1
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
2
|
Nitzan A, Corredor-Sanchez M, Galron R, Nahary L, Safrin M, Bruzel M, Moure A, Bonet R, Pérez Y, Bujons J, Vallejo-Yague E, Sacks H, Burnet M, Alfonso I, Messeguer A, Benhar I, Barzilai A, Solomon AS. Inhibition of Sema-3A Promotes Cell Migration, Axonal Growth, and Retinal Ganglion Cell Survival. Transl Vis Sci Technol 2021; 10:16. [PMID: 34817617 PMCID: PMC8626852 DOI: 10.1167/tvst.10.10.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Semaphorin 3A (Sema-3A) is a secreted protein that deflects axons from inappropriate regions and induces neuronal cell death. Intravitreal application of polyclonal antibodies against Sema-3A prevents loss of retinal ganglion cells ensuing from axotomy of optic nerves. This suggested a therapeutic approach for neuroprotection via inhibition of the Sema-3A pathway. Methods To develop potent and specific Sema-3A antagonists, we isolated monoclonal anti-Sema-3A antibodies from a human antibody phage display library and optimized low-molecular weight Sema-3A signaling inhibitors. The best inhibitors were identified using in vitro scratch assays and semiquantitative repulsion assays. Results A therapeutic approach for neuroprotection must have a long duration of action. Therefore, antibodies and low-molecular weight inhibitors were formulated in extruded implants to allow controlled and prolonged release. Following release from the implants, Sema-3A inhibitors antagonized Sema-3A effects in scratch and repulsion assays and protected retinal ganglion cells in animal models of optic nerve injury, retinal ischemia, and glaucoma. Conclusions and Translational Relevance Collectively, our findings indicate that the identified Sema-3A inhibitors should be further evaluated as therapeutic candidates for the treatment of Sema-3A-driven central nervous system degenerative processes.
Collapse
Affiliation(s)
- Anat Nitzan
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Corredor-Sanchez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mary Safrin
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Marina Bruzel
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Alejandra Moure
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Roman Bonet
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Yolanda Pérez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Jordi Bujons
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | | | | | | | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Arieh S Solomon
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Gileta AF, Helgeson ML, Leonard JMM, Pyle LC, Subramanian HP, Arndt K, Hawkes CP, Del Gaudio D. Further delineation of a recognizable type of syndromic short stature caused by biallelic SEMA3A loss-of-function variants. Am J Med Genet A 2020; 185:889-893. [PMID: 33369061 DOI: 10.1002/ajmg.a.62023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
Abstract
The semaphorin protein family is a diverse set of extracellular signaling proteins that perform fundamental roles in the development and operation of numerous biological systems, notably the nervous, musculoskeletal, cardiovascular, endocrine, and reproductive systems. Recently, recessive loss-of-function (LoF) variants in SEMA3A (semaphorin 3A) have been shown to result in a recognizable syndrome characterized by short stature, skeletal abnormalities, congenital heart defects, and variable additional anomalies. Here, we describe the clinical and molecular characterization of a female patient presenting with skeletal dysplasia, hypogonadotropic hypogonadism (HH), and anosmia who harbors a nonsense variant c.1633C>T (p.Arg555*) and a deletion of exons 15, 16, and 17 in SEMA3A in the compound heterozygous state. These variants were identified through next-generation sequencing analysis of a panel of 26 genes known to be associated with HH/Kallmann syndrome. Our findings further substantiate the notion that biallelic LoF SEMA3A variants cause a syndromic form of short stature and expand the phenotypic spectrum associated with this condition to include features of Kallmann syndrome.
Collapse
Affiliation(s)
- Alexander F Gileta
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Maria L Helgeson
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Jacqueline M M Leonard
- Division of Human Genetics and Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Louise C Pyle
- Division of Human Genetics and Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hari P Subramanian
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Kelly Arndt
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Colin P Hawkes
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniela Del Gaudio
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Higgins DMO, Caliva M, Schroeder M, Carlson B, Upadhyayula PS, Milligan BD, Cheshier SH, Weissman IL, Sarkaria JN, Meyer FB, Henley JR. Semaphorin 3A mediated brain tumor stem cell proliferation and invasion in EGFRviii mutant gliomas. BMC Cancer 2020; 20:1213. [PMID: 33302912 PMCID: PMC7727139 DOI: 10.1186/s12885-020-07694-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dominique M O Higgins
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA.
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
| | - Maisel Caliva
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Currently: Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brett Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Pavan S Upadhyayula
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA
| | - Brian D Milligan
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA
- Currently: Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84113, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
5
|
Francelin C, Geniseli I, Nagib P, Gameiro J, Savino W, Verinaud L. Semaphorin-3A-Related Reduction of Thymocyte Migration in Chemically Induced Diabetic Mice. Neuroimmunomodulation 2020; 27:28-37. [PMID: 32155637 DOI: 10.1159/000506054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/14/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previous work revealed the existence of a severe thymic atrophy with massive loss of immature CD4+CD8+ thymocytes in animals developing insulin-dependent diabetes, chemically induced by alloxan. Furthermore, the intrathymic expression of chemokines, such as CXCL12, is changed in these animals, suggesting that cell migration-related patterns may be altered. One molecular interaction involved in normal thymocyte migration is that mediated by soluble semaphorin-3A and its cognate receptor neuropilin-1. OBJECTIVES We investigated herein the expression and role of semaphorin-3A in the migratory responses of thymocytes from alloxan-induced diabetic mice. We characterized semaphorin-3A and its receptor, neuropilin-1, in thymuses from control and diabetic mice as well as semaphorin-3A-dependent migration of developing thymocytes in both control and diabetic animals. METHODS Diabetes was chemically induced after a single injection of alloxan in young adult BALB/c mice. Thymocytes were excised from control and diabetic individuals and subjected to cytofluorometry for simultaneous detection of semaphorin-3A or neuropilin-1 in CD4/CD8-defined subsets. Cell migration in response to semaphorin-3A was performed using cell migration transwell chambers. RESULTS Confirming previous data, we observed a severe decrease in the total numbers of thymocytes in diabetic mice, which comprised alterations in both immature (double-negative subpopulations) and mature CD4/CD8-defined thymocyte subsets. These were accompanied by a decrease in the absolute numbers of semaphorin-3A-bearing thymocytes, comprising CD4-CD8-, CD4+CD8+, and CD4-CD8+ cells. Additionally, immature CD4-CD8- and CD4+CD8+ developing T cells exhibited a decrease in the membrane density of semaphorin-3A. The relative and absolute numbers of neuropilin-1-positive thymocytes were also decreased in diabetic mouse thymocytes compared to controls, as seen in CD4-CD8-, CD4+CD8+, and CD4-CD8+ cell subpopulations. Functionally, we observed a decrease in the chemorepulsive role of semaphorin-3A, as revealed by transwell migration chambers. Such an effect was seen in all immature and mature thymocyte subsets. CONCLUSIONS Taken together, our data clearly unravel a disruption in the normal cell migration pattern of developing thymocytes following chemically induced insulin-dependent diabetes, as ascertained by the altered migratory response to sempahorin-3A. In conceptual terms, it is plausible to think that such disturbances in the migration pattern of thymocytes from these diabetic animals may exert an impact in the cell-mediated immune response of these mice.
Collapse
Affiliation(s)
- Carolina Francelin
- Autoimmune Research Lab., Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil,
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil,
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, USA,
| | - Ieda Geniseli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Patrícia Nagib
- Institute of Tropical Pathology and Public Health, Federal University of Goiânia - UFG, Goiânia, Brazil
| | - Jacy Gameiro
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
6
|
He Z, Crenshaw E, Raper JA. Semaphorin/neuropilin binding specificities are stable over 400 million years of evolution. Biochem Biophys Res Commun 2019; 517:23-28. [PMID: 31349972 PMCID: PMC10863626 DOI: 10.1016/j.bbrc.2019.06.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 11/24/2022]
Abstract
Semaphorins are a large and important family of signaling molecules conserved in Bilateria. An important determinant of the biological function of their largest class, the secreted class 3 semaphorins, is the specificity of their binding to neuropilins, a key component of a larger holoreceptor complex. We compared these binding specificities in mice and zebrafish, species whose most recent common ancestor was more than 400 million years in the past. We also compared the binding specificities of zebrafish class 3 semaphorins that were duplicated very early within the teleost lineage. We found a surprising conservation of neuropilin binding specificities when comparing both paralogous zebrafish semaphorin pairs and orthologous zebrafish and mouse semaphorin pairs. This finding was further supported by a remarkable conservation of binding specificities in cross-species pairings of semaphorins and neuropilins. Our results suggest that the qualitative specificities with which particular semaphorins bind to particular neuropilins has remained nearly invariant over approximately 400 million years of evolution.
Collapse
Affiliation(s)
- Zhili He
- Dept. of Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ezekiel Crenshaw
- Dept. of Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A Raper
- Dept. of Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Butti R, Kumar TV, Nimma R, Kundu GC. Impact of semaphorin expression on prognostic characteristics in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:79-88. [PMID: 29910635 PMCID: PMC5987790 DOI: 10.2147/bctt.s135753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the major causes of cancer-related deaths among women worldwide. Aberrant regulation of various growth factors, cytokines, and other proteins and their receptors in cancer cells drives the activation of various oncogenic signaling pathways that lead to cancer progression. Semaphorins are a class of proteins which are differentially expressed in various types of cancer including breast cancer. Earlier, these proteins were known to have a major function in the nerve cell adhesion, migration, and development of the central nervous system. However, their role in the regulation of several aspects of tumor progression has eventually emerged. There are over 30 genes encoding the semaphorins, which are divided into eight subclasses. It has been reported that some members of semaphorin classes are antiangiogenic and antimetastatic in nature, whereas others act as proangiogenic and prometastatic genes. Because of their differential expression and role in angiogenesis and metastasis, semaphorins emerged as one of the important prognostic factors for appraising breast cancer progression.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Totakura Vs Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
8
|
Tam KJ, Dalal K, Hsing M, Cheng CW, Khosravi S, Yenki P, Tse C, Peacock JW, Sharma A, Chiang YT, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget 2018; 8:9617-9633. [PMID: 28038451 PMCID: PMC5354758 DOI: 10.18632/oncotarget.14168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily of transcription factors and is central to prostate cancer (PCa) progression. Ligand-activated AR engages androgen response elements (AREs) at androgen-responsive genes to drive the expression of gene batteries involved in cell proliferation and cell fate. Understanding the transcriptional targets of the AR has become critical in apprehending the mechanisms driving treatment-resistant stages of PCa. Although AR transcription regulation has been extensively studied, the signaling networks downstream of AR are incompletely described. Semaphorin 3C (SEMA3C) is a secreted signaling protein with roles in nervous system and cardiac development but can also drive cellular growth and invasive characteristics in multiple cancers including PCa. Despite numerous findings that implicate SEMA3C in cancer progression, regulatory mechanisms governing its expression remain largely unknown. Here we identify and characterize an androgen response element within the SEMA3C locus. Using the AR-positive LNCaP PCa cell line, we show that SEMA3C expression is driven by AR through this element and that AR-mediated expression of SEMA3C is dependent on the transcription factor GATA2. SEMA3C has been shown to promote cellular growth in certain cell types so implicit to our findings is the discovery of direct regulation of a growth factor by AR. We also show that FOXA1 is a negative regulator of SEMA3C. These findings identify SEMA3C as a novel target of AR, GATA2, and FOXA1 and expand our understanding of semaphorin signaling and cancer biology.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kush Dalal
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Hsing
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Chi Wing Cheng
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Charan Tse
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Aishwariya Sharma
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Yan Ting Chiang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Alamri A, Soussi Gounni A, Kung SKP. View Point: Semaphorin-3E: An Emerging Modulator of Natural Killer Cell Functions? Int J Mol Sci 2017; 18:E2337. [PMID: 29113093 PMCID: PMC5713306 DOI: 10.3390/ijms18112337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Abdelilah Soussi Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
10
|
Neuronal expression patterns of the PlexinA family during zebrafish development. Gene Expr Patterns 2017; 27:56-66. [PMID: 29107805 DOI: 10.1016/j.gep.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Plexins (Plxns) and Semaphorins (Semas) are key signaling molecules that regulate many aspects of development. Plxns are a family of transmembrane protein receptors that are activated upon extracellular binding by Semas. Activated Plxns trigger intracellular signaling cascades, which regulate a range of developmental processes, including axon guidance, neuronal positioning and vasculogenesis. Semas are a large family of both transmembrane and secreted signaling molecules, and show subtype specific binding to different Plxn family members. Each Plxn can play different roles in development, and so tightly regulated temporal and spatial expression of receptor subtypes is critical to ensure appropriate signaling. Here we elucidate the expression profiles of the plxnA family, plxnA1a, A1b, A2, A3 and A4 at 18, 24, 36, 48, 60 and 72 h post fertilization in the developing zebrafish. We show that PlxnA family members are expressed in neuronal tissues during zebrafish development, but exhibit key differences in expression within these tissues. We also highlight that plxnA1 has two genes in zebrafish, A1a and A1b, which show divergences in expression patterns during early development.
Collapse
|
11
|
Tam KJ, Hui DHF, Lee WW, Dong M, Tombe T, Jiao IZF, Khosravi S, Takeuchi A, Peacock JW, Ivanova L, Moskalev I, Gleave ME, Buttyan R, Cox ME, Ong CJ. Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells. Sci Rep 2017; 7:11501. [PMID: 28904399 PMCID: PMC5597577 DOI: 10.1038/s41598-017-11914-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Daniel H F Hui
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Wilson W Lee
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Mingshu Dong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Tabitha Tombe
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ivy Z F Jiao
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ario Takeuchi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Larissa Ivanova
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Michael E Cox
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
12
|
Bulloj A, Maminishkis A, Mizui M, Finnemann SC. Semaphorin4D-PlexinB1 Signaling Attenuates Photoreceptor Outer Segment Phagocytosis by Reducing Rac1 Activity of RPE Cells. Mol Neurobiol 2017. [PMID: 28624895 DOI: 10.1007/s12035-017-0649-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Semaphorins form a family of secreted and membrane-bound molecules that were identified originally as axonal guidance factors during neuronal development. Given their wide distribution in many including mature tissues, semaphorin 4D (sema4D) and its main functional receptor plexin B1 (plxnB1) are expected to fulfill additional functions that remain to be uncovered. A main characteristic of the plexin receptor family is its ability to reorganize the cytoskeleton. PlxnB1 specifically may directly interact with Rho family GTPases to regulate F-actin driven pathways in cells in culture. Diurnal clearance phagocytosis by the retinal pigment epithelium (RPE) of photoreceptor outer segment fragments (POS) is critical for photoreceptor function and longevity. In this process, rearrangement of RPE cytoskeletal F-actin via activation of the Rho family GTPase Rac1 is essential for POS internalization. Here, we show a novel role in POS phagocytosis by RPE cells in culture and in vivo for plexin B1 and its ligand sema4D. Exogenous sema4D abolishes POS internalization (but not binding) by differentiated RPE cells in culture by decreasing the GTP load of Rac1. In the rat eye, sema4D localizes to retinal photoreceptors, while PlxnB1 is expressed by neighboring RPE cells. At the peak of diurnal retinal phagocytosis after light onset, plxnB1 phosphorylation and sema4D levels are reduced in wild-type rat retina in situ but not in mutant RCS rat retina in which the RPE lacks phagocytic activity. Finally, increased POS phagosome content after light onset is observed in the RPE in situ of mice with either plxnB1 or sema4D gene deletion. Altogether, our results demonstrate a novel physiological function for sema4D/plxnB1 signaling in RPE phagocytosis serving as attenuating brake prior to light onset whose release enables the diurnal phagocytic burst.
Collapse
Affiliation(s)
- Ayelen Bulloj
- Department of Biological Sciences Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Silvia C Finnemann
- Department of Biological Sciences Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
13
|
Abstract
The semaphorins are an essential family of axon guidance molecules that can be either secreted or are transmembrane proteins. Class 3 semaphorin (Sema3) family members are secreted and provide long-range guidance cues through two receptor families: neuropilins (Nrp) and plexins. Nrp is uniquely required for high-affinity Sema3 binding and signaling. Therefore, characterizing the molecular details of the Sema3/Nrp interaction is important for understanding the broader physiological and pathological role of the Sema3 family of proteins. Here we describe an in vitro plate-based binding assay for characterization of the Sema3/Nrp interaction. This assay utilizes Nrp-affinity plates and an alkaline phosphatase (AP)-Sema3 fusion to rapidly measure direct Sema3/Nrp binding. This assay can be used to measure receptor-ligand binding, the contribution of different domains, and exogenous factors, and to characterize competitive ligand binding.
Collapse
|
14
|
Characterization of Semaphorin 6A-Mediated Effects on Angiogenesis Through Regulation of VEGF Signaling. Methods Mol Biol 2016. [PMID: 27787863 DOI: 10.1007/978-1-4939-6448-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Angiogenesis identifies the process of endothelial cell sprouting and remodeling leading to the formation of new and functional blood vessels. Vascular expansion during development and in the adult mammal provides nutrients and oxygen to areas with increased need. Although many molecules and pathways have been identified as regulators of angiogenesis, aspects of this complex process remain unclear. Particularly undefined are the signals that orchestrate vessel survival and pruning once new blood vessels have sprouted. These poorly characterized aspects of angiogenesis need exploration. This chapter describes the experiments and methods enabling the characterization of Semaphorin 6A as a critical regulator of endothelial cell survival and vessel function.
Collapse
|
15
|
Assays to Examine Transmembrane Semaphorin Function In Vitro. Methods Mol Biol 2016. [PMID: 27787856 DOI: 10.1007/978-1-4939-6448-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The semaphorins are a large family of secreted and membrane associated proteins that play numerous key roles in the development and function of the nervous system and other tissues. They have been primarily associated with their function as guidance cues in the developing nervous system. In general, semaphorins have been shown to function as inhibitory guidance cues; however there are also numerous examples where they can function as attractive or permissive cues. Thus it is important to employ a variety of assays to test for semaphorin function. While numerous assays have been established for secreted semaphorins, testing the function of transmembrane semaphorins has been challenging. In this chapter we outline two assays that we have used extensively to test their function. In one assay we examine the effect of a constant source of a transmembrane semaphorin on neurite outgrowth and in a second assay we examine whether neurons will actively avoid growing across islands of cells expressing a transmembrane semaphorin. We have found both assays to be relatively easy to perform and useful to test semaphorin function and signaling.
Collapse
|
16
|
Masuda T, Taniguchi M. Contribution of semaphorins to the formation of the peripheral nervous system in higher vertebrates. Cell Adh Migr 2016; 10:593-603. [PMID: 27715392 PMCID: PMC5160040 DOI: 10.1080/19336918.2016.1243644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semaphorins are a large family of proteins characterized by sema domains and play a key role not only in the formation of neural circuits, but in the immune system, angiogenesis, tumor progression, and bone metabolism. To date, 15 semaphorins have been reported to be involved in the formation of the peripheral nervous system (PNS) in higher vertebrates. A number of experiments have revealed their functions in the PNS, where they act mainly as axonal guidance cues (as repellents or attractants). Semaphorins also play an important role in the migration of neurons and formation of sensory-motor connections in the PNS. This review summarizes recent knowledge regarding the functions of higher vertebrate semaphorins in the formation of the PNS.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Department of Neurobiology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan.,b Doctoral and Master's Programs in Kansei , Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Ibaraki , Japan
| | - Masahiko Taniguchi
- c Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Hokkaido , Japan
| |
Collapse
|
17
|
Taku AA, Marcaccio CL, Ye W, Krause GJ, Raper JA. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target. Development 2016; 143:123-32. [PMID: 26732841 DOI: 10.1242/dev.127985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.
Collapse
Affiliation(s)
- Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wenda Ye
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory J Krause
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Corredor M, Bonet R, Moure A, Domingo C, Bujons J, Alfonso I, Pérez Y, Messeguer À. Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors. Biophys J 2016; 110:1291-303. [PMID: 27028639 PMCID: PMC4816699 DOI: 10.1016/j.bpj.2016.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Semaphorin3A (Sema3A) is a vertebrate-secreted protein that was initially characterized as a repulsive-guidance cue. Semaphorins have crucial roles in several diseases; therefore, the development of Sema3A inhibitors is of therapeutic interest. Sema3A interacts with glycosaminoglycans (GAGs), presumably through its C-terminal basic region. We used different biophysical techniques (i.e., NMR, surface plasmon resonance, isothermal titration calorimetry, fluorescence, and UV-visible spectroscopy) to characterize the binding of two Sema3A C-terminus-derived basic peptides (FS2 and NFS3) to heparin and chondroitin sulfate A. We found that these peptides bind to both GAGs with affinities in the low-micromolar range. On the other hand, a peptoid named SICHI (semaphorin-induced chemorepulsion inhibitor), which is positively charged at physiological pH, was first identified by our group as being able to block Sema3A chemorepulsion and growth-cone collapse in axons at the extracellular level. To elucidate the direct target for the reported SICHI inhibitory effect in the Sema3A signaling pathway, we looked first to the protein-protein interaction between secreted Sema3A and the Nrp1 receptor. However, our results show that SICHI does not bind directly to the Sema3A sema domain or to Nrp1 extracellular domains. We evaluated a new, to our knowledge, hypothesis, according to which SICHI binds to GAGs, thereby perturbing the Sema3A-GAG interaction. By using the above-mentioned techniques, we observed that SICHI binds to GAGs and competes with Sema3A C-terminus-derived basic peptides for binding to GAGs. These data support the ability of SICHI to block the biologically relevant interaction between Sema3A and GAGs, thus revealing SICHI as a new, to our knowledge, class of inhibitors that target the GAG-protein interaction.
Collapse
Affiliation(s)
- Miriam Corredor
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Roman Bonet
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Alejandra Moure
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Cecilia Domingo
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Jordi Bujons
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Ignacio Alfonso
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Yolanda Pérez
- Servicio de Resonancia Magnética Nuclear, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain.
| | - Àngel Messeguer
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain.
| |
Collapse
|
19
|
McCormick AM, Jarmusik NA, Leipzig ND. Co-immobilization of semaphorin3A and nerve growth factor to guide and pattern axons. Acta Biomater 2015; 28:33-44. [PMID: 26391495 DOI: 10.1016/j.actbio.2015.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/27/2015] [Accepted: 09/17/2015] [Indexed: 12/25/2022]
Abstract
Immobilization of axon guidance cues offers a powerful tissue regenerative strategy to control the presentation and spatial location of these biomolecules. We use our previously developed immobilization strategy to specifically tether recombinant biotinylated nerve growth factor (bNGF) and biotinylated semaphorin3A (bSema3A) to chitosan films as an outgrowth and guidance platform. DRG neurite length and number for a range of single cues of immobilized bNGF or bSema3A were examined to determine a concentration response. Next single and dual cues of bNGF and bSema3A were immobilized and DRG guidance was assessed in response to a step concentration change from zero. Overall, immobilized groups caused axon extension, retraction and turning depending on the ratio of bNGF and bSema3A immobilized in the encountered region. This response indicated the exquisite sensitivity of DRG axons to both attractive and repulsive tethered cues. bSema3A concentrations of 0.10 and 0.49 ng/mm(2), when co-immobilized with bNGF (at 0.86 and 0.43 ng/mm(2) respectively), caused axons to turn away from the co-immobilized region. Immunocytochemical analysis showed that at these bSema3A concentrations, axons inside the co-immobilized region display microtubule degradation and breakdown of actin filaments. At the lowest bSema3A concentration (0.01 ng/mm(2)) co-immobilized with a higher bNGF concentration (2.16 ng/mm(2)), neurite lengths are shorter in the immobilized area, but bNGF dominates the guidance mechanism as neurites are directed toward the immobilized region. Future applications can pattern these cues in various geometries and gradients in order to better modulate axon guidance in terms of polarity, extension and branching. STATEMENT OF SIGNIFICANCE Nervous system formation and regeneration requires key molecules for guiding the growth cone and nervous system patterning. In vivo these molecules work in conjunction with one another to modulate axon guidance, and often they are tethered to limit spatial distribution. The novelty of this research is that we provide a specific attachment method to immobilize an attractive signal, nerve growth factor, along with an inhibitory cue, semaphorin3A, to a substrate in order to analyze the interplay of these proteins on axon guidance responses. The scientific impact of this manuscript is that we show that dual-cued platforms are necessary in order to finetune and tailor specific axon responses for varying neuronal regenerative purposes.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Department of Chemical and Biomolecular Engineering, The University of Akron, OH, USA
| | - Natalie A Jarmusik
- Department of Chemical and Biomolecular Engineering, The University of Akron, OH, USA
| | - Nic D Leipzig
- Department of Chemical and Biomolecular Engineering, The University of Akron, OH, USA.
| |
Collapse
|
20
|
Li X, Parker MW, Vander Kooi CW. Control of cellular motility by neuropilin-mediated physical interactions. Biomol Concepts 2015; 5:157-66. [PMID: 25018786 DOI: 10.1515/bmc-2013-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is in ligand-dependent cellular migration, where it controls the multistep process of cellular motility through integration of ligand binding and receptor signaling. At a molecular level, the role of Nrp in migration is intimately connected to the control of adhesive interactions and cytoskeletal reorganization. Here, we review the physiological role of Nrp in cellular adhesion and motility in the cardiovascular and nervous systems. We also discuss the emerging pathological role of Nrp in tumor cell migration and metastasis, providing motivation for continued efforts toward developing Nrp inhibitors.
Collapse
|
21
|
Saito T, Kasamatsu A, Ogawara K, Miyamoto I, Saito K, Iyoda M, Suzuki T, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. Semaphorin7A Promotion of Tumoral Growth and Metastasis in Human Oral Cancer by Regulation of G1 Cell Cycle and Matrix Metalloproteases: Possible Contribution to Tumoral Angiogenesis. PLoS One 2015; 10:e0137923. [PMID: 26378920 PMCID: PMC4574527 DOI: 10.1371/journal.pone.0137923] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/23/2015] [Indexed: 12/21/2022] Open
Abstract
Background Semaphorins (SEMAs) consist of a large family of secreted and membrane-anchored proteins that are important in neuronal pathfinding and axon guidance in selected areas of the developing nervous system. Of them, SEMA7A has been reported to have a chemotactic activity in neurogenesis and to be an immunomodulator; however, little is known about the relevance of SEMA7A in the behaviors of oral squamous cell carcinoma (OSCC). Methods We evaluated SEMA7A expression in OSCC-derived cell lines and primary OSCC samples using quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and semiquantitative immunohistochemistry (sq-IHC). In addition, SEMA7A knockdown cells (shSEMA7A cells) were used for functional experiments, including cellular proliferation, invasiveness, and migration assays. We also analyzed the clinical correlation between SEMA7A status and clinical behaviors in patients with OSCC. Results SEMA7A mRNA and protein were up-regulated significantly (P<0.05) in OSCC-derived cell lines compared with human normal oral keratinocytes. The shSEMA7A cells showed decreased cellular growth by cell-cycle arrest at the G1 phase, resulting from up-regulation of cyclin-dependent kinase inhibitors (p21Cip1 and p27Kip1) and down-regulation of cyclins (cyclin D1, cyclin E) and cyclin-dependent kinases (CDK2, CDK4, and CDK6); and decreased invasiveness and migration activities by reduced secretion of matrix metalloproteases (MMPs) (MMP-2, proMMP-2, pro-MMP-9), and expression of membrane type 1- MMP (MT1-MMP). We also found inactivation of the extracellular regulated kinase 1/2 and AKT pathways, an upstream molecule of cell-cycle arrest at the G1 phase, and reduced secretion of MMPs in shSEMA7A cells. sq-IHC showed that SEMA7A expression in the primary OSCCs was significantly (P = 0.001) greater than that in normal counterparts and was correlated with primary tumoral size (P = 0.0254) and regional lymph node metastasis (P = 0.0002). Conclusion Our data provide evidence for an essential role of SEMA7A in tumoral growth and metastasis in OSCC and indicated that SEMA7A may play a potential diagnostic/therapeutic target for use in patients with OSCC.
Collapse
Affiliation(s)
- Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Katsunori Ogawara
- Division of Oral Surgery and Oral Implant Center, Funabashi Central Hospital, 6-13-10 Kaijin, Funabashi, Chiba, 273–8556, Japan
| | - Isao Miyamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Kengo Saito
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Manabu Iyoda
- Division of Oral Surgery, Chiba Rosai Hospital, 2–16 Tatsumidaihigashi, Ichihara, Chiba, 290–0003, Japan
| | - Takane Suzuki
- Department of Environmental Health Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Masashi Shiiba
- Department of Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260–8670, Japan
- * E-mail:
| |
Collapse
|
22
|
Cariboni A, André V, Chauvet S, Cassatella D, Davidson K, Caramello A, Fantin A, Bouloux P, Mann F, Ruhrberg C. Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. J Clin Invest 2015; 125:2413-28. [PMID: 25985275 DOI: 10.1172/jci78448] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/02/2015] [Indexed: 01/09/2023] Open
Abstract
Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.
Collapse
|
23
|
Abstract
Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, Singapore.
| |
Collapse
|
24
|
Viral semaphorin inhibits dendritic cell phagocytosis and migration but is not essential for gammaherpesvirus-induced lymphoproliferation in malignant catarrhal fever. J Virol 2015; 89:3630-47. [PMID: 25589653 DOI: 10.1128/jvi.03634-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Viral semaphorins are semaphorin 7A (sema7A) mimics found in pox- and herpesviruses. Among herpesviruses, semaphorins are encoded by gammaherpesviruses of the Macavirus genus only. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus that persistently infects wildebeest asymptomatically but induces malignant catarrhal fever (MCF) when transmitted to several species of susceptible ruminants and the rabbit model. MCF is caused by the activation/proliferation of latently infected T lymphocytes. Viral semaphorins have been suggested to mediate immune evasion mechanisms and/or directly alter host T cell function. We studied AlHV-sema, the viral semaphorin encoded by the A3 gene of AlHV-1. Phylogenetic analyses revealed independent acquisition of pox- and herpesvirus semaphorins, suggesting that these proteins might have distinct functions. AlHV-sema showed a predicted three-dimensional structure very similar to sema7A and conserved key residues in sema7A-plexinC1 interaction. Expression analyses revealed that AlHV-sema is a secreted 93-kDa glycoprotein expressed during the early phase of virus replication. Purified AlHV-sema was able to bind to fibroblasts and dendritic cells and induce F-actin condensation and cell retraction through a plexinC1 and Rho/cofilin-dependent mechanism. Cytoskeleton rearrangement was further associated with inhibition of phagocytosis by dendritic cells and migration to the draining lymph node. Next, we generated recombinant viruses and demonstrated that the lack of A3 did not significantly affect virus growth in vitro and did not impair MCF induction and associated lymphoproliferative lesions. In conclusion, AlHV-sema has immune evasion functions through mechanisms similar to poxvirus semaphorin but is not directly involved in host T cell activation during MCF. IMPORTANCE Whereas most poxviruses encode viral semaphorins, semaphorin-like genes have only been identified in few gammaherpesviruses belonging to the Macavirus genus. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus carried asymptomatically by wildebeest but induces a latency-associated lymphoproliferative disease of T lymphocytes in various ruminant species, namely, malignant catarrhal fever (MCF). Viral semaphorins have been hypothesized to have immune evasion functions and/or be involved in activating latently infected T cells. We present evidence that the viral semaphorin AlHV-sema inhibits dendritic cell phagocytosis and migration to the draining lymph node, both being indispensable mechanisms for protective antiviral responses. Next, we engineered recombinant viruses unable to express AlHV-sema and demonstrated that this protein is dispensable for the induction of MCF. In conclusion, this study suggests that herpesvirus and poxvirus semaphorins have independently evolved similar functions to thwart the immune system of the host while AlHV-sema is not directly involved in MCF-associated T-cell activation.
Collapse
|
25
|
Mishra R, Kumar D, Tomar D, Chakraborty G, Kumar S, Kundu GC. The potential of class 3 semaphorins as both targets and therapeutics in cancer. Expert Opin Ther Targets 2014; 19:427-42. [PMID: 25434284 DOI: 10.1517/14728222.2014.986095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Semaphorins have been originally identified as a family of evolutionary conserved soluble or membrane-associated proteins involved in diverse developmental phenomena. This family of proteins profoundly influences numerous pathophysiological processes, including organogenesis, cardiovascular development and immune response. Apart from steering the neural networking process, these are implicated in a broad range of biological operations including regulation of tumor progression and angiogenesis. AREAS COVERED Members of class 3 semaphorin family are known to modulate various cellular processes involved in malignant transformation. Some of the family members trigger diverse signaling processes involved in tumor progression and angiogenesis by binding with plexin and neuropilin. A better understanding of the various signaling mechanisms by which semaphorins modulate tumor progression and angiogenesis may serve as crucial tool in crafting new semaphorin-based anticancer therapy. These include treatment with recombinant tumor suppressive semaphorins or inhibition of tumor-promoting semaphorins by their specific siRNAs, small-molecule inhibitors or specific receptors using neutralizing antibodies or blocking peptides that might serve as novel strategies for effective management of cancers. EXPERT OPINION This review focuses on all the possible avenues to explore various members of class 3 semaphorin family to serve as therapeutics for combating cancer.
Collapse
Affiliation(s)
- Rosalin Mishra
- Loboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science (NCCS) , Pune 411007 , India
| | | | | | | | | | | |
Collapse
|
26
|
Garcia-Areas R, Libreros S, Amat S, Keating P, Carrio R, Robinson P, Blieden C, Iragavarapu-Charyulu V. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice. Front Physiol 2014; 5:17. [PMID: 24550834 PMCID: PMC3914020 DOI: 10.3389/fphys.2014.00017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/09/2014] [Indexed: 11/16/2022] Open
Abstract
Semaphorins are a large family of molecules involved in axonal guidance during the development of the nervous system and have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A) has been reported to have a chemotactic activity in neurogenesis and to be an immune modulator through α1β1integrins. SEMA7A has been shown to promote monocyte chemotaxis and induce them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in a murine model of breast cancer. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4), and that peritoneal elicited macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to those derived from normal mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecule CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2/MIP-2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p < 0.01) lower levels of angiogenic proteins, such as CXCL2/MIP-2, CXCL1, and MMP-9, compared to those from control DA-3 mammary tumors. We postulate that SEMA7A in mammary carcinomas may skew monocytes into a pro-tumorigenic phenotype to support tumor growth. SEMA7A could prove to be valuable in establishing new research avenues toward unraveling important tumor-host immune interactions in breast cancer patients.
Collapse
Affiliation(s)
- Ramon Garcia-Areas
- Tumor Immunology, Department of Biomedical Sciences, Florida Atlantic University Boca Raton, FL, USA
| | - Stephania Libreros
- Tumor Immunology, Department of Biomedical Sciences, Florida Atlantic University Boca Raton, FL, USA
| | - Samantha Amat
- Tumor Immunology, Department of Biomedical Sciences, Florida Atlantic University Boca Raton, FL, USA
| | - Patricia Keating
- Immunology, Department of Biological Sciences, Florida Atlantic University Boca Raton, FL, USA
| | - Roberto Carrio
- Tumor Immunology, Microbiology and Immunology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Phillip Robinson
- Department of Clinical Sciences, Florida Atlantic University Boca Raton, FL, USA
| | - Clifford Blieden
- Department of Pathology and Laboratory Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine Miami, FL, USA
| | | |
Collapse
|
27
|
Guo HF, Li X, Parker MW, Waltenberger J, Becker PM, Vander Kooi CW. Mechanistic basis for the potent anti-angiogenic activity of semaphorin 3F. Biochemistry 2013; 52:7551-8. [PMID: 24079887 DOI: 10.1021/bi401034q] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuropilin-1 (Nrp1), an essential type I transmembrane receptor, binds two secreted ligand families, vascular endothelial growth factor (VEGF) and class III Semaphorin (Sema3). VEGF-A and Sema3F have opposing roles in regulating Nrp1 vascular function in angiogenesis. VEGF-A functions as one of the most potent pro-angiogenic cytokines, while Sema3F is a uniquely potent endogenous angiogenesis inhibitor. Sema3 family members require proteolytic processing by furin to allow competitive binding to Nrp1. We demonstrate that the furin-processed C-terminal domain of Sema3F (C-furSema) potently inhibits VEGF-A-dependent activation of endothelial cells. We find that this potent activity is due to unique heterobivalent engagement of Nrp1 by two distinct sites in the C-terminal domain of Sema3F. One of the sites is the C-terminal arginine, liberated by furin cleavage, and the other is a novel upstream helical motif centered on the intermolecular disulfide. Using a novel chimeric C-furSema, we demonstrate that combining a single C-terminal arginine with the helical motif is necessary and sufficient for potent inhibition of binding of VEGF-A to Nrp1. We further demonstrate that the multiple furin-processed variants of Sema3A, with the altered proximity of the two binding motifs, have dramatically different potencies. This suggests that furin processing not only switches Sema3 to an activated form but also, depending on the site processed, can also tune potency. These data establish the basis for potent competitive binding of Sema3 to Nrp1 and provide a basis for the design of bivalent Nrp inhibitors.
Collapse
Affiliation(s)
- Hou-Fu Guo
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky , Lexington, Kentucky 40536, United States
| | | | | | | | | | | |
Collapse
|
28
|
D'Apice L, Costa V, Valente C, Trovato M, Pagani A, Manera S, Regolo L, Zambelli A, Ciccodicola A, De Berardinis P. Analysis of SEMA6B gene expression in breast cancer: Identification of a new isoform. Biochim Biophys Acta Gen Subj 2013; 1830:4543-53. [DOI: 10.1016/j.bbagen.2013.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 01/04/2023]
|
29
|
Degenhardt K, Singh MK, Aghajanian H, Massera D, Wang Q, Li J, Li L, Choi C, Yzaguirre AD, Francey LJ, Gallant E, Krantz ID, Gruber PJ, Epstein JA. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med 2013; 19:760-5. [PMID: 23685842 DOI: 10.1038/nm.3185] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/04/2013] [Indexed: 01/22/2023]
Abstract
Total anomalous pulmonary venous connection (TAPVC) is a potentially lethal congenital disorder that occurs when the pulmonary veins do not connect normally to the left atrium, allowing mixing of pulmonary and systemic blood. In contrast to the extensive knowledge of arterial vascular patterning, little is known about the patterning of veins. Here we show that the secreted guidance molecule semaphorin 3d (Sema3d) is crucial for the normal patterning of pulmonary veins. Prevailing models suggest that TAPVC occurs when the midpharyngeal endothelial strand (MES), the precursor of the common pulmonary vein, does not form at the proper location on the dorsal surface of the embryonic common atrium. However, we found that TAPVC occurs in Sema3d mutant mice despite normal formation of the MES. In these embryos, the maturing pulmonary venous plexus does not anastomose uniquely with the properly formed MES. In the absence of Sema3d, endothelial tubes form in a region that is normally avascular, resulting in aberrant connections. Normally, Sema3d provides a repulsive cue to endothelial cells in this area, establishing a boundary. Sequencing of SEMA3D in individuals with anomalous pulmonary veins identified a phenylalanine-to-leucine substitution that adversely affects SEMA3D function. These results identify Sema3d as a crucial pulmonary venous patterning cue and provide experimental evidence for an alternate developmental model to explain abnormal pulmonary venous connections.
Collapse
Affiliation(s)
- Karl Degenhardt
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Janssen BJ, Malinauskas T, Weir GA, Cader MZ, Siebold C, Jones EY. Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat Struct Mol Biol 2012; 19:1293-9. [PMID: 23104057 PMCID: PMC3590443 DOI: 10.1038/nsmb.2416] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/18/2012] [Indexed: 12/15/2022]
Abstract
Co-receptors add complexity to cell-cell signaling systems. The secreted semaphorin 3s (Sema3s) require a co-receptor, neuropilin (Nrp), to signal through plexin As (PlxnAs) in functions ranging from axon guidance to bone homeostasis, but the role of the co-receptor is obscure. Here we present the low-resolution crystal structure of a mouse semaphorin-plexin-Nrp complex alongside unliganded component structures. Dimeric semaphorin, two copies of plexin and two copies of Nrp are arranged as a dimer of heterotrimers. In each heterotrimer subcomplex, semaphorin contacts plexin, similar to in co-receptor-independent signaling complexes. The Nrp1s cross brace the assembly, bridging between sema domains of the Sema3A and PlxnA2 subunits from the two heterotrimers. Biophysical and cellular analyses confirm that this Nrp binding mode stabilizes a canonical, but weakened, Sema3-PlxnA interaction, adding co-receptor control over the mechanism by which receptor dimerization and/or oligomerization triggers signaling.
Collapse
Affiliation(s)
- Bert J.C. Janssen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Greg A. Weir
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - M. Zameel Cader
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Parker MW, Guo HF, Li X, Linkugel AD, Vander Kooi CW. Function of members of the neuropilin family as essential pleiotropic cell surface receptors. Biochemistry 2012; 51:9437-46. [PMID: 23116416 DOI: 10.1021/bi3012143] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuropilin (Nrp) family consists of essential multifunctional vertebrate cell surface receptors. Nrps were initially characterized as receptors for class III Semaphorin (Sema3) family members, functioning in axon guidance. Nrps have also been shown to be critical for vascular endothelial growth factor-dependent angiogenesis. Intriguingly, recent data show that Nrp function in these seemingly divergent pathways is critically determined by ligand-mediated cross-talk, which underlies Nrp function in both physiological and pathological processes. In addition to functioning in these two pathways, Nrps have been shown to specifically function in a number of other fundamental signaling pathways as well. Multiple general mechanisms have been found to directly contribute to the pleiotropic function of Nrp. Here we review critical general features of Nrps that function as essential receptors integrating multiple molecular cues into diverse cellular signaling.
Collapse
Affiliation(s)
- Matthew W Parker
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
32
|
Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition. PLoS One 2012; 7:e49177. [PMID: 23145112 PMCID: PMC3493496 DOI: 10.1371/journal.pone.0049177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/09/2012] [Indexed: 01/27/2023] Open
Abstract
Neuropilin (Nrp) receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF) family of proangiogenic cytokines and the semaphorin 3 (Sema3) family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5) isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.
Collapse
|
33
|
Abstract
Formation of new vessels during development and in the mature mammal generally proceeds through angiogenesis. Although a variety of molecules and signaling pathways are known to underlie endothelial cell sprouting and remodeling during angiogenesis, many aspects of this complex process remain unexplained. Here we show that the transmembrane semaphorin6A (Sema6A) is expressed in endothelial cells, and regulates endothelial cell survival and growth by modulating the expression and signaling of VEGFR2, which is known to maintain endothelial cell viability by autocrine VEGFR signaling. The silencing of Sema6A in primary endothelial cells promotes cell death that is not rescued by exogenous VEGF-A or FGF2, attributable to the loss of prosurvival signaling from endogenous VEGF. Analyses of mouse tissues demonstrate that Sema6A is expressed in angiogenic and remodeling vessels. Mice with null mutations of Sema6A exhibit significant defects in hyaloid vessels complexity associated with increased endothelial cell death, and in retinal vessels development that is abnormally reduced. Adult Sema6A-null mice exhibit reduced tumor, matrigel, and choroidal angiogenesis compared with controls. Sema6A plays important roles in development of the nervous system. Here we show that it also regulates vascular development and adult angiogenesis.
Collapse
|
34
|
Abstract
Solid tumors not only comprise malignant cells but also other nonmalignant cell types, forming a unique microenvironment that can strongly influence the behavior of tumor cells. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins. In fact, semaphorins form a family of molecular signals known to guide and control cell migration during embryo development and in adults. Tumor cells express semaphorins as well as their receptors, plexins and neuropilins. It has been shown that semaphorin signaling can regulate tumor cell behavior. Moreover, semaphorins are important regulators of tumor angiogenesis. Conversely, very little is known about the functional relevance of semaphorin signals for tumor-infiltrating stromal cells, such as leukocytes. In this chapter, we review the current knowledge on the functional role of semaphorins in cancer progression, and we focus on the emerging role of semaphorins in mediating the cross talk between tumor cells and different tumor stromal cells.
Collapse
Affiliation(s)
- Claudia Muratori
- University of Torino Medical School, Institute for Cancer Research (IRCC), Candiolo, Turin, Italy
| | | |
Collapse
|
35
|
Sharma A, Verhaagen J, Harvey AR. Receptor complexes for each of the Class 3 Semaphorins. Front Cell Neurosci 2012; 6:28. [PMID: 22783168 PMCID: PMC3389612 DOI: 10.3389/fncel.2012.00028] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
The Class 3 Semaphorins (Sema3s) are a sub-family of proteins whose known biological roles are varied and growing. The mechanism of action of the Sema3s requires binding to transmembrane receptors that comprise heteromeric complexes of Neuropilins, Plexins and cell adhesion molecules (CAMs). However, knowledge of the receptor components of the Sema3s remains incomplete, and there may be receptor components which are as yet undiscovered. The receptor complexes of the Sema3s share receptor components with each other, and it is the specific combination of these components within a heteromeric complex that is thought to give rise to selective binding and signalling for individual Sema3s. This crosstalk makes it experimentally difficult to define a single holoreceptor for each Sema3. Furthermore, the receptor composition for a given Sema3 may differ between cell types, and change as a function of developmental state or pathological situation. Nevertheless, there are at least some known differences in the constitutive structure of the receptors for the Sema3s. For example in neural cells, Sema3a and Sema3f signal through different Neuropilins (Nrp1 and Nrp2 respectively) and L1cam only appears important for Sema3a signaling, while Nrcam forms a complex with Nrp2. Further complexity arises from crosstalk of other families of ligands (e.g., VEGF) with Sema3 receptor components. Thus the Sema3s, which have been shown as antagonists for each other, can also act as antagonists for other families of molecules. This review compiles experimental evidence describing the receptor components for the Sema3s, detailing the current state of knowledge of which components are important for signaling of each Sema3 before going on to consider possible future directions for the field.
Collapse
Affiliation(s)
- Anil Sharma
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley WA, Australia
| | | | | |
Collapse
|
36
|
McCormick AM, Leipzig ND. Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng 2012; 40:578-97. [PMID: 22218702 DOI: 10.1007/s10439-011-0505-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 01/19/2023]
Abstract
There are currently no acceptable cures for central nervous system injuries, and damage induced large gaps in the peripheral nervous system have been challenging to bridge to restore neural functionality. Innervation by neurons is made possible by the growth cone. This dynamic structure is unique to neurons, and can directly sense physical and chemical activity in its environment, utilizing these cues to propel axons to precisely reach their targets. Guidance can occur through chemoattractive factors such as neurotrophins and netrins, chemorepulsive agents like semaphorins and slits, or contact-mediated molecules such as ephrins and those located in the extracellular matrix. The understanding of biomolecular activity during nervous system development and injury has generated new techniques and tactics for improving and restoring function to the nervous system after injury. This review will focus on the major neuronal guidance molecules and their utility in current tissue engineering and neural regenerative strategies.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | | |
Collapse
|
37
|
Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. ACTA ACUST UNITED AC 2011. [DOI: 10.2200/s00390ed1v01y201111tis008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Prescott JD, Poczobutt JM, Tentler JJ, Walker DM, Gutierrez-Hartmann A. Mapping of ESE-1 subdomains required to initiate mammary epithelial cell transformation via a cytoplasmic mechanism. Mol Cancer 2011; 10:103. [PMID: 21871131 PMCID: PMC3183030 DOI: 10.1186/1476-4598-10-103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 08/28/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The ETS family transcription factor ESE-1 is often overexpressed in human breast cancer. ESE-1 initiates transformation of MCF-12A cells via a non-transcriptional, cytoplasmic process that is mediated by a unique 40-amino acid serine and aspartic acid rich (SAR) subdomain, whereas, ESE-1's nuclear transcriptional property is required to maintain the transformed phenotype of MCF7, ZR-75-1 and T47D breast cancer cells. RESULTS To map the minimal functional nuclear localization (NLS) and nuclear export (NES) signals, we fused in-frame putative NLS and NES motifs between GFP and the SAR domain. Using these GFP constructs as reporters of subcellular localization, we mapped a single NLS to six basic amino acids (242 HGKRRR 247) in the AT-hook and two CRM1-dependent NES motifs, one to the pointed domain (NES1: 102 LCNCALEELRL 112) and another to the DNA binding domain (DBD), (NES2: 275 LWEFIRDILI 284). Moreover, analysis of a putative NLS located in the DBD (316 GQKKKNSN 323) by a similar GFP-SAR reporter or by internal deletion of the DBD, revealed this sequence to lack NLS activity. To assess the role of NES2 in regulating ESE-1 subcellular localization and subsequent transformation potency, we site-specifically mutagenized NES2, within full-length GFP-ESE-1 and GFP-NES2-SAR reporter constructs. These studies show that site-specific mutation of NES2 completely abrogates ESE-1 transforming activity. Furthermore, we show that exclusive cytoplasmic targeting of the SAR domain is sufficient to initiate transformation, and we report that an intact SAR domain is required, since block mutagenesis reveals that an intact SAR domain is necessary to maintain its full transforming potency. Finally, using a monoclonal antibody targeting the SAR domain, we demonstrate that the SAR domain contains a region accessible for protein - protein interactions. CONCLUSIONS These data highlight that ESE-1 contains NLS and NES signals that play a critical role in regulating its subcellular localization and function, and that an intact SAR domain mediates MEC transformation exclusively in the cytoplasm, via a novel nontranscriptional mechanism, whereby the SAR motif is accessible for ligand and/or protein interactions. These findings are significant, since they provide novel molecular insights into the functions of ETS transcription factors in mammary cell transformation.
Collapse
Affiliation(s)
- Jason D Prescott
- Medical Scientist Training Program, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Semaphorins belong to a family of membrane-bound and secreted molecules that regulate the functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins also found to be expressed in immune cells and were, therefore, termed "immune semaphorins". It is known that Sema4A has three functional receptors, namely Plexin D1, Plexin B1, and Tim-2, whereas Sema4D binds to Plexin B1 and CD72. Recent studies suggest that immune semaphorins play critical roles in many physiological and pathological processes and such. In this review, we summarize the current knowledge on the biology of neuroimmune semaphorins and their corresponding receptors, their distribution in organs and tissues, function in the immune response, and critical regulatory roles in various diseases.
Collapse
|
40
|
Secreted human amyloid precursor protein binds semaphorin 3a and prevents semaphorin-induced growth cone collapse. PLoS One 2011; 6:e22857. [PMID: 21829538 PMCID: PMC3146505 DOI: 10.1371/journal.pone.0022857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/29/2011] [Indexed: 12/04/2022] Open
Abstract
The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα695 (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα695 binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα695 inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (Kd≤8·10−9 M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins.
Collapse
|
41
|
Janssen BJC, Robinson RA, Pérez-Brangulí F, Bell CH, Mitchell KJ, Siebold C, Jones EY. Structural basis of semaphorin-plexin signalling. Nature 2010; 467:1118-22. [PMID: 20877282 PMCID: PMC3587840 DOI: 10.1038/nature09468] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/06/2010] [Indexed: 01/25/2023]
Abstract
Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed β-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Communication
- Crystallography, X-Ray
- Humans
- Ligands
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- NIH 3T3 Cells
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Semaphorins/chemistry
- Semaphorins/genetics
- Semaphorins/metabolism
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bert J C Janssen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Liu H, Juo ZS, Hye-Ryong Shim A, Focia PJ, Chen X, Garcia KC, He X. Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell 2010; 142:749-61. [PMID: 20727575 PMCID: PMC2936782 DOI: 10.1016/j.cell.2010.07.040] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/08/2010] [Accepted: 07/20/2010] [Indexed: 12/19/2022]
Abstract
Repulsive signaling by Semaphorins and Plexins is crucial for the development and homeostasis of the nervous, immune, and cardiovascular systems. Sema7A acts as both an immune and a neural Semaphorin through PlexinC1, and A39R is a Sema7A mimic secreted by smallpox virus. We report the structures of Sema7A and A39R complexed with the Semaphorin-binding module of PlexinC1. Both structures show two PlexinC1 molecules symmetrically bridged by Semaphorin dimers, in which the Semaphorin and PlexinC1 beta propellers interact in an edge-on, orthogonal orientation. Both binding interfaces are dominated by the insertion of the Semaphorin's 4c-4d loop into a deep groove in blade 3 of the PlexinC1 propeller. A39R appears to achieve Sema7A mimicry by preserving key Plexin-binding determinants seen in the mammalian Sema7A complex that have evolved to achieve higher affinity binding to the host-derived PlexinC1. The complex structures support a conserved Semaphorin-Plexin recognition mode and suggest that Plexins are activated by dimerization.
Collapse
Affiliation(s)
- Heli Liu
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Z. Sean Juo
- Howard Hughes Medical Institute, and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman B171B, 279 Campus Dr, Stanford, CA 94305
| | - Ann Hye-Ryong Shim
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Pamela J. Focia
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Xiaoyan Chen
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman B171B, 279 Campus Dr, Stanford, CA 94305
| | - Xiaolin He
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Merte J, Wang Q, Vander Kooi CW, Sarsfield S, Leahy DJ, Kolodkin AL, Ginty DD. A forward genetic screen in mice identifies Sema3A(K108N), which binds to neuropilin-1 but cannot signal. J Neurosci 2010; 30:5767-75. [PMID: 20410128 PMCID: PMC2869466 DOI: 10.1523/jneurosci.5061-09.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022] Open
Abstract
We have performed a three-generation, forward genetic screen to identify recessive mutations that affect the patterning of the peripheral nervous system. Using this assay, we identified Sema3A(K108N), a novel loss-of-function allele of Sema3A. Class 3 semaphorins, which include Sema3A, are structurally conserved secreted proteins that play critical roles in the development and function of the nervous system. Sema3A(K108N) mutant mice phenocopy Sema3A-null mice, and Sema3A(K108N) protein fails to repel or collapse DRG axons in vitro. K108 is conserved among semaphorins, yet the loss-of-function effects associated with K108N are not the result of impaired expression, secretion, or binding of Sema3A to its high-affinity receptor Neuropilin-1 (Npn-1). Using in silico modeling and mutagenesis of other semaphorin family members, we predict that Sema3A(K108N) interacts poorly with the Npn-1/PlexA holoreceptor and, thus, interferes with its ability to signal at the growth cone. Therefore, through the use of a forward-genetic screen we have identified a novel allele of Sema3A that provides structural insight into the mechanism of Sema3A/Npn-1/PlexinA signaling.
Collapse
Affiliation(s)
- Janna Merte
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, and
| | - Qiang Wang
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, and
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Sarah Sarsfield
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, and
| | - Daniel J. Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, and
| | - David D. Ginty
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, and
| |
Collapse
|
44
|
Capparuccia L, Tamagnone L. Semaphorin signaling in cancer cells and in cells of the tumor microenvironment--two sides of a coin. J Cell Sci 2009; 122:1723-36. [PMID: 19461072 DOI: 10.1242/jcs.030197] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semaphorins are a large family of secreted and membrane-bound molecules that were initially implicated in the development of the nervous system and in axon guidance. More recently, they have been found to regulate cell adhesion and motility, angiogenesis, immune responses, and tumor progression. Semaphorin receptors, the neuropilins and the plexins, are expressed by a wide variety of cell types, including endothelial cells, bone-marrow-derived cells and cancer cells. Interestingly, a growing body of evidence indicates that semaphorins also have an important role in cancer. It is now known that cancer progression, invasion and metastasis involve not only genetic changes in the tumor cells but also crosstalk between tumor cells and their surrounding non-tumor cells. Through the recruitment of endothelial cells, leukocytes, pericytes and fibroblasts, and the local release of growth factors and cytokines, the tumor microenvironment can mediate tumor-cell survival, tumor proliferation and regulation of the immune response. Moreover, by conferring cancer cells with an enhanced ability to migrate and invade adjacent tissues, extracellular regulatory signals can play a major role in the metastatic process. In this Commentary, we focus on the emerging role of semaphorins in mediating the crosstalk between tumor cells and multiple stromal cell types in the surrounding microenvironment.
Collapse
Affiliation(s)
- Lorena Capparuccia
- Institute for Cancer Research and Treatment (IRCC), University of Turin, S.P. 142, 10060, Candiolo (TO), Italy
| | | |
Collapse
|
45
|
Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 2008; 8:632-45. [PMID: 18580951 DOI: 10.1038/nrc2404] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The semaphorins and their receptors, the neuropilins and the plexins, were originally characterized as constituents of the complex regulatory system responsible for the guidance of axons during the development of the central nervous system. However, a growing body of evidence indicates that various semaphorins can either promote or inhibit tumour progression through the promotion or inhibition of processes such as tumour angiogenesis, tumour metastasis and tumour cell survival. This Review focuses on the emerging role of the semaphorins in cancer.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, P.O. Box 9679, 1 Efron Street, Haifa, 31096, Israel.
| | | |
Collapse
|
46
|
Brown CB, Baldwin HS. Neural crest contribution to the cardiovascular system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:134-54. [PMID: 17076279 DOI: 10.1007/978-0-387-46954-6_8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Normal cardiovascular development requires complex remodeling of the outflow tract and pharyngeal arch arteries to create the separate pulmonic and systemic circulations. During remodeling, the outflow tract is septated to form the ascending aorta and the pulmonary trunk. The initially symmetrical pharyngeal arch arteries are remodeled to form the aortic arch, subclavian and carotid arteries. Remodeling is mediated by a population of neural crest cells arising between the mid-otic placode and somite four called the cardiac neural crest. Cardiac neural crest cells form smooth muscle and pericytes in the great arteries, and the neurons of cardiac innervation. In addition to the physical contribution of smooth muscle to the cardiovascular system, cardiac neural crest cells also provide signals required for the maintenance and differentiation of the other cell layers in the pharyngeal apparatus. Reciprocal signaling between the cardiac neural crest cells and cardiogenic mesoderm of the secondary heart field is required for elaboration of the conotruncus and disruption in this signaling results in primary myocardial dysfunction. Cardiovascular defects attributed to the cardiac neural crest cells may reflect either cell autonomous defects in the neural crest or defects in signaling between the neural crest and adjacent cell layers.
Collapse
Affiliation(s)
- Christopher B Brown
- Department of Pediatrics, Vanderbilt University Medical Center, B3301 MCN, Nashville, Tennessee 37232-2495, USA.
| | | |
Collapse
|
47
|
Vachkov IH, Huang X, Yamada Y, Tonchev AB, Yamashima T, Kato S, Takakura N. Inhibition of axonal outgrowth in the tumor environment: involvement of class 3 semaphorins. Cancer Sci 2007; 98:1192-7. [PMID: 17498201 PMCID: PMC11159195 DOI: 10.1111/j.1349-7006.2007.00508.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
That tumors lack innervation is dogma in the field of pathology, but the molecular determinants of this phenomenon remain elusive. We studied the effects of conditioned media from Colon 26 and B16 mouse tumor cell lines on the axonal outgrowth and cellular differentiation of embryonic Institute of Cancer Research (ICR) mouse dorsal root ganglion cells. Tumor-conditioned media suppressed dorsal root ganglion axonal extension but had no effect on neuronal or glial differentiation. We found that the tumor cells expressed most of the class 3 semaphorins - axon guidance molecules. Blocking the activity of class 3 semaphorins with the soluble receptor neuropilin-1 significantly counteracted the tumor-induced inhibition of axonal extension. Together, these results suggest a role for tumor-secreted class 3 semaphorins in selectively inhibiting axonal outgrowth of dorsal root ganglion neurons.
Collapse
Affiliation(s)
- Ivan H Vachkov
- Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Seltsam A, Strigens S, Levene C, Yahalom V, Moulds M, Moulds JJ, Hustinx H, Weisbach V, Figueroa D, Bade-Doeding C, DeLuca DS, Blasczyk R. The molecular diversity of Sema7A, the semaphorin that carries the JMH blood group antigens. Transfusion 2007; 47:133-46. [PMID: 17207242 DOI: 10.1111/j.1537-2995.2007.01076.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Semaphorin 7A (Sema7A), the protein that carries the JMH blood group antigen, is involved in immune responses and plays an important role in axon growth and guidance. Because previous serologic studies on red blood cells (RBCs) suggested a considerable diversity of Sema7A, the present study was designed to elucidate the complex picture of the molecular diversity of this protein. STUDY DESIGN AND METHODS The JMH antigen status was determined by serology, flow cytometry, and Western blot. Genomic and transcript analysis of SEMA7A was performed by nucleotide sequencing. Recombinant Sema7A proteins were used for genotype-phenotype correlation. A three-dimensional model of Sema7A was generated for topologic analyses. RESULTS Our studies on 44 individuals with unusual JMH phenotypes and their family members revealed that aberrant Sema7A expression can be an inherited or an acquired phenomenon and is based on reduced surface expression or qualitative changes in Sema7A. These different phenotypes are caused by variations of the SEMA7A gene or seem to be generated by autoimmune-related or RBC lineage-specific mechanisms. The variant JMH phenotypes were related to the presence of missense mutations in SEMA7A, predicting amino acid changes in the semaphorin domain of Sema7A. Sequence analysis of the variant SEMA7A alleles revealed mutations affecting codons 207 and 460/461. Topologic analyses showed that Sema7A polymorphisms were prominently located on the top and bottom of the semaphorin domain, suggesting a functional relevance of these sites. CONCLUSION These findings provide a basis with which to delineate the various ligand-binding surfaces of Sema7A.
Collapse
Affiliation(s)
- Axel Seltsam
- Institute for Transfusion Medicine, Hanover Medical School, Hanover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lassiter K, Ojano-Dirain C, Iqbal M, Pumford NR, Tinsley N, Lay J, Liyanage R, Wing T, Cooper M, Bottje W. Differential Expression of Mitochondrial and Extramitochondrial Proteins in Lymphocytes of Male Broilers with Low and High Feed Efficiency. Poult Sci 2006; 85:2251-9. [PMID: 17135683 DOI: 10.1093/ps/85.12.2251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies were conducted to investigate relationships between mitochondrial and extramitochondrial protein expression, and protein oxidation in lymphocytes obtained from broilers in which individual feed efficiencies were obtained. Lymphocytes were isolated from male broilers from a single line that were shown to exhibit either low (0.48 +/- 0.02, n = 8) or high (0.68 +/- 0.01, n = 7) feed efficiency (FE). Western blot analysis showed that, compared with lymphocytes from high FE broilers, lymphocytes from low FE broilers exhibited a) higher amounts of oxidized proteins (protein carbonyls), b) lower amounts of 3 mitochondrial proteins [core I, cyt c 1 (complex III), and ATP synthase (complex V)], and c) higher amounts of 2 proteins [30 S (complex II) and COX II (complex IV)]. Two-dimensional gel electrophoresis revealed that the intensities of 25 protein spots from pooled samples of lymphocytes from high and low FE broilers differed by 5-fold or more. Three of these protein spots were picked from the gel and subjected to matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. One protein spot of ~33 kDa was tentatively identified by MALDI-TOF as a fragment of collapsin-2, a component of semaphorin 3D. The results of this study provide further evidence of increased oxidation associated with low FE and further evidence of differential protein expression associated with the phenotypic expression of feed efficiency.
Collapse
Affiliation(s)
- K Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Majed HH, Chandran S, Niclou SP, Nicholas RS, Wilkins A, Wing MG, Rhodes KE, Spillantini MG, Compston A. A novel role for Sema3A in neuroprotection from injury mediated by activated microglia. J Neurosci 2006; 26:1730-8. [PMID: 16467521 PMCID: PMC6793642 DOI: 10.1523/jneurosci.0702-05.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglia exist under physiological conditions in a resting state but become activated after neuronal injury. Recent studies have highlighted the reciprocal role of neurons in controlling both the number and activity of microglia. In this study, microglia derived from newborn rat cortices were cultured and activated by interferon-gamma (IFNgamma) treatment, then exposed to recombinant Sema3A or conditioned medium derived from stressed embryonic cortical neurons. We found that activation of microglia by IFNgamma induced differential upregulation of the semaphorin receptors Plexin-A1 and Neuropilin-1. This result was confirmed by Northern blotting, reverse transcription-PCR, and Western blotting. Furthermore, recombinant Sema3A induced apoptosis of microglia when added to the in vitro culture, and a similar result was obtained on activated microglia when Sema3A was produced by stressed neurons. Using an in vivo model of microglia activation by striatal injection of lipopolysaccharide demonstrated a corresponding upregulation of Plexin-A1 and Neuropilin-1 in activated microglia and enhanced production of Sema3A by stressed adult neurons. These results suggest a novel semaphorin-mediated mechanism of neuroprotection whereby stressed neurons can protect themselves from further damage by activated microglia.
Collapse
|