1
|
Kubista H, Gentile F, Schicker K, Köcher T, Boehm S, Hotka M. Mitochondrial Glutamine Metabolism Drives Epileptogenesis in Primary Hippocampal Neurons. J Neurosci 2025; 45:e0110252025. [PMID: 40228896 PMCID: PMC12096049 DOI: 10.1523/jneurosci.0110-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
All available antiseizure medications aim at symptomatic control of epilepsy, but there is no strategy to stop the development of the disease. The main reason is the lack of understanding of the epileptogenic mechanisms. Closing this knowledge gap is an essential prerequisite for developing disease-modifying therapies that can prevent the onset of epilepsy. Using primary cocultures of hippocampal neurons and glial cells derived from rat pups of either sex, we show that epileptiform paroxysmal depolarization shifts (PDS) induce neuronal glucose hypometabolism which is compensated for by increased glutaminolysis. Glutaminolysis not only provides sufficient ATP to support electrical activity but also leads to decreased vesicular glutamate release, thereby promoting neuronal hypersynchrony. Moreover, prolonged promotion of PDS increased neuronal arborization and synaptic density, which in combination with spontaneous recovery of neuronal glucose metabolism led to seizure-like discharge activity. Since inhibition of glutaminolysis did not prevent the PDS-induced morphogenesis but eliminated seizure-like activity, we propose that glutaminolysis is a causative process linking neuronal metabolism with electrical activity thereby driving epileptogenesis.
Collapse
Affiliation(s)
- Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Francesco Gentile
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Klaus Schicker
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), Vienna 1030, Austria
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna 1090, Austria
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems 3500, Austria
| |
Collapse
|
2
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
3
|
Kim SH, Kim CH. Neuronal IGF-1 overexpression restores hippocampal newborn cell survival and recent CFC memory consolidation in Ca v1.3 knock-out mice. Brain Res 2024; 1825:148712. [PMID: 38097125 DOI: 10.1016/j.brainres.2023.148712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) exogenously supplied in the brain was shown to enhance the survival of hippocampal dentate gyrus (DG) newborn cells and some cognitive functions of mice. This study aims to test whether IGF-1 requires Cav1.3 activity critically while enhancing newborn cell survival and cognitive functions. We used Cav1.3 KO mice, where both DG newborn cell survival and the recent (1 day) single-trial contextual fear conditioning (CFC) memory consolidation were impaired. To supply IGF-1, we overexpressed (OX) IGF-1 in DG mature neurons by injecting an adeno-associated virus (AAV-IGF-1-mCherry) into the hippocampal areas of Cav1.3 KO mice. Our results, first, confirmed the enhanced expression of IGF-1 in the DG granule cell layer by immunohistochemistry. Next, we found this IGF-1 OX resulted in fully restoring both the survival rate of DCX (+) newborn cells and the recent single-trial CFC memory formation in Cav1.3 KO mice. Our results show that IGF-1 can enhance the survival of DG immature newborn cells and the recent CFC memory formation in a Cav1.3 channel-independent manner in vivo, suggesting activation of complementary pathways including the Cav1.2 channel. The result will help the application of adult newborn cell-based therapy improve the cognitive functions of neurological disorders.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Neuroscience Program, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
4
|
Modulation of L-type calcium channels in Alzheimer's disease: A potential therapeutic target. Comput Struct Biotechnol J 2022; 21:11-20. [PMID: 36514335 PMCID: PMC9719069 DOI: 10.1016/j.csbj.2022.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022] Open
Abstract
Calcium plays a fundamental role in various signaling pathways and cellular processes in the human organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels (LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity. Dysfunction of LTCCs has been implicated in both aging and Alzheimer's Disease (AD), constituting a key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD. However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest targeting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.
Collapse
Key Words
- AC, adenylyl cyclase
- AD, Alzheimer’s Disease
- AHP, afterhyperpolarization
- AR, adrenoceptor
- Aging
- Alzheimer’s disease
- Aβ, β-amyloid
- BIN1, bridging integrator 1
- BTZs, benzothiazepines
- CDF, calcium-dependent facilitation
- CDI, calcium-dependent inactivation
- CaMKII, calmodulin-dependent protein kinase II
- DHP, dihydropyridine
- L-type calcium channel
- LTCC, L-type calcium channels
- LTD, long-term depression
- LTP, long-term potentiation
- NFT, neurofibrillary tangles
- NMDAR, N-methyl-D-aspartate receptor
- PAA, phenylalkylamines
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- SFK, Src family kinase
- Tau
- VSD, voltage sensing domain
- β-Amyloid
Collapse
|
5
|
Zhang YL, Zhang RG, Chen FY, Qiu ZE, Chen L, Huang ZX, Huang J, Zhu YX, Zhao L, Zhou WL. Cellular Mechanism Underlying the Facilitation of Contractile Response Induced by Tumor Necrosis Factor-α in Mouse Tracheal Smooth Muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:104-111. [PMID: 34756873 DOI: 10.1016/j.ajpath.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca2+ signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α. The results showed that TNF-α triggered facilitation of mouse tracheal smooth muscle contraction in an epithelium-independent manner. The TNF-α-induced hypercontractility could be suppressed by the protein kinase C inhibitor GF109203X, the tyrosine kinase inhibitor genistein, the Src inhibitor PP2, or the L-type voltage-dependent Ca2+ channel blocker nifedipine. After TNF-α incubation, the α1C L-type Ca2+ channel (CaV1.2) was up-regulated in primary cultured mouse tracheal smooth muscle cells. Pronounced phosphotyrosine levels also were observed in mouse tracheas. In conclusion, this study showed that TNF-α enhanced airway smooth muscle contraction via protein kinase C-Src-CaV1.2 pathways, which provides novel insights into the pathologic role of proinflammatory cytokines in mediating airway hyperresponsiveness.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui-Gang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Feng-Ying Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pathology, The Maternal and Child Health Care Hospital of HuaDu District (Huzhong Hospital), Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Sheng L, Leshchyns'ka I, Sytnyk V. Neural Cell Adhesion Molecule 2 (NCAM2)-Induced c-Src-Dependent Propagation of Submembrane Ca2+ Spikes Along Dendrites Inhibits Synapse Maturation. Cereb Cortex 2020. [PMID: 29522129 DOI: 10.1093/cercor/bhy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.
Collapse
Affiliation(s)
- Lifu Sheng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Dong L, Cheng X, Zhou L, Hu Y. Calcium channels are involved in EphB/ephrinB reverse signaling‑induced apoptosis in a rat chronic ocular hypertension model. Mol Med Rep 2017; 17:2465-2471. [PMID: 29207174 PMCID: PMC5783492 DOI: 10.3892/mmr.2017.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Erythropoietin-producing hepatocyte receptor B (EphB)/ephrinB reverse signaling has been revealed to be activated in chronic ocular hypertension (COH) by increasing the apoptosis of retinal ganglion cells (RGCs). However, the exact mechanism is not well understood. The present study investigated the involvement of Ca2+ channels in the apoptosis of RGCs induced by EphB/ephrinB reverse signaling in a rat CHO model, which was established by cauterizing 3 out of the 4 episcleral veins. The expression levels of four voltage-gated Ca2+ channel subunits (Cav3.1–3.3 and Cav1.2) were detected using immunofluorescence and western blot analysis. TUNEL staining was performed to assess RGC apoptosis following an injection with the T type Ca2+ channel blocker. Ca2+ channels, mainly the T type, were upregulated in COH rat retinas when compared with the sham group (P<0.01). Additionally, the Cav3.2 subunit of T type calcium channels was predominantly expressed in Müller cells and RGCs, such as ephrinB2. Furthermore, an intravitreal injection of the Ca2+ channel blocker Mibefradil (3 µM) reduced EphB2-fragment crystallizable region-induced RGC apoptosis in normal rats. Thus, the results suggest that Ca2+ channels in a COH model may be a pathway involved in ephrinB/EphB signaling-induced RGC apoptosis.
Collapse
Affiliation(s)
- Lingdan Dong
- Central Laboratory, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xianglin Cheng
- Department of Neurology, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Long Zhou
- Department of Pathology, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yanhong Hu
- Nursing Department of Medical School of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
8
|
Maimaiti S, Frazier HN, Anderson KL, Ghoweri AO, Brewer LD, Porter NM, Thibault O. Novel calcium-related targets of insulin in hippocampal neurons. Neuroscience 2017; 364:130-142. [PMID: 28939258 DOI: 10.1016/j.neuroscience.2017.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/28/2023]
Abstract
Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer's disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in the brain. Indeed, increasing insulin signaling in the brain via intranasal delivery has yielded promising results such as improving memory in both clinical and animal studies. However, while several mechanisms have been proposed, few have focused on regulation on intracellular Ca2+. In the present study, we further examined the effects of acute insulin on calcium pathways in primary hippocampal neurons in culture. Using the whole-cell patch-clamp technique, we found that acute insulin delivery reduced voltage-gated calcium currents. Fura-2 imaging was used to also address acute insulin effects on spontaneous and depolarization-mediated Ca2+ transients. Results indicate that insulin reduced Ca2+ transients, which appears to have involved a reduction in ryanodine receptor function. Together, these results suggest insulin regulates pathways that control intracellular Ca2+ which may reduce the AHP and improve memory. This may be one mechanism contributing to improved memory recall in response to intranasal insulin therapy in the clinic.
Collapse
Affiliation(s)
- Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Lawrence D Brewer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Nada M Porter
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States.
| |
Collapse
|
9
|
Kashihara T, Nakada T, Kojima K, Takeshita T, Yamada M. Angiotensin II activates Ca V 1.2 Ca 2+ channels through β-arrestin2 and casein kinase 2 in mouse immature cardiomyocytes. J Physiol 2017; 595:4207-4225. [PMID: 28295363 DOI: 10.1113/jp273883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Angiotensin II (AngII) is crucial in cardiovascular regulation in perinatal mammalians. Here we show that AngII increases twitch Ca2+ transients of mouse immature but not mature cardiomyocytes by robustly activating CaV 1.2 L-type Ca2+ channels through a novel signalling pathway involving angiotensin type 1 (AT1 ) receptors, β-arrestin2 and casein kinase 2. A β-arrestin-biased AT1 receptor agonist, TRV027, was as effective as AngII in activating L-type Ca2+ channels. Our results help understand the molecular mechanism by which AngII regulates the perinatal circulation and also suggest that β-arrestin-biased AT1 receptor agonists may be valuable therapeutics for paediatric heart failure. ABSTRACT Angiotensin II (AngII), the main effector peptide of the renin-angiotensin system, plays important roles in cardiovascular regulation in the perinatal period. Despite the well-known stimulatory effect of AngII on vascular contraction, little is known about regulation of contraction of the immature heart by AngII. Here we found that AngII significantly increased the peak amplitude of twitch Ca2+ transients by robustly activating L-type CaV 1.2 Ca2+ (CaV 1.2) channels in mouse immature but not mature cardiomyocytes. This response to AngII was mediated by AT1 receptors and β-arrestin2. A β-arrestin-biased AT1 receptor agonist was as effective as AngII in activating CaV 1.2 channels. Src-family tyrosine kinases (SFKs) and casein kinase 2α'β (CK2α'β) were sequentially activated when AngII activated CaV 1.2 channels. A cyclin-dependent kinase inhibitor, p27Kip1 (p27), inhibited CK2α'β, and AngII removed this inhibitory effect through phosphorylating tyrosine 88 of p27 via SFKs in cardiomyocytes. In a human embryonic kidney cell line, tsA201 cells, overexpression of CK2α'β but not c-Src directly activated recombinant CaV 1.2 channels composed of C-terminally truncated α1C , the distal C-terminus of α1C , β2C and α2 δ1 subunits, by phosphorylating threonine 1704 located at the interface between the proximal and the distal C-terminus of CaV 1.2α1C subunits. Co-immunoprecipitation revealed that CaV 1.2 channels, CK2α'β and p27 formed a macromolecular complex. Therefore, stimulation of AT1 receptors by AngII activates CaV 1.2 channels through β-arrestin2 and CK2α'β, thereby probably exerting a positive inotropic effect in the immature heart. Our results also indicated that β-arrestin-biased AT1 receptor agonists may be used as valuable therapeutics for paediatric heart failure in the future.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tsutomu Nakada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
10
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
11
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 790] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
12
|
Dzwonek J, Wilczynski GM. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci 2015; 9:175. [PMID: 25999819 PMCID: PMC4423434 DOI: 10.3389/fncel.2015.00175] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
CD44 is the major surface hyaluronan (HA) receptor implicated in intercellular and cell-matrix adhesion, cell migration and signaling. It is a transmembrane, highly glycosylated protein with several isoforms resulting from alternative gene splicing. The CD44 molecule consists of several domains serving different functions: the N-terminal extracellular domain, the stem region, the transmembrane domain and the C-terminal tail. In the nervous system, CD44 expression occurs in both glial and neuronal cells. The role of CD44 in the physiology and pathology of the nervous system is not entirely understood, however, there exists evidence suggesting it might be involved in the axon guidance, cytoplasmic Ca2+ clearance, dendritic arborization, synaptic transmission, epileptogenesis, oligodendrocyte and astrocyte differentiation, post-traumatic brain repair and brain tumour development.
Collapse
Affiliation(s)
- Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology Warsaw, Poland
| |
Collapse
|
13
|
Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J Neurosci 2015; 35:1739-52. [PMID: 25632147 DOI: 10.1523/jneurosci.1714-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Changes in expression of the neural cell adhesion molecule 2 (NCAM2) have been proposed to contribute to neurodevelopmental disorders in humans. The role of NCAM2 in neuronal differentiation remains, however, poorly understood. Using genetically encoded Ca(2+) reporters, we show that clustering of NCAM2 at the cell surface of mouse cortical neurons induces submembrane [Ca(2+)] spikes, which depend on the L-type voltage-dependent Ca(2+) channels (VDCCs) and require activation of the protein tyrosine kinase c-Src. We also demonstrate that clustering of NCAM2 induces L-type VDCC- and c-Src-dependent activation of CaMKII. NCAM2-dependent submembrane [Ca(2+)] spikes colocalize with the bases of filopodia. NCAM2 activation increases the density of filopodia along neurites and neurite branching and outgrowth in an L-type VDCC-, c-Src-, and CaMKII-dependent manner. Our results therefore indicate that NCAM2 promotes the formation of filopodia and neurite branching by inducing Ca(2+) influx and CaMKII activation. Changes in NCAM2 expression in Down syndrome and autistic patients may therefore contribute to abnormal neurite branching observed in these disorders.
Collapse
|
14
|
Abstract
One of the main strategies for cancer therapy is to use tyrosine kinase inhibitors for inhibiting tumor proliferation. Increasing evidence has demonstrated the potential risks of cardiac arrhythmias (such as prolonged QT interval) of these drugs. We report here that a widely used selective inhibitor of Src tyrosine kinases, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), can inhibit and prevent β-adrenergic stimulation of cardiac pacemaker activity. First, in dissected rat sinus node, PP2 inhibited and prevented the isoproterenol-induced increase of spontaneous beating rate. Second, in isolated rat sinus node myocytes, PP2 suppressed the hyperpolarization-activated "funny" current (traditionally called cardiac pacemaker current, I(f)) by negatively shifting the activation curve and decelerating activation kinetics. Third, in isolated rat sinus node myocytes, PP2 decreased the Src kinase activity, the cell surface expression, and tyrosine phosphorylation of hyperpolarization-activated, cyclic nucleotide-modulated channel 4 (HCN4) channel proteins. Finally, in human embryonic kidney 293 cells overexpressing recombinant human HCN4 channels, PP2 reversed the enhancement of HCN4 channels by isoproterenol and inhibited 573x, a cyclic adenosine momophosphate-insensitive human HCN4 mutant. These results demonstrated that inhibition of Src kinase activity in heart by PP2 decreased and prevented β-adrenergic stimulation of cardiac pacemaker activity. These effects are mediated, at least partially, by a cAMP-independent attenuation of channel activity and cell surface expression of HCN4, the main channel protein that controls the heart rate.
Collapse
|
15
|
Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 2013; 5:27. [PMID: 23847531 PMCID: PMC3698444 DOI: 10.3389/fnagi.2013.00027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.
Collapse
Affiliation(s)
- William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Gulia J, Navedo MF, Gui P, Chao JT, Mercado JL, Santana LF, Davis MJ. Regulation of L-type calcium channel sparklet activity by c-Src and PKC-α. Am J Physiol Cell Physiol 2013; 305:C568-77. [PMID: 23804206 DOI: 10.1152/ajpcell.00381.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of persistent Ca²⁺ sparklets, which are characterized by longer and more frequent channel open events than low-activity sparklets, contributes substantially to steady-state Ca²⁺ entry under physiological conditions. Here, we addressed two questions related to the regulation of Ca²⁺ sparklets by PKC-α and c-Src, both of which increase whole cell Cav1.2 current: 1) Does c-Src activation enhance persistent Ca²⁺ sparklet activity? 2) Does PKC-α activate c-Src to produce persistent Ca²⁺ sparklets? With the use of total internal reflection fluorescence microscopy, Ca²⁺ sparklets were recorded from voltage-clamped tsA-201 cells coexpressing wild-type (WT) or mutant Cav1.2c (the neuronal isoform of Cav1.2) constructs ± active or inactive PKC-α/c-Src. Cells expressing Cav1.2c exhibited both low-activity and persistent Ca²⁺ sparklets. Persistent Ca²⁺ sparklet activity was significantly reduced by acute application of the c-Src inhibitor PP2 or coexpression of kinase-dead c-Src. Cav1.2c constructs mutated at one of two COOH-terminal residues (Y²¹²²F and Y²¹³⁹F) were used to test the effect of blocking putative phosphorylation sites for c-Src. Expression of Y²¹²²F but not Y²¹³⁹F Cav1.2c abrogated the potentiating effect of c-Src on Ca²⁺ sparklet activity. We could not detect a significant change in persistent Ca²⁺ sparklet activity or density in cells coexpressing Cav1.2c + PKC-α, regardless of whether WT or Y²¹²²F Cav1.2c was used, or after PP2 application, suggesting that PKC-α does not act upstream of c-Src to produce persistent Ca²⁺ sparklets. However, our results indicate that persistent Ca²⁺ sparklet activity is promoted by the action of c-Src on residue Y²¹²² of the Cav1.2c COOH terminus.
Collapse
Affiliation(s)
- Jyoti Gulia
- Department of Biological Engineering University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Lerner TN, Kreitzer AC. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron 2012; 73:347-59. [PMID: 22284188 DOI: 10.1016/j.neuron.2011.11.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2011] [Indexed: 12/17/2022]
Abstract
Plasticity of excitatory synapses onto striatal projection neurons (MSNs) has the potential to regulate motor function by setting the gain on signals driving both direct- and indirect-pathway basal ganglia circuits. Endocannabinoid-dependent long-term depression (eCB-LTD) is the best characterized form of striatal plasticity, but the mechanisms governing its normal regulation and pathological dysregulation are not well understood. We characterized two distinct signaling pathways mediating eCB production in striatal indirect-pathway MSNs and found that both pathways were modulated by dopamine D2 and adenosine A2A receptors, acting through cAMP/PKA. We identified regulator of G protein signaling 4 (RGS4) as a key link between D2/A2A signaling and eCB mobilization pathways. In contrast to wild-type mice, RGS4⁻/⁻ mice exhibited normal eCB-LTD after dopamine depletion and were significantly less impaired in the 6-OHDA model of Parkinson's disease. Taken together, these results suggest that inhibition of RGS4 may be an effective nondopaminergic strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Talia N Lerner
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
18
|
Deak F, Sonntag WE. Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol A Biol Sci Med Sci 2012; 67:611-25. [PMID: 22503992 PMCID: PMC3348499 DOI: 10.1093/gerona/gls118] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 01/05/2023] Open
Abstract
Insulin-like growth factor (IGF)-1 is an important neurotrophic hormone. Deficiency of this hormone has been reported to influence the genesis of cognitive impairment and dementia in the elderly patients. Nevertheless, there are studies indicating that cognitive function can be maintained into old age even in the absence of circulating IGF-1 and studies that link IGF-1 to an acceleration of neurological diseases. Although IGF-1 has a complex role in brain function, synaptic effects appear to be central to the IGF-1-induced improvement in learning and memory. In this review, synaptic mechanisms of learning and memory and the effects of IGF-1 on synaptic communication are discussed. The emerging data indicate that synaptic function decreases with age and that IGF-1 contributes to information processing in the brain. Further studies that detail the specific actions of this important neurotrophic hormone will likely lead to therapies that result in improved cognitive function for the elderly patients.
Collapse
Affiliation(s)
- Ferenc Deak
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, Oklahoma City, Oklahoma
| |
Collapse
|
19
|
Jones ML, Liao GY, Malecki R, Li M, Salazar NM, Leonard JP. PI 3-kinase and PKCζ mediate insulin-induced potentiation of NMDA receptor currents in Xenopus oocytes. Brain Res 2011; 1432:7-14. [PMID: 22137655 DOI: 10.1016/j.brainres.2011.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates recombinant NMDA receptor currents in Xenopus oocytes. We have previously found that insulin's potentiation of NMDA receptor currents in oocytes occurs in a subunit specific manner and via phosphorylation of specific C-terminal sites by protein tyrosine kinases (PTKs) and C-type protein kinases (PKCs). Insulin-mediated current potentiation of receptors containing the NR2A subunit occurs solely through the activation of PKCs. Activation of phosphoinositide 3-kinase (PI 3-kinase) is known to trigger many insulin-stimulated signaling pathways, and we show here that it lies at a critical step in the insulin-mediated potentiation of NMDA receptor currents. Incubation with the PI 3-kinase inhibitor wortmannin eliminates insulin potentiation of NMDA receptor currents in the oocytes. Atypical isoforms of PKC are known to be activated downstream in the insulin signaling pathway via activation of PI 3-kinase. We demonstrate that the atypical isoform PKC zeta (PKCζ) has a role in insulin-stimulated current potentiation of NR2A-containing NMDA receptors using an isoform-specific pseudosubstrate inhibitor of PKCζ.
Collapse
Affiliation(s)
- Michelle L Jones
- University of Illinois at Chicago, Department of Biological Sciences and Laboratory for Integrative Neuroscience, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sánchez JC, López-Zapata DF, Francis L, De Los Reyes L. Effects of estradiol and IGF-1 on the sodium calcium exchanger in rat cultured cortical neurons. Cell Mol Neurobiol 2011; 31:619-27. [PMID: 21311966 PMCID: PMC11498457 DOI: 10.1007/s10571-011-9657-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) is an important bidirectional transporter of calcium in neurons and has been shown to be involved in neuroprotection. Calcium can activate a number of cascades that can result in apoptosis and cell death, and NCX is a key factor in regulating the cytoplasmic concentration of this ion. 17-β-estradiol and insulin-like growth factor 1 (IGF-1) are known neuroprotective hormones with interacting mechanisms and effects on intracellular calcium; however, their relationship with the NCX has not been explored. In this article, the effects of these two hormones on neuronal NCX were tested using the whole-cell patch clamp technique on rat primary culture neurons. Both 17-β-estradiol and IGF-1 produced an increase in the NCX-mediated inward current and a decrease in the NCX-mediated outward current. However, the IGF-1 effect was lower than that of 17-β-estradiol, and the effect of both agents together was greater than the sum of each agent alone. Neither of the agents affected the pattern of regulation by extracellular or intrapipette calcium. Inhibitors of the IGF-1 and 17-β-estradiol receptors and inhibitors of the main signaling pathways failed to change the observed effects, indicating that these actions were not mediated by the classical receptors of these hormones. These effects on the NCX could be a mechanism explaining the neuroprotective actions of 17-β-estradiol and IGF-1, and these findings could help researchers to understand the role of the NCX in neuroprotection.
Collapse
Affiliation(s)
- Julio C Sánchez
- Grupo de Fisiología Celular y Aplicada, Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, AA 97, La Julita, Pereira, Colombia.
| | | | | | | |
Collapse
|
21
|
Chao JT, Gui P, Zamponi GW, Davis GE, Davis MJ. Spatial association of the Cav1.2 calcium channel with α5β1-integrin. Am J Physiol Cell Physiol 2011; 300:C477-89. [PMID: 21178109 PMCID: PMC3063962 DOI: 10.1152/ajpcell.00171.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 12/20/2010] [Indexed: 01/16/2023]
Abstract
Engagement of α(5)β(1)-integrin by fibronectin (FN) acutely enhances Cav1.2 channel (Ca(L)) current in rat arteriolar smooth muscle and human embryonic kidney cells (HEK293-T) expressing Ca(L). Using coimmunoprecipitation strategies, we show that coassociation of Ca(L) with α(5)- or β(1)-integrin in HEK293-T cells is specific and depends on cell adhesion to FN. In rat arteriolar smooth muscle, coassociations between Ca(L) and α(5)β(1)-integrin and between Ca(L) and phosphorylated c-Src are also revealed and enhanced by FN treatment. Using site-directed mutagenesis of Ca(L) heterologously expressed in HEK293-T cells, we identified two regions of Ca(L) required for these interactions: 1) COOH-terminal residues Ser(1901) and Tyr(2122), known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively; and 2) two proline-rich domains (PRDs) near the middle of the COOH terminus. Immunofluorescence confocal imaging revealed a moderate degree of wild-type Ca(L) colocalization with β(1)-integrin on the plasma membrane. Collectively, our results strongly suggest that 1) upon ligation by FN, Ca(L) associates with α(5)β(1)-integrin in a macromolecular complex including PKA, c-Src, and potentially other protein kinases; 2) phosphorylation of Ca(L) at Y(2122) and/or S(1901) is required for association of Ca(L) with α(5)β(1)-integrin; and 3) c-Src, via binding to PRDs that reside in the II-III linker region and/or the COOH terminus of Ca(L), mediates current potentiation following α(5)β(1)-integrin engagement. These findings provide new evidence for how interactions between α(5)β(1)-integrin and FN can modulate Ca(L) entry and consequently alter the physiological function of multiple types of excitable cells.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/genetics
- Cell Adhesion/genetics
- Cell Adhesion/physiology
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cells, Cultured
- Epithelial Cells/chemistry
- Epithelial Cells/metabolism
- Fibronectins/genetics
- Fibronectins/metabolism
- Fibronectins/physiology
- HEK293 Cells
- Humans
- Integrin alpha5beta1/chemistry
- Integrin alpha5beta1/genetics
- Integrin alpha5beta1/physiology
- Microscopy, Confocal
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation/genetics
- Phosphorylation/physiology
- Rats
Collapse
Affiliation(s)
- Jun-Tzu Chao
- Dept. of Medical Pharmacology and Physiology, M451 Med. Sci. Bldg., Univ. of Missouri, Columbia, 1 Hospital Dr., Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
22
|
Xu YP, Liang L, Wang XM. The levels of Pdx1/insulin, Cacna1c and Cacna1d, and β-cell mass in a rat model of intrauterine undernutrition. J Matern Fetal Neonatal Med 2010; 24:437-43. [DOI: 10.3109/14767058.2010.497571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Yagami T, Takase K, Yamamoto Y, Ueda K, Takasu N, Okamura N, Sakaeda T, Fujimoto M. Fibroblast growth factor 2 induces apoptosis in the early primary culture of rat cortical neurons. Exp Cell Res 2010; 316:2278-90. [PMID: 20381486 DOI: 10.1016/j.yexcr.2010.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/24/2010] [Accepted: 03/27/2010] [Indexed: 11/16/2022]
Abstract
In the central nervous system, fibroblast growth factor 2 (FGF2) is known to have important functions in cell survival and differentiation. In addition to its roles as a neurotrophic factor, we found that FGF2 caused cell death in the early primary culture of cortical neurons. FGF2-induced neuronal cell death showed apoptotic characters, e.g., chromatin condensation and DNA fragmentation. The ultrastructural morphology of FGF2-treated neurons indicated apoptotic features such as progressive cell shrinkage, blebbing of the plasma membrane, loss of cytosolic organelles, clumping of chromatin, and fragmentation of DNA. Tyrosine kinase inhibitors significantly rescued neurons from FGF2-induced apoptosis. FGF2 potentiated a marked influx of Ca(2+) into neurons before apoptosis. Both a calcium chelator and L-type voltage-sensitive Ca(2+) channel (L-VSCC) blockers attenuated FGF2-induced apoptosis, whereas other blockers of VSCCs such as N-type and P/Q-types did not. Blockers of L-VSCCs significantly suppressed FGF2-enhanced Ca(2+) influx into neurons. Moreover, FGF2 also generated reactive oxygen species (ROS) before apoptosis. Radical scavengers reduced not only the FGF2-generated ROS, but also the FGF2-induced Ca(2+) influx and apoptosis. In conclusion, we demonstrated that FGF2 caused apoptosis via L-VSCCs in the early neuronal culture.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 2-1, kami-ohno 7-Chome, Himeji, Hyogo, 670-8524, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wine RN, McPherson CA, Harry GJ. IGF-1 and pAKT signaling promote hippocampal CA1 neuronal survival following injury to dentate granule cells. Neurotox Res 2009; 16:280-92. [PMID: 19526277 PMCID: PMC6276784 DOI: 10.1007/s12640-009-9060-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/20/2009] [Accepted: 04/27/2009] [Indexed: 11/26/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) protects neurons from apoptosis and in vivo offers neuroprotective support to hippocampal CA1 pyramidal neurons following ischemia or seizure. IGF-1 signals through IGF-1 receptors activating phosphytidylinositol 3-kinase (PI3K)/Akt or pMAPK pathways. IGF-1 can be induced with injury and microglia and astrocytes may serve as a source of this neurotrophic factor to promote neuronal survival. An acute systemic injection of trimethyltin (TMT; 2 mg/kg, ip) to mice induces apoptosis of dentate granule neurons within 24 h and a differential response of microglia with ramified microglia present in the CA-1 region. Using this model, we studied the role of IGF-1 in the survival of CA-1 pyramidal neurons under conditions of altered synaptic input due to changes in the dentate gyrus. Within 24 h of injection, IGF-1 mRNA levels were elevated in the hippocampus and IGF-1 protein detected in both astrocytes and microglia. IGF-1 was redistributed within the CA-1 neurons corresponding with an increase in cytoplasmic pAkt, elevated PKBalpha/Akt protein levels, and a decrease in the antagonist, Rho. pMAPK was not detected in CA-1 neurons and ERK2 showed a transient decrease followed by a significant increase, suggesting a lack of recruitment of the pMAPK signaling pathway for neuronal survival. In mice deficient for IGF-1, a similar level of apoptosis was observed in dentate granule neurons as compared to wildtype; however, TMT induced a significant level CA-1 neuronal death, further supporting a role for IGF-1 in the survival of CA-1 neurons.
Collapse
Affiliation(s)
- Robert N. Wine
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| | - Christopher A. McPherson
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| | - G. Jean Harry
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| |
Collapse
|
25
|
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
26
|
Ikeno Y, Cheon SH, Konno N, Nakamura A, Kitamoto K, Arioka M. Lysophosphatidylcholine protects cerebellar granule neurons from apoptotic cell death. J Neurosci Res 2009; 87:190-9. [DOI: 10.1002/jnr.21821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Greer PL, Greenberg ME. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 2008; 59:846-60. [PMID: 18817726 DOI: 10.1016/j.neuron.2008.09.002] [Citation(s) in RCA: 504] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 01/18/2023]
Abstract
One of the unique characteristics of higher organisms is their ability to learn and adapt to changes in their environment. This plasticity is largely a result of the brain's ability to convert transient stimuli into long-lasting alterations in neuronal structure and function. This process is complex and involves changes in receptor trafficking, local mRNA translation, protein turnover, and new gene synthesis. Here, we review how neuronal activity triggers calcium-dependent gene expression to regulate synapse development, maturation, and refinement. Interestingly, many components of the activity-dependent gene expression program are mutated in human cognitive disorders, which suggest that this program is essential for proper brain development and function.
Collapse
Affiliation(s)
- Paul L Greer
- Department of Neurobiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Kang M, Ross GR, Akbarali HI. COOH-terminal association of human smooth muscle calcium channel Ca(v)1.2b with Src kinase protein binding domains: effect of nitrotyrosylation. Am J Physiol Cell Physiol 2007; 293:C1983-90. [PMID: 17942635 DOI: 10.1152/ajpcell.00308.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The carboxyl terminus of the calcium channel plays an important role in the regulation of calcium entry, signal transduction, and gene expression. Potential protein-protein interaction sites within the COOH terminus of the L-type calcium channel include those for the SH3 and SH2 binding domains of c-Src kinase that regulates calcium currents in smooth muscle. In this study, we examined the binding sites involved in Src kinase-mediated phosphorylation of the human voltage-gated calcium channel (Ca(v)) 1.2b (hCav1.2b) and the effect of nitrotyrosylation. Cotransfection of human embryonic kidney (HEK)-293 cells with hCa(v)1.2b and c-Src resulted in tyrosine phosphorylation of the calcium channel, which was prevented by nitration of tyrosine residues by peroxynitrite. Whole cell calcium currents were reduced by 58 + 5% by the Src kinase inhibitor PP2 and 64 + 6% by peroxynitrite. Nitrotyrosylation prevented Src-mediated regulation of the currents. Glutathione S-transferase fusion protein of the distal COOH terminus of hCa(v)1.2b (1809-2138) bound to SH2 domain of Src following tyrosine phosphorylation, while binding to SH3 required the presence of the proline-rich motif. Site-directed mutation of Y(2134) prevented SH2 binding and resulted in reduced phosphorylation of hCa(v)1.2b. Within the distal COOH terminus, single, double, or triple mutations of Y(1837), Y(1861), and Y(2134) were constructed and expressed in HEK-293 cells. The inhibitory effects of PP2 and peroxynitrite on calcium currents were significantly reduced in the double mutant Y(1837-2134F). These data demonstrate that the COOH terminus of hCa(v)1.2b contains sites for the SH2 and SH3 binding of Src kinase. Nitrotyrosylation of these sites prevents Src kinase regulation and may be importantly involved in calcium influx regulation during inflammation.
Collapse
Affiliation(s)
- Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
29
|
Ross GR, Kang M, Shirwany N, Malykhina AP, Drozd M, Akbarali HI. Nitrotyrosylation of Ca2+ channels prevents c-Src kinase regulation of colonic smooth muscle contractility in experimental colitis. J Pharmacol Exp Ther 2007; 322:948-56. [PMID: 17551092 DOI: 10.1124/jpet.107.123075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basal levels of c-Src kinase are known to regulate smooth muscle Ca(2+) channels. Colonic inflammation results in attenuated Ca(2+) currents and muscle contraction. Here, we examined the regulation of calcium influx-dependent contractility by c-Src kinase in experimental colitis. Ca(2+)-influx induced contractions were measured by isometric tension recordings of mouse colonic longitudinal muscle strips depolarized by high K(+). The E(max) to CaCl(2) was significantly less in inflamed tissues (38.4 +/- 7.6%) than controls, indicative of reduced Ca(2+) influx. PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine], a selective Src kinase inhibitor, significantly reduced the contractile amplitude and shifted the pD(2) from 3.88 to 2.44 in controls, whereas it was ineffective in inflamed tissues (3.66 versus 3.43). After pretreatment with a SIN-1 (3-morpholinosydnonimine)/peroxynitrite combination, the maximal contraction to CaCl(2) was reduced by 46 +/- 7% in controls but unaffected in inflamed tissues (13 +/- 11%). Peroxynitrite also prevented the inhibitory effect of PP2 in control tissues. In colonic single smooth muscle cells, PP2 inhibited Ca(2+) currents by 84.1 +/- 3.9% in normal but only 36.2 +/- 13% in inflamed tissues. Neither the Ca(2+) channel Ca(v)1.2b, gene expression, nor the c-Src kinase activity was altered by inflammation. Western blot analysis showed no change in the Ca(2+) channel protein expression but increased nitrotyrosylated-Ca(2+) channel proteins during inflammation. These data suggest that post-translational modification of Ca(2+) channels during inflammation, possibly nitrotyrosylation, prevents c-Src kinase regulation resulting in decreased Ca(2+) influx.
Collapse
Affiliation(s)
- Gracious R Ross
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
31
|
Pitt GS, Dun W, Boyden PA. Remodeled cardiac calcium channels. J Mol Cell Cardiol 2006; 41:373-88. [PMID: 16901502 DOI: 10.1016/j.yjmcc.2006.06.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/26/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Cardiac calcium channels play a pivotal role in the proper functioning of cardiac cells. In response to various pathologic stimuli, they become remodeled, changing how they function, as they adapt to their new environment. Specific features of remodeled channels depend upon the particular disease state. This review will summarize what is known about remodeled cardiac calcium channels in three disease states: hypertrophy, heart failure and atrial fibrillation. In addition, it will review the recent advances made in our understanding of the function of the various molecular building blocks that contribute to the proper functioning of the cardiac calcium channel.
Collapse
Affiliation(s)
- Geoffrey S Pitt
- Department of Medicine, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
32
|
Gao L, Blair LAC, Salinas GD, Needleman LA, Marshall J. Insulin-like growth factor-1 modulation of CaV1.3 calcium channels depends on Ca2+ release from IP3-sensitive stores and calcium/calmodulin kinase II phosphorylation of the alpha1 subunit EF hand. J Neurosci 2006; 26:6259-68. [PMID: 16763033 PMCID: PMC6675183 DOI: 10.1523/jneurosci.0481-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In neurons, L-type calcium channels (CaV1.2 and CaV1.3) regulate an extensive range of functions. However, the roles of CaV1.3-containing L channels, which are physiologically and pharmacologically distinct from the better understood CaV1.2 channels, are only beginning to be determined. We find that CaV1.3 channels are modulated by the insulin-like growth factor-1/receptor tyrosine kinase (IGF-1/RTK) through a signaling pathway that involves phospholipase C, calcium release from IP3-sensitive internal stores, and calcium/calmodulin kinase II. In addition, we find that the IGF-1-induced modulation requires phosphorylation of a specific serine residue, S1486, in the EF hand motif of the CaV1.3 subunit. This modulation alters CaV1.3 activity, causing a left shift in the current-voltage relationship and strongly potentiating peak currents at hyperpolarized membrane potentials. We also find that CaV1.3 channels and their RTK-dependent potentiation contribute to the regulation of the survival-promoting transcription factor cAMP response element-binding protein (CREB): in both cortical and hippocampal neurons, depolarization and IGF-1 rapidly increase phospho-CREB levels in a manner that requires CaV1.3 activity and the S1486 phosphorylation site to achieve a full effect. Although the full effects of CaV1.3 channels remain to be determined, their preferential localization to dendritic shafts and spine heads coupled with their ability to activate at relatively hyperpolarized and even subthreshold potentials suggests that CaV1.3 activity may subserve different cellular functions from CaV1.2 and, in particular, may be important in transducing signals initiated by excitatory neurotransmission.
Collapse
|
33
|
Gao L, Blair LAC, Marshall J. CaMKII-independent effects of KN93 and its inactive analog KN92: Reversible inhibition of L-type calcium channels. Biochem Biophys Res Commun 2006; 345:1606-10. [PMID: 16730662 DOI: 10.1016/j.bbrc.2006.05.066] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Widely regarded as a specific and potent inhibitor of CaM kinases, especially CaMKII, KN93 has long been used to investigate the possible roles of CaMKII in a wide range of biological functions and systems, such as cultured cells, primary neurons, and brain slices. However, here we present evidence showing that KN93 and its structural analog KN92, which does not inhibit CaMKII, exert an unexpected, reversible, and specific reduction of currents of L-type calcium channels (CaV1.3 and CaV1.2), as compared to N-type calcium channels (CaV2.2). This effect is dependent not only on incubation time, but also on the dose of KN93 or KN92. Moreover, the effect appears to be independent of endocytosis, exocytosis, and proteasome activity. Washout and return to normal media rescues the L channel currents. Conversely, the structurally unrelated CaMKII inhibitor, AIP, fails to mimic the KN93/KN92 effect on L channel currents. Together, our data suggest that, in addition to inhibiting CaMKII, KN93 also affects CaV1.3 and CaV1.2 calcium channels in a CaMKII-independent manner.
Collapse
Affiliation(s)
- Lei Gao
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
34
|
|
35
|
Kurmasheva RT, Houghton PJ. IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta Rev Cancer 2006; 1766:1-22. [PMID: 16844299 DOI: 10.1016/j.bbcan.2006.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 02/07/2023]
Abstract
The type-I and -II insulin-like growth factors (IGF-I, II) are now established as survival- or proliferation-factors in many in vitro systems. Of note IGFs provide trophic support for multiple cell types or organ cultures explanted from various species, and delay the onset of programmed cell death (apoptosis) through the mitochondrial (intrinsic pathway) or by antagonizing activation of cytotoxic cytokine signaling (extrinsic pathway). In some instances, IGFs protect against other forms of death such as necrosis or autophagy. The effect of IGFs on cell survival appears to be context specific, being determined both by the cell origin (tissue specific) and the cellular stress that induces loss of cellular viability. In many human cancers, there is a strong association with dysregulated IGF signaling, and this association has been extensively reviewed recently. IGF-regulation is also disrupted in childhood cancers as a consequence of chromosomal translocations. IGFs are implicated also in acute renal failure, traumatic injury to brain tissue, and cardiac disease. This article focuses on the role of IGFs and their cellular signaling pathways that provide survival signals in stressed cells.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105-2794, USA
| | | |
Collapse
|
36
|
Gui P, Wu X, Ling S, Stotz SC, Winkfein RJ, Wilson E, Davis GE, Braun AP, Zamponi GW, Davis MJ. Integrin Receptor Activation Triggers Converging Regulation of Cav1.2 Calcium Channels by c-Src and Protein Kinase A Pathways. J Biol Chem 2006; 281:14015-25. [PMID: 16554304 DOI: 10.1074/jbc.m600433200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-type, voltage-gated Ca2+ channels (CaL) play critical roles in brain and muscle cell excitability. Here we show that currents through heterologously expressed neuronal and smooth muscle CaL channel isoforms are acutely potentiated following alpha5beta1 integrin activation. Only the alpha1C pore-forming channel subunit is critical for this process. Truncation and site-directed mutagenesis strategies reveal that regulation of Cav1.2 by alpha5beta1 integrin requires phosphorylation of alpha1C C-terminal residues Ser1901 and Tyr2122. These sites are known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively, and are conserved between rat neuronal (Cav1.2c) and smooth muscle (Cav1.2b) isoforms. Kinase assays are consistent with phosphorylation of these two residues by PKA and c-Src. Following alpha5beta1 integrin activation, native CaL channels in rat arteriolar smooth muscle exhibit potentiation that is completely blocked by combined PKA and Src inhibition. Our results demonstrate that integrin-ECM interactions are a common mechanism for the acute regulation of CaL channels in brain and muscle. These findings are consistent with the growing recognition of the importance of integrin-channel interactions in cellular responses to injury and the acute control of synaptic and blood vessel function.
Collapse
Affiliation(s)
- Peichun Gui
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arinsburg SS, Cohen IS, Yu HG. Constitutively active Src tyrosine kinase changes gating of HCN4 channels through direct binding to the channel proteins. J Cardiovasc Pharmacol 2006; 47:578-86. [PMID: 16680072 PMCID: PMC1693968 DOI: 10.1097/01.fjc.0000211740.47960.8b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiac pacemaker current, if, is generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Our previous studies demonstrated that altered tyrosine phosphorylation can modulate the properties of both if and HCN channels. To assess a hypothesis that the intracellular tyrosine kinase Src may play a role in modulation by tyrosine phosphorylation of if, we cotransfected HEK293 cells with HCN4 and Src proteins. When HCN4 was cotransfected with a constitutively activated Src protein (Src529), the resultant voltage-dependent HCN4 activation was positively shifted (HCN4: V1/2 = -93 mV; Src529: V1/2 = -80 mV). The activation kinetics were accelerated at some potentials but not over the entire voltage range tested (eg, at -95 mV, tau_act(HCN4) = 3,243 ms; tau_act(Src529) = 1,113 ms). When HCN4 was cotransfected with a dominant negative Src protein (Src296), the HCN4 activation was shifted more negative to a smaller degree (HCN4: V1/2 = -93 mV; Src296: V1/2 = -98 mV; statistically insignificant) and the activation kinetics were slowed at most test potentials (eg, at -95 mV, tau_act(Src296) = 7,396 ms). Neither Src529 nor Src296 significantly altered HCN4 current density. Coimmunoprecipitation experiments revealed that Src forms a complex with HCN4 in HEK293 cells and in rat ventricular myocytes. Our data provide a novel mechanism of if regulation by Src tyrosine phosphorylation.
Collapse
Affiliation(s)
- Suzanne S. Arinsburg
- From the New York College of Osteopathic Medicine of the New York Institute of Technology, NY
| | - Ira S. Cohen
- From the Institute of Molecular Cardiology and Department of Physiology & Biophysics, State University of New York at Stony Brook, Stony Brook, NY
| | - Han-Gang Yu
- From the New York College of Osteopathic Medicine of the New York Institute of Technology, NY
| |
Collapse
|
38
|
Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. ACTA ACUST UNITED AC 2006; 171:537-47. [PMID: 16275756 PMCID: PMC1343528 DOI: 10.1083/jcb.200505155] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ca2+-dependent facilitation (CDF) of voltage-gated calcium current is a powerful mechanism for up-regulation of Ca2+ influx during repeated membrane depolarization. CDF of L-type Ca2+ channels (Cav1.2) contributes to the positive force–frequency effect in the heart and is believed to involve the activation of Ca2+/calmodulin-dependent kinase II (CaMKII). How CaMKII is activated and what its substrates are have not yet been determined. We show that the pore-forming subunit α1C (Cavα1.2) is a CaMKII substrate and that CaMKII interaction with the COOH terminus of α1C is essential for CDF of L-type channels. Ca2+ influx triggers distinct features of CaMKII targeting and activity. After Ca2+-induced targeting to α1C, CaMKII becomes tightly tethered to the channel, even after calcium returns to normal levels. In contrast, activity of the tethered CaMKII remains fully Ca2+/CaM dependent, explaining its ability to operate as a calcium spike frequency detector. These findings clarify the molecular basis of CDF and demonstrate a novel enzymatic mechanism by which ion channel gating can be modulated by activity.
Collapse
Affiliation(s)
- Andy Hudmon
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
39
|
Inoue R, Morita H, Ito Y. Newly emerging Ca2+ entry channel molecules that regulate the vascular tone. Expert Opin Ther Targets 2006; 8:321-34. [PMID: 15268627 DOI: 10.1517/14728222.8.4.321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Local blood flow is critically determined by the arterial tone in which sustained Ca(2+) influx, activated by a variety of mechanisms, plays a central regulatory role. Recent progress in molecular biological research has disclosed unexpectedly diverse and complex facets of Ca(2+) entry channel molecules involved in this Ca(2+) influx. Candidates include several transient receptor potential (TRP) superfamily members such as TRPC1, TRPC4, TRPC6, TRPV2, TRPV4 and TRPM4, none of which exhibit simple properties attributable to a single particular role. Rather, they appear to be multimodally activated or modulated by receptor stimulation, temperature, mechanical stress or lipid second messengers generated from various sources, and may be involved in both acute vasomotor control and long-term vascular remodelling. This paper provides an overview of existing knowledge of TRP proteins, and their possible relationships with principal factors regulating the arterial tone (i.e., autonomic nerves, various autocrine and paracrine factors, and intravascular pressure).
Collapse
Affiliation(s)
- Ryuji Inoue
- Kyushu University, Department of Pharmacology, Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
40
|
Conklin MW, Lin MS, Spitzer NC. Local calcium transients contribute to disappearance of pFAK, focal complex removal and deadhesion of neuronal growth cones and fibroblasts. Dev Biol 2005; 287:201-12. [PMID: 16202989 DOI: 10.1016/j.ydbio.2005.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 08/19/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Cell adhesion is crucial for migration of cells during development, and cell-substrate adhesion of motile cells is accomplished through the formation and removal of focal complexes that are sites of cell-substrate contact. Because Ca2+ signaling regulates the rate of axon outgrowth and growth cone turning, we investigated the potential role of Ca2+ in focal complex dynamics. We describe a novel class of localized, spontaneous transient elevations of cytosolic Ca2+ observed both in Xenopus neuronal growth cones and fibroblasts that are 2-6 mum in spatial extent and 2-4 s in duration. They are distributed throughout growth cone lamellipodia and at the periphery of fibroblast pseudopodia, which are regions of high motility. In both cell types, these Ca2+ transients lead to disappearance of phosphorylated focal adhesion kinase (pFAK) and deadhesion from the substrate as assessed by confocal and internal reflection microscopy, respectively. The loss of pFAK is inhibited by cyclosporin A, suggesting that these Ca2+ transients exert their effects via calcineurin. These results identify an intrinsic mechanism for local cell detachment that may be modulated by agents that regulate motility.
Collapse
Affiliation(s)
- Matthew W Conklin
- Neurobiology Section, Division of Biological Sciences, UCSD, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
41
|
Hou XY, Zhang GY, Wang DG, Guan QH, Yan JZ. Suppression of postsynaptic density protein 95 by antisense oligonucleotides diminishes postischemic pyramidal cell death in rat hippocampal CA1 subfield. Neurosci Lett 2005; 385:230-3. [PMID: 15970382 DOI: 10.1016/j.neulet.2005.05.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/04/2005] [Accepted: 05/14/2005] [Indexed: 11/27/2022]
Abstract
Our previous investigation has shown that postsynaptic density protein 95 (PSD-95) is critical for the Src family kinases-mediated tyrosine phosphorylation of N-methyl-d-aspartate receptor subunit 2A (NR2A) in the postischemic hippocampus. To clarify the roles of PSD-95 in the ischemic brain damage, histological method was performed to examine the effects of PSD-95 antisense oligonucleotides (AS) on the postischemic delayed cell death in rat hippocampus. Transient (15 min) brain ischemia was induced by the four-vessel occlusion method in Sprague-Dawley rats. Five days of reperfusion following brain ischemia (I/R5d) led to hippocampal CA1 pyramidal cell death upward of 90%. Intracerebroventricular infusion of AS (every 24 h for 3 days before ischemia) not only decreased the PSD-95 expression but also increased the number of surviving pyramidal neurons, while missense oligonucleotides (MS) had no effects. To further investigate the mechanisms underlying the neuroprotection of PSD-95 deficiency, the interaction of proline-rich tyrosine kinase 2 (Pyk2) with NR2A as well as autophosphorylation (Tyr402) of Pyk2 were detected. Immunoprecipitation and immunoblot analysis showed that preischemic treatment with AS, but not MS or vehicle, attenuated the I/R6h-induced increases in Pyk2-NR2A association and Pyk2 autophosphorylation. The protein levels of NR2A and Pyk2 had no differences under the above conditions. Our data suggest that the recruitments of ion channels and signaling molecules may be involved in the PSD-95 neurotoxicity in the postischemic hippocampus.
Collapse
Affiliation(s)
- Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, University of Science & Technology of China, 84 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | | | | | | | | |
Collapse
|
42
|
Yang S, Huang XY. Ca2+ influx through L-type Ca2+ channels controls the trailing tail contraction in growth factor-induced fibroblast cell migration. J Biol Chem 2005; 280:27130-7. [PMID: 15911622 DOI: 10.1074/jbc.m501625200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factor-induced cell migration underlies various physiological and pathological processes. The mechanisms by which growth factors regulate cell migration are not completely understood. Although intracellular elevation of Ca2+ is known to be critical in cell migration, the source of this Ca2+ elevation and the mechanism by which Ca2+ modulates this process in fibroblast cells are not well defined. Here we show that increase of cellular Ca2+ through Ca2+ influx, rather than Ca2+ release from intracellular stores, is essential for growth factor-induced fibroblast cell migration. Voltage-gated L-type Ca2+ channels, previously known to exist in excitable cells such as neurons and muscle cells, are shown here to be present in fibroblasts as well. Furthermore, these channels are responsible for the Ca2+ influx. L-type Ca2+ channel inhibitors block growth factor-induced Ca2+ influx and fibroblast cell migration. One mechanism by which Ca2+ signals control cell migration is to regulate the contraction of the trailing edge of migrating fibroblasts; this process is controlled by the small GTPase Rho in fast migrating cells such as leukocytes. Downstream of Ca2+, both calmodulin and myosin light chain kinase, but not calcineurin, are involved leading to phosphorylation of the myosin light chain at the trailing end. Thus, trailing edge contraction is critically regulated by Ca2+ influx through L-type Ca2+ channels in growth factor-induced fibroblast cell migration.
Collapse
Affiliation(s)
- Shengyu Yang
- Department of Physiology, Cornell University Weill Medical College, New York, New York 10021, USA
| | | |
Collapse
|
43
|
Arioka M, Cheon SH, Ikeno Y, Nakashima S, Kitamoto K. A novel neurotrophic role of secretory phospholipases A2for cerebellar granule neurons. FEBS Lett 2005; 579:2693-701. [PMID: 15862311 DOI: 10.1016/j.febslet.2005.03.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/24/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Cultured cerebellar granule neurons (CGNs) require membrane depolarization or neurotrophic factors for their survival in vitro and undergo apoptosis when deprived of these survival-promoting stimuli. Here, we show that secretory phospholipases A(2)s (sPLA(2)s) rescue CGNs from apoptosis after potassium deprivation. The neurotrophic effect required the enzymatic activity of sPLA(2)s, since catalytically inactive mutants of sPLA(2)s failed to protect CGNs from apoptosis. Consistently, the ability of sPLA(2)s to protect CGNs from apoptosis correlated with the extent of sPLA(2)-induced arachidonic acid release from live CGNs. The survival-promoting effect of sPLA(2) was inhibited by depletion of extracellular Ca(2+) or by the presence of L-type Ca(2+) channel blocker nicardipine, suggesting that Ca(2+) influx occurs upon sPLA(2) treatment. Among the mammalian sPLA(2)s tested, only group X sPLA(2), but not group IB nor IIA sPLA(2)s, displayed neurotrophic activity. These results suggest a novel, unexpected neurotrophin-like role of sPLA(2) in the nervous system.
Collapse
Affiliation(s)
- Manabu Arioka
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Japan.
| | | | | | | | | |
Collapse
|
44
|
Akbarali HI. Signal-transduction pathways that regulate smooth muscle function. II. Receptor-ion channel coupling mechanisms in gastrointestinal smooth muscle. Am J Physiol Gastrointest Liver Physiol 2005; 288:G598-602. [PMID: 15764809 DOI: 10.1152/ajpgi.00402.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Regulation of membrane ion channels by second messengers is an important mechanism by which gastrointestinal smooth muscle excitability is controlled. Receptor-mediated phosphorylation of Ca(2+) channels has been known for some time; however, recent findings indicate that these channels may also modulate intracellular signaling. The plasmalemma ion channels may also function as a point of convergence between different receptor types. In this review, the molecular mechanisms that link channel function and signal transduction are discussed. Emerging evidence also indicates altered second-messenger modulation of the Ca(2+) channel in the pathophysiology of smooth muscle dysmotility.
Collapse
Affiliation(s)
- Hamid I Akbarali
- Dept. of Physiology, Univ. of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA.
| |
Collapse
|
45
|
Schröder F, Klein G, Frank T, Bastein M, Indris S, Karck M, Drexler H, Wollert KC. Src family tyrosine kinases inhibit single L-type: Ca2+ channel activity in human atrial myocytes. J Mol Cell Cardiol 2005; 37:735-45. [PMID: 15350846 DOI: 10.1016/j.yjmcc.2004.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/01/2004] [Accepted: 06/09/2004] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Tyrosine kinases (TKs) are important regulators of the L-type Ca(2+) channel (LTCC) current in various cell types. However, there are no data addressing the role of TKs in the control of single LTCC activity in human atrial cardiac myocytes, where changes in LTCC gating properties have been described in a number of disease states. METHODS AND RESULTS Single LTCC activity was recorded in isolated human atrial myocytes. The broad-spectrum TK inhibitor genistein and the Src family-selective TK inhibitor PP1 significantly enhanced single LTCC ensemble average current, availability, and open probability; the latter was due to significant increases of mean open time and mode 2 gating. Conversely, the tyrosine phosphatase inhibitor bisperoxo-phenanthroline-vanadate inhibited single LTCC activity, indicating that LTCC gating properties in human atrial myocytes are controlled by TKs and tyrosine phosphatases in a reciprocal fashion. The effects of genistein on single LTCC activity were not affected by stimulation (8Br-cAMP) or inhibition (Rp-8-CPT-cAMPS) of protein kinase A (PKA) or by inhibition of serine/threonine phosphatases types I and IIa (okadaic acid), indicating that TKs inhibit LTCC gating in human atrial myocytes independent of PKA and phosphatases types I and IIa. However, inhibition of protein kinase C (PKC) by staurosporine or bisindolylmaleimide reversed the stimulatory effects of genistein on single LTCC gating properties, indicating that PKC is required for the inhibitory effect of TKs on single LTCC activity. CONCLUSION Src family TKs inhibit single LTCC activity in human atrial myocytes via PKC-dependent, but PKA and phosphatase types I and IIa-independent, molecular pathways.
Collapse
Affiliation(s)
- Frank Schröder
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover 30625, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wiedmann M, Wang X, Tang X, Han M, Li M, Mao Z. PI3K/Akt-dependent regulation of the transcription factor myocyte enhancer factor-2 in insulin-like growth factor-1- and membrane depolarization-mediated survival of cerebellar granule neurons. J Neurosci Res 2005; 81:226-34. [PMID: 15931671 DOI: 10.1002/jnr.20556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Survival signals such as insulin-like growth factor-1 (IGF-1) or membrane depolarization convey their neuronal protective effects through the activation of signaling networks and nuclear factors. In cerebellar granule neurons, IGF-1 mediates survival primarily through the PI3K/Akt pathway. The function of the transcription factor myocyte enhancer factor-2 (MEF2) is required for mediating membrane depolarization-dependent neuronal survival. However, whether PI3K/Akt regulates MEF2 and the role of MEF2 in IGF-1-mediated survival of neurons are unknown. In addition, the contribution of the PI3K/Akt pathway in membrane depolarization-induced neuronal survival remains undefined. We show here that the PI3K/Akt pathway promotes the survival of cerebellar granule neurons derived from Long-Evans rats following IGF-1 stimulation or membrane depolarization through regulation of MEF2 activity. IGF-1 stimulated the gene transactivation activity of MEF2 and its DNA binding potential. Moreover, regulation of MEF2 function by IGF-1 was dependent on the activity of the PI3K/Akt signaling pathway. Blocking MEF2 function reduced IGF-1-induced survival of cerebellar granule neurons. Membrane depolarization stimulated phosphorylation of Akt in cerebellar granule neurons. Blocking of the PI3K/Akt pathway with either a pharmacological inhibitor of PI3K, LY294002, or dominant negative mutants of PI3K and Akt inhibited the membrane depolarization-induced increase in MEF2 transactivation as well as its DNA binding activity and reduced neuronal survival. Together, these findings provide clear evidence to support an important role of the PI3K/Akt pathway in the regulation of nuclear survival factor MEF2 upon either IGF-1 stimulation or membrane depolarization, thus placing MEF2 as a novel downstream effector of the PI3K/Akt pathway in neurons.
Collapse
Affiliation(s)
- M Wiedmann
- Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | | | | | | | | | | |
Collapse
|
47
|
Li Y, Langlais P, Gamper N, Liu F, Shapiro MS. Dual phosphorylations underlie modulation of unitary KCNQ K(+) channels by Src tyrosine kinase. J Biol Chem 2004; 279:45399-407. [PMID: 15304482 DOI: 10.1074/jbc.m408410200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src tyrosine kinase suppresses KCNQ (M-type) K(+) channels in a subunit-specific manner representing a mode of modulation distinct from that involving G protein-coupled receptors. We probed the molecular and biophysical mechanisms of this modulation using mutagenesis, biochemistry, and both whole-cell and single channel modes of patch clamp recording. Immunoprecipitation assays showed that Src associates with KCNQ2-5 subunits but phosphorylates only KCNQ3-5. Using KCNQ3 as a background, we found that mutation of a tyrosine in the amino terminus (Tyr-67) or one in the carboxyl terminus (Tyr-349) abolished Src-dependent modulation of heterologously expressed KCNQ2/3 heteromultimers. The tyrosine phosphorylation was much weaker for either the KCNQ3-Y67F or KCNQ3-Y349F mutants and wholly absent in the KCNQ3-Y67F/Y349F double mutant. Biotinylation assays showed that Src activity does not alter the membrane abundance of channels in the plasma membrane. In recordings from cell-attached patches containing a single KCNQ2/3 channel, we found that Src inhibits the open probability of the channels. Kinetic analysis was consistent with the channels having two discrete open times and three closed times. Src activity reduced the durations of the longest open time and lengthened the longest closed time of the channels. The implications for the mechanisms of channel regulation by the dual phosphorylations on both channel termini are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
48
|
Jin X, Morsy N, Winston J, Pasricha PJ, Garrett K, Akbarali HI. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J Physiol Cell Physiol 2004; 287:C558-63. [PMID: 15084474 DOI: 10.1152/ajpcell.00113.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capsaicin receptor TRPV1 is a nonselective cation channel that is expressed in sensory neurons. In this study, we examined the role of the nonreceptor cellular tyrosine kinase c-Src kinase in the modulation of the rat TRPV1. Capsaicin-induced currents in identified colonic dorsal root ganglion neurons were blocked by the c-Src kinase inhibitor PP2 and enhanced by the tyrosine phosphatase inhibitor sodium orthovandate. PP2 also abolished currents in human embryonic kidney-293 cells transfected with rat TRPV1, whereas cotransfection of TRPV1 with v-Src resulted in fivefold increase in capsaicin-induced currents. In cells transfected with dominant-negative c-Src and TRPV1, capsaicin-induced currents were decreased by approximately fourfold. TRPV1 co-immunoprecipitated with Src kinase and was tyrosine phosphorylated. These studies demonstrate that TRPV1 is a potential target for cellular tyrosine kinase-dependent phosphorylation.
Collapse
Affiliation(s)
- Xiaochun Jin
- Dept. of Physiology, University of Oklahoma Health Science Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Richman RW, Tombler E, Lau KK, Anantharam A, Rodriguez J, O'Bryan JP, Diversé-Pierluissi MA. N-type Ca2+ Channels as Scaffold Proteins in the Assembly of Signaling Molecules for GABAB Receptor Effects. J Biol Chem 2004; 279:24649-58. [PMID: 15047708 DOI: 10.1074/jbc.m312182200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An emerging concept in signal transduction is the organization of neuronal receptors and channels into microdomains in which signaling proteins are brought together to regulate functional responses. With the multiplicity of potential protein-protein interactions arises the need for the regulation and timing of these interactions. We have identified N-type Ca(2+) channel-signaling molecule complexes formed at different times upon activation of gamma-aminobutyric acid, type B, receptors. The first type of interaction involves pre-association of signaling proteins such as Src kinase with the Ca(2+) channel, because it is rapidly activated by the receptors and regulates the magnitude of the inhibition of the Ca(2+) channel. The second type of interaction involves signaling molecules that are recruited to the channel by receptor activation and control the rate of the channel response. Recruitment of members of the Ras pathway has two effects as follows: 1) modulation of the rate of onset of the gamma-aminobutyric acid-mediated inhibition of Ca(2+) current, and 2) activation of MAP kinase. Our results suggest that the Ca(2+) channel alpha(1) subunit functions as a dynamic scaffold allowing assembly of intracellular signaling components that alter channel activity and route signals to the MAP kinase pathway.
Collapse
Affiliation(s)
- Ryan W Richman
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Callaghan B, Koh SD, Keef KD. Muscarinic M2 Receptor Stimulation of Cav1.2b Requires Phosphatidylinositol 3-Kinase, Protein Kinase C, and c-Src. Circ Res 2004; 94:626-33. [PMID: 14739158 DOI: 10.1161/01.res.0000118248.17466.b7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated regulation of L-type calcium channels (Cav1.2b) by acetylcholine (ACh) in rabbit portal vein myocytes. Whole-cell currents were recorded using 5 mmol/L barium as charge carrier. ACh (10 μmol/L) increased peak currents by 40%. This effect was not reversed by the selective muscarinic M3 receptor antagonist 4-DAMP (100 nmol/L) but was blocked by the M2 receptor antagonist methoctramine (5 μmol/L). The classical and novel protein kinase C (PKC) antagonist calphostin C (50 nmol/L) abolished ACh responses, whereas the classical PKC antagonist Gö6976 (200 nmol/L) had no effect. ACh responses were also abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (20 μmol/L), by the c-Src inhibitor PP2 (10 μmol/L) (but not the inactive analogue PP3), and by dialyzing cells with an antibody to the G-protein subunit Gβγ. Cells dialyzed with c-Src had significantly greater currents than control cells. Current enhancement persisted in the presence of LY294002, suggesting that c-Src is downstream of PI3K. Phorbol 12,13-dibutyrate (PDBu, 0.1 μmol/L) increased currents by 74%. This effect was abolished by calphostin C and reduced by Gö6976. The PDBu response was also reduced by PP2, and the PP2-insensitive component was blocked by Gö6976. In summary, these data suggest that ACh enhances Cav1.2b currents via M2 receptors that couple sequentially to Gβγ, PI3K, a novel PKC, and c-Src. PDBu stimulates the novel PKC/c-Src pathway along with a second pathway that is independent of c-Src and involves a classical PKC.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Barium/metabolism
- Calcium Channels, L-Type/physiology
- Carbazoles/pharmacology
- Cells, Cultured/drug effects
- Cells, Cultured/physiology
- Chromones/pharmacology
- Class Ib Phosphatidylinositol 3-Kinase
- Diamines/pharmacology
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein beta Subunits/antagonists & inhibitors
- GTP-Binding Protein beta Subunits/physiology
- GTP-Binding Protein gamma Subunits/antagonists & inhibitors
- GTP-Binding Protein gamma Subunits/physiology
- Indoles/pharmacology
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ion Transport/drug effects
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/physiology
- Male
- Morpholines/pharmacology
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Naphthalenes/pharmacology
- Patch-Clamp Techniques
- Phorbol 12,13-Dibutyrate/pharmacology
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Piperidines/pharmacology
- Portal Vein/cytology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/physiology
- Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors
- Proto-Oncogene Proteins pp60(c-src)/physiology
- Pyrimidines/pharmacology
- Rabbits
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/drug effects
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- B Callaghan
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557, USA
| | | | | |
Collapse
|