1
|
Liu P, Luo X, Cao L, Zhang Y, Ji J, Wang X, Wang K, Pan X, Yang R, Tan Z, Tan Y, Li CS, Guo X, Wang Z, Luo X. Phenome-wide association studies between SERINC2 and neuropsychiatric disorders. Front Psychiatry 2025; 15:1420395. [PMID: 39902246 PMCID: PMC11788846 DOI: 10.3389/fpsyt.2024.1420395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/29/2024] [Indexed: 02/05/2025] Open
Abstract
Objectives SERINC2 has been associated with alcoholism, bipolar disorder and autism, but the comparability and specificity issues of the findings remain unaddressed. The present study aimed to comprehensively analyze various neuropsychiatric disorders pinpoint the most reliable conditions predisposed by SERINC2. Methods A total of 2,187 imputed SNPs across SERINC2 were examined in 1,167,439 subjects from 72 independent cohorts with 18 different neuropsychiatric disorders. SNP-disease associations were tested and then meta-analyzed, followed by FDR correction, to identify significant disease-risk SNPs. Finally, functional studies on the differential SERINC2 mRNA expression in brains and the potential regulatory effects of disease-risk alleles on SERINC2 mRNA expression, gray matter volumes (GMVs) of subcortical structures, cortical surface area (SA) and average thickness (TH) were conducted. Results In European descent, alcoholism was most significantly associated with SERINC2 variants (245 SNPs with 5.5×10-8≤p ≤ 0.049 and 4.9×10-5≤q ≤ 0.034) that were largely shared across cocaine dependence, marijuana dependence, nicotine dependence, polysubstance dependence, schizophrenia, OCD, and autism (8.2×10-8≤p ≤ 0.050 and 1.9×10-5≤q ≤ 0.049); in Chinese population, bipolar disorder was also significantly associated with SERINC2 variants (10 SNPs: 1.3×10-4≤p ≤ 4.7×10-4 and 0.025≤q ≤ 0.031). Furthermore, the disease-risk alleles had highly similar regulatory effects on mRNA expression (8.1×10-7≤p ≤ 0.046), subcortical GMVs (7.0×10-4≤p ≤ 0.048) and cortical TH and SA (1.3×10-3≤p ≤ 0.050) in brains across alcoholism, schizophrenia, OCD and autism. The bipolar disorder-risk alleles had these regulatory effects but with different effect patterns. Finally, SERINC2 mRNA was differentially expressed in several brain regions between alcoholism or schizophrenia and controls. Conclusion SERINC2 is primarily linked to substance use disorders, schizophrenia, OCD, autism and bipolar disorder, not only statistically but also biologically.
Collapse
Affiliation(s)
- Ping Liu
- Department of Psychosomatic Medicine, People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Xinqun Luo
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liping Cao
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jiawu Ji
- Department of Psychiatry, Fujian Medical University Affiliated Fuzhou Neuropsychiatric Hospital, Fuzhou, Fujian, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kesheng Wang
- Department of Biobehavioral Health and Nursing Science, College of Nursing, University of South Carolina, Columbia, SC, United States
| | - Xinghua Pan
- Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Ruilan Yang
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zewen Tan
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
| | - Chiang-shan Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
3
|
Tuwar MN, Chen WH, Yeh HL, Bai CH. Association between Brain-Derived Neurotrophic Factor and Lipid Profiles in Acute Ischemic Stroke Patients. Int J Mol Sci 2024; 25:2380. [PMID: 38397057 PMCID: PMC10889431 DOI: 10.3390/ijms25042380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke, the most prevalent form of stroke, leads to neurological impairment due to cerebral ischemia and affects 55-90% of the population. Brain-derived neurotrophic factor (BDNF) plays a crucial role in the central nervous system and regulates cardiometabolic risk factors, including lipids. This single-center study aimed to explore the relationship between lipid profiles and BDNF levels in 90 patients who had experienced AIS for the first time. The results show that the high BDNF group (≥3.227 ng/mL) had significantly higher HbA1C and TG levels; ratios of TC/HDL-C, LDL-C/HDL-C, and TG/HDL-C; and percentage of hyperlipidemia (60%) as well as lower levels of HDL-C, with an OR of 1.903 (95% CI: 1.187-3.051) for TG/HDL-C, 1.975 (95% CI: 1.188-3.284) for TC/HDL-C, and 2.032 (95% CI: 1.113-3.711) for LDL-C/HDL-C. Plasma BDNF levels were found to be significantly positively correlated with TG and negatively with HDL-C, with OR values of 1.017 (95% CI: 1.003-1.030) and 0.926 (95% CI: 0.876-0.978), respectively. TC/HDL-C, TG/HDL-C, and LDL-C/HDL-C ratios are associated with BDNF levels in AIS patients. The results also indicate that, in AIS patients, higher BDNF levels are associated with lower HDL and higher TG concentrations.
Collapse
Affiliation(s)
- Mayuri N. Tuwar
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 106236, Taiwan;
| | - Wei-Hung Chen
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan
| | - Hsu-Ling Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 106236, Taiwan;
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 106236, Taiwan
| |
Collapse
|
4
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2023; 38:671-680. [PMID: 37858892 DOI: 10.1016/j.nrleng.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Rafts are protein-lipid structural nanodomains involved in efficient signal transduction and the modulation of physiological processes of the cell plasma membrane. Raft disruption in the nervous system has been associated with a wide range of disorders. DEVELOPMENT We review the concept of rafts, the nervous system processes in which they are involved, and their role in diseases such as Parkinson's disease, Alzheimer disease, and Huntington disease. CONCLUSIONS Based on the available evidence, preservation and/or reconstitution of rafts is a promising treatment strategy for a wide range of neurological disorders.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
5
|
Baudet S, Zagar Y, Roche F, Gomez-Bravo C, Couvet S, Bécret J, Belle M, Vougny J, Uthayasuthan S, Ros O, Nicol X. Subcellular second messenger networks drive distinct repellent-induced axon behaviors. Nat Commun 2023; 14:3809. [PMID: 37369692 PMCID: PMC10300027 DOI: 10.1038/s41467-023-39516-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Second messengers, including cAMP, cGMP and Ca2+ are often placed in an integrating position to combine the extracellular cues that orient growing axons in the developing brain. This view suggests that axon repellents share the same set of cellular messenger signals and that axon attractants evoke opposite cAMP, cGMP and Ca2+ changes. Investigating the confinement of these second messengers in cellular nanodomains, we instead demonstrate that two repellent cues, ephrin-A5 and Slit1, induce spatially segregated signals. These guidance molecules activate subcellular-specific second messenger crosstalk, each signaling network controlling distinct axonal morphology changes in vitro and pathfinding decisions in vivo.
Collapse
Affiliation(s)
- Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Claudia Gomez-Bravo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Johann Bécret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Vougny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | | | - Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
6
|
Horváth Á, Erostyák J, Szőke É. Effect of Lipid Raft Disruptors on Cell Membrane Fluidity Studied by Fluorescence Spectroscopy. Int J Mol Sci 2022; 23:ijms232213729. [PMID: 36430205 PMCID: PMC9697551 DOI: 10.3390/ijms232213729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Lipid rafts are specialized microdomains in cell membranes, rich in cholesterol and sphingolipids, and play an integrative role in several physiological and pathophysiological processes. The integrity of rafts can be disrupted via their cholesterol content-with methyl-β-cyclodextrin (MCD) or with our own carboxamido-steroid compound (C1)-or via their sphingolipid content-with sphingomyelinase (SMase) or with myriocin (Myr). We previously proved by the fluorescent spectroscopy method with LAURDAN that treatment with lipid raft disruptors led to a change in cell membrane polarity. In this study, we focused on the alteration of parameters describing membrane fluidity, such as generalized polarization (GP), characteristic time of the GP values change-Center of Gravity (τCoG)-and rotational mobility (τrot) of LAURDAN molecules. Myr caused a blue shift of the LAURDAN spectrum (higher GP value), while other agents lowered GP values (red shift). MCD decreased the CoG values, while other compounds increased it, so MCD lowered membrane stiffness. In the case of τrot, only Myr lowered the rotation of LAURDAN, while the other compounds increased the speed of τrot, which indicated a more disordered membrane structure. Overall, MCD appeared to increase the fluidity of the membranes, while treatment with the other compounds resulted in decreased fluidity and increased stiffness of the membranes.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, H-7624 Pécs, Hungary
- Correspondence:
| | - János Erostyák
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary
- Department of Experimental Physics, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Mothe AJ, Jacobson PB, Caprelli M, Ulndreaj A, Rahemipour R, Huang L, Monnier PP, Fehlings MG, Tator CH. Delayed administration of elezanumab, a human anti-RGMa neutralizing monoclonal antibody, promotes recovery following cervical spinal cord injury. Neurobiol Dis 2022; 172:105812. [PMID: 35810963 DOI: 10.1016/j.nbd.2022.105812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) elicits a cascade of degenerative events including cell death, axonal degeneration, and the upregulation of inhibitory molecules which limit repair. Repulsive guidance molecule A (RGMa) is an axon growth inhibitor which is also involved in neuronal cell death and differentiation. SCI causes upregulation of RGMa in the injured rodent, non-human primate, and human spinal cord. Recently, we showed that delayed administration of elezanumab, a high affinity human RGMa-specific monoclonal antibody, promoted neuroprotective and regenerative effects following thoracic SCI. Since most human traumatic SCI is at the cervical level, and level-dependent anatomical and molecular differences may influence pathophysiological responses to injury and treatment, we examined the efficacy of elezanumab and its therapeutic time window of administration in a clinically relevant rat model of cervical impact-compression SCI. Pharmacokinetic analysis of plasma and spinal cord tissue lysate showed comparable levels of RGMa antibodies with delayed administration following cervical SCI. At 12w after SCI, elezanumab promoted long term benefits including perilesional sparing of motoneurons and increased neuroplasticity of key descending pathways involved in locomotion and fine motor function. Elezanumab also promoted growth of corticospinal axons into spinal cord gray matter and enhanced serotonergic innervation of the ventral horn to form synaptic connections caudal to the cervical lesion. Significant recovery in grip and trunk/core strength, locomotion and gait, and spontaneous voiding ability was found in rats treated with elezanumab either immediately post-injury or at 3 h post-SCI, and improvements in specific gait parameters were found when elezanumab was delayed to 24 h post-injury. We also developed a new locomotor score, the Cervical Locomotor Score, a simple and sensitive measure of trunk/core and limb strength and stability during dynamic locomotion.
Collapse
Affiliation(s)
- Andrea J Mothe
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada.
| | - Peer B Jacobson
- Department of Translational Sciences, AbbVie Inc., North Chicago, IL 60064, USA
| | - Mitchell Caprelli
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Antigona Ulndreaj
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Radmehr Rahemipour
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Philippe P Monnier
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5S 3H6, ON, Canada
| | - Michael G Fehlings
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada
| | - Charles H Tator
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada.
| |
Collapse
|
8
|
Boulan B, Ravanello C, Peyrel A, Bosc C, Delphin C, Appaix F, Denarier E, Kraut A, Jacquier-Sarlin M, Fournier A, Andrieux A, Gory-Fauré S, Deloulme JC. CRMP4-mediated fornix development involves Semaphorin-3E signaling pathway. eLife 2021; 10:e70361. [PMID: 34860155 PMCID: PMC8683083 DOI: 10.7554/elife.70361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.
Collapse
Affiliation(s)
- Benoît Boulan
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Charlotte Ravanello
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Amandine Peyrel
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Florence Appaix
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Alexandra Kraut
- Univ. Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, CEAGrenobleFrance
| | | | - Alyson Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill UniversityMontréalCanada
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | | |
Collapse
|
9
|
Clark AJ, Kugathasan U, Baskozos G, Priestman DA, Fugger N, Lone MA, Othman A, Chu KH, Blesneac I, Wilson ER, Laurà M, Kalmar B, Greensmith L, Hornemann T, Platt FM, Reilly MM, Bennett DL. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep Med 2021; 2:100345. [PMID: 34337561 PMCID: PMC8324498 DOI: 10.1016/j.xcrm.2021.100345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023]
Abstract
Hereditary sensory neuropathy type 1 (HSN1) is caused by mutations in the SPTLC1 or SPTLC2 sub-units of the enzyme serine palmitoyltransferase, resulting in the production of toxic 1-deoxysphingolipid bases (DSBs). We used induced pluripotent stem cells (iPSCs) from patients with HSN1 to determine whether endogenous DSBs are neurotoxic, patho-mechanisms of toxicity and response to therapy. HSN1 iPSC-derived sensory neurons (iPSCdSNs) endogenously produce neurotoxic DSBs. Complex gangliosides, which are essential for membrane micro-domains and signaling, are reduced, and neurotrophin signaling is impaired, resulting in reduced neurite outgrowth. In HSN1 myelinating cocultures, we find a major disruption of nodal complex proteins after 8 weeks, which leads to complete myelin breakdown after 6 months. HSN1 iPSC models have, therefore, revealed that SPTLC1 mutation alters lipid metabolism, impairs the formation of complex gangliosides, and reduces axon and myelin stability. Many of these changes are prevented by l-serine supplementation, supporting its use as a rational therapy.
Collapse
Affiliation(s)
- Alex J. Clark
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Umaiyal Kugathasan
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Georgios Baskozos
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - David A. Priestman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Nadine Fugger
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alaa Othman
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ka Hing Chu
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Iulia Blesneac
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Emma R. Wilson
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matilde Laurà
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Linda Greensmith
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David L. Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
10
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
11
|
Ros O, Baudet S, Zagar Y, Loulier K, Roche F, Couvet S, Aghaie A, Atkins M, Louail A, Petit C, Metin C, Mechulam Y, Nicol X. SpiCee: A Genetic Tool for Subcellular and Cell-Specific Calcium Manipulation. Cell Rep 2021; 32:107934. [PMID: 32697983 DOI: 10.1016/j.celrep.2020.107934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.
Collapse
Affiliation(s)
- Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Alain Aghaie
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France
| | - Melody Atkins
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Alice Louail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Christine Petit
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France; Collège de France, 75005 Paris, France
| | - Christine Metin
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS UMR 7654, 91128 Palaiseau, France
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
12
|
Campos FSO, Piña-Rodrigues FM, Reis A, Atella GC, Mermelstein CS, Allodi S, Cavalcante LA. Lipid Rafts from Olfactory Ensheathing Cells: Molecular Composition and Possible Roles. Cell Mol Neurobiol 2021; 41:525-536. [PMID: 32415577 PMCID: PMC11448638 DOI: 10.1007/s10571-020-00869-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and β1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with β1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.
Collapse
Affiliation(s)
- Fernanda S O Campos
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe M Piña-Rodrigues
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alice Reis
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia S Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil.
| | - Leny A Cavalcante
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
13
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2021; 38:S0213-4853(21)00024-4. [PMID: 33726969 DOI: 10.1016/j.nrl.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Rafts are function-structural cell membrane nano-domains. They contribute to explain the efficiency of signal transduction at the low physiological membrane concentrations of the signaling partners by their clustering inside specialized signaling domains. DEVELOPMENT In this article, we review the current model of the membrane rafts and their physio-pathological relevance in the nervous system, including their role in Parkinson, Alzheimer, and Huntington diseases. CONCLUSIONS Rafts disruption/dysfunction has been shown to relate diverse neurological diseases. Therefore, it has been suggested that preservation of membrane rafts may represent a strategy to prevent or delay neuronal dysfunctions in several diseases.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
14
|
Zang Y, Guo D, Chen L, Yang P, Zhu Z, Bu X, Xu T, Zhong C, Wang A, Peng H, Xu T, Chen J, Zhang Y, He J. Association between serum netrin-1 and prognosis of ischemic stroke: The role of lipid component levels. Nutr Metab Cardiovasc Dis 2021; 31:852-859. [PMID: 33546947 DOI: 10.1016/j.numecd.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High serum netrin-1 levels decrease the risk of ischemic stroke and are negatively associated with outcomes after ischemic stroke. However, it remains unclear whether the association between netrin-1 and ischemic stroke prognosis is modified by lipid component levels. METHODS AND RESULTS We measured baseline serum netrin-1 levels in 3065 ischemic stroke patients from China Antihypertensive Trial in Acute Ischemic Stroke (CATIS). The primary outcome was a combination of death and major disability (modified Rankin Scale score≥3) at 3 months after ischemic stroke. Total cholesterol (TC) levels could modify the association between netrin-1 and prognosis of ischemic stroke (Pinteraction = 0.040). After multivariate adjustment, the odds ratios of the primary outcome associated with the highest quartile of netrin-1 were 0.39 (95%CI, 0.17-0.90; Ptrend = 0.004) for the patients with high TC levels and 0.82 (95%CI, 0.61-1.11; Ptrend = 0.149) for those with normal TC levels. Adding netrin-1 to conventional risk factors improved risk prediction for the primary outcome in the patients with high TC levels (net reclassification improvement: 26.8%, P = 0.015; integrated discrimination index: 1.6%, P = 0.028) but not in those with normal TC levels. CONCLUSIONS Elevated netrin-1 is associated with improved prognosis at 3 months after ischemic stroke in the patients with high TC levels but not in those with normal TC levels. Further prospective studies from other populations and randomized clinical trials are needed to verify our findings and clarify the potential mechanisms.
Collapse
Affiliation(s)
- Yuhan Zang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Lihua Chen
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, School of Public health, Chongqing Medical University, Chongqing, China
| | - Tian Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
15
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
16
|
Growth cone repulsion to Netrin-1 depends on lipid raft microdomains enriched in UNC5 receptors. Cell Mol Life Sci 2020; 78:2797-2820. [PMID: 33095273 PMCID: PMC8004515 DOI: 10.1007/s00018-020-03663-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023]
Abstract
During brain development, Uncoordinated locomotion 5 (UNC5) receptors control axonal extension through their sensing of the guidance molecule Netrin-1. The correct positioning of receptors into cholesterol-enriched membrane raft microdomains is crucial for the efficient transduction of the recognized signals. However, whether such microdomains are required for the appropriate axonal guidance mediated by UNC5 receptors remains unknown. Here, we combine the use of confocal microscopy, live-cell FRAP analysis and single-particle tracking PALM to characterize the distribution of UNC5 receptors into raft microdomains, revealing differences in their membrane mobility properties. Using pharmacological and genetic approaches in primary neuronal cultures and brain cerebellar explants we further demonstrate that disrupting raft microdomains inhibits the chemorepulsive response of growth cones and axons against Netrin-1. Together, our findings indicate that the distribution of all UNC5 receptors into cholesterol-enriched raft microdomains is heterogeneous and that the specific localization has functional consequences for the axonal chemorepulsion against Netrin-1.
Collapse
|
17
|
Caveolin 1 is required for axonal outgrowth of motor neurons and affects Xenopus neuromuscular development. Sci Rep 2020; 10:16446. [PMID: 33020520 PMCID: PMC7536398 DOI: 10.1038/s41598-020-73429-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Caveolins are essential structural proteins driving the formation of caveolae, specialized invaginations of the plasma membrane. Loss of Caveolin-1 (Cav1) function in mice causes distinct neurological phenotypes leading to impaired motor control, however, the underlying developmental mechanisms are largely unknown. In this study we find that loss-of-function of Xenopus Cav1 results in a striking swimming defect characterized by paralysis of the morphants. High-resolution imaging of muscle cells revealed aberrant sarcomeric structures with disorganized actin fibers. As cav1 is expressed in motor neurons, but not in muscle cells, the muscular abnormalities are likely a consequence of neuronal defects. Indeed, targeting cav1 Morpholino oligonucleotides to neural tissue, but not muscle tissue, disrupts axonal outgrowth of motor neurons and causes swimming defects. Furthermore, inhibition of voltage-gated sodium channels mimicked the Cav1 loss-of-function phenotype. In addition, analyzing axonal morphology we detect that Cav1 loss-of-function causes excessive filopodia and lamellipodia formation. Using rescue experiments, we show that the Cav1 Y14 phosphorylation site is essential and identify a role of RhoA, Rac1, and Cdc42 signaling in this process. Taken together, these results suggest a previously unrecognized function of Cav1 in muscle development by supporting axonal outgrowth of motor neurons.
Collapse
|
18
|
Igarashi M, Honda A, Kawasaki A, Nozumi M. Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Front Mol Neurosci 2020; 13:150. [PMID: 32922262 PMCID: PMC7456915 DOI: 10.3389/fnmol.2020.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal polarization and growth are developmental processes that occur during neuronal cell differentiation. The molecular signaling mechanisms involved in these events in in vivo mammalian brain remain unclear. Also, cellular events of the neuronal polarization process within a given neuron are thought to be constituted of many independent intracellular signal transduction pathways (the "tug-of-war" model). However, in vivo results suggest that such pathways should be cooperative with one another among a given group of neurons in a region of the brain. Lipid rafts, specific membrane domains with low fluidity, are candidates for the hotspots of such intracellular signaling. Among the signals reported to be involved in polarization, a number are thought to be present or translocated to the lipid rafts in response to extracellular signals. As part of our analysis, we discuss how such novel molecular mechanisms are combined for effective regulation of neuronal polarization and growth, focusing on the significance of the lipid rafts, including results based on recently introduced methods.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
19
|
Shafaq-Zadah M, Dransart E, Johannes L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr Opin Cell Biol 2020; 65:112-121. [PMID: 32688213 PMCID: PMC7588825 DOI: 10.1016/j.ceb.2020.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/29/2022]
Abstract
Several mechanisms allow for cargo internalization into cells within membrane-bound endocytic carriers. How these internalization processes couple to specific pathways of intracellular distribution remains poorly explored. Here, we review uptake reactions that are independent of the conventional clathrin machinery. We discuss how these link to retrograde trafficking from endosomes to the Golgi apparatus and exemplify biological situations in which the polarized secretion capacity of the Golgi apparatus allows for retrograde cargoes to be delivered to specialized areas of the plasma membrane, such as the leading edge of migratory cells or the immunological synapse of immune cells. We also address the evidence that allows to position apicobasal polarity of epithelial cells in this context. The underlying theme is thereby the functional coupling between specific types of endocytosis to intracellular retrograde trafficking for protein cargoes that need to be localized in a highly polarized and dynamic manner to plasmalemmal subdomains.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Estelle Dransart
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
20
|
Delint-Ramirez I, Segev A, Pavuluri A, Self DW, Kourrich S. Cocaine-Induced Synaptic Redistribution of NMDARs in Striatal Neurons Alters NMDAR-Dependent Signal Transduction. Front Neurosci 2020; 14:698. [PMID: 32760242 PMCID: PMC7371985 DOI: 10.3389/fnins.2020.00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022] Open
Abstract
The consequence of repeated cocaine exposure and prolonged abstinence on glutamate receptor expression in the nucleus accumbens has been extensively studied. However, the early effects of cocaine on NMDAR signaling remain unknown. NMDAR signaling depends on the subunit composition, subcellular localization, and the interaction with proteins at the postsynaptic density (PSD), where NMDARs and other proteins form supercomplexes that are responsible for the signaling pathways activated by NMDAR-induced Ca2+ influx. Here, we investigated the effect of cocaine on NMDAR subunit composition and subcellular localization after both intraperitoneal non-contingent cocaine and response-contingent intravenous cocaine self-administration in mice. We found that repeated cocaine exposure, regardless of the route or contingency of drug administration, decreases NMDAR interactions with the PSD and synaptic lipid rafts in the accumbens shell and dorsal striatum. We provide evidence that cocaine triggers an early redistribution of NMDARs from synaptic to extrasynaptic sites, and that this adaptation has implications in the activation of downstream signaling pathways. Thus, consistent with a loss of NMDAR function, cocaine-induced ERK phosphorylation is attenuated. Because early NMDAR activity contributes to the initiation of lasting addiction-relevant neuroadaptations, these data may hold clues into cellular mechanisms responsible for the development of cocaine addiction.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Asha Pavuluri
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David W Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Département des Sciences Biologiques-CERMO-FC, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
21
|
Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. Int J Mol Sci 2020; 21:E868. [PMID: 32013258 PMCID: PMC7037093 DOI: 10.3390/ijms21030868] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico-chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever-increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component.
Collapse
Affiliation(s)
| | | | | | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Milano, Italy; (E.C.)
| | | |
Collapse
|
22
|
Chauhan MZ, Arcuri J, Park KK, Zafar MK, Fatmi R, Hackam AS, Yin Y, Benowitz L, Goldberg JL, Samarah M, Bhattacharya SK. Multi-Omic Analyses of Growth Cones at Different Developmental Stages Provides Insight into Pathways in Adult Neuroregeneration. iScience 2020; 23:100836. [PMID: 32058951 PMCID: PMC6997871 DOI: 10.1016/j.isci.2020.100836] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Growth cones (GCs) are structures associated with growing neurons. GC membrane expansion, which necessitates protein-lipid interactions, is critical to axonal elongation in development and in adult neuritogenesis. We present a multi-omic analysis that integrates proteomics and lipidomics data for the identification of GC pathways, cell phenotypes, and lipid-protein interactions, with an analytic platform to facilitate the visualization of these data. We combine lipidomic data from GC and adult axonal regeneration following optic nerve crush. Our results reveal significant molecular variability in GCs across developmental ages that aligns with the upregulation and downregulation of lipid metabolic processes and correlates with distinct changes in the lipid composition of GC plasmalemma. We find that these processes also define the transition into a growth-permissive state in the adult central nervous system. The insight derived from these analyses will aid in promoting adult regeneration and functional innervation in devastating neurodegenerative diseases. Simultaneous proteomics and lipidomics analyses of developmental growth cones Combined multi-omics analyses of regenerating optic nerves and growth cones Integrating protein-protein with protein-lipid interactions in growth cones
Collapse
Affiliation(s)
- Muhammad Zain Chauhan
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer Arcuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin K Park
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rabeet Fatmi
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuqin Yin
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Larry Benowitz
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad Samarah
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation. Front Neurosci 2019; 13:1194. [PMID: 31802998 PMCID: PMC6877657 DOI: 10.3389/fnins.2019.01194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Brain regenerative strategies through the transplantation of stem cells hold the potential to promote functional rescue of brain lesions caused either by trauma or neurodegenerative diseases. Most of the positive modulations fostered by stem cells are fueled by bystander effects, namely increase of neurotrophic factors levels and reduction of neuroinflammation. Nevertheless, the ultimate goal of cell therapies is to promote cell replacement. Therefore, the ability of stem cells to migrate and differentiate into neurons that later become integrated into the host neuronal network replacing the lost neurons has also been largely explored. However, as most of the preclinical studies demonstrate, there is a small functional integration of graft-derived neurons into host neuronal circuits. Thus, it is mandatory to better study the whole brain cell therapy approach in order to understand what should be better comprehended concerning graft-derived neuronal and glial cells migration and integration before we can expect these therapies to be ready as a viable solution for brain disorder treatment. Therefore, this review discusses the positive mechanisms triggered by cell transplantation into the brain, the limitations of adult brain plasticity that might interfere with the neuroregeneration process, as well as some strategies tested to overcome some of these limitations. It also considers the efforts that have been made by the regulatory authorities to lead to better standardization of preclinical and clinical studies in this field in order to reduce the heterogeneity of the obtained results.
Collapse
Affiliation(s)
- Daniel Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jens Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana S Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Gioelli N, Maione F, Camillo C, Ghitti M, Valdembri D, Morello N, Darche M, Zentilin L, Cagnoni G, Qiu Y, Giacca M, Giustetto M, Paques M, Cascone I, Musco G, Tamagnone L, Giraudo E, Serini G. A rationally designed NRP1-independent superagonist SEMA3A mutant is an effective anticancer agent. Sci Transl Med 2019; 10:10/442/eaah4807. [PMID: 29794061 DOI: 10.1126/scitranslmed.aah4807] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Vascular normalizing strategies, aimed at ameliorating blood vessel perfusion and lessening tissue hypoxia, are treatments that may improve the outcome of cancer patients. Secreted class 3 semaphorins (SEMA3), which are thought to directly bind neuropilin (NRP) co-receptors that, in turn, associate with and elicit plexin (PLXN) receptor signaling, are effective normalizing agents of the cancer vasculature. Yet, SEMA3A was also reported to trigger adverse side effects via NRP1. We rationally designed and generated a safe, parenterally deliverable, and NRP1-independent SEMA3A point mutant isoform that, unlike its wild-type counterpart, binds PLXNA4 with nanomolar affinity and has much greater biochemical and biological activities in cultured endothelial cells. In vivo, when parenterally administered in mouse models of pancreatic cancer, the NRP1-independent SEMA3A point mutant successfully normalized the vasculature, inhibited tumor growth, curbed metastatic dissemination, and effectively improved the supply and anticancer activity of chemotherapy. Mutant SEMA3A also inhibited retinal neovascularization in a mouse model of age-related macular degeneration. In summary, mutant SEMA3A is a vascular normalizing agent that can be exploited to treat cancer and, potentially, other diseases characterized by pathological angiogenesis.
Collapse
Affiliation(s)
- Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Federica Maione
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Chiara Camillo
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Noemi Morello
- Department of Neuroscience, University of Torino School of Medicine, 10126 Torino, Italy
| | - Marie Darche
- Growth, Reparation and Tissue Regeneration Laboratory, ERL-CNRS 9215, University of Paris-Est, 94000 Créteil, France
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Gabriella Cagnoni
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Yaqi Qiu
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Maurizio Giustetto
- Department of Neuroscience, University of Torino School of Medicine, 10126 Torino, Italy.,National Institute of Neuroscience-Italy, 10126 Torino, Italy
| | - Michel Paques
- Vision Institute, Sorbonne University, UPMC University of Paris 06, INSERM, CNRS, 75012 Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, 75012 Paris, France
| | - Ilaria Cascone
- Growth, Reparation and Tissue Regeneration Laboratory, ERL-CNRS 9215, University of Paris-Est, 94000 Créteil, France
| | - Giovanna Musco
- Biomolecular NMR Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Luca Tamagnone
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy. .,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy. .,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| |
Collapse
|
25
|
Sawada A, Wang S, Jian M, Leem J, Wackerbarth J, Egawa J, Schilling JM, Platoshyn O, Zemljic-Harpf A, Roth DM, Patel HH, Patel PM, Marsala M, Head BP. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1 G93A mice. FASEB J 2019; 33:7545-7554. [PMID: 30894019 DOI: 10.1096/fj.201802652rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interventions that preserve motor neurons or restore functional motor neuroplasticity may extend longevity in amyotrophic lateral sclerosis (ALS). Delivery of neurotrophins may potentially revive degenerating motor neurons, yet this approach is dependent on the proper subcellular localization of neurotrophin receptor (NTR) to plasmalemmal signaling microdomains, termed membrane/lipid rafts (MLRs). We previously showed that overexpression of synapsin-driven caveolin-1 (Cav-1) (SynCav1) increases MLR localization of NTR [e.g., receptor tyrosine kinase B (TrkB)], promotes hippocampal synaptic and neuroplasticity, and significantly improves learning and memory in aged mice. The present study crossed a SynCav1 transgene-positive (SynCav1+) mouse with the mutant human superoxide dismutase glycine to alanine point mutation at amino acid 93 (hSOD1G93A) mouse model of ALS. When compared with hSOD1G93A, hSOD1G93A/SynCav1+ mice exhibited greater body weight and longer survival as well as better motor function. Microscopic analyses of hSOD1G93A/SynCav1+ spinal cords revealed preserved spinal cord α-motor neurons and preserved mitochondrial morphology. Moreover, hSOD1G93A/SynCav1+ spinal cords contained more MLRs (cholera toxin subunit B positive) and MLR-associated TrkB and Cav-1 protein expression. These findings demonstrate that SynCav1 delays disease progression in a mouse model of ALS, potentially by preserving or restoring NTR expression and localization to MLRs.-Sawada, A., Wang, S., Jian, M., Leem, J., Wackerbarth, J., Egawa, J., Schilling, J. M., Platoshyn, O., Zemljic-Harpf, A., Roth, D. M., Patel, H. H., Patel, P. M., Marsala, M., Head, B. P. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1G93A mice.
Collapse
Affiliation(s)
- Atsushi Sawada
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Sapporo Medical University, Sapporo, Japan
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Minyu Jian
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Joseph Leem
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Jesse Wackerbarth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Nara Medical University, Kashihara, Japan; and
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Martin Marsala
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Deng W, Shao F, He Q, Wang Q, Shi W, Yu Q, Cao X, Feng C, Bi S, Chen J, Ma P, Li Y, Gong A, Tong S, Yu J, Spector M, Xu X, Zhang Z. EMSCs Build an All-in-One Niche via Cell-Cell Lipid Raft Assembly for Promoted Neuronal but Suppressed Astroglial Differentiation of Neural Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806861. [PMID: 30633831 DOI: 10.1002/adma.201806861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/29/2018] [Indexed: 05/11/2023]
Abstract
The therapeutic efficiency of allogenic/intrinsic neural stem cells (NSCs) after spinal cord injury is severely compromised because the hostile niche at the lesion site incurs massive astroglial but not neuronal differentiation of NSCs. Although many attempts are made to reconstruct a permissive niche for nerve regeneration, solely using a living cell material to build an all-in-one, multifunctional, permissive niche for promoting neuronal while inhibiting astroglial differentiation of NSCs is not reported. Here, ectomesenchymal stem cells (EMSCs) are reported to serve as a living, smart material that creates a permissive, all-in-one niche which provides neurotrophic factors, extracellular matrix molecules, cell-cell contact, and favorable substrate stiffness for directing NSC differentiation. Interestingly, in this all-in-one niche, a corresponding all-in-one signal-sensing platform is assembled through recruiting various niche signaling molecules into lipid rafts for promoting neuronal differentiation of NSCs, and meanwhile, inhibiting astrocyte overproliferation through the connexin43/YAP/14-3-3θ pathway. In vivo studies confirm that EMSCs can promote intrinsic NSC neuronal differentiation and domesticating astrocyte behaviors for nerve regeneration. Collectively, this study represents an all-in-one niche created by a single-cell material-EMSCs for directing NSC differentiation.
Collapse
Affiliation(s)
- Wenwen Deng
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Fengxia Shao
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Qinghua He
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Qiang Wang
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Wentao Shi
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Qingtong Yu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Shiqi Bi
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Jiaxin Chen
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Ping Ma
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Yang Li
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Aihua Gong
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Shanshan Tong
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Myron Spector
- Department of Orthopedic Surgery, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Zhijian Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| |
Collapse
|
27
|
Roselló-Busquets C, de la Oliva N, Martínez-Mármol R, Hernaiz-Llorens M, Pascual M, Muhaisen A, Navarro X, Del Valle J, Soriano E. Cholesterol Depletion Regulates Axonal Growth and Enhances Central and Peripheral Nerve Regeneration. Front Cell Neurosci 2019; 13:40. [PMID: 30809129 PMCID: PMC6379282 DOI: 10.3389/fncel.2019.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal growth during normal development and axonal regeneration rely on the action of many receptor signaling systems and complexes, most of them located in specialized raft membrane microdomains with a precise lipid composition. Cholesterol is a component of membrane rafts and the integrity of these structures depends on the concentrations present of this compound. Here we explored the effect of cholesterol depletion in both developing neurons and regenerating axons. First, we show that cholesterol depletion in vitro in developing neurons from the central and peripheral nervous systems increases the size of growth cones, the density of filopodium-like structures and the number of neurite branching points. Next, we demonstrate that cholesterol depletion enhances axonal regeneration after axotomy in vitro both in a microfluidic system using dissociated hippocampal neurons and in a slice-coculture organotypic model of axotomy and regeneration. Finally, using axotomy experiments in the sciatic nerve, we also show that cholesterol depletion favors axonal regeneration in vivo. Importantly, the enhanced regeneration observed in peripheral axons also correlated with earlier electrophysiological responses, thereby indicating functional recovery following the regeneration. Taken together, our results suggest that cholesterol depletion per se is able to promote axonal growth in developing axons and to increase axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia de la Oliva
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramón Martínez-Mármol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| |
Collapse
|
28
|
Nagel M, Winklbauer R. PDGF-A suppresses contact inhibition during directional collective cell migration. Development 2018; 145:dev.162651. [PMID: 29884673 DOI: 10.1242/dev.162651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
The leading-edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase 1 upstream and ephrin B1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass.
Collapse
Affiliation(s)
- Martina Nagel
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| | - Rudolf Winklbauer
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| |
Collapse
|
29
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
30
|
Spagnuolo MS, Donizetti A, Iannotta L, Aliperti V, Cupidi C, Bruni AC, Cigliano L. Brain-derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons. J Cell Physiol 2018; 233:6925-6943. [PMID: 29323721 DOI: 10.1002/jcp.26480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
In the central nervous system, cholesterol is critical to maintain membrane plasticity, cellular function, and synaptic integrity. In recent years, much attention was focused on the role of cholesterol in brain since a breakdown of cholesterol metabolism has been associated with different diseases. Brain-derived neurotrophic factor (BDNF) was previously reported to elicit cholesterol biosynthesis and promote the accumulation of presynaptic proteins in cholesterol-rich lipid rafts, but no data are available on its ability to modulate physiological mechanisms involved in cholesterol homeostasis. Major aim of this research was to investigate whether BDNF influences cholesterol homeostasis, focusing on the effect of the neurotrophin on Apolipoprotein E (ApoE) synthesis, cholesterol efflux from astrocytes and cholesterol incorporation into neurons. Our results show that BDNF significantly stimulates cholesterol efflux by astrocytes, as well as ATP binding cassette A1 (ABCA1) transporter and ApoE expression. Conversely, cholesterol uptake in neurons was downregulated by BDNF. This effect was associated with the increase of Liver X Receptor (LXR)-beta expression in neuron exposed to BDNF. The level of apoptosis markers, that is, cleaved caspase 3 and poly ADP ribose polymerase (PARP), was found increased in neurons treated with high cholesterol, but significantly lower when the cells were exposed to cholesterol in the presence of BDNF, thus suggesting a neuroprotective role of the neurotrophin, likely through its reducing effect of neuronal cholesterol uptake. Interestingly, cholesterol stimulates BDNF production by neurons. Overall, our findings evidenced a novel role of BDNF in the modulation of ApoE and cholesterol homeostasis in glial and neuronal cells.
Collapse
Affiliation(s)
- Maria S Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lucia Iannotta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Cupidi
- Centro Regionale di Neurogenetica, via Perugini, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Amalia C Bruni
- Centro Regionale di Neurogenetica, via Perugini, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Marsh APL, Edwards TJ, Galea C, Cooper HM, Engle EC, Jamuar SS, Méneret A, Moutard ML, Nava C, Rastetter A, Robinson G, Rouleau G, Roze E, Spencer-Smith M, Trouillard O, Billette de Villemeur T, Walsh CA, Yu TW, Heron D, Sherr EH, Richards LJ, Depienne C, Leventer RJ, Lockhart PJ. DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 2017; 39:23-39. [PMID: 29068161 DOI: 10.1002/humu.23361] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).
Collapse
Affiliation(s)
- Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Australia
| | - Charles Galea
- Drug Delivery, Disposition and Dynamics (D4), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Elizabeth C Engle
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
| | - Saumya S Jamuar
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Paediatrics, KK Women's and Children's Hospital, Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Aurélie Méneret
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Moutard
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de référence "Neurogénétique", Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Rastetter
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Gail Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University Health Center, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Emmanuel Roze
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Megan Spencer-Smith
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Oriane Trouillard
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,INSERM U1141, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | - Delphine Heron
- UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elliott H Sherr
- Department of Neurology, UCSF Benioff Children's Hospital, San Francisco, California
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, Australia
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Hnoonual A, Thammachote W, Tim-Aroon T, Rojnueangnit K, Hansakunachai T, Sombuntham T, Roongpraiwan R, Worachotekamjorn J, Chuthapisith J, Fucharoen S, Wattanasirichaigoon D, Ruangdaraganon N, Limprasert P, Jinawath N. Chromosomal microarray analysis in a cohort of underrepresented population identifies SERINC2 as a novel candidate gene for autism spectrum disorder. Sci Rep 2017; 7:12096. [PMID: 28935972 PMCID: PMC5608768 DOI: 10.1038/s41598-017-12317-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/07/2017] [Indexed: 01/11/2023] Open
Abstract
Chromosomal microarray (CMA) is now recognized as the first-tier genetic test for detection of copy number variations (CNVs) in patients with autism spectrum disorder (ASD). The aims of this study were to identify known and novel ASD associated-CNVs and to evaluate the diagnostic yield of CMA in Thai patients with ASD. The Infinium CytoSNP-850K BeadChip was used to detect CNVs in 114 Thai patients comprised of 68 retrospective ASD patients (group 1) with the use of CMA as a second line test and 46 prospective ASD and developmental delay patients (group 2) with the use of CMA as the first-tier test. We identified 7 (6.1%) pathogenic CNVs and 22 (19.3%) variants of uncertain clinical significance (VOUS). A total of 29 patients with pathogenic CNVs and VOUS were found in 22% (15/68) and 30.4% (14/46) of the patients in groups 1 and 2, respectively. The difference in detected CNV frequencies between the 2 groups was not statistically significant (Chi square = 1.02, df = 1, P = 0.31). In addition, we propose one novel ASD candidate gene, SERINC2, which warrants further investigation. Our findings provide supportive evidence that CMA studies using population-specific reference databases in underrepresented populations are useful for identification of novel candidate genes.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Graduate Program in Biomedical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Weerin Thammachote
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kitiwan Rojnueangnit
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Thammasart University, Pathumthani, Thailand
| | - Tippawan Hansakunachai
- Division of Child Development, Department of Pediatrics, Faculty of Medicine, Thammasart University, Pathumthani, Thailand
| | - Tasanawat Sombuntham
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rawiwan Roongpraiwan
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Juthamas Worachotekamjorn
- Division of Child Development, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jariya Chuthapisith
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nichara Ruangdaraganon
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pornprot Limprasert
- Division of Human Genetics, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. .,Integrative Computational Bioscience Center, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
33
|
Cenik B, Cenik C, Snyder MP, Brown ES. Plasma sterols and depressive symptom severity in a population-based cohort. PLoS One 2017; 12:e0184382. [PMID: 28886149 PMCID: PMC5590924 DOI: 10.1371/journal.pone.0184382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
Convergent evidence strongly suggests major depressive disorder is heterogeneous in its etiology and clinical characteristics. Depression biomarkers hold potential for identifying etiological subtypes, improving diagnostic accuracy, predicting treatment response, and personalization of treatment. Human plasma contains numerous sterols that have not been systematically studied. Changes in cholesterol concentrations have been implicated in suicide and depression, suggesting plasma sterols may be depression biomarkers. Here, we investigated associations between plasma levels of 34 sterols (measured by mass spectrometry) and scores on the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR16) scale in 3117 adult participants in the Dallas Heart Study, an ethnically diverse, population-based cohort. We built a random forest model using feature selection from a pool of 43 variables including demographics, general health indicators, and sterol concentrations. This model comprised 19 variables, 13 of which were sterol concentrations, and explained 15.5% of the variation in depressive symptoms. Desmosterol concentrations below the fifth percentile (1.9 ng/mL, OR 1.9, 95% CI 1.2–2.9) were significantly associated with depressive symptoms of at least moderate severity (QIDS-SR16 score ≥10.5). This is the first study reporting a novel association between plasma concentrations cholesterol precursors and depressive symptom severity.
Collapse
Affiliation(s)
- Basar Cenik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Can Cenik
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - E. Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kao HT, Ryoo K, Lin A, Janoschka SR, Augustine GJ, Porton B. Synapsins regulate brain-derived neurotrophic factor-mediated synaptic potentiation and axon elongation by acting on membrane rafts. Eur J Neurosci 2017; 45:1085-1101. [PMID: 28245069 DOI: 10.1111/ejn.13552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/27/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
In neurons, intracellular membrane rafts are essential for specific actions of brain-derived neurotrophic factor (BDNF), which include the regulation of axon outgrowth, growth cone turning and synaptic transmission. Virtually, all the actions of BDNF are mediated by binding to its receptor, TrkB. The association of TrkB with the tyrosine kinase, Fyn, is critical for its localization to intracellular membrane rafts. Here, we show that synapsins, a family of highly amphipathic neuronal phosphoproteins, regulate membrane raft lipid composition and consequently, the ability of BDNF to regulate axon/neurite development and potentiate synaptic transmission. In the brains of mice lacking all synapsins, the expression of both BDNF and TrkB were increased, suggesting that BDNF/TrkB-mediated signaling is impaired. Consistent with this finding, synapsin-depleted neurons exhibit altered raft lipid composition, deficient targeting of Fyn to rafts, attenuated TrkB activation, and abrogation of BDNF-stimulated axon outgrowth and synaptic potentiation. Conversely, overexpression of synapsins in neuroblastoma cells results in corresponding reciprocal changes in raft lipid composition, increased localization of Fyn to rafts and promotion of BDNF-stimulated neurite formation. In the presence of synapsins, the ratio of cholesterol to estimated total phospholipids converged to 1, suggesting that synapsins act by regulating the ratio of lipids in intracellular membranes, thereby promoting lipid raft formation. These studies reveal a mechanistic link between BDNF and synapsins, impacting early development and synaptic transmission.
Collapse
Affiliation(s)
- Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - Kanghyun Ryoo
- Center for Functional Connectomics, Korea Institute of Science and Technology, Sungbukgu, Seoul, Korea
| | - Albert Lin
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - Stephen R Janoschka
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| | - George J Augustine
- Center for Functional Connectomics, Korea Institute of Science and Technology, Sungbukgu, Seoul, Korea.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Brown University, 171 Meeting Street, Room 187, Providence, RI, 02912, USA.,Butler Hospital, Providence, RI, USA
| |
Collapse
|
35
|
Nozumi M, Nakatsu F, Katoh K, Igarashi M. Coordinated Movement of Vesicles and Actin Bundles during Nerve Growth Revealed by Superresolution Microscopy. Cell Rep 2017; 18:2203-2216. [DOI: 10.1016/j.celrep.2017.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/29/2016] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
|
36
|
Mandyam CD, Schilling JM, Cui W, Egawa J, Niesman IR, Kellerhals SE, Staples MC, Busija AR, Risbrough VB, Posadas E, Grogman GC, Chang JW, Roth DM, Patel PM, Patel HH, Head BP. Neuron-Targeted Caveolin-1 Improves Molecular Signaling, Plasticity, and Behavior Dependent on the Hippocampus in Adult and Aged Mice. Biol Psychiatry 2017; 81:101-110. [PMID: 26592463 PMCID: PMC4826329 DOI: 10.1016/j.biopsych.2015.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Studies in vitro demonstrate that neuronal membrane/lipid rafts (MLRs) establish cell polarity by clustering progrowth receptors and tethering cytoskeletal machinery necessary for neuronal sprouting. However, the effect of MLR and MLR-associated proteins on neuronal aging is unknown. METHODS Here, we assessed the impact of neuron-targeted overexpression of an MLR scaffold protein, caveolin-1 (Cav-1) (via a synapsin promoter, SynCav1), in the hippocampus in vivo in adult (6-month-old) and aged (20-month-old) mice on biochemical, morphologic, and behavioral changes. RESULTS SynCav1 resulted in increased expression of Cav-1, MLRs, and MLR-localization of Cav-1 and tropomyosin-related kinase B receptor independent of age and time post gene transfer. Cav-1 overexpression in adult mice enhanced dendritic arborization within the apical dendrites of hippocampal cornu ammonis 1 and granule cell neurons, effects that were also observed in aged mice, albeit to a lesser extent, indicating preserved impact of Cav-1 on structural plasticity of hippocampal neurons with age. Cav-1 overexpression enhanced contextual fear memory in adult and aged mice demonstrating improved hippocampal function. CONCLUSIONS Neuron-targeted overexpression of Cav-1 in the adult and aged hippocampus enhances functional MLRs with corresponding roles in cell signaling and protein trafficking. The resultant structural alterations in hippocampal neurons in vivo are associated with improvements in hippocampal-dependent learning and memory. Our findings suggest Cav-1 as a novel therapeutic strategy in disorders involving impaired hippocampal function.
Collapse
Affiliation(s)
- Chitra D. Mandyam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD,Committee on the Neurobiology of Addictive Disorders, TSRI
| | - Jan M. Schilling
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Weihua Cui
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Junji Egawa
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Ingrid R. Niesman
- Department of Cellular and Molecular Medicine, UCSD, Sanford Consortium for Regenerative Medicine
| | - Sarah E. Kellerhals
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | | | - Anna R. Busija
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | | | - Edmund Posadas
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Grace C. Grogman
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Jamie W. Chang
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - David M. Roth
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Piyush M. Patel
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD,Corresponding Author: Brian P. Head, Department of Anesthesiology, University of California San Diego, VASDHS (9125), 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| |
Collapse
|
37
|
Lee SS, Lee SJ, Lee SH, Ryu JM, Lim HS, Kim JS, Song EJ, Jung YH, Lee HJ, Kim CH, Han HJ. Netrin-1-Induced Stem Cell Bioactivity Contributes to the Regeneration of Injured Tissues via the Lipid Raft-Dependent Integrin α6β4 Signaling Pathway. Sci Rep 2016; 6:37526. [PMID: 27881869 PMCID: PMC5121594 DOI: 10.1038/srep37526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022] Open
Abstract
Netrin-1 (Ntn-1) is a multifunctional neuronal signaling molecule; however, its physiological significance, which improves the tissue-regeneration capacity of stem cells, has not been characterized. In the present study, we investigate the mechanism by which Ntn-1 promotes the proliferation of hUCB-MSCs with regard to the regeneration of injured tissues. We found that Ntn-1 induces the proliferation of hUCB-MSCs mainly via Inα6β4 coupled with c-Src. Ntn-1 induced the recruitment of NADPH oxidases and Rac1 into membrane lipid rafts to facilitate ROS production. The Inα6β4 signaling of Ntn-1 through ROS production is uniquely mediated by the activation of SP1 for cell cycle progression and the transcriptional occupancy of SP1 on the VEGF promoter. Moreover, Ntn-1 has the ability to induce the F-actin reorganization of hUCB-MSCs via the Inα6β4 signaling pathway. In an in vivo model, transplantation of hUCB-MSCs pre-treated with Ntn-1 enhanced the skin wound healing process, where relatively more angiogenesis was detected. The potential effect of Ntn-1 on angiogenesis is further verified by the mouse hindlimb ischemia model, where the pre-activation of hUCB-MSCs with Ntn-1 significantly improved vascular regeneration. These results demonstrate that Ntn-1 plays an important role in the tissue regeneration process of hUCB-MSC via the lipid raft-mediated Inα6β4 signaling pathway.
Collapse
Affiliation(s)
- Soo Sang Lee
- Department of plastic and reconstructive surgery, Bundang CHA Medical Center, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.,SKY plastic surgery clinic, 4F, 826-23, Yeoksam-dong, Gangnam-gu, Seoul, Korea
| | - Sei-Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon Su Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Eun Ju Song
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Chung Hun Kim
- Department of plastic and reconstructive surgery, Bundang CHA Medical Center, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
38
|
Averaimo S, Assali A, Ros O, Couvet S, Zagar Y, Genescu I, Rebsam A, Nicol X. A plasma membrane microdomain compartmentalizes ephrin-generated cAMP signals to prune developing retinal axon arbors. Nat Commun 2016; 7:12896. [PMID: 27694812 PMCID: PMC5059439 DOI: 10.1038/ncomms12896] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/11/2016] [Indexed: 01/11/2023] Open
Abstract
The development of neuronal circuits is controlled by guidance molecules that are hypothesized to interact with the cholesterol-enriched domains of the plasma membrane termed lipid rafts. Whether such domains enable local intracellular signalling at the submicrometre scale in developing neurons and are required for shaping the nervous system connectivity in vivo remains controversial. Here, we report a role for lipid rafts in generating domains of local cAMP signalling in axonal growth cones downstream of ephrin-A repulsive guidance cues. Ephrin-A-dependent retraction of retinal ganglion cell axons involves cAMP signalling restricted to the vicinity of lipid rafts and is independent of cAMP modulation outside of this microdomain. cAMP modulation near lipid rafts controls the pruning of ectopic axonal branches of retinal ganglion cells in vivo, a process requiring intact ephrin-A signalling. Together, our findings indicate that lipid rafts structure the subcellular organization of intracellular cAMP signalling shaping axonal arbors during the nervous system development.
Collapse
Affiliation(s)
- Stefania Averaimo
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ahlem Assali
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Oriol Ros
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Sandrine Couvet
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Yvrick Zagar
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Ioana Genescu
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| | - Alexandra Rebsam
- Sorbonne Universités, UPMC University Paris 06, UMR_S 839, Paris F-75005, France.,INSERM UMR_S 839, Paris F-75005, France.,Institut du Fer à Moulin, Paris F-75005, France
| | - Xavier Nicol
- Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris F-75012, France.,CNRS, UMR_7210, Paris F-75012, France.,INSERM, UMR_S 968, Paris F-75012, France
| |
Collapse
|
39
|
Sierra-Valdez FJ, Ruiz-Suárez JC, Delint-Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABA A receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2603-2610. [PMID: 27457704 DOI: 10.1016/j.bbamem.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022]
Abstract
Recent studies have shown that anesthetic agents alter the physical properties of lipid rafts on model membranes. However, if this destabilization occurs in brain membranes, altering the lipid raft-protein interaction, remains unknown. We analyzed the effects produced by pentobarbital (PB) on brain plasma membranes and lipid rafts in vivo. We characterized for the first time the thermotropic behavior of plasma membranes, synaptosomes, and lipid rafts from rat brain. We found that the transition temperature from the ordered gel to disordered liquid phase of lipids is close to physiological temperature. We then studied the effect of PB on protein composition of lipid rafts. Our results show a reduction of the total protein associated to rafts, with a higher reduction of the NMDAR compared to the GABAA receptor. Both receptors are considered the main targets of PB. In general, our results suggest that lipid rafts could be plausible mediators in anesthetic action.
Collapse
Affiliation(s)
| | - J C Ruiz-Suárez
- Cinvestav-Monterrey, PIIT, Apodaca, Nuevo León, 66600, Mexico
| | - Ilse Delint-Ramirez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
40
|
Samelson BK, Gore BB, Whiting JL, Nygren PJ, Purkey AM, Colledge M, Langeberg LK, Dell'Acqua ML, Zweifel LS, Scott JD. A-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors. J Biol Chem 2015; 290:14107-19. [PMID: 25882844 DOI: 10.1074/jbc.m115.637470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 01/08/2023] Open
Abstract
Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.
Collapse
Affiliation(s)
- Bret K Samelson
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Bryan B Gore
- the Departments of Pharmacology and Psychiatry, University of Washington, Seattle, Washington 98195-7290
| | - Jennifer L Whiting
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Patrick J Nygren
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Alicia M Purkey
- the Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, and
| | | | - Lorene K Langeberg
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| | - Mark L Dell'Acqua
- the Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, and
| | - Larry S Zweifel
- the Departments of Pharmacology and Psychiatry, University of Washington, Seattle, Washington 98195-7290
| | - John D Scott
- From the Howard Hughes Medical Institute, Department of Pharmacology, and
| |
Collapse
|
41
|
Laurenzana A, Fibbi G, Chillà A, Margheri G, Del Rosso T, Rovida E, Del Rosso M, Margheri F. Lipid rafts: integrated platforms for vascular organization offering therapeutic opportunities. Cell Mol Life Sci 2015; 72:1537-57. [PMID: 25552244 PMCID: PMC11113367 DOI: 10.1007/s00018-014-1814-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Research on the nanoscale membrane structures known as lipid rafts is relevant to the fields of cancer biology, inflammation and ischaemia. Lipid rafts recruit molecules critical to signalling and regulation of the invasion process in malignant cells, the leukocytes that provide immunity in inflammation and the endothelial cells that build blood and lymphatic vessels, as well as the patterning of neural networks. As angiogenesis is a common denominator, regulation of receptors and signalling molecules critical to angiogenesis is central to the design of new approaches aimed at reducing, promoting or normalizing the angiogenic process. The goal of this review is to highlight some of the key issues that indicate the involvement of endothelial cell lipid rafts at each step of so-called 'sprouting angiogenesis', from stimulation of the vascular endothelial growth factor to the choice of tip cells, activation of migratory and invasion pathways, recruitment of molecules that guide axons in vascular patterning and maturation of blood vessels. Finally, the review addresses opportunities for future studies to define how these lipid domains (and their constituents) may be manipulated to stimulate the so-called 'normalization' of vascular networks within tumors, and be identified as the main target, enabling the development of more efficient chemotherapeutics and cancer immunotherapies.
Collapse
Affiliation(s)
- Anna Laurenzana
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Gabriella Fibbi
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Anastasia Chillà
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Giancarlo Margheri
- Institute of Complex Systems (ISC), Consiglio Nazionale delle Ricerche (CNR), Florence, Italy
| | - Tommaso Del Rosso
- Department of Physics, Pontificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisabetta Rovida
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| | - Mario Del Rosso
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Francesca Margheri
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
42
|
GM1 Ganglioside: Past Studies and Future Potential. Mol Neurobiol 2015; 53:1824-1842. [DOI: 10.1007/s12035-015-9136-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
|
43
|
Aureli M, Grassi S, Prioni S, Sonnino S, Prinetti A. Lipid membrane domains in the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1006-16. [PMID: 25677824 DOI: 10.1016/j.bbalip.2015.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/28/2022]
Abstract
The brain is characterized by the presence of cell types with very different functional specialization, but with the common trait of a very high complexity of structures originated by their plasma membranes. Brain cells bear evident membrane polarization with the creation of different morphological and functional subcompartments, whose formation, stabilization and function require a very high level of lateral order within the membrane. In other words, the membrane specialization of brain cells implies the presence of distinct membrane domains. The brain is the organ with the highest enrichment in lipids like cholesterol, glycosphingolipids, and the most recently discovered brain membrane lipid, phosphatidylglucoside, whose collective behavior strongly favors segregation within the membrane leading to the formation of lipid-driven membrane domains. Lipid-driven membrane domains function as dynamic platforms for signal transduction, protein processing, and membrane turnover. Essential events involved in the development and in the maintenance of the functional integrity of the brain depend on the organization of lipid-driven membrane domains, and alterations in lipid homeostasis, leading to deranged lipid-driven membrane organization, are common in several major brain diseases. In this review, we summarize the forces behind the formation of lipid membrane domains and their biological roles in different brain cells. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| |
Collapse
|
44
|
Santiago-Medina M, Gregus KA, Nichol RH, O'Toole SM, Gomez TM. Regulation of ECM degradation and axon guidance by growth cone invadosomes. Development 2015; 142:486-96. [PMID: 25564649 DOI: 10.1242/dev.108266] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Invadopodia and podosomes, collectively referred to as invadosomes, are F-actin-rich basal protrusions of cells that provide sites of attachment to and degradation of the extracellular matrix. Invadosomes promote the invasion of cells, ranging from metastatic cancer cells to immune cells, into tissue. Here, we show that neuronal growth cones form protrusions that share molecular, structural and functional characteristics of invadosomes. Growth cones from all neuron types and species examined, including a variety of human neurons, form invadosomes both in vitro and in vivo. Growth cone invadosomes contain dynamic F-actin and several actin regulatory proteins, as well as Tks5 and matrix metalloproteinases, which locally degrade the matrix. When viewed using three-dimensional super-resolution microscopy, F-actin foci often extended together with microtubules within orthogonal protrusions emanating from the growth cone central domain. Finally, inhibiting the function of Tks5 both reduced matrix degradation in vitro and disrupted motoneuron axons from exiting the spinal cord and extending into the periphery. Taken together, our results suggest that growth cones use invadosomes to target protease activity during axon guidance through tissues.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Kelly A Gregus
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Robert H Nichol
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Sean M O'Toole
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
45
|
Yan X, Ma L, Hovakimyan M, Lukas J, Wree A, Frank M, Guthoff R, Rolfs A, Witt M, Luo J. Defects in the retina of Niemann-pick type C 1 mutant mice. BMC Neurosci 2014; 15:126. [PMID: 25472750 PMCID: PMC4267119 DOI: 10.1186/s12868-014-0126-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022] Open
Abstract
Background Niemann-Pick type C1 (NPC1) disease is an inherited lysosomal storage disease caused by mutation of the Npc1 gene, resulting in a progressive accumulation of unesterified cholesterol and glycolipids in lysosomes of multiple tissues and leading to neurodegeneration and other disease. In Npc1 mutant mice, retinal degeneration including impaired visual function, lipofuscin accumulation in the pigment epithelium and ganglion cells as well as photoreceptor defects has been found. However, the pathologies of other individual cell types of the retina in Npc1 mutant mice are still not fully clear. We hypothesized that horizontal cells, amacrine cells, bipolar cells and glial cells are also affected in the retina of Npc1 mutant mice. Results Immunohistochemistry and electron microscopy were used to investigate pathologies of ganglion cells, horizontal cells, amacrine cells, bipolar cells, and optic nerves as well as altered activity of glial cells in Npc1 mutant mice. Electron microscopy reveals that electron-dense inclusions are generally accumulated in ganglion cells, bipolar cells, Müller cells, and in the optic nerve. Furthermore, abnormal arborisation and ectopic processes of horizontal and amacrine cells as well as defective bipolar cells are observed by immunohistochemistry for specific cellular markers. Furthermore, hyperactivity of glial cells, including astrocytes, microglial cells, and Müller cells, is also revealed. Conclusions Our data extend previous findings to show multiple defects in the retina of Npc1 mutant mice, suggesting an important role of Npc1 protein in the normal function of the retina. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0126-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Lucy Ma
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Marina Hovakimyan
- Institute for Biomedical Engineering, Rostock University Medical Center, F.-Barnewitz Strasse 4, D-18119, Rostock, Germany.
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, D-18055, Rostock, Germany.
| | - Marcus Frank
- Electron Microscopy Center, Rostock University Medical Center, Strempelstr. 14, D-18057, Rostock, Germany.
| | - Rudolf Guthoff
- Department of Ophthalmology, Rostock University Medical Center, Doberaner Strasse 140, D-18057, Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, D-18055, Rostock, Germany.
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| |
Collapse
|
46
|
Increase in Neuropilin-1 on the Surface of Growth Cones and Putative Raft Domains in Neuronal NG108-15 Cells Co-Cultured with Vascular Smooth Muscle SM-3 Cells. J Membr Biol 2014; 248:171-8. [DOI: 10.1007/s00232-014-9754-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
|
47
|
Averaimo S, Nicol X. Intermingled cAMP, cGMP and calcium spatiotemporal dynamics in developing neuronal circuits. Front Cell Neurosci 2014; 8:376. [PMID: 25431549 PMCID: PMC4230202 DOI: 10.3389/fncel.2014.00376] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/21/2014] [Indexed: 01/27/2023] Open
Abstract
cAMP critically modulates the development of neuronal connectivity. It is involved in a wide range of cellular processes that require independent regulation. However, our understanding of how this single second messenger achieves specific modulation of the signaling pathways involved remains incomplete. The subcellular compartmentalization and temporal regulation of cAMP signals have recently been identified as important coding strategies leading to specificity. Dynamic interactions of this cyclic nucleotide with other second messenger including calcium and cGMP are critically involved in the regulation of spatiotemporal control of cAMP. Recent technical improvements of fluorescent sensors facilitate cAMP monitoring, whereas optogenetic tools permit spatial and temporal control of cAMP manipulations, all of which enabled the direct investigation of spatiotemporal characteristics of cAMP modulation in developing neurons. Focusing on neuronal polarization, neurotransmitter specification, axon guidance, and refinement of neuronal connectivity, we summarize herein the recent advances in understanding the features of cAMP signals and their dynamic interactions with calcium and cGMP involved in shaping the nervous system.
Collapse
Affiliation(s)
- Stefania Averaimo
- UMR_7210, Centre National de la Recherche Scientifique Paris, France ; UMR_S 968, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06 Paris, France ; U968, Institut National de la Santé et de la Recherche Médicale Paris, France
| | - Xavier Nicol
- UMR_7210, Centre National de la Recherche Scientifique Paris, France ; UMR_S 968, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06 Paris, France ; U968, Institut National de la Santé et de la Recherche Médicale Paris, France
| |
Collapse
|
48
|
Tassew NG, Mothe AJ, Shabanzadeh AP, Banerjee P, Koeberle PD, Bremner R, Tator CH, Monnier PP. Modifying lipid rafts promotes regeneration and functional recovery. Cell Rep 2014; 8:1146-59. [PMID: 25127134 DOI: 10.1016/j.celrep.2014.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/17/2014] [Accepted: 06/10/2014] [Indexed: 10/24/2022] Open
Abstract
Ideal strategies to ameliorate CNS damage should promote both neuronal survival and axon regeneration. The receptor Neogenin promotes neuronal apoptosis. Its ligand prevents death, but the resulting repulsive guidance molecule a (RGMa)-Neogenin interaction also inhibits axonal growth, countering any prosurvival benefits. Here, we explore strategies to inhibit Neogenin, thus simultaneously enhancing survival and regeneration. We show that bone morphogenetic protein (BMP) and RGMa-dependent recruitment of Neogenin into lipid rafts requires an interaction between RGMa and Neogenin subdomains. RGMa or Neogenin peptides that prevent this interaction, BMP inhibition by Noggin, or reduction of membrane cholesterol all block Neogenin raft localization, promote axon outgrowth, and prevent neuronal apoptosis. Blocking Neogenin raft association influences axonal pathfinding, enhances survival in the developing CNS, and promotes survival and regeneration in the injured adult optic nerve and spinal cord. Moreover, lowering cholesterol disrupts rafts and restores locomotor function after spinal cord injury. These data reveal a unified strategy to promote both survival and regeneration in the CNS.
Collapse
Affiliation(s)
- Nardos G Tassew
- Toronto Western Research Institute, Genetics and Development Division, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Andrea J Mothe
- Toronto Western Research Institute, Genetics and Development Division, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Alireza P Shabanzadeh
- Toronto Western Research Institute, Genetics and Development Division, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Paromita Banerjee
- Toronto Western Research Institute, Genetics and Development Division, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Paulo D Koeberle
- Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology, Faculty of Medicine, 340 College Street, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Rod Bremner
- Toronto Western Research Institute, Genetics and Development Division, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Ophthalmology, Faculty of Medicine, 340 College Street, University of Toronto, Toronto, ON M5T 3A9, Canada; Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 982 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Charles H Tator
- Toronto Western Research Institute, Genetics and Development Division, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Philippe P Monnier
- Toronto Western Research Institute, Genetics and Development Division, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology, Faculty of Medicine, 340 College Street, University of Toronto, Toronto, ON M5T 3A9, Canada.
| |
Collapse
|
49
|
Amtul Z, Whitehead SN, Keeley RJ, Bechberger J, Fisher AL, McDonald RJ, Naus CC, Munoz DG, Cechetto DF. Comorbid rat model of ischemia and β-amyloid toxicity: striatal and cortical degeneration. Brain Pathol 2014; 25:24-32. [PMID: 24725245 DOI: 10.1111/bpa.12149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Levels of cerebral amyloid, presumably β-amyloid (Abeta), toxicity and the incidence of cortical and subcortical ischemia increases with age. However, little is known about the severe pathological condition and dementia that occur as a result of the comorbid occurrence of this vascular risk factor and Abeta toxicity. Clinical studies have indicated that small ischemic lesions in the striatum are particularly important in generating dementia in combination with minor amyloid lesions. These cognitive deficits are highly likely to be caused by changes in the cortex. In this study, we examined the viability and morphological changes in microglial and neuronal cells, gap junction proteins (connexin43) and neuritic/axonal retraction (Fer Kinase) in the striatum and cerebral cortex using a comorbid rat model of striatal injections of endothelin-1 (ET1) and Abeta toxicity. The results demonstrated ventricular enlargement, striatal atrophy, substantial increases in β-amyloid, ramified microglia and increases in neuritic retraction in the combined models of stroke and Abeta toxicity. Changes in connexin43 occurred equally in both groups of Abeta-treated rats, with and without focal ischemia. Although previous behavioral tests demonstrated impairment in memory and learning, the visual discrimination radial maze task did not show significant difference, suggesting the cognitive impairment in these models is not related to damage to the dorsolateral striatum. These results suggest an insight into the relationship between cortical/striatal atrophy, pathology and functional impairment.
Collapse
Affiliation(s)
- Zareen Amtul
- CIHR Group on Vascular Cognitive Impairment, Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J Neurosci 2014; 34:2477-92. [PMID: 24523539 DOI: 10.1523/jneurosci.4432-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.
Collapse
|