1
|
Colomeu TC, de Figueiredo D, de Matos da Silva P, Fernandes LGR, Zollner RDL. Antiproliferative and Pro-Oxidant Effect of Polyphenols in Aqueous Leaf Extract of Passiflora alata Curtis on Activated T Lymphocytes from Non-Obese Diabetic (NOD SHILT/J) Mice. Antioxidants (Basel) 2022; 11:antiox11081503. [PMID: 36009222 PMCID: PMC9405454 DOI: 10.3390/antiox11081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
The antioxidant, anti-inflammatory and antiproliferative properties of Passiflora alata Curtis are due to the presence of polyphenols in its composition. Our previous work showed that non-obese diabetic (NOD) mice undergoing treatment with aqueous leaf extract of P. alata present reduced insulitis in the pancreas, possibly due to its anti-inflammatory properties. However, depending on the concentration and their ability to interact with other molecules, these phenolic compounds may promote oxidation reactions in some cellular components, such as proteins and lipids, thus presenting a pro-oxidant effect. The present work aimed to evaluate the in vitro effects of aqueous leaf extract of P. alata and its polyphenols (vitexin, isoorientin, rutin and catechin) on lymphocyte proliferation and viability, the cell cycle and oxidative stress. Our results showed that T lymphocytes stimulated with concanavalin A mitogen (ConA) and in the presence of IC50 concentrations of P. alata extract and polyphenols undergo cell injury via inhibition of proliferation, with these effects being more pronounced concerning CD4+ T cells (P. alata, 3.54 ± 0.34%; isoorientin, 57.07 ± 6.4%; vitexin, 16.95 ± 1.11%; catechin, 37.9 ± 4.2% and rutin, 40.14 ± 4.5%), compared to the non-treated group (77.17 ± 6.29) (p < 0.0001 for all comparisons). This process includes late apoptosis/necrosis induction (P. alata, 77.5 ± 0.7%; vitexin, 83 ± 3.3%; isoorientin, 83.8 ± 1.4%; catechin, 83 ± 1.9% and rutin, 74.9 ± 3.2, while the control presented 53.6% ± 3.1 (p < 0.0001 for all comparisons)) and mitochondrial depolarization leading to cell-death induction. Furthermore, an in vitro model of a mixed culture of NOD mice T cells with a mouse pancreatic beta-cell line (MIN6) showed increased intracellular nitric oxide and lipid peroxidation in NOD T cells submitted to P. alata extract (46.41 ± 3.08) compared to the untreated control group (33.57 ± 1.99, p = 0.01315). These results suggest that aqueous leaf extract of P. alata and the polyphenols in these leaves represent a target for translational research showing the plant’s benefits for developing new drugs with immunomodulatory properties against inflammatory diseases such as diabetes mellitus.
Collapse
|
2
|
Schumacher NSG, Fernandes LGR, de Lima Zollner R. Aqueous extract of Passiflora alata leaves modulates in vitro the indoleamine 2,3-dioxygenase (IDO) and CD86 expression in bone marrow-derived professional antigen-presenting cells polarizing NOD mice T cells to a Treg profile. Cytokine 2022; 152:155832. [PMID: 35202987 DOI: 10.1016/j.cyto.2022.155832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (pAPCs), numerous in the pancreas of nonobese diabetic (NOD) mice and playing an essential role in the autoimmune response of type 1 diabetes. The expression of the enzyme indoleamine 2,3-dioxygenase (IDO) is a critical factor for the tolerogenic activity of pAPCs, acting in the catabolism of tryptophan, providing metabolites that suppress the T cell effectors and induce T regulatory cells differentiation. Here we investigated the in vitro mechanisms of lyophilized aqueous extract from Passiflora alata leaves (LAEPAL) that modulates bone marrow-derived professional antigen-presenting cells (BM-pAPCs), affecting their ability to polarize T cells. A cell culture model was defined using mixed cultures of BM-pAPCs and T lymphocytes NOD mice with stressed MIN-6 cells as a source of pancreatic β cells antigens. We showed that the treatment with 300 µg/mL of LAEPAL induces a significant decrease in the CD4 and CD8 T effector lymphocytes proliferation from diabetic but not in non-diabetic mice, followed by a reduction of the IL-6 and IFN-γ cytokines release in the cell cultures supernatants. Moreover, we observed an increase of CD4+CD25+FoxP3+ Tregs in the cell cultures from diabetic mice. These results could be partially explained by the LAEPAL modulatory effects in BM-pAPCs, downregulating the CD86 co-stimulatory molecule expression, and increasing IDO-1 expression in F4/80+ BM-pAPCs. These results contribute to a better understanding of the polyphenols' immunomodulatory properties, meaning they could induce tolerogenic antigen-presenting cells, which could polarize T cells to a Treg profile and decrease the activity of CD4+ and CD8+ T effector cells.
Collapse
Affiliation(s)
- Nayara Simon Gonzalez Schumacher
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| |
Collapse
|
3
|
Choi IY, Lee C, Longo VD. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol Cell Endocrinol 2017; 455:4-12. [PMID: 28137612 PMCID: PMC5862044 DOI: 10.1016/j.mce.2017.01.042] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/04/2023]
Abstract
Complex and coordinated signals are necessary to initiate and sustain the activation, proliferation, and differentiation of lymphocytes. These signals, which are known to determine T-cell fate and function, also depend on the metabolic state of the organism. Recent studies indicate that both the type and levels of nutrients can influence the generation, survival and function of lymphocytes and therefore can affect several autoimmune diseases. Here, we review the dysregulation of lymphocytes during autoimmunity and aging, the mechanisms associated with loss of immune function, and how fasting mimicking diets and other dietary interventions affect autoimmunity and immunosenescence.
Collapse
Affiliation(s)
- In Young Choi
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Microbiology, Immunology, Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Changhan Lee
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Neuroscience, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, 20139, Milan, Italy.
| |
Collapse
|
4
|
Gao Y, Wang Y, Zhai X, He Y, Chen R, Zhou J, Li M, Wang Q. Publication trends of research on diabetes mellitus and T cells (1997-2016): A 20-year bibliometric study. PLoS One 2017; 12:e0184869. [PMID: 28926600 PMCID: PMC5604989 DOI: 10.1371/journal.pone.0184869] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/03/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction Diabetes Mellitus (DM) is a huge burden for human health. Recent studies show the close relationship between DM and T cells. We investigated the trend in DM and T cells research. Methods Using the Web of Science database, we searched the publications on DM and T cells in 1997–2016, and studied the source data using bibliometric methodology. Excel 2016, GraphPad Prism 5, and VOSviewer software were used to analyze the publication trend in DM and T cells research. Results We found a total of 1077 publications with 38109 citations up to January 23, 2017. The highest contribution came from the United States, with 48.38% of the publications, 61.44% of the citations and the highest H-index (74). China had the 5th place for total publications, but ranked 11th both for citation frequency (604) and H-index (13). The inflection point of the global DM and T cells publications was in 2000. Journal of Immunology published the most related articles (164). Santamaria P. was the leading scholar in this field with the most publications (35). The keywords “regulatory T cell” and “autoimmune diabetes” were mentioned more than 300 times. Furthermore, type 2 (T2)DM, T cell immunoglobulin and mucin domain (TIM) and obesity are becoming popular research topics in this field. Conclusion The quantity of publications on DM and T cells grew rapidly around year 2000, but has relatively decreased recently. The United States had the leading position in global research. There was a discrepancy between productivity and quality of publications from China. Latest progress is most likely first published by the Journal of Immunology. Santamaria P., Roep B.O. and Peakman M. were the pioneer scholars in this field. Most researchers have focused on “regulatory T cell” and “autoimmune diabetes” research. In future, T2DM, TIM and obesity may be the popular areas.
Collapse
Affiliation(s)
- Ye Gao
- Graduate Management Unit, Changhai Hospital Affiliated to theSecond Military Medical University, Shanghai, China
| | - Yiran Wang
- Graduate Management Unit, Changhai Hospital Affiliated to theSecond Military Medical University, Shanghai, China
- Department of Oncology, Changhai Hospital Affiliated to the SecondMilitary Medical University, Shanghai, China
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital Affiliated to the SecondMilitary Medical University, Shanghai, China
| | - Yifei He
- Department of Endocrinology, Changhai Hospital Affiliated to the SecondMilitary Medical University, Shanghai, China
| | - Rong Chen
- Department of Endocrinology, Changhai Hospital Affiliated to the SecondMilitary Medical University, Shanghai, China
| | - Jingjing Zhou
- Department of Endocrinology, Changhai Hospital Affiliated to the SecondMilitary Medical University, Shanghai, China
| | - Ming Li
- Department of Orthopedics, Changhai Hospital Affiliated to the SecondMilitary Medical University, Shanghai, China
| | - Qijin Wang
- Department of Endocrinology, Changhai Hospital Affiliated to the SecondMilitary Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
5
|
Aqueous leaf extract of Passiflora alata Curtis promotes antioxidant and anti-inflammatory effects and consequently preservation of NOD mice beta cells (non-obese diabetic). Int Immunopharmacol 2016; 35:127-136. [DOI: 10.1016/j.intimp.2016.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022]
|
6
|
Tan Q, Majewska-Szczepanik M, Zhang X, Szczepanik M, Zhou Z, Wong FS, Wen L. IRAK-M deficiency promotes the development of type 1 diabetes in NOD mice. Diabetes 2014; 63:2761-75. [PMID: 24696448 PMCID: PMC4113073 DOI: 10.2337/db13-1504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an organ-specific autoimmune disease characterized by progressive destruction of insulin-secreting pancreatic β-cells. Both T-cell-mediated adaptive responses as well as innate immune processes are involved in pathogenesis. Interleukin-1 receptor-associated kinase M (IRAK-M) can effectively inhibit the MyD88 downstream signals in Toll-like receptor pathways, while lack of IRAK-M is known to be associated with autoimmunity. Our study showed that IRAK-M-deficient (IRAK-M(-/-)) nonobese diabetic (NOD) mice displayed early onset and rapid progression of T1DM with impaired glucose tolerance, more severe insulitis, and increased serum anti-insulin autoantibodies. Mechanistic studies showed that the enhanced activation and antigen-presenting function of IRAK-M(-/-) antigen-presenting cells from IRAK-M(-/-) mice were responsible for the rapid progression of disease. Moreover, IRAK-M(-/-) dendritic cells induced enhanced activation of diabetogenic T cells in vitro and the rapid onset of T1DM in vivo in immunodeficient NOD mice when cotransferred with diabetogenic T cells. This study illustrates how the modulation of innate immune pathways through IRAK-M influences the development of autoimmune diabetes.
Collapse
Affiliation(s)
- Qiyuan Tan
- Institution of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, People's Republic of ChinaSection of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Monika Majewska-Szczepanik
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CTDepartment of Medical Biology, Jagiellonian University Medical College, Krakow, Poland
| | - Xiaojun Zhang
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Marian Szczepanik
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CTDepartment of Medical Biology, Jagiellonian University Medical College, Krakow, Poland
| | - Zhiguang Zhou
- Institution of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Cardiff, U.K
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol 2014; 22:182-91. [PMID: 24993340 DOI: 10.1016/j.intimp.2014.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
The immune system is the body's natural defense system against invading pathogens. It protects the body from infection and works to communicate an individual's well-being through a complex network of interconnected cells and cytokines. This system is an associated host defense. An uncontrolled immune system has the potential to trigger negative complications in the host. Type 1 diabetes results from the destruction of pancreatic β-cells by a β-cell-specific autoimmune process. Examples of β-cell autoantigens are insulin, glutamic acid decarboxylase, tyrosine phosphatase, and insulinoma antigen. There are many autoimmune diseases, but type 1 diabetes mellitus is one of the well-characterized autoimmune diseases. The mechanisms involved in the β-cell destruction are still not clear; it is generally believed that β-cell autoantigens, macrophages, dendritic cells, B lymphocytes, and T lymphocytes are involved in the β-cell-specific autoimmune process. It is necessary to determine what exact factors are causing the immune system to become unregulated in such a manner as to promote an autoimmune response.
Collapse
Affiliation(s)
- Leszek Szablewski
- General Biology and Parasitology, Center of Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
8
|
Tai N, Wong FS, Wen L. TLR9 deficiency promotes CD73 expression in T cells and diabetes protection in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2926-37. [PMID: 23956420 DOI: 10.4049/jimmunol.1300547] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TLR9-deficient (TLR9⁻/⁻) NOD mice develop a significantly reduced incidence of diabetes. This study was to investigate the molecular mechanisms of the protective role of TLR9 deficiency. Through gene screening and confirmation by both mRNA and protein expression, we found a significant increase in CD73-expressing immune cells from peripheral lymphoid tissues in TLR9⁻/⁻ NOD mice. The elevated frequency of CD73-expressing immune cells seemed to be specific for TLR9 deficiency and was MyD88 independent. Moreover, the increased frequency of CD73 expression was limited to the NOD background. Increased frequency of CD73 expression was also associated with lower levels of proinflammatory cytokines and more anti-inflammatory cytokine production in CD4⁺ T cells in TLR9⁻/⁻ NOD mice. Purified CD73⁺CD4⁺ T cells showed stronger immunosuppressive function in vitro and delayed diabetes development in vivo. The immunosuppression appeared to be mediated by TGF-β. In addition, elevated frequency of CD73-expressing cells was associated with improved β cell function. Our observations were further confirmed by protection from diabetes with similar alterations in CD73 in the NY8.3 TCR NOD mouse model crossed with TLR9⁻/⁻ mice and by the use of a TLR9 inhibitor in NOD mice. Our novel findings suggest an important immune-regulatory role of CD73 in regulation of diabetes development and may offer a new therapeutic strategy for specific intervention to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
9
|
Abstract
The non-obese diabetic (NOD) mouse spontaneously develops type 1 diabetes (T1D) and has thus served as a model for understanding the genetic and immunological basis, and treatment, of T1D. Since its initial description in 1980, however, the field has matured and recognized that prevention of diabetes in NOD mice (i.e., preventing the disease from occurring by an intervention prior to frank diabetes) is relatively easy to achieve and does not correlate well with curing the disease (after the onset of frank hyperglycemia). Hundreds of papers have described the prevention of diabetes in NOD mice but only a handful have described its actual reversal. The paradoxical conclusion is that preventing the disease in NOD mice does not necessarily tell us what caused the disease nor how to reverse it. The NOD mouse model is therefore best used now, with respect to human disease, as a way to understand the genetic and immunologic causes of and as a model for trying to reverse disease once hyperglycemia occurs. We describe how genetic approaches to identifying causative gene variants can be adapted to identify novel therapeutic agents for reversing new-onset T1D.
Collapse
|
10
|
Katz JD, Janssen EM. Breaking T cell tolerance to beta cell antigens by merocytic dendritic cells. Cell Mol Life Sci 2011; 68:2873-83. [PMID: 21626409 DOI: 10.1007/s00018-011-0730-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 11/28/2022]
Abstract
In type 1 diabetes (T1D), a break in central and peripheral tolerance results in antigen-specific T cells destroying insulin-producing, pancreatic beta cells. Herein, we discuss the critical sub-population of dendritic cells responsible for mediating both the cross-presentation of islet antigen to CD8(+) T cells and the direct presentation of beta cell antigen to CD4(+) T cells. These cells, termed merocytic dendritic cells (mcDC), are more numerous in non-obese diabetic (NOD), and antigen-loaded mcDC rescue CD8(+) T cells from peripheral anergy and deletion, and stimulate islet-reactive CD4(+) T cells. When purified from the pancreatic lymph nodes of overtly diabetic NOD mice, mcDC can break peripheral T cell tolerance to beta cell antigens in vivo and induce rapid onset T cell-mediated T1D in young NOD mouse. Thus, the mcDC subset appears to represent the long-sought critical antigen-presenting cell responsible for breaking peripheral tolerance to beta cell antigen in vivo.
Collapse
Affiliation(s)
- Jonathan D Katz
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
11
|
Ye Z, Ahmed KA, Hao S, Zhang X, Xie Y, Munegowda MA, Meng Q, Chibbar R, Xiang J. Active CD4+ helper T cells directly stimulate CD8+ cytotoxic T lymphocyte responses in wild-type and MHC II gene knockout C57BL/6 mice and transgenic RIP-mOVA mice expressing islet beta-cell ovalbumin antigen leading to diabetes. Autoimmunity 2009; 41:501-11. [PMID: 18855194 DOI: 10.1080/08916930802069256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CD4+ helper T (Th) cells play crucial role in priming, expansion and survival of CD8+ cytotoxic T lymphocytes (CTLs). However, how CD4+ Th cell's help is delivered to CD8+ T cells in vivo is still unclear. We previously demonstrated that CD4+ Th cells can acquire ovalbumin (OVA) peptide/major histocompatibility complex (pMHC I) and costimulatory CD80 by OVA-pulsed DC (DC(OVA)) stimulation, and then stimulate OVA-specific CD8+ CTL responses in C57BL/6 mice. In this study, we further investigated CD4+ Th cell's effect on stimulation of CD8 CTL responses in major histocompatibility complex (MHC II) gene knockout (KO) mice and transgenic rat insulin promoter (RIP)-mOVA mice with moderate expression of self OVA by using CD4+ Th cells or Th cells with various gene deficiency. We demonstrated that the in vitro DC(OVA)-activated CD4+ Th cells (3 x 10(6) cells/mouse) can directly stimulate OVA-specific CD8+ T-cell responses in wild-type C57BL/6 mice and MHC II gene KO mice lacking CD4+ T cells. A large amount of CD4+ Th cells (12 x 10(6) cells/mouse) can even overcome OVA-specific immune tolerance in transgenic RIP-mOVA mice, leading to CD8+ CTL-mediated mouse pancreatic islet destruction and diabetes. The stimulatory effect of CD4+ Th cells is mediated by its IL-2 secretion and CD40L and CD80 costimulations, and is specifically delivered to OVA-specific CD8+ T cells in vivo via its acquired pMHC I complexes. Therefore, the above elucidated principles for CD4+ Th cells will have substantial implications in autoimmunity and antitumor immunity, and regulatory T-cell-dependent immune suppression.
Collapse
Affiliation(s)
- Zhenmin Ye
- Research Unit, Departments of Oncology and Immunology, Saskatchewan Cancer Agency, College of Medicine, University of Saskatchewan, Saskatoon, Sask., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Morran MP, Omenn GS, Pietropaolo M. Immunology and genetics of type 1 diabetes. ACTA ACUST UNITED AC 2009; 75:314-27. [PMID: 18729178 DOI: 10.1002/msj.20052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is one of the most well-characterized autoimmune diseases. Type 1 diabetes compromises an individual's insulin production through the autoimmune destruction of pancreatic beta-cells. Although much is understood about the mechanisms of this disease, multiple potential contributing factors are thought to play distinct parts in triggering type 1 diabetes. The immunological diagnosis of type 1 diabetes relies primarily on the detection of autoantibodies against islet antigens in the serum of type 1 diabetes mellitus patients. Genetic analyses of type 1 diabetes have linked human leukocyte antigen, specifically class II alleles, to susceptibility to disease onset. Environmental catalysts include various possible factors, such as viral infections, although the evidence linking infections with type 1 diabetes remains inconclusive. Imbalances within the immune system's system of checks and balances may promote immune activation, while undermining immune regulation. A lack of proper regulation and overactive pathogenic responses provide a framework for the development of autoimmune abnormalities. Type 1 diabetes is a predictable and potentially treatable disease that still requires much research to fully understand and pinpoint the exact triggering events leading to autoimmune activation. In silico research can aid the comprehension of the etiology of complex disease pathways, including Type I diabetes, in order to and help predict the outcome of therapeutic strategies aimed at preserving beta-cell function.
Collapse
Affiliation(s)
- Michael P Morran
- Department of Internal Medicine, Division of Metabolism, Laboratory of Immunogenetics, Brehm Center for Type 1 Diabetes Research and Analysis, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
13
|
Vieira KP, de Almeida e Silva Lima Zollner AR, Malaguti C, Vilella CA, de Lima Zollner R. Ganglioside GM1 effects on the expression of nerve growth factor (NGF), Trk-A receptor, proinflammatory cytokines and on autoimmune diabetes onset in non-obese diabetic (NOD) mice. Cytokine 2008; 42:92-104. [DOI: 10.1016/j.cyto.2008.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 01/04/2008] [Accepted: 01/20/2008] [Indexed: 11/16/2022]
|
14
|
Affiliation(s)
- Michael P Morran
- Laboratory of Immunogenetics, The Brehm Center for Type 1 Diabetes Research and Analysis, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
15
|
Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA. B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes 2008; 57:909-17. [PMID: 18184927 DOI: 10.2337/db07-1256] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the role of B-cells in promoting CD8(+) T-cell-mediated beta cell destruction in chronically inflamed islets. RESEARCH DESIGN AND METHODS-RIP: TNFalpha-NOD mice were crossed to B-cell-deficient NOD mice, and diabetes development was monitored. We used in vitro antigen presentation assays and in vivo administration of bromodeoxyuridine coupled to flow cytometry assays to assess intra-islet T-cell activation in the absence or presence of B-cells. CD4(+)Foxp3(+) activity in the absence or presence of B-cells was tested using in vivo depletion techniques. Cytokine production and apoptosis assays determined the capacity of CD8(+) T-cells transform to cytotoxic T-lymphocytes (CTLs) and survive within inflamed islets in the absence or presence of B-cells. RESULTS B-cell deficiency significantly delayed diabetes development in chronically inflamed islets. Reintroduction of B-cells incapable of secreting immunoglobulin restored diabetes development. Both CD4(+) and CD8(+) T-cell activation was unimpaired by B-cell deficiency, and delayed disease was not due to CD4(+)Foxp3(+) T-cell suppression of T-cell responses. Instead, at the CTL transition stage, B-cell deficiency resulted in apoptosis of intra-islet CTLs. CONCLUSIONS In inflamed islets, B-cells are central for the efficient intra-islet survival of CTLs, thereby promoting type 1 diabetes development.
Collapse
Affiliation(s)
- Gillian M Brodie
- Department of Pathology, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | |
Collapse
|
16
|
Rajagopalan G, Mangalam AK, Sen MM, Kudva YC, David CS. Distinct local immunogenic stimuli dictate differential requirements for CD4+ and CD8+ T cell subsets in the pathogenesis of spontaneous autoimmune diabetes. Autoimmunity 2008; 40:489-96. [PMID: 17966038 DOI: 10.1080/08916930701649836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The strong MHC class II association in human as well as murine Type 1 diabetes (T1D) suggests a central role for CD4+T cells in the disease pathogenesis. Nonetheless, CD8+T cells also play a role in the pathogenic process. We describe how CD4+ or CD8+T cells can contribute differentially to the pathogenesis of T1D using the HLA-DQ8 transgenic mouse models. HLA-DQ8 transgenic mice expressing the costimulatory molecule, B7.1 (RIP.B7.1), or the proinflammatory cytokine, TNF-alpha (RIP.TNF) or both (RIP.B7.RIP.TNF) under the control of rat insulin promoter (RIP) were used. Our observations indicate that in the RIP-B7 model, CD4+T cells were absolutely required for diabetes to occur. However, when CD8+ T cells were also present, the incidence of diabetes increased. On the other hand, in the RIP-TNF model, CD8+T cells were absolutely required for diabetes to occur. Interestingly, when CD4+T cells were also present, the incidence of diabetes decreased. In the RIP-B7.RIP-TNF double transgenic mouse model, either CD4+ or CD8+T cells were sufficient to precipitate diabetes in 100% of the animals. Thus, the relative roles of CD4+ or CD8+T cells in the pathogenesis of T1D are possibly determined by the local inflammatory stimuli.
Collapse
|
17
|
Irie J, Reck B, Wu Y, Wicker LS, Howlett S, Rainbow D, Feingold E, Ridgway WM. Genome-wide microarray expression analysis of CD4+ T Cells from nonobese diabetic congenic mice identifies Cd55 (Daf1) and Acadl as candidate genes for type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2008; 180:1071-9. [PMID: 18178847 DOI: 10.4049/jimmunol.180.2.1071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NOD.Idd3/5 congenic mice have insulin-dependent diabetes (Idd) regions on chromosomes 1 (Idd5) and 3 (Idd3) derived from the nondiabetic strains B10 and B6, respectively. NOD.Idd3/5 mice are almost completely protected from type 1 diabetes (T1D) but the genes within Idd3 and Idd5 responsible for the disease-altering phenotype have been only partially characterized. To test the hypothesis that candidate Idd genes can be identified by differential gene expression between activated CD4+ T cells from the diabetes-susceptible NOD strain and the diabetes-resistant NOD.Idd3/5 congenic strain, genome-wide microarray expression analysis was performed using an empirical Bayes method. Remarkably, 16 of the 20 most differentially expressed genes were located in the introgressed regions on chromosomes 1 and 3, validating our initial hypothesis. The two genes with the greatest differential RNA expression on chromosome 1 were those encoding decay-accelerating factor (DAF, also known as CD55) and acyl-coenzyme A dehydrogenase, long chain, which are located in the Idd5.4 and Idd5.3 regions, respectively. Neither gene has been implicated previously in the pathogenesis of T1D. In the case of DAF, differential expression of mRNA was extended to the protein level; NOD CD4+ T cells expressed higher levels of cell surface DAF compared with NOD.Idd3/5 CD4+ T cells following activation with anti-CD3 and -CD28. DAF up-regulation was IL-4 dependent and blocked under Th1 conditions. These results validate the approach of using congenic mice together with genome-wide analysis of tissue-specific gene expression to identify novel candidate genes in T1D.
Collapse
Affiliation(s)
- Junichiro Irie
- Division of Rheumatology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Malaguti C, Vilella CA, Vieira KP, Souza GHMF, Hyslop S, Zollner RDL. Diacerhein downregulate proinflammatory cytokines expression and decrease the autoimmune diabetes frequency in nonobese diabetic (NOD) mice. Int Immunopharmacol 2008; 8:782-91. [PMID: 18442781 DOI: 10.1016/j.intimp.2008.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 12/26/2022]
Abstract
NOD mice are used as experimental models as they develop type 1 diabetes mellitus (DM-1) spontaneously, with a strong similarity to the human disease. Diabetes mellitus type 1 is characterized by the destruction of the islet, orchestrated by T lymphocytes that induce cytokine release like IL-1beta, promoting an inflammatory process. Diacerhein has antiinflammatory properties, inhibiting IL-1. However, the mechanisms involved in immune modulation are not completely understood. In the present study, serum and pancreatic islets were isolated to investigate the relationship between IL-1beta, IFN-gamma, IL-12 and TNF-alpha expression and diabetes onset, morphological aspects, and diacerhein dose dependence in animals treated with different doses (5, 10 and 50 mg/kg/day) and the control group (saline solution). The results demonstrated upregulation of mRNA islets and downregulation of the serum concentration of IL-1beta, IL-12 and TNF-alpha in the group treated with 5 and 10 mg/kg/day diacerhein, when compared with the saline group, and increased IFN-gamma serum concentration in the group treated with 50 mg/kg/day. These results suggest that diacerhein in NOD mice, decreases, in a dose-dependent manner, the diabetes frequency downregulating proinflammatory cytokines, such as IL-1beta, TNF-alpha, IFN-gamma and IL-12 at posttranscriptional or posttranslational level. Furthermore, using the HPLC method, diacerhein and rhein (active metabolite) were detected in serum and pancreas of treated mice.
Collapse
Affiliation(s)
- Carina Malaguti
- Laboratory of Immunology & Experimental Allergy - Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Miyazaki K, Takeda N, Ishimaru N, Omotehara F, Arakaki R, Hayashi Y. Analysis of in vivo role of alpha-fodrin autoantigen in primary Sjogren's syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:1051-9. [PMID: 16192640 PMCID: PMC1603665 DOI: 10.1016/s0002-9440(10)61194-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha-fodrin N-terminal portion (AFN) autoantigen mediates in vivo immunoregulation of autoimmune responses in primary Sjögren's syndrome (SS). We further examined this process and found that cleavage products of AFN were frequently detected in the salivary gland duct cells of SS patients. In in vitro studies using human salivary gland HSY cells, anti-Fas-induced apoptosis resulted in specific cleavage of alpha-fodrin into the 120-kd fragment, in association of alpha-fodrin with mu-calpain, and activation of caspase 3. Significant proliferative responses against AlphaFN autoantigen were observed in the peripheral blood mononuclear cells (PBMCs) from SS patients with higher pathological score (grade 4) and with short duration from onset (within 5 years). In vivo roles of AFN peptides were investigated using PBMCs from patients with SS, systemic lupus erythematosus, and rheumatoid arthritis. Significant proliferative T-cell responses of PBMCs to AFN peptide were detected in SS but not in systemic lupus erythematosus or rheumatoid arthritis. AFN peptide induced Th1-immune responses and accelerated down-regulation of Fas-mediated T-cell apoptosis in SS. Our data further elucidate the in vivo role of AFN autoantigen on the development of SS and suggest that the AFN autoantigen is a novel participant in peripheral tolerance.
Collapse
Affiliation(s)
- Katsushi Miyazaki
- Department of Pathology, Tokushima University School of Dentistry, 3 Kuramotocho, Tokushima 770, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Mahamed DA, Marleau A, Alnaeeli M, Singh B, Zhang X, Penninger JM, Teng YTA. G(-) anaerobes-reactive CD4+ T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes 2005; 54:1477-86. [PMID: 15855336 DOI: 10.2337/diabetes.54.5.1477] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic patients experience a higher risk for severe periodontitis; however, the underlying mechanism remains unclear. We investigated the contribution of antibacterial T-cell-mediated immunity to enhanced alveolar bone loss during periodontal infection in nonobese diabetic (NOD) mice by oral inoculation with Actinobacillus actinomycetemcomitans, a G(-) anaerobe responsible for juvenile and severe periodontitis. The results show that 1) inoculation with A. actinomycetemcomitans in pre-diabetic NOD mice does not alter the onset, incidence, and severity of diabetes; 2) after A. actinomycetemcomitans inoculation, diabetic NOD mice (blood glucose >200 mg/dl and with severe insulitis) exhibit significantly higher alveolar bone loss compared with pre-diabetic and nondiabetic NOD mice; and 3) A. actinomycetemcomitans-reactive CD4+ T-cells in diabetic mice exhibit significantly higher proliferation and receptor activator of nuclear factor kappaB ligand (RANKL) expression. When diabetic mice are treated with the RANKL antagonist osteoprotegerin (OPG), there is a significant reversal of alveolar bone loss, as well as reduced RANKL expression in A. actinomycetemcomitans-reactive CD4+ T-cells. This study clearly describes the impact of autoimmunity to anaerobic infection in an experimental periodontitis model of type 1 diabetes. Thus, microorganism-reactive CD4+ T-cells and the RANKL-OPG axis provide the molecular basis of the advanced periodontal breakdown in diabetes and, therefore, OPG may hold therapeutic potential for treating bone loss in diabetic subjects at high risk.
Collapse
Affiliation(s)
- Deeqa A Mahamed
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry and Center for Oral Biology, Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14620, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Ejrnaes M, Videbaek N, Christen U, Cooke A, Michelsen BK, von Herrath M. Different Diabetogenic Potential of Autoaggressive CD8+ Clones Associated with IFN-γ-Inducible Protein 10 (CXC Chemokine Ligand 10) Production but Not Cytokine Expression, Cytolytic Activity, or Homing Characteristics. THE JOURNAL OF IMMUNOLOGY 2005; 174:2746-55. [PMID: 15728483 DOI: 10.4049/jimmunol.174.5.2746] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease characterized by T cell-mediated destruction of the insulin-producing beta cells in the islets of Langerhans. From studies in animal models, CD8(+) T cells recognizing autoantigens such as islet-specific glucose-6-phosphatase catalytic subunit-related protein, insulin, or glutamic acid decarboxylase (GAD) are believed to play important roles in both the early and late phases of beta cell destruction. In this study, we investigated the factors governing the diabetogenic potential of autoreactive CD8(+) clones isolated from spleens of NOD mice that had been immunized with GAD65(515-524) or insulin B-chain(15-23) peptides. Although these two clones were identical in most phenotypic and functional aspects, for example cytokine production and killing of autologous beta cells, they differed in the expression of IFN-gamma-inducible protein-10, which was only produced at high levels by the insulin-specific clone, but not by the GAD65-specific clone, and other autoantigen-specific nonpathogenic CD8 T cell clones. Interestingly, upon i.p. injection into neonatal mice, only the insulin B-chain(15-23)-reactive CD8(+) T clone accelerated diabetes in all recipients after 4 wk, although both insulin- and GAD-reactive clones homed to pancreas and pancreatic lymph nodes with similar kinetics. Diabetes was associated with increased pancreatic T cell infiltration and, in particular, recruitment of macrophages. Thus, secretion of IFN-gamma-inducible protein-10 by autoaggressive CD8(+) lymphocytes might determine their diabetogenic capacity by affecting recruitment of cells to the insulitic lesion.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Movement/immunology
- Cells, Cultured
- Chemokine CXCL10
- Chemokines/biosynthesis
- Chemokines/metabolism
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Clone Cells
- Cytokines/biosynthesis
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Epitopes, T-Lymphocyte/immunology
- Female
- Glutamate Decarboxylase/administration & dosage
- Glutamate Decarboxylase/immunology
- Injections, Intraperitoneal
- Insulin/administration & dosage
- Insulin/immunology
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Islets of Langerhans Transplantation/immunology
- Isoenzymes/administration & dosage
- Isoenzymes/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
Collapse
Affiliation(s)
- Mette Ejrnaes
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
22
|
Arakaki R, Ishimaru N, Saito I, Kobayashi M, Yasui N, Sumida T, Hayashi Y. Development of autoimmune exocrinopathy resembling Sjögren's syndrome in adoptively transferred mice with autoreactive CD4+ T cells. ACTA ACUST UNITED AC 2003; 48:3603-9. [PMID: 14674013 DOI: 10.1002/art.11352] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathologic mechanisms responsible for organ-specific tissue damage in primary Sjögren's syndrome (SS) remain unclear, but it has been suggested that the pathology is mediated by autoreactive CD4+ T cells infiltrating the salivary and lacrimal glands. This study was undertaken to investigate whether alpha-fodrin autoantigen-specific autoreactive CD4+ T cells are capable of inducing autoimmune lesions. METHODS A total of 45 synthetic alpha-fodrin peptides designed to be 20 amino acid residues in length were generated. To establish an autoreactive T cell line, limiting dilution analysis (LDA) was performed on lymph node cells (LNCs) in the presence of alpha-fodrin peptides. The effects of adoptive transfer of autoreactive CD4+ T cells into normal syngeneic recipients were investigated. RESULTS Autoreactive CD4+ T cell lines that recognize synthetic alpha-fodrin peptide, which produced Th1 cytokines and showed cytotoxic activities, were established in a murine model for SS. T cell receptor V(beta) usage and third complementarity-determining region (CDR3) sequences indicated that in some cases V(beta)6-CDR3 genes matched between the tissue-infiltrating T cells and the autoreactive T cell lines. Adoptive transfer of the autoreactive CD4+ T cells into normal syngeneic recipients induced autoimmune lesions quite similar to those of SS. CONCLUSION Our data help to elucidate the pathogenic mechanisms responsible for tissue destruction in autoimmune exocrinopathy and indicate that autoreactive CD4+ T cells play a pivotal role in the development of murine SS.
Collapse
Affiliation(s)
- Rieko Arakaki
- Tokushima University School of Dentistry, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Matsushita K, Okita H, Suzuki A, Shimoda K, Fukuma M, Yamada T, Urano F, Honda T, Sano M, Iwanaga S, Ogawa S, Hata JI, Umezawa A. Islet cell hyperplasia in transgenic mice overexpressing EAT/mcl-1, a bcl-2 related gene. Mol Cell Endocrinol 2003; 203:105-16. [PMID: 12782407 DOI: 10.1016/s0303-7207(03)00095-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
EAT/mcl-1 (EAT), a bcl-2 related anti-apoptotic gene, is up-regulated at the early stage of differentiation of human embryonal carcinoma cells; cells which serve as a model for early embryogenesis. We generated transgenic mice for the human EAT gene driven by the EF1 alpha promoter in order to elucidate its functional role in vivo. Histologically, these mice exhibited hyperplasia of Langerhans islet cells; pancreatic cell regions composed of both insulin- and glucagon-producing cells. Furthermore, Bax and Bag-1 -- possible heterodimeric partners for EAT in the anti-apoptotic process -- were up-regulated in islets isolated from the EAT transgenic mice. The insulin tolerance test exhibited no significant difference between the EAT transgenic mice and non-transgenic mice, indicating that islet cell hyperplasia was not due to insulin resistance. In conclusion, EAT transgenic mice exhibit hyperplasia of pancreatic beta cells. EAT may inhibit apoptosis of beta cells, allowing these cells to circumvent the process of apoptosis until the adult stage.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Koarada S, Wu Y, Olshansky G, Ridgway WM. Increased nonobese diabetic Th1:Th2 (IFN-gamma:IL-4) ratio is CD4+ T cell intrinsic and independent of APC genetic background. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6580-7. [PMID: 12444170 DOI: 10.4049/jimmunol.169.11.6580] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autoreactive CD4(+) T cells play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We recently showed that the non-MHC genetic background controlled enhanced entry into the IFN-gamma pathway by NOD vs B6.G7 T cells. In this study, we demonstrate that increased IFN-gamma, decreased IL-4, and decreased IL-10 production in NOD T cells is CD4 T cell intrinsic. NOD CD4(+) T cells purified and stimulated with anti-CD3/anti-CD28 Abs generated greater IFN-gamma, less IL-4, and less IL-10 than B6.G7 CD4(+) T cells. The same results were obtained in purified NOD.H2(b) vs B6 CD4(+) T cells, demonstrating that the non-MHC NOD genetic background controlled the cytokine phenotype. Moreover, the increased IFN-gamma:IL-4 cytokine ratio was independent of the genetic background of APCs, since NOD CD4(+) T cells generated increased IFN-gamma and decreased IL-4 compared with B6.G7 CD4(+) T cells, regardless of whether they were stimulated with NOD or B6.G7 APCs. Cell cycle analysis showed that the cytokine differences were not due to cycle/proliferative differences between NOD and B6.G7, since stimulated CD4(+) T cells from both strains showed quantitatively identical entry into subsequent cell divisions (shown by CFSE staining), although NOD cells showed greater numbers of IFN-gamma-positive cells with each subsequent cell division. Moreover, 7-aminoactinomycin D and 5-bromo-2'-deoxyuridine analysis showed indistinguishable entry into G(0)/G(1), S, and G(2)/M phases of the cell cycle for both NOD and B6.G7 CD4(+) cells, with both strains generating IFN-gamma predominantly in the S phase. Therefore, the NOD cytokine effector phenotype is CD4(+) T cell intrinsic, genetically controlled, and independent of cell cycle machinery.
Collapse
Affiliation(s)
- Syuichi Koarada
- Division of Rheumatology and Immunology, Department of Medicine, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | |
Collapse
|
25
|
Kudva YC, Rajagopalan G, Raju R, Abraham RS, Smart M, Hanson J, David CS. Modulation of insulitis and type 1 diabetes by transgenic HLA-DR3 and DQ8 in NOD mice lacking endogenous MHC class II. Hum Immunol 2002; 63:987-99. [PMID: 12392851 DOI: 10.1016/s0198-8859(02)00435-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To evaluate the contributions of DR3 and DQ8 to the etiopathogenesis of type 1 diabetes in a diabetes-predisposing milieu, we developed human leukocyte antigen (HLA) transgenic mice on the nonobese diabetic (NOD) background in the absence of the endogenous class II molecule, I-A(g7) and studied the incidence of both spontaneous and experimental (induced) autoimmune diabetes. Transgenic expression of HLA-DR3 and -DQ8 (either alone or in combination) did not confer susceptibility to spontaneous or cyclophosphamide-induced type 1 diabetes. Expression of I-A(g7) was mandatory for development of spontaneous or cyclophosphamide-induced diabetes. However, multiple low doses of streptozotocin could induce diabetes in all groups of mice independent of the class II molecules expressed. In unmanipulated mice, only islets from I-A(g7+/+) mice revealed significant intra-islet infiltration. Although a characteristic peri-insulitis/peri-ductulitis was present in Abeta(0)/NOD mice, islets from DR3, DQ8 and DR3 x DQ8 double transgenic mice demonstrated significantly less infiltration. In conclusion, transgenic expression of HLA-DR3 and -DQ8 associated with predisposition to type 1 diabetes alone is not sufficient to induce spontaneous diabetes in NOD mice lacking endogenous class II molecules.
Collapse
Affiliation(s)
- Yogish C Kudva
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ventura-Oliveira D, Vilella CA, Zanin ME, Castro GM, Moreira Filho DC, Zollner RL. Kinetics of TNF-alpha and IFN-gamma mRNA expression in islets and spleen of NOD mice. Braz J Med Biol Res 2002; 35:1347-55. [PMID: 12426635 DOI: 10.1590/s0100-879x2002001100013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 +/- 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 +/- 8 AU, P<0.05) and 28 weeks (144 +/- 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with beta cell destruction and overt diabetes.
Collapse
Affiliation(s)
- D Ventura-Oliveira
- Disciplina e Laboratório de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | |
Collapse
|
27
|
Yang Y, Bao M, Yoon JW. Intrinsic defects in the T-cell lineage results in natural killer T-cell deficiency and the development of diabetes in the nonobese diabetic mouse. Diabetes 2001; 50:2691-9. [PMID: 11723051 DOI: 10.2337/diabetes.50.12.2691] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-cell-mediated autoimmune diabetes in nonobese diabetic (NOD) mice is closely associated with natural killer T (NKT)-cell deficiency. To determine whether intrinsic defects of the T-cell lineage contribute to the pathogenesis of the disease and NKT cell deficiency, we reconstituted the T-cell compartment in NOD.scid or BALB.scid mice with T-cells from NOD, nonobese diabetes-resistant (NOR), or AKR thymic precursor cells and examined the development of the NKT cell population. NKT cells developed well from AKR thymic precursor cells but not from other precursor cells in both recipient strains. Insulitis and diabetes developed only in the NOD.scid recipients of NOD or NOR precursor cells. When thymic precursor cells of beta2-microglobulin gene-deficient AKR mice, which have a deficient NKT population, were introduced into NOD.scid recipients, both CD4(+) and CD8(+) T-cell populations developed and the recipient mice developed insulitis and diabetes. We conclude that NKT cells originate from a T-cell-committed thymic precursor population and that the deficiency in the NKT cell population in NOD mice results from intrinsic defects within the T-cell lineage and plays a major role in the development of autoimmune diabetes in the presence of both the NOD thymus and antigen-presenting cells.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Cell Differentiation
- Cytokines/biosynthesis
- Diabetes Mellitus, Type 1/immunology
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hyaluronan Receptors/analysis
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lymph Nodes/cytology
- Lymphocyte Count
- Mice
- Mice, Inbred AKR
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Interleukin-2/analysis
- Spleen/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
Collapse
Affiliation(s)
- Y Yang
- Julia McFarlane Diabetes Research Centre, Department of Microbiology and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
28
|
Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1137-40. [PMID: 11466326 DOI: 10.4049/jimmunol.167.3.1137] [Citation(s) in RCA: 526] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+)CD25(+) regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4(+)CD25(-) T cells and are potent suppressors of CD4(+)CD25(-) T cell activation in vitro. We demonstrate that CD4(+)CD25(+) T cells also suppress both proliferation and IFN-gamma production by CD8(+) T cells induced either by polyclonal or Ag-specific stimuli. CD4(+)CD25(+) T cells inhibit the activation of CD8(+) responders by inhibiting both IL-2 production and up-regulation of IL-2Ralpha-chain (CD25) expression. Suppression is mediated via a T-T interaction as activated CD4(+)CD25(+) T cells suppress the responses of TCR-transgenic CD8(+) T cells stimulated with soluble peptide-MHC class I tetramers in the complete absence of APC. These results broaden the immunoregulatory role played by CD4(+)CD25(+) T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8(+) T cells to tumor or foreign Ags.
Collapse
Affiliation(s)
- C A Piccirillo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Koarada S, Wu Y, Ridgway WM. Increased entry into the IFN-gamma effector pathway by CD4+ T cells selected by I-Ag7 on a nonobese diabetic versus C57BL/6 genetic background. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1693-702. [PMID: 11466393 DOI: 10.4049/jimmunol.167.3.1693] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma-mediated Th1 effects play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We analyzed functional responses of CD4(+) T cells from NOD and B6.G7 MHC congenic mice, which share the H2(g7) MHC region but differ in their non-MHC genetic background. T cells from each strain proliferated equally to panstimulation with T cell lectins as well as to stimulation with glutamic acid decarboxylase 524-543 (self) and hen egg lysozyme 11-23 (foreign) I-A(g7)-binding peptide epitopes. Despite comparable proliferative responses, NOD CD4(+) T cells had significantly increased IFN-gamma intracellular/extracellular protein and mRNA responses compared with B6.G7 T cells as measured by intracellular cytokine analysis, time resolved fluorometry, and RNase protection assays. The increased IFN-gamma production was not due to an increase in the amount of IFN-gamma produced per cell but to an increase in the number of NOD CD4(+) T cells entering the IFN-gamma-producing pathway. The increased IFN-gamma response in NOD mice was not due to increased numbers of activated precursors as measured by activation/memory markers. B6.G7 lymphoid cells demonstrated an absolute decrease in IFN-gamma mRNA, an increase in IL-4 mRNA production, and a significantly decreased IFN-gamma:IL-4 mRNA transcript ratio compared with NOD cells. CD4(+) T cells from C57BL6 mice also showed significantly decreased IFN-gamma production compared with CD4(+) T cells from NOD.H2(b) MHC-congenic mice (which have an H2(b) MHC region introgressed onto an NOD non-MHC background). Therefore, the NOD non-MHC background predisposes to a quantitatively increased IFN-gamma response, independent of MHC class II-mediated T cell repertoire selection, even when compared with a prototypical Th1 strain.
Collapse
Affiliation(s)
- S Koarada
- Division of Rheumatology and Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
30
|
Liu CP, Jiang K, Wu CH, Lee WH, Lin WJ. Detection of glutamic acid decarboxylase-activated T cells with I-Ag7 tetramers. Proc Natl Acad Sci U S A 2000; 97:14596-601. [PMID: 11106373 PMCID: PMC18964 DOI: 10.1073/pnas.250390997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Indexed: 11/18/2022] Open
Abstract
CD4(+) T cells selected by the type 1 diabetes associated class II MHC I-A(g7) molecules play a critical role in the disease process. Multivalent MHC/peptide tetramers have been used to directly detect antigen-specific T cells. Detection of autoantigen-activated CD4(+) T cells with tetramers should be very helpful in the study of the roles of these cells in diabetes. We report here the generation of tetramers of I-A(g7) covalently linked to two glutamic acid decarboxylase (GAD) peptides and the detection of GAD peptide-activated T cells from nonobese diabetic (NOD) mice. The I-A(g7) heterodimers can form stable complexes with a covalently bound GAD peptide and can stimulate antigen specific T cells. Furthermore, I-A(g7)/GAD peptide tetramer can detect most if not all of the antigen-specific CD4(+) T cells from immunized NOD mice. Antigen-specific T cells detected by the tetramers can up-regulate their CD4 expression on the cell surface after being restimulated with the GAD peptides in vitro. In contrast, the tetramers can detect a percentage of T cells in lymph nodes and spleens and T cells infiltrating islets from nonimmunized mice that is not significantly above the background. Therefore, T cells specific for the GAD peptides are present in NOD mice at a frequency too low to be detected, but immunization of NOD mice can facilitate their detection by tetramers.
Collapse
Affiliation(s)
- C P Liu
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- J W Yoon
- Dept of Microbiology and Infectious Disease, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
32
|
Arneson LS, Peterson M, Sant AJ. The MHC class II molecule I-Ag7 exists in alternate conformations that are peptide dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2059-67. [PMID: 10925290 DOI: 10.4049/jimmunol.165.4.2059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-dependent diabetes mellitus is an autoimmune disease that is genetically linked to the HLA class II molecule DQ in humans and to MHC I-Ag7 in nonobese diabetic mice. The I-Ag7 beta-chain is unique and contains multiple polymorphisms, at least one of which is shared with DQ alleles linked to insulin-dependent diabetes mellitus. This polymorphism occurs at position 57 in the beta-chain, in which aspartic acid is mutated to a serine, a change that results in the loss of an interchain salt bridge between alphaArg76 and betaAsp57 at the periphery of the peptide binding groove. Using mAbs we have identified alternative conformations of I-Ag7 class II molecules. By using an invariant chain construct with various peptides engineered into the class II-associated invariant chain peptide (CLIP) region we have found that formation of these conformations is dependent on the peptide occupying the binding groove. Blocking studies with these Abs indicate that these conformations are present at the cell surface and are capable of interactions with TCRs that result in T cell activation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Binding Sites/genetics
- Binding Sites/immunology
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Genetic Vectors
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred CBA
- Mice, Inbred NOD
- Mutagenesis, Site-Directed
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Protein Conformation
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- L S Arneson
- Department of Pathology, Committee on Immunology and Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
33
|
|
34
|
Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH, Hirasawa K, Sherwin RS, Jun HS. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 1999; 284:1183-7. [PMID: 10325232 DOI: 10.1126/science.284.5417.1183] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glutamic acid decarboxylase (GAD) is a pancreatic beta cell autoantigen in humans and nonobese diabetic (NOD) mice. beta Cell-specific suppression of GAD expression in two lines of antisense GAD transgenic NOD mice prevented autoimmune diabetes, whereas persistent GAD expression in the beta cells in the other four lines of antisense GAD transgenic NOD mice resulted in diabetes, similar to that seen in transgene-negative NOD mice. Complete suppression of beta cell GAD expression blocked the generation of diabetogenic T cells and protected islet grafts from autoimmune injury. Thus, beta cell-specific GAD expression is required for the development of autoimmune diabetes in NOD mice, and modulation of GAD might, therefore, have therapeutic value in type 1 diabetes.
Collapse
Affiliation(s)
- J W Yoon
- Laboratory of Viral and Immunopathogenesis of Diabetes, Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW. The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 1999; 189:347-58. [PMID: 9892617 PMCID: PMC2192977 DOI: 10.1084/jem.189.2.347] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have shown previously that the inactivation of macrophages in nonobese diabetic (NOD) mice results in the prevention of diabetes; however, the mechanisms involved remain unknown. In this study, we found that T cells in a macrophage-depleted environment lost their ability to differentiate into beta cell-cytotoxic T cells, resulting in the prevention of autoimmune diabetes, but these T cells regained their beta cell-cytotoxic potential when returned to a macrophage-containing environment. To learn why T cells in a macrophage-depleted environment lose their ability to kill beta cells, we examined the islet antigen-specific immune response and T cell activation in macrophage-depleted NOD mice. There was a shift in the immune balance, a decrease in the T helper cell type 1 (Th1) immune response, and an increase in the Th2 immune response, due to the reduced expression of the macrophage-derived cytokine IL-12. As well, there was a deficit in T cell activation, evidenced by significant decreases in the expression of Fas ligand and perforin. The administration of IL-12 substantially reversed the prevention of diabetes in NOD mice conferred by macrophage depletion. We conclude that macrophages play an essential role in the development and activation of beta cell-cytotoxic T cells that cause beta cell destruction, resulting in autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- H S Jun
- Julia McFarlane Diabetes Research Centre, Department of Microbiology and Infectious Diseases, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
36
|
Höglund P, Mintern J, Waltzinger C, Heath W, Benoist C, Mathis D. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 1999; 189:331-9. [PMID: 9892615 PMCID: PMC2192987 DOI: 10.1084/jem.189.2.331] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Little is known about the events triggering lymphocyte invasion of the pancreatic islets in prelude to autoimmune diabetes. For example, where islet-reactive T cells first encounter antigen has not been identified. We addressed this issue using BDC2.5 T cell receptor transgenic mice, which express a receptor recognizing a natural islet beta cell antigen. In BDC2.5 animals, activated T cells were found only in the islets and the lymph nodes draining them, and there was a close temporal correlation between lymph node T cell activation and islet infiltration. When naive BDC2.5 T cells were transferred into nontransgenic recipients, proliferating cells were observed only in pancreatic lymph nodes, and this occurred significantly before insulitis was detectable. Surprisingly, proliferation was not seen in 10-day-old recipients. This age-dependent dichotomy was reproduced in a second transfer system based on an unrelated antigen artificially expressed on beta cells. We conclude that beta cell antigens are transported specifically to pancreatic lymph nodes, where they trigger reactive T cells to invade the islets. Systemic or extrapancreatic T cell priming, indicative of activation via molecular mimicry or superantigens, was not seen. Compromised presentation of beta cell antigens in the pancreatic lymph nodes of juvenile animals may be the root of a first "checkpoint" in diabetes progression.
Collapse
Affiliation(s)
- P Höglund
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997; 7:727-38. [PMID: 9430219 DOI: 10.1016/s1074-7613(00)80392-1] [Citation(s) in RCA: 501] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T L Delovitch
- The John P. Robarts Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Canada.
| | | |
Collapse
|