1
|
Fang J, Li Z, Wang P, Zhang X, Mao S, Li Y, Yu D, Li X, Xing Y, Shi H, Yin S. Inhibition of the NLRP3 inflammasome attenuates spiral ganglion neuron degeneration in aminoglycoside-induced hearing loss. Neural Regen Res 2025; 20:3025-3039. [PMID: 39610108 PMCID: PMC11826467 DOI: 10.4103/nrr.nrr-d-23-01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00031/figure1/v/2024-11-26T163120Z/r/image-tiff Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum. However, their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target. In addition, the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure. To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides, we used a C57BL/6J mouse model treated with kanamycin. We found that the mice exhibited auditory deficits following the acute loss of outer hair cells. Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time. Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response, particularly those related to the NLRP3 inflammasome. Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed, accompanied by infiltration of macrophages and the release of proinflammatory cytokines. Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model. These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration. Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
Collapse
Affiliation(s)
- Jia Fang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuangzhuang Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Pengjun Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yini Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiaoyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yazhi Xing
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
2
|
MicroRNA Signature and Cellular Characterization of Undifferentiated and Differentiated House Ear Institute-Organ of Corti 1 (HEI-OC1) Cells. J Assoc Res Otolaryngol 2022; 23:467-489. [PMID: 35546217 PMCID: PMC9094604 DOI: 10.1007/s10162-022-00850-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expressions and control a wide variety of cellular functions. House Ear Institute-Organ of Corti 1 (HEI-OC1) cells are widely used to screen ototoxic drugs and to investigate cellular and genetic alterations in response to various conditions. HEI-OC1 cells are almost exclusively studied under permissive conditions that promote cell replication at the expense of differentiation. Many researchers suggest that permissive culture condition findings are relevant to understanding human hearing disorders. The mature human cochlea however consists of differentiated cells and lacks proliferative capacity. This study therefore aimed to compare the miRNA profiles and cellular characteristics of HEI-OC1 cells cultured under permissive (P-HEI-OC1) and non-permissive (NP-HEI-OC1) conditions. A significant increase in the level of expression of tubulin β1 class VI (Tubb1), e-cadherin (Cdh1), espin (Espn), and SRY (sex determining region Y)-box2 (Sox2) mRNAs was identified in non-permissive cells compared with permissive cells (P < 0.05, Kruskal–Wallis H test, 2-sided). miR-200 family, miR-34b/c, and miR-449a/b functionally related cluster miRNAs, rodent-specific maternally imprinted gene Sfmbt2 intron 10th cluster miRNAs (-466a/ -467a), and miR-17 family were significantly (P < 0.05, Welch’s t-test, 2-tailed) differentially expressed in non-permissive cells when compared with permissive cells. Putative target genes were significantly predominantly enriched in mitogen-activated protein kinase (MAPK), epidermal growth factor family of receptor tyrosine kinases (ErbB), and Ras signaling pathways in non-permissive cells compared with permissive cells. This distinct miRNA signature of differentiated HEI-OC1 cells could help in understanding miRNA-mediated cellular responses in the adult cochlea.
Collapse
|
3
|
Bieniussa L, Jain I, Bosch Grau M, Juergens L, Hagen R, Janke C, Rak K. Microtubule and auditory function - an underestimated connection. Semin Cell Dev Biol 2022; 137:74-86. [PMID: 35144861 DOI: 10.1016/j.semcdb.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
The organ of Corti, located in the cochlea within the inner ear is the receptor organ for hearing. It converts auditory signals into neuronal action potentials that are transmitted to the brain for further processing. The mature organ of Corti consists of a variety of highly differentiated sensory cells that fulfil unique tasks in the processing of auditory signals. The actin and microtubule cytoskeleton play essential function in hearing, however so far, more attention has been paid to the role of actin. Microtubules play important roles in maintaining cellular structure and intracellular transport in virtually all eukaryotic cells. Their functions are controlled by interactions with a large variety of microtubule-associated proteins (MAPs) and molecular motors. Current advances show that tubulin posttranslational modifications, as well as tubulin isotypes could play key roles in modulating microtubule properties and functions in cells. These mechanisms could have various effects on the stability and functions of microtubules in the highly specialised cells of the cochlea. Here, we review the current understanding of the role of microtubule-regulating mechanisms in the function of the cochlea and their implications for hearing, which highlights the importance of microtubules in the field of hearing research.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Ipsa Jain
- Institute of Stem cell Biology and Regenerative Medicine, Bangalore, India
| | - Montserrat Bosch Grau
- Genetics and Physiology of Hearing Laboratory, Institute Pasteur, 75015 Paris, France
| | - Lukas Juergens
- Department of Ophthalmology, University of Duesseldorf, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany.
| |
Collapse
|
4
|
Huet AT, Dombrowski T, Rankovic V, Thirumalai A, Moser T. Developing Fast, Red-Light Optogenetic Stimulation of Spiral Ganglion Neurons for Future Optical Cochlear Implants. Front Mol Neurosci 2021; 14:635897. [PMID: 33776648 PMCID: PMC7991399 DOI: 10.3389/fnmol.2021.635897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 01/19/2023] Open
Abstract
Optogenetic stimulation of type I spiral ganglion neurons (SGNs) promises an alternative to the electrical stimulation by current cochlear implants (CIs) for improved hearing restoration by future optical CIs (oCIs). Most of the efforts in using optogenetic stimulation in the cochlea so far used early postnatal injection of viral vectors carrying blue-light activated channelrhodopsins (ChRs) into the cochlea of mice. However, preparing clinical translation of the oCI requires (i) reliable and safe transduction of mature SGNs of further species and (ii) use of long-wavelength light to avoid phototoxicity. Here, we employed a fast variant of the red-light activated channelrhodopsin Chrimson (f-Chrimson) and different AAV variants to implement optogenetic SGN stimulation in Mongolian gerbils. We compared early postnatal (p8) and adult (>8 weeks) AAV administration, employing different protocols for injection of AAV-PHP.B and AAV2/6 into the adult cochlea. Success of the optogenetic manipulation was analyzed by optically evoked auditory brainstem response (oABR) and immunohistochemistry of mid-modiolar cryosections of the cochlea. In order to most efficiently evaluate the immunohistochemical results a semi-automatic procedure to identify transduced cells in confocal images was developed. Our results indicate that the rate of SGN transduction is significantly lower for AAV administration into the adult cochlea compared to early postnatal injection. SGN transduction upon AAV administration into the adult cochlea was largely independent of the chosen viral vector and injection approach. The higher the rate of SGN transduction, the lower were oABR thresholds and the larger were oABR amplitudes. Our results highlight the need to optimize viral vectors and virus administration for efficient optogenetic manipulation of SGNs in the adult cochlea for successful clinical translation of SGN-targeting gene therapy and of the oCI.
Collapse
Affiliation(s)
- Antoine Tarquin Huet
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Department of Otolaryngology, Head and Neck Surgery, St. Elisabeth Hospital, Ruhr University Bochum, Bochum, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Anupriya Thirumalai
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2020; 154:597-607. [PMID: 33277679 DOI: 10.1007/s00418-020-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
6
|
Juergens L, Bieniussa L, Voelker J, Hagen R, Rak K. Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice. Histochem Cell Biol 2020; 154:671-681. [PMID: 32712744 PMCID: PMC7723944 DOI: 10.1007/s00418-020-01905-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.
Collapse
Affiliation(s)
- Lukas Juergens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
- Department of Ophthalmology, University of Duesseldorf, Duesseldorf, Germany
| | - Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
7
|
Hausrat TJ, Radwitz J, Lombino FL, Breiden P, Kneussel M. Alpha- and beta-tubulin isotypes are differentially expressed during brain development. Dev Neurobiol 2020; 81:333-350. [PMID: 32293117 DOI: 10.1002/dneu.22745] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Alpha- and beta-tubulin dimers polymerize into protofilaments that associate laterally to constitute a hollow tube, the microtubule. A dynamic network of interlinking filaments forms the microtubule cytoskeleton, which maintains the structure of cells and is key to various cellular processes including cell division, cell migration, and intracellular transport. Individual microtubules have an identity that depends on the differential integration of specific alpha- and beta-tubulin isotypes and is further specified by a variety of posttranslational modifications (PTMs). It is barely understood to which extent neighboring microtubules differ in their tubulin composition or whether specific tubulin isotypes cluster along the polymer. Furthermore, our knowledge about the spatio-temporal expression patterns of tubulin isotypes is limited, not at least due to the lack of antibodies or antibody cross-reactivities. Here, we asked which alpha- and beta-tubulin mRNAs and proteins are expressed in developing hippocampal neuron cultures and ex vivo brain tissue lysates. Using heterologous expression of GFP-tubulin fusion proteins, we systematically tested antibody-specificities against various tubulin isotypes. Our data provide quantitative information about tubulin expression levels in the mouse brain and classify tubulin isotypes during pre- and postnatal development.
Collapse
Affiliation(s)
- Torben J Hausrat
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Radwitz
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franco L Lombino
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Breiden
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Wrobel C, Dieter A, Huet A, Keppeler D, Duque-Afonso CJ, Vogl C, Hoch G, Jeschke M, Moser T. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Sci Transl Med 2019; 10:10/449/eaao0540. [PMID: 29997248 DOI: 10.1126/scitranslmed.aao0540] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/17/2017] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
Abstract
Cochlear implants partially restore hearing via direct electrical stimulation of spiral ganglion neurons (SGNs). However, spread of excitation from each electrode limits spectral coding. We explored the use of optogenetics to deliver spatially restricted and cell-specific excitation in the cochlea of adult Mongolian gerbils. Adeno-associated virus carrying the gene encoding the light-sensitive calcium translocating channelrhodopsin (CatCh) was injected into the cochlea of adult gerbils. SGNs in all cochlea turns showed stable and long-lasting CatCh expression, and electrophysiological recording from single SGNs showed that light stimulation up to few hundred Hertz induced neuronal firing. We characterized the light-induced activity in the auditory pathway by electrophysiological and behavioral analysis. Light- and sound-induced auditory brainstem responses showed similar kinetics and amplitude. In normal hearing adult gerbils, optical cochlear implants elicited stable optical auditory brainstem responses over a period of weeks. In normal hearing animals, light stimulation cued avoidance behavior that could be reproduced by subsequent acoustic stimulation, suggesting similar perception of light and acoustic stimuli. Neurons of the primary auditory cortex of normal hearing adult gerbils responded with changes in firing rates with increasing light intensity. In deaf adult gerbils, light stimulation generated auditory responses and cued avoidance behavior indicating partial restoration of auditory function. Our data show that optogenetic cochlear stimulation achieved good temporal fidelity with low light intensities in an adult rodent model, suggesting that optogenetics might be used to develop cochlear implants with improved restorative capabilities.
Collapse
Affiliation(s)
- Christian Wrobel
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr University Bochum, St. Elisabeth Hospital, 44787 Bochum, Germany
| | - Alexander Dieter
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Antoine Huet
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany
| | - Carlos J Duque-Afonso
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany
| | - Christian Vogl
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany.,Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerhard Hoch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Marcus Jeschke
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany. .,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany. .,Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany.,Bernstein Center for Computational Neuroscience, University of Göttingen, 37077 Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Noda T, Meas SJ, Nogami J, Amemiya Y, Uchi R, Ohkawa Y, Nishimura K, Dabdoub A. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy. Front Cell Dev Biol 2018; 6:16. [PMID: 29492404 PMCID: PMC5817057 DOI: 10.3389/fcell.2018.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.
Collapse
Affiliation(s)
- Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Steven J Meas
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yutaka Amemiya
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryutaro Uchi
- Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Hearing Communication Medical Center, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Spatial Gradients in the Size of Inner Hair Cell Ribbons Emerge Before the Onset of Hearing in Rats. J Assoc Res Otolaryngol 2017; 18:399-413. [PMID: 28361374 DOI: 10.1007/s10162-017-0620-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/02/2017] [Indexed: 01/02/2023] Open
Abstract
The size and locations of pre-synaptic ribbons and glutamate receptors within and around inner hair cells are correlated with auditory afferent response features such as the spontaneous discharge rate (SR), threshold, and dynamic range of sound intensity representation (the so-called SR-groups). To test if the development of these spatial gradients requires experience with sound intensity, we quantified the size and spatial distribution of synaptic ribbons from the inner hair cells of neonatal rats before and after the onset of hearing (from post-natal day (P) 3 to P33). To quantify ribbon size, we used high resolution fluorescence confocal microscopy and 3-D reconstructions of immunolabeled ribbons. The size, density, and spatial distribution of ribbons changed during development. At P3, ribbons were densely clustered near the basal/modiolar face of the hair cell where low SR-groups preferentially contact adult hair cells. By P12, the disparity in ribbon count was less striking and ribbons were equally likely to occupy both faces. At all ages before P12, ribbons were larger on the modiolar face than on the pillar face. These differences initially grew larger with age but collapsed around the onset of hearing. Between P12 and P33, the spatial gradients remained small and began to re-emerge around P33. Even by P12, we did not find spatial gradients in the size of the post-synaptic glutamate receptors as is found on afferent terminals contacting adult inner hair cells. These results suggest that spatial gradients in ribbon size develop in the absence of sensory experience.
Collapse
|
11
|
Renauld J, Johnen N, Thelen N, Cloes M, Thiry M. Spatio-temporal dynamics of β-tubulin isotypes during the development of the sensory auditory organ in rat. Histochem Cell Biol 2015. [DOI: 10.1007/s00418-015-1350-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Abbas L, Rivolta MN. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration. Hear Res 2015; 325:12-26. [PMID: 25783988 PMCID: PMC4441107 DOI: 10.1016/j.heares.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 11/19/2022]
Abstract
The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the loop diuretic furosemide. Interestingly, we show that the gerbil is relatively insensitive to gentamicin compared to kanamycin, and that bumetanide is ineffective in potentiating the ototoxicity of the drug. We also examine the pathology of the spiral ganglion after chronic, long-term hair cell damage. Remarkably, there is little or no neuronal loss following the ototoxic insult, even at 8 months post-damage. This is similar to the situation often seen in the human, where functioning neurons can persist even decades after hair cell loss, contrasting with the rapid, secondary degeneration found in rats, mice and other small mammals. We propose that the combination of these factors makes the gerbil a good model for ototoxic damage by induced hair cell loss.
Collapse
Affiliation(s)
- Leila Abbas
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
13
|
Dong Y, Ding D, Jiang H, Shi JR, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicol Appl Pharmacol 2014; 280:526-33. [DOI: 10.1016/j.taap.2014.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 01/21/2023]
|
14
|
Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 2014; 11:173. [PMID: 25311735 PMCID: PMC4198756 DOI: 10.1186/s12974-014-0173-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The cochlea is the sensory organ of hearing. In the cochlea, the organ of Corti houses sensory cells that are susceptible to pathological insults. While the organ of Corti lacks immune cells, it does have the capacity for immune activity. We hypothesized that resident cells in the organ of Corti were responsible for the stress-induced immune response of the organ of Corti. This study profiled the molecular composition of the immune system in the organ of Corti and examined the immune response of non-immune epithelial cells to acoustic overstimulation. METHODS Using high-throughput RNA-sequencing and qRT-PCR arrays, we identified immune- and inflammation-related genes in both the cochlear sensory epithelium and the organ of Corti. Using bioinformatics analyses, we cataloged the immune genes expressed. We then examined the response of these genes to acoustic overstimulation and determined how changes in immune gene expression were related to sensory cell damage. RESULTS The RNA-sequencing analysis reveals robust expression of immune-related genes in the cochlear sensory epithelium. The qRT-PCR array analysis confirms that many of these genes are constitutively expressed in the resident cells of the organ of Corti. Bioinformatics analyses reveal that the genes expressed are linked to the Toll-like receptor signaling pathway. We demonstrate that expression of Toll-like receptor signaling genes is predominantly from the supporting cells in the organ of Corti cells. Importantly, our data demonstrate that these Toll-like receptor pathway genes are able to respond to acoustic trauma and that their expression changes are associated with sensory cell damage. CONCLUSION The cochlear resident cells in the organ of Corti have immune capacity and participate in the cochlear immune response to acoustic overstimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo 14214, NY, USA.
| |
Collapse
|
15
|
Maruyama Y, Arahara K, Kinoshita E, Arai K. AP-1-mediated expression of brain-specific class IVa β-tubulin in P19 embryonal carcinoma cells. J Vet Med Sci 2014; 76:1609-15. [PMID: 25649943 PMCID: PMC4300376 DOI: 10.1292/jvms.14-0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of brain-specific
phenotypes increased in all trans retinoic acid (ATRA)-induced neural
differentiation of mouse P19 embryonal carcinoma cells. Among these phenotypes, expression
of class IVa β-tubulin isotype (TUBB4a) was particularly enhanced in neural
differentiation. Transient transfection assays employing a reporter construct found that
ATRA-mediated regulatory region of the TUBB4a gene lay in the region from −83 nt to +137
nt relative to the +1 transcription start site. Site-directed mutagenesis in the AP-1
binding site at −29/−17 suggested that the AP-1 binding site was a critical region for
ATRA-mediated TUBB4a expression. Chromatin immunoprecipitation experiments suggested
participation of JunD and activating transcription factor-2 (ATF2) in TUBB4a expression.
Additionally, exogenous induction of the dominant-negative (dn) type of JunD canceled
ATRA-induced upregulation of TUBB4a, and the dn type of ATF2 suppressed even the basal
activity. Further immunoblot study revealed an ATRA-mediated increase in JunD protein,
while a significant amount of ATF2 protein was constantly produced. These results suggest
that differentiation-mediated activation of JunD results in enhanced TUBB4a
expression.
Collapse
Affiliation(s)
- Yuka Maruyama
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
16
|
Szarama KB, Stepanyan R, Petralia RS, Gavara N, Frolenkov GI, Kelley MW, Chadwick RS. Fibroblast growth factor receptor 3 regulates microtubule formation and cell surface mechanical properties in the developing organ of Corti. BIOARCHITECTURE 2014; 2:214-9. [PMID: 23267415 PMCID: PMC3527316 DOI: 10.4161/bioa.22332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibroblast Growth Factor (Fgf) signaling is involved in the exquisite cellular patterning of the developing cochlea, and is necessary for proper hearing function. Our previous data indicate that Fgf signaling disrupts actin, which impacts the surface stiffness of sensory outer hair cells (OHCs) and non-sensory supporting pillar cells (PCs) in the organ of Corti. Here, we used Atomic Force Microscopy (AFM) to measure the impact of loss of function of Fgf-receptor 3, on cytoskeletal formation and cell surface mechanical properties. We find a 50% decrease in both OHC and PC surface stiffness, and a substantial disruption in microtubule formation in PCs. Moreover, we find no change in OHC electromotility of Fgfr3-deficient mice. To further understand the regulation by Fgf-signaling on microtubule formation, we treated wild-type cochlear explants with Fgf-receptor agonist Fgf2, or antagonist SU5402, and find that both treatments lead to a significant reduction in β-Tubulin isotypes I&II. To identify downstream transcriptional targets of Fgf-signaling, we used QPCR arrays to probe 84 cytoskeletal regulators. Of the 5 genes significantly upregulated following treatment, Clasp2, Mapre2 and Mark2 impact microtubule formation. We conclude that microtubule formation is a major downstream effector of Fgf-receptor 3, and suggest this pathway impacts the formation of fluid spaces in the organ of Corti.
Collapse
Affiliation(s)
- Katherine B Szarama
- Auditory Mechanics Section, Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Saillour Y, Broix L, Bruel-Jungerman E, Lebrun N, Muraca G, Rucci J, Poirier K, Belvindrah R, Francis F, Chelly J. Beta tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown. Hum Mol Genet 2013; 23:1516-26. [PMID: 24179174 DOI: 10.1093/hmg/ddt538] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the last years, the critical role of cytoskeletal proteins in cortical development including neuronal migration as well as in neuronal morphology has been well established. Inputs from genetic studies were provided through the identification of several mutated genes encoding either proteins associated with microtubules (DCX, LIS1, KIF2A, KIF5C, DYNC1H1) or tubulin subunits (TUBA1A, TUBB2B, TUBB5 and TUBG1), in malformations of cortical development (MCD). We also reported the identification of missense mutations in TUBB3, the postmitotic neuronal specific tubulin, in six different families presenting either polymicrogyria or gyral disorganization in combination with cerebellar and basal ganglial abnormalities. Here, we investigate further the association between TUBB3 mutations and MCDs by analyzing the consequences of Tubb3 knockdown on cortical development in mice. Using the in utero-electroporation approach, we demonstrate that Tubb3 knockdown leads to delayed bipolar morphology and radial migration with evidence, suggesting that the neuronal arrest is a transient phenomenon overcome after birth. Silenced blocked cells display a round-shape and decreased number of processes and a delay in the acquisition of the bipolar morphology. Also, more Tbr2 positive cells are observed, although less cells express the proliferation marker Ki67, suggesting that Tubb3 inactivation might have an indirect effect on intermediate progenitor proliferation. Furthermore, we show by rescue experiments the non-interchangeability of other beta-tubulins which are unable to rescue the phenotype. Our study highlights the critical and specific role of Tubb3 on the stereotyped morphological changes and polarization processes that are required for initiating radial migration to the cortical plate.
Collapse
Affiliation(s)
- Yoann Saillour
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris F75014, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shah SM, Patel CH, Feng AS, Kollmar R. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons. Hear Res 2013; 304:137-44. [PMID: 23856237 DOI: 10.1016/j.heares.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 06/23/2013] [Accepted: 07/01/2013] [Indexed: 01/13/2023]
Abstract
The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove lithium inhibiting glycogen synthase kinase 3 activity in spiral ganglion neurons. Experiments with additional drugs and molecular-genetic tools will be necessary to test whether glycogen synthase kinase 3 regulates neurite regeneration from spiral ganglion neurons, possibly by integrating neurotrophin and Wnt signals at the growth cone.
Collapse
Affiliation(s)
- S M Shah
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Graduate Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Medical Scholars Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
19
|
Ezan J, Montcouquiol M. Revisiting planar cell polarity in the inner ear. Semin Cell Dev Biol 2013; 24:499-506. [PMID: 23562830 DOI: 10.1016/j.semcdb.2013.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
Since the first implication of the core planar cell polarity (PCP) pathway in stereocilia orientation of sensory hair cells in the mammalian cochlea, much has been written about this subject, in terms of understanding how this pathway can shape the mammalian hair cells and using the inner ear as a model system to understand mammalian PCP signaling. However, many conflicting results have arisen, leading to puzzling questions regarding the actual mechanism and roles of core PCP signaling in mammals and invertebrates. In this review, we summarize our current knowledge on the establishment of PCP during inner ear development and revisit the contrast between wing epithelial cells in Drosophila melanogaster and sensory epithelia in the mammalian cochlea. Notably, we focus on similarities and differences in the asymmetric distribution of core PCP proteins in the context of cell autonomous versus non-autonomous role of PCP signaling in the two systems. Additionally, we address the relationship between the kinocilium position and PCP in cochlear hair cells and increasing results suggest an alternate cell autonomous pathway in regulating PCP in sensory hair cells.
Collapse
Affiliation(s)
- Jérôme Ezan
- Planar Polarity and Plasticity Group, Inserm U862, Neurocentre Magendie, Bordeaux, France.
| | | |
Collapse
|
20
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
The distribution of β-tubulin isotypes in cultured neurons from embryonic, newborn, and adult mouse brains. Brain Res 2011; 1420:8-18. [DOI: 10.1016/j.brainres.2011.08.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022]
|
22
|
Schmutzhard J, Glueckert R, Bitsche M, Abraham I, Falkeis C, Schwentner I, Riechelmann H, Müller B, Beckmann F, Sergi C, Schrott-Fischer A. The cochlea in fetuses with neural tube defects. Int J Dev Neurosci 2009; 27:669-676. [PMID: 19664702 DOI: 10.1016/j.ijdevneu.2009.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/14/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022] Open
Abstract
In this study different malformations of the cochlea could be demonstrated. Nevertheless, we could not delineate a distinct malformation of the inner ear, that can be linked to a neural tube defect. Neural tube defects are a frequent and heterogeneous group of malformations, ranging from the survivable spina bifida to fatal anencephaly. In multiple animal models an involvement of the vestibulocochlear system has been demonstrated. In this article human fetal temporal bones of neural tube defects were analysed in a multimodular work-up. The morphologic study was performed with light microscopy, transmission electron microscopy and synchrotron radiation-based microcomputed tomography. Immunohistochemistry for different neuronal markers such as peripherin, beta-III-tubulin and vimentin helped to evaluate ontogenetic tissue development. Eight fetal temporal bones with neural tube defects and five control temporal bones were included into the morphologic study. The morphologic results of the neural tube defect temporal bones showed six regularly developed cochleas and two with only a single cochlear turn. Three of the neural tube defect temporal bones were further examined with immunohistochemical analysis. No differences in the staining pattern for peripherin, beta-III-tubulin and vimentin were detected.
Collapse
Affiliation(s)
- Joachim Schmutzhard
- Department of Otorhinolaryngology, Innsbruck Medical University, A 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
MacDonald GH, Rubel EW. Three-dimensional imaging of the intact mouse cochlea by fluorescent laser scanning confocal microscopy. Hear Res 2008; 243:1-10. [PMID: 18573326 PMCID: PMC2566306 DOI: 10.1016/j.heares.2008.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/07/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
The complex anatomy of the mammalian cochlea is most readily understood by representation in three-dimensions. However, the cochlea is often sectioned to minimize the effects of its anatomic complexity and optical properties on image acquisition by light microscopy. We have found that optical aberrations present in the decalcified cochlea can be greatly reduced by dehydration through graded ethanols followed by clearing with a mixture of five parts methyl salicylate and three parts benzyl benzoate (MSBB). Clearing the cochlea with MSBB enables acquisition of high-resolution images with multiple fluorescent labels, through the full volume of the cochlea by laser scanning confocal microscopy. The resulting images are readily applicable to three-dimensional morphometric analysis and volumetric visualizations. This method promises to be particularly useful for three-dimensional characterization of anatomy, innervation and expression of genes or proteins in the many new animal models of hearing and balance generated by genetic manipulation. Furthermore, the MSBB is compatible with most non-protein fluorophores used for histological labeling, and may be removed with traditional transitional solvents to allow subsequent epoxy embedding for sectioning.
Collapse
MESH Headings
- Animals
- Benzoates
- Cochlea/anatomy & histology
- Cochlea/innervation
- Cochlea/metabolism
- Fluorescent Dyes
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/metabolism
- Histological Techniques
- Imaging, Three-Dimensional
- Immunohistochemistry
- Mice
- Mice, Inbred CBA
- Microscopy, Confocal
- Models, Anatomic
- Salicylates
Collapse
Affiliation(s)
- Glen H MacDonald
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
24
|
Banerjee A, Jensen-Smith H, Lazzell A, Prasad V, Elguezabal G, Hallworth R, Ludueña RF. Localization of betav tubulin in the cochlea and cultured cells with a novel monoclonal antibody. ACTA ACUST UNITED AC 2008; 65:505-14. [PMID: 18412253 DOI: 10.1002/cm.20280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubulin, the dimeric structural protein of microtubules, is a heterodimer of alpha and beta subunits; both alpha and beta exist as numerous isotypes encoded by different genes. In vertebrates the sequence differences among the beta(I), beta(II), beta(III), beta(IV) and beta(V) isotypes are highly conserved in evolution, implying that the isotypes may have functional significance. Isotype-specific monoclonal antibodies have been useful in determining the cellular and sub-cellular distributions and possible functions of the beta(I), beta(II), beta(III), and beta(IV) isotypes; however, little is known about the beta(V) isotype. We here report the creation and purification of a monoclonal antibody (SHM.12G11) specific for beta(V). The antibody was designed to be specific for the C-terminal sequence EEEINE, which is unique to rodent and chicken beta(V). The antibody was found to bind specifically to the C-terminal peptide EEEINE, and does not cross-react with the carboxy-termini of either alpha-tubulin or the other beta-tubulin isotypes. However, the antibody also binds to the peptide EEEVNE, but not to the peptide EEEIDG, corresponding respectively to the C-terminal peptides of bovine and human beta(V). Immunofluorescence analysis indicates that beta(V) is found in microtubules of both the interphase network and the mitotic spindle. In gerbils, beta(V) also occurs in the cochlea where it is found largely in the specialized cells that are unique in containing bundled microtubules with 15 protofilaments.
Collapse
Affiliation(s)
- Asok Banerjee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia–reperfusion both in vivo and in vitro. Brain Res 2008; 1216:104-15. [DOI: 10.1016/j.brainres.2008.03.049] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 12/31/2022]
|
26
|
Chan CML, Wong SCC, Lam MYY, Hui EP, Chan JKC, Lo ESF, Cheuk W, Wong MCK, Tsao SW, Chan ATC. Proteomic comparison of nasopharyngeal cancer cell lines C666-1 and NP69 identifies down-regulation of annexin II and beta2-tubulin for nasopharyngeal carcinoma. Arch Pathol Lab Med 2008; 132:675-83. [PMID: 18384219 DOI: 10.5858/2008-132-675-pconcc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2007] [Indexed: 11/06/2022]
Abstract
CONTEXT Nasopharyngeal carcinoma (NPC), common in southern China and North Africa, has a complex etiology involving interplay between viral, environmental, and hereditary factors and is almost constantly associated with the Epstein-Barr virus. Since the prognosis of locally advanced and metastatic diseases is poor, increased understanding of the pathogenesis of NPC would be important for discovering novel markers for patients' management. OBJECTIVES To compare the proteomic expression profile between an Epstein-Barr virus-associated NPC cell line (C666-1) and a normal NP cell line (NP69). The proteins with differential expression were analyzed in 40 undifferentiated NPC paraffin-embedded specimens. DESIGN Differentially expressed proteins discovered between the two cell lines were identified by mass spectrometry. After confirmation by immunocytochemical staining, their expression in patient samples was measured using 40 pairs of undifferentiated NPCs together with their adjacent normal epithelia. RESULTS Proteomic findings indicated that adenosine triphosphate synthase alpha chain was up-regulated, whereas annexin II, annexin V, beta(2)-tubulin, and profilin 1 were down-regulated. After confirming the results in agar-processed cell lines, annexin II and beta(2)-tubulin expression were found to be lower in tumor cells than in adjacent normal epithelial cells in 100% and 90% of the patients' specimens, respectively. Finally, annexin II down-regulation was positively associated with lymph node metastasis, suggesting that it may be a prognostic factor in NPC. CONCLUSIONS The results suggest that annexin II and beta(2)-tubulin down-regulation is important in NPC formation and may represent potential targets for further investigations.
Collapse
Affiliation(s)
- Charles M L Chan
- Department of Clinical Oncology, Sir Y. K. Pao Centre for Cancer, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. J Neurosci 2008; 27:14023-34. [PMID: 18094241 DOI: 10.1523/jneurosci.3219-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A unifying principle of sensory system organization is feature extraction by modality-specific neuronal maps in which arrays of neurons show systematically varied response properties and receptive fields. Only beginning to be understood, however, are the mechanisms by which these graded systems are established. In the peripheral auditory system, we have shown previously that the intrinsic firing features of spiral ganglion neurons are influenced by brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). We now show that is but a part of a coordinated package of neurotrophin actions that also includes effects on presynaptic and postsynaptic proteins, thus encompassing the input, transmission, and output functions of the spiral ganglion neurons. Using immunocytochemical methods, we determined that proteins targeted to opposite ends of the neuron were organized and regulated in a reciprocal manner. AMPA receptor subunits GluR2 and GluR3 were enriched in base neurons compared with their apex counterparts. This distribution pattern was enhanced by exposure to BDNF but reduced by NT-3. SNAP-25 and synaptophysin were distributed and regulated in the mirror image: enriched in the apex, enhanced by NT-3 and reduced by BDNF. Moreover, we used a novel coculture to identify potential endogenous sources of neurotrophins by showing that sensory receptors from different cochlear regions were capable of altering presynaptic and postsynaptic protein levels in these neurons. From these studies, we suggest that BDNF and NT-3, which are systematically distributed in complementary gradients, are responsible for orchestrating a comprehensive set of electrophysiological specializations along the frequency contour of the cochlea.
Collapse
|
28
|
Matsumoto M, Sekiya T, Kojima K, Ito J. An animal experimental model of auditory neuropathy induced in rats by auditory nerve compression. Exp Neurol 2007; 210:248-56. [PMID: 18178187 DOI: 10.1016/j.expneurol.2007.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/02/2007] [Accepted: 11/03/2007] [Indexed: 01/19/2023]
Abstract
Several animal models of auditory neuropathy (AN) have been produced by employing pharmacological agents to damage auditory neurons or hair cells selectively. The specificity of pharmacological lesions is generally assessed by observation of visible structural damage but it is difficult to localize the delivery, which could lead to functional side effects in other anatomical structures. Although genetic analyses of human AN patients have provided important information on the pathophysiology of AN, specific genetic defects have not been fully correlated with functional deficits in the auditory nervous system. To address this problem, we compressed rat auditory nerves to assess neural degeneration for up to 35 weeks. The method produced a good model of auditory neuropathy, including profound deterioration of the auditory brainstem response and preservation of both cochlear microphonics and distortion product otoacoustic emissions. Histological examination revealed that in spite of profound degeneration of the auditory nerve, the hair cells remained intact. The model provides a complementary alternative to those based on pharmacological lesions and genetic analyses of AN patients and should allow analysis of the pathophysiology of auditory neuropathy with less risk of the results being confounded by unknown deficits in other cell types.
Collapse
Affiliation(s)
- Masahiro Matsumoto
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
29
|
Vieira M, Christensen BL, Wheeler BC, Feng AS, Kollmar R. Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice. Hear Res 2007; 230:17-23. [PMID: 17521837 DOI: 10.1016/j.heares.2007.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 11/27/2022]
Abstract
We have developed a reliable protocol for the serum-free dissociation and culture of spiral ganglion neurons from adult mice, an important animal model for patients with post-lingual hearing loss. Pilot experiments indicated that the viability of spiral ganglion cells in vitro depended critically on the use of Hibernate medium with B27 supplement. With an optimized protocol, we obtained 2 x 10(3) neurons immediately after dissociation, or about one-fifth of those present in the intact spiral ganglion. After four days in culture, 4% of the seeded neurons survived without any exogenous growth factors other than insulin. This yield was highly reproducible in five independent experiments and enabled us to measure systematically the numbers and lengths of the regenerating neurites. Furthermore, the survival rate compared well to the few published protocols for culturing adult spiral ganglion neurons from other species. Enhanced survival and neurite outgrowth upon the addition of brain-derived neurotrophic factor and leukemia inhibitory factor demonstrated that both are potent stimulants for damaged spiral ganglion neurons in adults. This responsiveness to exogenous growth factors suggested that our culture protocol will facilitate the screening of molecular compounds as potential treatments for sensorineural hearing loss.
Collapse
Affiliation(s)
- Mauricio Vieira
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, MC-251, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
30
|
Arai K, Matsumoto Y, Nagashima Y, Yagasaki K. Regulation of Class II β-Tubulin Expression by Tumor Suppressor p53 Protein in Mouse Melanoma Cells in Response toVincaAlkaloid. Mol Cancer Res 2006; 4:247-55. [PMID: 16603638 DOI: 10.1158/1541-7786.mcr-05-0183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The continuous exposure of antimicrotubule drugs to tumors often results in the emergence of drug-resistant tumor cells with altered expression of several beta-tubulin isotypes. We found that Vinca alkaloid enhanced expression of class II beta-tubulin isotype (mTUBB2) in mouse B16F10 melanoma cells via alteration of the tumor suppressor p53 protein. Vincristine treatment stimulated an increase in mTUBB2 mRNA expression and promoted accumulation of this isotype around the nuclei. Transient transfection assays employing a reporter construct, together with site-directed mutagenesis studies, suggested that the p53-binding site found in the first intron was a critical region for mTUBB2 expression. Electrophoretic mobility shift assay and associated antibody supershift experiments showed that vincristine promoted release of p53 protein from the binding site. In addition, exogenous induction of TAp63gamma (p51A), a homologue of p53, canceled the effect of vincristine on mTUBB2 expression. These results suggest that p53 protein may function as a suppressor of mTUBB2 expression and vincristine-mediated inhibition of p53 binding results in enhanced mTUBB2 expression. This phenomenon could be related with the emergence of drug-resistant tumor cells induced by Vinca alkaloid and may participate in determining the fate of these cells.
Collapse
Affiliation(s)
- Katsuhiko Arai
- Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | |
Collapse
|
31
|
Vent J, Wyatt TA, Smith DD, Banerjee A, Ludueña RF, Sisson JH, Hallworth R. Direct involvement of the isotype-specific C-terminus of beta tubulin in ciliary beating. J Cell Sci 2005; 118:4333-41. [PMID: 16159957 PMCID: PMC1992443 DOI: 10.1242/jcs.02550] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies in Drosophila, Nielsen et al. hypothesized that the beta tubulin C-terminal axonemal motif ;EGEFXXX', where X is an acidic amino acid, is required for ciliary function and assembly (Nielsen et al., 2001, Curr. Biol. 11, 529-533). This motif is present in some but not all mammalian beta tubulin isotypes. We therefore investigated whether this motif is important in ciliary function in mammals. In a preparation of isolated, ATP-reactivated bovine tracheal cilia, we found that monoclonal antibodies directed against the C-terminus of betaI, betaIV and betaV tubulin blocked ciliary beating in a concentration dependent manner. Antibodies against other epitopes of beta tubulin were ineffective, as were antibodies against alpha tubulin. Peptides consisting of the axonemal motif and motif-like sequences of these isotypes blocked ciliary beating. These results suggest that the axonemal motif sequences of betaI, betaIV and betaV tubulin are essential for ciliary function. Peptides consisting of corresponding C-terminal sequences in alpha tubulin isotypes were also ineffective in blocking ciliary beating, which suggests that the C-terminus of alpha tubulin is not directly involved in cilia function in mammals.
Collapse
Affiliation(s)
- Julia Vent
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Oda E, Nakamura Y, Yamamoto M, Kojiro M. Immunohistochemical distribution of tubulin beta II in human normal and neoplastic tissues. Kurume Med J 2005; 52:117-25. [PMID: 16639982 DOI: 10.2739/kurumemedj.52.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tubulin is the major constituent protein of microtubules. In mammals, there are seven beta-tubulins and six alpha-tubulins. Each beta-tubulin isotype has a unique tissue distribution. The purpose of this study was to describe the distribution of tubulin beta II in normal and neoplastic human tissues with immunohistochemical techniques. We obtained normal tissues from 33 cases (8 fetuses, 17 neonates, 3 children and 5 adults) and 121 samples of neoplastic tissue from surgical specimens or at autopsy. Immunohistochemical staining for tubulin beta II was performed using a monoclonal antibody, KNY379 developed in our laboratory. Tubulin beta II was detected in various normal tissues, particularly in fetal and neonatal tissues, such as the nervous system, pulmonary alveoli, bronchioles and bronchi, colon, pancreatic ducts and acini, renal convoluted tubuli, skin epidermis, body cavity mesothelial cells, smooth muscle and thymus. In the adult, broad expression was also observed; however, the immunoreactivity was weaker and the extent of its distribution decreased with age. In neoplastic tissues, tubulin beta II immunoreactivity was detected in various nervous system neoplasms and other neoplasms such as pancreatic solid cystic carcinoma, pleomorphic adenoma, Warthin's tumor, nephroblastoma, basal cell carcinoma and malignant mesothelioma. We conclude that our monoclonal antibody, KNY379, may be useful as a marker of nervous system neoplasm, pancreatic solid cystic carcinoma, pleomorphic adenoma, Warthin's tumor, nephroblastoma, basal cell carcinoma and malignant mesothelioma.
Collapse
Affiliation(s)
- Eriko Oda
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | | | | | | |
Collapse
|
33
|
Jensen-Smith HC, Eley J, Steyger PS, Ludueña RF, Hallworth R. Cell type-specific reduction of beta tubulin isotypes synthesized in the developing gerbil organ of Corti. ACTA ACUST UNITED AC 2004; 32:185-97. [PMID: 14707552 PMCID: PMC1994774 DOI: 10.1023/b:neur.0000005602.18713.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There are seven isotypic forms of the microtubule protein beta tubulin in mammals, but not all isotypes are synthesized in every cell type. In the adult organ of Corti, each of the five major cell types synthesizes a different subset of isotypes. Inner hair cells synthesize only betaI and betaII tubulin, while outer hair cells make betaI and betaIV tubulin. Only betaII and betaIV tubulin are found in inner and outer pillar cells, while betaI, betaII, and betaIV tubulin are present in Deiters cells, and betaI, betaII and betaIII tubulin are found in organ of Corti dendrites. During post-natal organ of Corti development in the gerbil, microtubules are elaborated in an orderly temporal sequence beginning with hair cells, followed by pillar cells and Deiters cells. Using beta tubulin isotype-specific antibodies, we show that, in the gerbil cochlea, the same three isotypes are present in each cell type at birth, and that a cell type-specific reduction in the isotypes synthesized occurs in hair cells and pillar cells at an unusually late stage in development. No beta tubulin isotypes were detected in mature afferent dendrites, but we show that this is because few microtubules are present in mature dendrites. In addition, we show that primary cilia in inner hair cells, a feature of early development, persist much later than previously reported. The findings represent the first description of developmental cell type-specific reductions in tubulin isotypes in any system.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Animals, Newborn
- Antibodies
- Antibody Specificity/immunology
- Cell Differentiation/physiology
- Dendrites/metabolism
- Dendrites/ultrastructure
- Gerbillinae
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Labyrinth Supporting Cells/metabolism
- Labyrinth Supporting Cells/ultrastructure
- Microscopy, Confocal
- Microscopy, Electron
- Microtubules/metabolism
- Microtubules/ultrastructure
- Organ of Corti/growth & development
- Organ of Corti/metabolism
- Organ of Corti/ultrastructure
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Tubulin/immunology
- Tubulin/metabolism
Collapse
Affiliation(s)
| | - Jonquille Eley
- Northside Independent School District, San Antonio, Texas 78238
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97201
| | - Richard F. Ludueña
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Richard Hallworth
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
- To whom correspondence should be addressed
| |
Collapse
|
34
|
Perry B, Jensen–Smith HC, Ludueña RF, Hallworth R. Selective expression of beta tubulin isotypes in gerbil vestibular sensory epithelia and neurons. J Assoc Res Otolaryngol 2004; 4:329-38. [PMID: 14690051 PMCID: PMC3202726 DOI: 10.1007/s10162-002-2048-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The seven mammalian isotypes of beta tubulin are strikingly similar in amino acid sequence. The differences in isotypic sequence, although small, are nonetheless conserved in evolution, which suggests that they may confer distinct functional roles. If so, such roles should be reflected in the selective expression of isotypes by cell type, or even in the sorting of isotypes to within-cell pools. Hair cells of the vestibular sensory epithelia each possess a kinocilium, a microtubule-based organelle that could represent a distinct microtubule compartment, separate from the extensive microtubule network in the soma. The afferent neurons that innervate the vestibular sensory epithelia may also be functionally divided into dendritic, somatic, and axonal compartments, each with its own complement of microtubules. We have examined the distribution of beta tubulin isotypes in gerbil vestibular epithelia using isotype-specific antibodies to four isotypes and indirect immunofluorescence. We found that hair cells selectively express betaI and betaIV tubulin, while supporting cells express betaI, betaII, and betaIV tubulin. However, no sorting of isotypes between somatic and kinocilia compartments was found in hair cells. Vestibular ganglion cells display three isotypes in the soma, axon, and terminal dendrite compartments (betaI, betaII, and betaIII tubulin), but only betaIII tubulin was found in calyceal nerve endings. The implication of these findings is that beta tubulin isotypes are not sorted to within-cell compartments in hair cells but are sorted in some vestibular neurons.
Collapse
Affiliation(s)
- Brian Perry
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | - Richard F. Ludueña
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Richard Hallworth
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
35
|
Abstract
The role of the cochlea is to transduce complex sound waves into electrical neural activity in the auditory nerve. Hair cells of the organ of Corti are the sensory cells of hearing. The inner hair cells perform the transduction and initiate the depolarization of the spiral ganglion neurons. The outer hair cells are accessory sensory cells that enhance the sensitivity and selectivity of the cochlea. Neural feedback loops that bring efferent signals to the outer hair cells assist in sharpening and amplifying the signals. The stria vascularis generates the endocochlear potential and maintains the ionic composition of the endolymph, the fluid in which the apical surface of the hair cells is bathed. The mechanical characteristics of the basilar membrane and its related structures further enhance the frequency selectivity of the auditory transduction mechanism. The tectorial membrane is an extracellular matrix, which provides mass loading on top of the organ of Corti, facilitating deflection of the stereocilia. This review deals with the structure of the normal mature mammalian cochlea and includes recent data on the molecular organization of the main cell types within the cochlea.
Collapse
Affiliation(s)
- Yehoash Raphael
- Kresge Hearing Research Institute, The University of Michigan, MSRB 3, Rm 9303, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0648, USA.
| | | |
Collapse
|
36
|
Woo K, Jensen-Smith HC, Ludueña RF, Hallworth R. Differential synthesis of beta-tubulin isotypes in gerbil nasal epithelia. Cell Tissue Res 2002; 309:331-5. [PMID: 12172793 PMCID: PMC1992265 DOI: 10.1007/s00441-002-0591-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 04/29/2002] [Indexed: 11/29/2022]
Abstract
Compartmentalization of beta-tubulin isotypes within cells according to function was examined in gerbil olfactory and respiratory epithelia by using specific antibodies to four beta-tubulin isotypes (beta(I), beta(II), beta(III), and beta(IV)). Isotype synthesis was cell-type-specific, but the localization of the isotypes was not compartmentalized. All four isotypes were found in the cilia, dendrites, somata, and axons of olfactory neurons. Only two isotypes (beta(I) and beta(IV)) were present in the cilia of nasal respiratory epithelial cells. The beta(IV) isotype, thought to be an essential component of cilia, was present in olfactory neurons and respiratory epithelial cells, which are ciliated, but was not found in basal cells (the stem cells of olfactory sensory neurons, which have no cilia). Olfactory neurons therefore do not synthesize beta(IV)-tubulin until they mature, when functioning cilia are also elaborated. The failure to observe compartmentalization of beta-tubulin isotypes in olfactory neurons sheds new light on potential functions of the beta-tubulin isotypes.
Collapse
Affiliation(s)
- Karen Woo
- The Medical School, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | - Richard F. Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Richard Hallworth
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA, e-mail: Tel.: +1-402-2803057, Fax: +1-402-2802690
| |
Collapse
|
37
|
Walss-Bass C, Prasad V, Kreisberg JI, Ludueña RF. Interaction of the betaIV-tubulin isotype with actin stress fibers in cultured rat kidney mesangial cells. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:200-7. [PMID: 11746664 DOI: 10.1002/cm.1033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules and actin filaments are two of the major components of the cytoskeleton. There is accumulating evidence for interaction between the two networks. Both the alpha- and beta-subunits of tubulin exist as numerous isotypes, some of which have been highly conserved in evolution. In an effort to better understand the functional significance of tubulin isotypes, we used a double immunofluorescence labeling technique to investigate the interactions between the tubulin beta-isotypes and the actin stress fiber network in cultured rat kidney mesangial cells, smooth-muscle-like cells from the renal glomerulus. Removal of the soluble cytoplasmic and nucleoplasmic proteins by detergent extraction caused the microtubule network to disappear while the stress fiber network was still present. In these extracted cells, the betaI- and betaII-tubulin isotypes were no longer present in the cytoplasm while the betaIV-isotype co-localized with actin stress fibers. Co-localization between betaIV-tubulin and actin stress fibers was also observed when the microtubule network was disrupted by the anti-tubulin drug colchicine and also by microinjection of the betaIV-tubulin antibody. Our results suggest that the betaIV isotype of tubulin may be involved in interactions between microtubules and actin.
Collapse
Affiliation(s)
- C Walss-Bass
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78284-7760, USA
| | | | | | | |
Collapse
|
38
|
Cotanche DA. Structural recovery from sound and aminoglycoside damage in the avian cochlea. Audiol Neurootol 1999; 4:271-85. [PMID: 10516388 DOI: 10.1159/000013852] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hair cell regeneration in the mature avian cochlea occurs in response to trauma that causes the death of some or all of the existing hair cell population. In general, this trauma has been introduced experimentally by either sound overexposure or treatment of the bird with high doses of aminoglycoside antibiotics. When injured hair cells are ejected from the sensory epithelium, the nonsensory supporting cells respond by re-entering the cell cycle and proliferating or by transdifferentiating directly into hair cells without a mitotic event. The new hair cells mature in a manner similar to that seen during embryonic development. They make connections with the overlying tectorial membrane and the afferent and efferent cochlear nerve processes within the sensory epithelium. This structural regeneration is accompanied by a significant recovery of auditory function and thus allows the animal to regain its hearing ability. This hair cell regeneration is presumably quite beneficial to birds, whose primary means of communication is based on vocalizations and the ability to hear and comprehend them. The prevalence of hearing loss in our society and the isolating impact it has on affected individuals makes the potential for finding ways to induce a similar hair cell regeneration in humans a very tempting goal. Studies of hair cell regeneration over the last 12 years have focused on the mechanisms that regulate the process and how they could be controlled. This review will examine the structural events involved in regenerating hair cells in the avian cochlea after sound damage and aminoglycoside treatment. It will define how hair cells and nerve endings are lost and the tectorial membrane is damaged by the traumatizing stimuli and how the supporting cells and nerve fibers respond by producing new hair cells, a new tectorial membrane and new synaptic connections during recovery. Finally, it will focus on mechanisms that control the proliferation and transdifferentiation of supporting cells and the differentiation of new hair cells. This structural review is accompanied by a companion review that covers the fundamental issues concerning functional recovery in the avian cochlea associated with hair cell regeneration.
Collapse
Affiliation(s)
- D A Cotanche
- Department of Otolaryngology, Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Abstract
Trauma to the inner ear in birds, due to acoustic overstimulation or ototoxic aminoglycosides, can lead to hair cell loss which is followed by regeneration of new hair cells. These processes are paralleled by hearing loss followed by significant functional recovery. After acoustic trauma, functional recovery is rapid and nearly complete. The early and major part of functional recovery after sound trauma occurs before regenerated hair cells become functional. Even very intense sound trauma causes loss of only a proportion of the hair cell population, mainly so-called short hair cells residing on the abneural mobile part of the avian basilar membrane. Uncoupling of the tectorial membrane from the hair cells during sound overexposure may serve as a protection mechanism. The rapid functional recovery after sound trauma appears not to be associated with regeneration of the lost hair cells, but with repair processes involving the surviving hair cells. Small residual functional deficits after recovery are most likely associated with the missing upper fibrous layer of the tectorial membrane which fails to regenerate after sound trauma. After aminoglycoside trauma, functional recovery is slower and parallels the structural regeneration more closely. Aminoglycosides cause damage to both types of hair cells, starting at the basal (high frequency) part of the basilar papilla. However, functional hearing loss and recovery also occur at lower frequencies, associated with areas of the papilla where hair cells survive. Functional recovery in these low frequency areas is complete, whereas functional recovery in high frequency areas with complete hair cell loss is incomplete, despite regeneration of the hair cells. Permanent residual functional deficits remain. This indicates that in low frequency regions functional recovery after aminoglycosides involves repair of nonlethal injury to hair cells and/or hair cell-neural synapses. In the high frequency regions functional recovery involves regenerated hair cells. The permanent functional deficits after the regeneration process in these areas are most likely associated with functional deficits in the regenerated hair cells or shortcomings in the synaptic reconnections of nerve fibers with the regenerated hair cells. In conclusion, the avian inner ear appears to be much more resistant to trauma than the mammalian ear and possesses a considerable capacity for functional recovery based on repair processes along with its capacity to regenerate hair cells. The functional recovery in areas with regenerated hair cells is considerable but incomplete.
Collapse
Affiliation(s)
- J W Smolders
- Physiologisches Institut III, Klinikum der J.W.-Goethe-Universität, Frankfurt am Main, Deutschland.
| |
Collapse
|
40
|
Trautwein PG, Hashino E, Salvi RJ. Regenerated hair cells become functional during continuous administration of kanamycin. Audiol Neurootol 1998; 3:229-39. [PMID: 9644535 DOI: 10.1159/000013795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The compound action potential (CAP) was used to assess the functional status of regenerated hair cells in the chick cochlea during prolonged administration of kanamycin (KM). Immediately after 10 days of KM treatment, the CAP thresholds were elevated by 6-54 dB above those from age-matched control animals. The frequencies with the greatest threshold shifts (> 1 kHz) corresponded to the hair cell lesion in the basal 40% of the basilar papilla. After 20 days of KM, the CAP thresholds at 3 and 4 kHz were significantly lower than those after 10 days of KM treatment, but virtually the same as those after 10 days of KM plus 10 days of recovery. Similarly, the CAP amplitudes at frequencies higher than 1.5 kHz were significantly greater in animals that received KM for 20 days than in animals that received KM for 10 days. The threshold as well as amplitude improvement between 10 days and 20 days of KM treatment was associated with the morphological maturation of the regenerated hair cells in the basal 25% of the cochlea. In addition, the rapid functional recovery seen at high frequencies coincided with the base-to-apex gradient of morphological recovery in the basilar papilla. These results suggest that the process of hair cell maturation is not suppressed by the presence of aminoglycosides in the extracellular environment.
Collapse
Affiliation(s)
- P G Trautwein
- Center for Hearing and Deafness, State University of New York at Buffalo 14214, USA
| | | | | |
Collapse
|