dependently elicited contraversive pivoting. The same held for the combination of a fixed dose of SKF 38393 (5.0 microg) with increasing doses of quinpirole (5.0 and 10.0 microg), which was injected into the nucleus accumbens shell. The nicotinic acetylcholine receptor antagonist, mecamylamine (5.0 and 10.0 microg), injected into the nucleus accumbens shell, which alone did not elicit any turning behaviour, significantly suppressed both the contraversive circling induced by carbachol (5.0 microg) and the contraversive pivoting induced by the mixture of SKF 38393 (5.0 microg) and quinpirole (10.0 microg). The muscarinic acetylcholine receptor antagonist, methylscopolamine (1.0 and 2.5 microg), injected into the nucleus accumbens shell, which alone did not elicit any turning behaviour, significantly suppressed the contraversive circling induced by carbachol (5.0 microg), whereas it significantly increased the contraversive pivoting induced by both the mixture of SKF 38393 (1.0 microg) and quinpirole (10.0 microg) and the mixture of SKF 38393 (5.0 microg) and quinpirole (5.0 microg). Neither SKF 38393 (5.0 microg) nor quinpirole (10.0 microg) injected into the nucleus accumbens shell affected the contraversive circling induced by carbachol (5.0 microg). Carbachol (1.0 microg) injected into the nucleus accumbens shell caused a slight initial potentiation followed by an inhibition of the contraversive pivoting induced by the mixture of SKF 38393 (5.0 microg) and quinpirole (10.0 microg). These results confirm that stimulation of both nicotinic and muscarinic acetylcholine receptors in the nucleus accumbens shell is required for the accumbens-dependent, acetylcholine-mediated circling. The study provides the original evidence that stimulation of nicotinic acetylcholine receptors in the nucleus accumbens shell is required for the accumbens-dependent, dopamine-mediated pivoting. Finally, the present study shows that muscarinic acetylcholine receptors in the nucleus accumbens shell play an inhibitory role in the production of the accumbens-dependent, dopamine-mediated pivoting.
Collapse
Affiliation(s)
- Shoko Moribe
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Herring BE, Mayfield RD, Camp MC, Alcantara AA. Ethanol-induced Fos immunoreactivity in the extended amygdala and hypothalamus of the rat brain: focus on cholinergic interneurons of the nucleus accumbens. Alcohol Clin Exp Res 2004; 28:588-97. [PMID: 15100610 DOI: 10.1097/01.alc.0000122765.58324.6d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The primary goal of this study was to investigate the effects of varying doses of ethanol on cellular activation, as measured by Fos immunoreactivity, in brain areas that have been implicated in the reinforcing and anxiolytic effects of substance abuse and dependence, namely, the extended amygdala and hypothalamus. Specific regions examined included the central nucleus of the amygdala, bed nucleus of the stria terminalis, substantia innominata, and nucleus accumbens of the extended amygdala, as well as the paraventricular nucleus of the hypothalamus. The cholinergic interneurons of the nucleus accumbens were of particular interest, because these cells have recently been reported to play a pivotal role in substance abuse. METHODS Adult Sprague-Dawley rats underwent 10 days of handling and 5 days of habituation. Animals then received an injection of saline or 0.5, 1, or 2 g/kg of ethanol. Rats were perfused 2 hr after the injections, and brain sections were processed for single Fos or dual Fos/choline acetyltransferase immunolabeling procedures. The number of Fos-positive neurons was calculated from a 0.45-mm sample area from each of the brain regions examined. RESULTS A dose of 2 g/kg of ethanol significantly increased the number of Fos-immunoreactive neurons in the central nucleus of the amygdala by 149%, in the shell nucleus accumbens by 80%, and in the paraventricular nucleus of the hypothalamus by 321%. Additionally, 1 g/kg of ethanol significantly increased the percentage of Fos-immunoreactive cholinergic neurons in the nucleus accumbens by 59%. CONCLUSIONS The findings reported in this study reveal region-specific and dose-dependent changes in Fos immunoreactivity in the extended amygdala and hypothalamus and, more specifically, an increase in neuronal activation of cholinergic cells in the shell nucleus accumbens. These findings contribute to our current knowledge of the brain areas and cellular microcircuits involved in the underlying basis of substance abuse and dependence.
Collapse
Affiliation(s)
- Bruce E Herring
- Department of Psychology, University of Texas at Austin, Austin, Texas 78712-0187, USA
| | | | | | | |
Collapse
|
25
|
Smith JE, Co C, Yin X, Sizemore GM, Liguori A, Johnson WE, Martin TJ. Involvement of cholinergic neuronal systems in intravenous cocaine self-administration. Neurosci Biobehav Rev 2004; 27:841-50. [PMID: 15019433 DOI: 10.1016/j.neubiorev.2003.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies suggest the participation of cholinergic neurons in the brain processes underlying reinforcement. The involvement of cholinergic neurons in cocaine self-administration has been recently demonstrated in studies using muscarinic and nicotinic agonists and antagonists, microdialysis, assessment of choline acetyltransferase activity and acetylcholine (ACh) turnover rates. The present experiment was initiated to identify subsets of cholinergic neurons involved in the brain processes that underlie cocaine self-administration by lesioning discrete populations with a selective neurotoxin. Rats were trained to self-administer cocaine and the cholinergic neurotoxin 192-IgG-saporin or vehicle was then bilaterally administered into the posterior nucleus accumbens (NAcc)-ventral pallidum (VP). The 192-IgG-saporin induced lesions resulted in a pattern of drug-intake consistent with either a shift in the dose intake relationship to the left or downward compared to sham-treated controls. A second experiment used a self-administration threshold procedure that demonstrated this lesion shifted the dose intake relationship to the left compared to the sham-vehicle treated rats. The magnitude and extent of the lesion was assessed by measuring the expression of p75 (the target for 192-IgG-saporin) and choline acetyltransferase (ChAT) in the NAcc, VP, caudate nucleus-putamen (CP) and vertical limb of the medial septal nucleus-diagonal band (MS-DB) of these rats using real time reverse transcriptase-polymerase chain reaction. Significant reductions in gene expression for p75 (a selective marker for basal forebrain cholinergic neurons) and ChAT were seen in the MS-DB and VP while only small decreases were seen in the NAcc and CP of the 192-IgG-saporin treated rats. These data indicate that the overall influence of cholinergic neurons in the MS-DB and VP are inhibitory to the processes underlying cocaine self-administration and suggest that agonists directed toward subclasses of cholinergic receptors may have efficacy as pharmacotherapeutic adjuncts for the treatment of cocaine abuse.
Collapse
Affiliation(s)
- James E Smith
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1083, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Smith JE, Vaughn TC, Co C. Acetylcholine turnover rates in rat brain regions during cocaine self-administration. J Neurochem 2004; 88:502-12. [PMID: 14690538 DOI: 10.1046/j.1471-4159.2003.02222.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The involvement of cholinergic neurons in the brain processes underlying reinforcement has been recently demonstrated. This experiment assessed the potential role of cholinergic neurons in cocaine reinforcement by measuring the turnover rates of acetylcholine in brain regions of rats self-administering cocaine and in yoked cocaine and yoked vehicle-infused controls. The activity of cholinergic innervations of and/or interneurons in the olfactory tubercle, caudate putamen, diagonal band-pre-optic region, ventral pallidum, lateral and medial hypothalamus, hippocampus, ventral tegmental area and visual cortices reflected by the turnover rates of acetylcholine were significantly altered in rats self-administering cocaine compared to yoked cocaine infused controls. These changes implicate the involvement of cholinergic neurons with cell bodies in the diagonal band-pre-optic region, the medial septum and several brainstem nuclei and interneurons in the caudate-putamen and ventral pallidum in the processes underlying cocaine self-administration. The identified cholinergic neuronal systems may have a broader role in the brain processes for natural reinforcers (i.e. food, water, etc.) since drugs of abuse are believed to produce reinforcing effects through these systems.
Collapse
Affiliation(s)
- James E Smith
- Center for the Neurobiological Investigation of Drug Abuse, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1083, USA.
| | | | | |
Collapse
|
27
|
Berlanga ML, Olsen CM, Chen V, Ikegami A, Herring BE, Duvauchelle CL, Alcantara AA. Cholinergic interneurons of the nucleus accumbens and dorsal striatum are activated by the self-administration of cocaine. Neuroscience 2003; 120:1149-56. [PMID: 12927219 DOI: 10.1016/s0306-4522(03)00378-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nucleus accumbens, a major component of the ventral striatum, and the dorsal striatum are primary targets of the mesolimbic dopamine pathway, which is a pathway that plays a critical role in reward and addiction. The shell compartment of the nucleus accumbens and the ventromedial striatum, in particular, receive extensive afferent projections from the ventral tegmental area, which is the major afferent source of the mesolimbic pathway [Prog Brain Res 99 (1993) 209; J Neurosci 7 (1987) 3915]. The present study focused on striatal cholinergic interneurons as potential key neurons involved in the neural basis of drug reinforcement. The main finding of this study is that cholinergic interneurons located in the shell compartment of the nucleus accumbens and the ventromedial striatum were activated, as measured by Fos labeling, following a 1 h session of the self-administration of cocaine in rats. A direct correlation existed between the percent of cholinergic interneurons that were activated and the amount of cocaine that was self-administered. The greatest amount of administered cocaine (approximately 10 mg/kg) resulted in the activation of approximately 80% of the cholinergic neurons. No such correlation existed in the group of animals that self-administered saline. In addition, activation was not found in the core compartment of the nucleus accumbens or the dorsolateral striatum, which receive extensive innervation from the substantia nigra and thus are more closely tied to the motor effects of the drug. In conclusion, cocaine-driven neuronal activation was specific to the shell compartment of the nucleus accumbens (R(2)=0.9365) and the ventromedial striatum (R(2)=0.9059). These findings demonstrate that cholinergic interneurons are involved in the initial stage of cocaine intake and that these neurons are located in areas of the nucleus accumbens and dorsal striatum that are more closely tied to the rewarding and hedonic effects rather than the motor effects of cocaine intake.
Collapse
Affiliation(s)
- M L Berlanga
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Alcantara AA, Chen V, Herring BE, Mendenhall JM, Berlanga ML. Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res 2003; 986:22-9. [PMID: 12965226 DOI: 10.1016/s0006-8993(03)03165-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Striatal cholinergic interneurons located in the dorsal striatum and nucleus accumbens are amenable to influences of the dopaminergic mesolimbic pathway, which is a pathway involved in reward and reinforcement and targeted by several drugs of abuse. Dopamine and acetylcholine neurotransmission and their interactions are essential to striatal function, and disruptions to these systems lead to a variety of clinical disorders. Dopamine regulates acetylcholine release through dopamine receptors that are localized directly on striatal cholinergic interneurons. The dopamine D2 receptor, which attenuates acetylcholine release, has been implicated in drug relapse and is targeted by therapeutic drugs that are used to treat a variety of neurological disorders including Tourette Syndrome, Parkinson's disease and schizophrenia. The present study provides the first direct evidence for the localization of dopamine D2 receptors on striatal cholinergic interneurons of the rat brain using dual labeling immunocytochemistry procedures. Using light microscopy, dopamine D2 receptors were localized on the cell somata and dendritic and axonal processes of striatal cholinergic interneurons in the dorsal striatum and nucleus accumbens of the rat brain. These findings provide a foundation for understanding the specific roles that cholinergic neuronal network systems and interacting dopaminergic signaling pathways play in striatal function and in a variety of clinical disorders including drug abuse and addiction.
Collapse
Affiliation(s)
- Adriana A Alcantara
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
29
|
Rodd-Henricks ZA, McKinzie DL, Li TK, Murphy JM, McBride WJ. Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J Pharmacol Exp Ther 2002; 303:1216-26. [PMID: 12438546 DOI: 10.1124/jpet.102.038950] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rewarding properties of cocaine have been postulated to be regulated, in part, by the mesolimbic dopamine system. However, the possibility that the rewarding properties of cocaine are mediated by direct activation of this system has yielded contradictory findings. The intracranial self-administration technique is used to identify specific brain regions involved in the initiation of response-contingent behaviors for the delivery of a reinforcer. The present study assessed whether adult Wistar rats would self-administer cocaine directly into the nucleus accumbens shell (AcbSh) and core (AcbC). For each subregion, subjects were placed in standard two-lever operant chambers and randomly assigned to one of five groups for each site that were given either artificial cerebrospinal fluid (aCSF), or 400, 800, 1200, or 1600 pmol of cocaine/100 nl to self-administer. The data indicate that rats with placements within the AcbSh readily self-administered 800 to 1600 pmol of cocaine/100 nl and responded significantly more on the active than inactive lever. These subjects also decreased responding on the active lever when aCSF was substituted for cocaine and reinstated responding on the active lever when cocaine was reintroduced. Coinfusion of the D2-like receptor antagonist sulpiride inhibited cocaine self-infusion in the AcbSh. In contrast to the AcbSh data, rats failed to self-administer any tested dose of cocaine into the AcbC or areas ventral to the AcbSh. These findings suggest that the AcbSh is a neuroanatomical substrate for the reinforcing effects of cocaine and that activation of D2-like receptors is involved.
Collapse
Affiliation(s)
- Zachary A Rodd-Henricks
- Institute of Psychiatric Research and Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana 46202-4887, USA.
| | | | | | | | | |
Collapse
|
30
|
Saulskaya NB, Mikhailova MO. Feeding-induced decrease in extracellular glutamate level in the rat nucleus accumbens: dependence on glutamate uptake. Neuroscience 2002; 112:791-801. [PMID: 12088739 DOI: 10.1016/s0306-4522(02)00126-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo microdialysis combined with high-performance liquid chromatography and electrochemical detection was used to monitor extracellular glutamate levels in the medial nucleus accumbens of Sprague-Dawley rats during their feeding behaviour. Consumption of a palatable new diet or a diet to which rats were previously exposed caused a decrease in extracellular level of glutamate in the nucleus accumbens during and after feeding. The presentation of an inedible object (a piece of rubber) instead of the expected food caused a marked increase in extracellular glutamate levels. In contrast, if the piece of rubber was presented to rats that did not expect food delivery, the extracellular level of glutamate remained unchanged during the rubber presentation. The feeding-induced decrease in the extracellular glutamate level did not depend on food deprivation and was completely prevented by intraaccumbal infusions through the dialysis probe of 10 mM D,L-threo-beta-hydroxyaspartate (a glutamate uptake inhibitor). Intraaccumbal infusions of 10 microM S-(-)-raclopride L-tartrate (a D2/D3 dopamine receptor antagonist) or 1 microM tetrodotoxin (a voltage-dependent Na(+) channel blocker) also completely reversed the decrease in extracellular glutamate level in response to food intake. The D1/D5 dopamine receptor antagonist SCH-23390 (10 microM) administered into the nucleus accumbens had no significant effect on the feeding-induced decrease in extracellular glutamate level. From the data obtained we suggest that the decrease in the extracellular level of glutamate in the medial nucleus accumbens in response to feeding appears to arise from a temporal increase in glutamate uptake that is probably operated by dopamine inputs to the nucleus accumbens via D2/D3 receptors. Our findings also suggest that the dissociation between the expected biological value of a presented object and the reality might be an important determinant for regulation of glutamate release in this brain area during feeding behaviour.
Collapse
Affiliation(s)
- N B Saulskaya
- Laboratory of Higher Nervous Activity, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Admiral Makarov Embankment, St. Petersburg 199034, Russia.
| | | |
Collapse
|
31
|
Ichikawa J, Dai J, Meltzer HY. 5-HT(1A) and 5-HT(2A) receptors minimally contribute to clozapine-induced acetylcholine release in rat medial prefrontal cortex. Brain Res 2002; 939:34-42. [PMID: 12020849 DOI: 10.1016/s0006-8993(02)02544-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The atypical antipsychotic drugs (APDs) clozapine, olanzapine, risperidone, and ziprasidone preferentially increase dopamine (DA) release in rat medial prefrontal cortex (mPFC). These effects have been shown to depend upon potent 5-HT(2A) relative to weak D(2) antagonism, and 5-HT(1A) agonism as well. Atypical APDs also increase acetylcholine (ACh) release in the mPFC, but not the nucleus accumbens (NAC) or striatum (STR), whereas typical APDs such as haloperidol, S(-)-sulpiride and thioridazine do not produce either effect in the mPFC. This study examined the role of 5-HT(1A) agonism, 5-HT(2A) and D(2) antagonism, and the combination thereof, in the ability of clozapine to increase ACh release in rat mPFC. R(+)-8-OH-DPAT (0.2 mg/kg), a 5-HT(1A) agonist, WAY100635 (0.2-0.5 mg/kg), a 5-HT(1A) antagonist, and DOI (0.6-2.5 mg/kg), a 5-HT(2A/2C) agonist, increased ACh release in the mPFC, whereas M100907 (0.03-1 mg/kg), a 5-HT(2A) antagonist, did not. DOI (2.5 mg/kg) and M100907 (0.1 mg/kg) had no effect on ACh release in the NAC or STR. WAY100635 and M100907 inhibited the ability of R(+)-8-OH-DPAT and DOI, respectively, to increase ACh release in the mPFC. WAY100635, which inhibits clozapine-induced DA release in the mPFC, failed to inhibit clozapine (20 mg/kg)-induced ACh release in that region. Similarly, the combination of M100907 and haloperidol (0.1 mg/kg), which enhances DA release in the mPFC, failed to increase ACh release in that region. These results suggest that 5-HT(1A) agonism and 5-HT(2A) antagonism, as well as DA release, contribute minimally to the ability of clozapine, and perhaps other atypical APDs, to increase ACh release in the mPFC.
Collapse
Affiliation(s)
- Junji Ichikawa
- Division of Psychopharmacology, Departments of Psychiatry and Pharmacology, Ther Psychiatric Hospital at Vanderbilt, Vanderbilt University School of Medicine, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | | | | |
Collapse
|
32
|
Kuczenski R, Segal DS. Caudate-putamen and nucleus accumbens extracellular acetylcholine responses to methamphetamine binges. Brain Res 2001; 923:32-8. [PMID: 11743969 DOI: 10.1016/s0006-8993(01)03193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exposure of experimental animals to an escalating dose, multiple binge pattern of methamphetamine administration results in the progressive emergence of a unique behavioral profile, which includes a significant decrease in the duration of the stereotypy phase as well as a profound increase and qualitative change in the locomotor activation. This behavioral profile is associated with a selective decrease in the caudate-putamen but not nucleus accumbens extracellular dopamine response. Since the acetylcholine interneurons in these regions are partly under the control of the mesostriatal and mesoaccumbens dopamine inputs, changes in the activation of these interneurons should parallel the regionally differential dopamine responses during multiple binge treatment. Therefore, we characterized the caudate-putamen and nucleus accumbens extracellular acetylcholine responses to escalating-dose, multiple binge methamphetamine administration. An acute methamphetamine binge decreased acetylcholine levels in caudate-putamen, but had no effect on levels in nucleus accumbens. Furthermore, corresponding to the selective decrease in the dopamine response, the caudate-putamen but not nucleus accumbens extracellular acetylcholine response exhibited tolerance with repeated binge exposures; i.e. the decrease in acetylcholine associated with the acute methamphetamine binge was attenuated with multiple binge exposure. These results are consistent with our hypothesis and suggest that the regionally differential acetylcholine responses reflect one functional consequence of the escalating-dose, multiple binge stimulant treatment.
Collapse
Affiliation(s)
- R Kuczenski
- Psychiatry Department (0603), UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
33
|
Chau DT, Rada P, Kosloff RA, Taylor JL, Hoebel BG. Nucleus accumbens muscarinic receptors in the control of behavioral depression: antidepressant-like effects of local M1 antagonist in the Porsolt swim test. Neuroscience 2001; 104:791-8. [PMID: 11440810 DOI: 10.1016/s0306-4522(01)00133-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Systemically administered cholinomimetics or cholinesterase inhibitors can depress behavior in humans and animals, whereas antimuscarinic agents reverse this effect or even produce euphoria. Although these effects have been well documented, the specific brain regions that mediate them remain largely unknown. In the present experiments, muscarinic agonists and antagonists were locally injected into the nucleus accumbens of female Sprague-Dawley rats to test for their effects on behavioral depression in the Porsolt swim test and locomotor activity. Local, microinjections of the drugs in the accumbens elicited behaviors that were similar to the systemic effects reported in other studies. Injection of the non-specific agonist arecoline (40 and 80 microg) dose-dependently inhibited swimming and escape behavior. This may be mediated in part by accumbens M1 receptors because blocking these receptors with the specific antagonist pirenzepine (17.5 and 35.0 microg) did the opposite by increasing swimming. Gallamine (0.13, 0.44, and 0.88 microg), an antagonist at M2 receptors, dose-dependently decreased swimming. Two-way microdialysis suggested that this was in part due to the release of ACh by blocking M2 autoreceptors. Scopolamine, a mixed M1/M2 receptor antagonist, also released ACh but did not decrease swimming, probably because the M1 receptors were blocked; the drug (1.0 microg) increased swimming time, much like pirenzepine. With the exception of arecoline, none of the drugs significantly affected locomotor activity in a photocell cage. Arecoline (40 microg), which had decreased swimming, reduced activity. The present study suggests that muscarinic receptors in the nucleus accumbens can control immobility in the Porsolt swim test. The onset of immobility may depend on the activation of post-synaptic M1 receptors.
Collapse
Affiliation(s)
- D T Chau
- Psychology Department, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
34
|
Day JC, Kornecook TJ, Quirion R. Application of in vivo microdialysis to the study of cholinergic systems. Methods 2001; 23:21-39. [PMID: 11162147 DOI: 10.1006/meth.2000.1103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The application of in vivo microdialysis to the study of acetylcholine (ACh) release has contributed greatly to our understanding of cholinergic brain systems. This article reviews standard experimental procedures for dialysis probe selection and implantation, perfusion parameters, neurochemical detection, and data analysis as they relate to microdialysis assessments of cholinergic function. Particular attention is focused on the unique methodological considerations that arise when in vivo microdialysis is dedicated expressly to the recovery and measurement of ACh as opposed to other neurotransmitters. Limitations of the microdialysis technique are discussed, as well as methodological adaptations that may prove useful in overcoming these limitations. This is followed by an overview of recent studies in which the application of in vivo microdialysis has been used to characterize the basic pharmacology and physiology of cholinergic neurons. Finally, the usefulness of the microdialysis approach for testing hypotheses regarding the cholinergic systems' involvement in cognitive processes is examined. It can be concluded that, in addition to being a versatile and practical method for studying the neurochemistry of cholinergic brain systems, in vivo microdialysis represents a valuable tool in our efforts to better comprehend ACh's underlying role in a variety of behavioral processes.
Collapse
Affiliation(s)
- J C Day
- Douglas Hospital Research Centre & Department of Psychiatry, McGill University, Verdun, Quebec, H4H 1R3, Canada
| | | | | |
Collapse
|