1
|
Tsai FY, Lin CY, Su YH, Yu JK, Kuo DH. Evolutionary History of Bilaterian FoxP Genes: Complex Ancestral Functions and Evolutionary Changes Spanning 2R-WGD in the Vertebrate Lineage. Mol Biol Evol 2025; 42:msaf072. [PMID: 40155202 PMCID: PMC11998571 DOI: 10.1093/molbev/msaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Human and fly FoxP homologs are well-known for their roles in the development of cognitive abilities. These findings have led to the hypothesis that the ancestral function of FoxP was in the development of cognitive neural circuits. However, complex brains in human and fly evolved independently, and the similar cognitive function of FoxP in human and fly may thus be interpreted as a result of convergent evolution. In addition, the 4 gnathostome FoxP paralogs also possess diverse developmental functions unrelated to neurodevelopment, which might have been overlooked in comparative studies of invertebrate FoxP homologs. To resolve these uncertainties, we set out to improve the phylogenetic reconstruction of vertebrate FoxP homologs and broaden the taxonomic sampling of gene expression profiling to include an invertebrate chordate, ambulacrarian deuterostomes, and a spiralian protostome. Using phylogenetic analysis combined with synteny mapping, we elaborated the hypothesis that the 4 FoxP paralogs arose through the 2R-WGD events shared by all gnathostome species. Based on this evolutionary scenario, we examined the FoxP expression pattern in amphioxus development and concluded that FoxP already had complex developmental functions across all germ layers in the chordate ancestor. Moreover, in sea urchin, hemichordate, and catenulid flatworm, FoxP was expressed in the gut prominently, in addition to the anterior neurogenic ectoderm. This surprising similarity shared among these distantly related species implies that FoxP may have a significant function in gut development in addition to the neural development function in the last common ancestor of bilaterians.
Collapse
Affiliation(s)
- Fu-Yu Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Museum of Zoology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Yang J. Emerging roles of long non-coding RNA FOXP4-AS1 in human cancers: From molecular biology to clinical application. Heliyon 2024; 10:e39857. [PMID: 39539976 PMCID: PMC11558633 DOI: 10.1016/j.heliyon.2024.e39857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Forkhead box P4 antisense RNA 1 (FOXP4-AS1) is a long non-coding RNA (lncRNA) situated on the human chromosome 6p21.1 locus. Previous research has demonstrated that FOXP4-AS1 is dysregulated in various cancers and exhibits a dual purpose as a tumor suppressor or oncogene in specific types of cancer. The levels of FOXP4-AS1 are significantly correlated with clinical features of cancer as well as prognosis. Additionally, FOXP4-AS1 is stimulated by transcription factors ATF3, YY1, PAX5, and SP4. The molecular mechanisms of FOXP4-AS1 in cancer are quite complex. It competitively sponges multiple miRNAs, bidirectionally regulates the levels of host gene FOXP4, activates the PI3K/AKT, Wnt/β-catenin, and ERK/MAPK signaling pathways, and recruits chromatin-modifying enzymes or interacts with other proteins to regulate malignant phenotypes of tumors, including proliferation, invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In this review, we provide an overview of the latest developments in FOXP4-AS1 oncology research, outlines its molecular regulatory networks in cancer, and discusses its prospective relevance as a cancer therapeutic target as well as a biomarker for prognosis and diagnosis.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
3
|
Tamarín S, Galaz-Davison P, Ramírez-Sarmiento CA, Babul J, Medina E. Dissecting the structural and functional consequences of the evolutionary proline-glycine deletion in the wing 1 region of the forkhead domain of human FoxP1. FEBS Lett 2024; 598:2281-2291. [PMID: 38946055 DOI: 10.1002/1873-3468.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
The human FoxP transcription factors dimerize via three-dimensional domain swapping, a unique feature among the human Fox family, as result of evolutionary sequence adaptations in the forkhead domain. This is the case for the conserved glycine and proline residues in the wing 1 region, which are absent in FoxP proteins but present in most of the Fox family. In this work, we engineered both glycine (G) and proline-glycine (PG) insertion mutants to evaluate the deletion events in FoxP proteins in their dimerization, stability, flexibility, and DNA-binding ability. We show that the PG insertion only increases protein stability, whereas the single glycine insertion decreases the association rate and protein stability and promotes affinity to the DNA ligand.
Collapse
Affiliation(s)
- Stephanie Tamarín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Kamal MM, Teeya ST, Rahman MM, Talukder MEK, Sarmin S, Wani TA, Hasan MM. Prediction and assessment of deleterious and disease causing nonsynonymous single nucleotide polymorphisms (nsSNPs) in human FOXP4 gene: An in - silico study. Heliyon 2024; 10:e32791. [PMID: 38994097 PMCID: PMC11237951 DOI: 10.1016/j.heliyon.2024.e32791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
In humans, FOXP gene family is involved in embryonic development and cancer progression. The FOXP4 (Forkhead box protein P4) gene belongs to this FOXP gene family. FOXP4 gene plays a crucial role in oncogenesis. Single nucleotide polymorphisms are biological markers and common determinants of human diseases. Mutations can largely affect the function of the corresponding protein. Therefore, the molecular mechanism of nsSNPs in the FOXP4 gene needs to be elucidated. Initially, the SNPs of the FOXP4 gene were extracted from the dbSNP database and a total of 23124 SNPs was found, where 555 nonsynonymous, 20525 intronic, 1114 noncoding transcript, 334 synonymous were obtained and the rest were unspecified. Then, a series of bioinformatics tools (SIFT, PolyPhen2, SNAP2, PhD SNP, PANTHER, I-Mutant2.0, MUpro, GOR IV, ConSurf, NetSurfP 2.0, HOPE, DynaMut2, GeneMANIA, STRING and Schrodinger) were used to explore the effect of nsSNPs on FOXP4 protein function and structural stability. First, 555 nsSNPs were analyzed using SIFT, of which 57 were found as deleterious. Following, PolyPhen2, SNAP2, PhD SNP and PANTHER analyses, 10 nsSNPs (rs372762294, rs141899153, rs142575732, rs376938850, rs367607523, rs112517943, rs140387832, rs373949416, rs373949416 and rs376160648) were common and observed as deleterious, damaging and diseases associated. Following that, using I-Mutant2.0 and MUpro servers, 7 nsSNPs were found to be the most unstable. GOR IV predicted that these seven nsSNPs affect protein structure by altering the protein contents of alpha helixes, extended strands, and random coils. Following DynaMut2, 5 nsSNPs showed a decrease in the ΔΔG value compared with the wild-type and were found to be responsible for destabilizing the corresponding protein. GeneMANIA and STRING network revealed interaction of FOXP4 with other genes. Finally, molecular dynamics simulation analysis revealed consistent fluctuation in RMSD and RMSF values, Rg and hydrogen bonds in the mutant proteins compared with WT, which might alter the functional and structural stability of the corresponding protein. As a result, the aforementioned integrated comprehensive bioinformatic analyses provide insight into how various nsSNPs of the FOXP4 gene change the structural and functional properties of the corresponding protein, potentially proceeding with the pathophysiology of human diseases.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Shamiha Tabassum Teeya
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mahfuzur Rahman
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, 1216, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering & Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Sonia Sarmin
- BIRTAN-Bangladesh Institute of Research and Training on Applied Nutrition, Jhenaidah, 7300, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
5
|
Ji J, Qian Q, Cheng W, Ye X, Jing A, Ma S, Ding Y, Ma X, Wang Y, Sun Q, Wang X, Chen Y, Zhu L, Yuan Q, Xu M, Qin J, Ma L, Yang J, Zhang M, Geng T, Wang S, Wang D, Song Y, Zhang B, Xu Y, Xu L, Liu S, Liu W, Liu B. FOXP4-mediated induction of PTK7 activates the Wnt/β-catenin pathway and promotes ovarian cancer development. Cell Death Dis 2024; 15:332. [PMID: 38740744 PMCID: PMC11091054 DOI: 10.1038/s41419-024-06713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.
Collapse
Affiliation(s)
- Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Wenhao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Xiaoqing Ye
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yasong Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Qian Sun
- The First People's Hospital of Lianyungang, the First Affiliated Hospital of Kangda College of Nanjing Medical University, 7 Zhenhua Road, Haizhou, 222061, Lianyungang, Jiangsu, PR China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing Yuan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Menghan Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Jingting Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Lin Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Jiayan Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Meiqi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Ting Geng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Sen Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yizhuo Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Boyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yuting Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Linyu Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China.
| |
Collapse
|
6
|
Zhang F, Zhou P, Wang L, Liao X, Liu X, Ke C, Wen S, Shu Y. Polymorphisms of IFN signaling genes and FOXP4 influence the severity of COVID-19. BMC Infect Dis 2024; 24:270. [PMID: 38429664 PMCID: PMC10905836 DOI: 10.1186/s12879-024-09040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.
Collapse
Affiliation(s)
- Feng Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Pingping Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Simin Wen
- Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, P. R. China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China.
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102629, P. R. China.
| |
Collapse
|
7
|
Eladham MW, Selvakumar B, Saheb Sharif-Askari N, Saheb Sharif-Askari F, Ibrahim SM, Halwani R. Unraveling the gut-Lung axis: Exploring complex mechanisms in disease interplay. Heliyon 2024; 10:e24032. [PMID: 38268584 PMCID: PMC10806295 DOI: 10.1016/j.heliyon.2024.e24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
The link between gut and lung starts as early as during organogenesis. Even though they are anatomically distinct, essential bidirectional crosstalk via complex mechanisms supports GLA. Emerging studies have demonstrated the association of gut and lung diseases via multifaceted mechanisms. Advancements in omics and metagenomics technologies revealed a potential link between gut and lung microbiota, adding further complexity to GLA. Despite substantial studies on GLA in various disease models, mechanisms beyond microbial dysbiosis regulating the interplay between gut and lung tissues during disease conditions are not thoroughly reviewed. This review outlines disease specific GLA mechanisms, emphasizing research gaps with a focus on gut-to-lung direction based on current GLA literature. Moreover, the review discusses potential gut microbiota and their products like metabolites, immune modulators, and non-bacterial contributions as a basis for developing treatment strategies for lung diseases. Advanced experimental methods, modern diagnostic tools, and technological advancements are also highlighted as crucial areas for improvement in developing novel therapeutic approaches for GLA-related diseases. In conclusion, this review underscores the importance of exploring additional mechanisms within the GLA to gain a deeper understanding that could aid in preventing and treating a wide spectrum of lung diseases.
Collapse
Affiliation(s)
- Mariam Wed Eladham
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmaceutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
8
|
Nikaido M, Shirai A, Mizumaki Y, Shigenobu S, Ueno N, Hatta K. Intestinal expression patterns of transcription factors and markers for interstitial cells in the larval zebrafish. Dev Growth Differ 2023; 65:418-428. [PMID: 37452633 DOI: 10.1111/dgd.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The osr2 is expressed in the anterior part, while foxP4 in its distal part. Also, we reported the expression pattern of pdgfra for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.
Collapse
Affiliation(s)
| | - Ayaka Shirai
- School of Science, University of Hyogo, Ako-gun, Japan
| | | | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Naoto Ueno
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
- Unit of Quantitative and Imaging Biology, International Research Collaboration Center, National Institute of Natural Sciences, Okazaki, Japan
| | - Kohei Hatta
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
9
|
Brütsch SM, Madzharova E, Pantasis S, Wüstemann T, Gurri S, Steenbock H, Gazdhar A, Kuhn G, Angel P, Bellusci S, Brinckmann J, Auf dem Keller U, Werner S, Bordoli MR. Mesenchyme-derived vertebrate lonesome kinase controls lung organogenesis by altering the matrisome. Cell Mol Life Sci 2023; 80:89. [PMID: 36920550 PMCID: PMC10017657 DOI: 10.1007/s00018-023-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Vertebrate lonesome kinase (VLK) is the only known secreted tyrosine kinase and responsible for the phosphorylation of a broad range of secretory pathway-resident and extracellular matrix proteins. However, its cell-type specific functions in vivo are still largely unknown. Therefore, we generated mice lacking the VLK gene (protein kinase domain containing, cytoplasmic (Pkdcc)) in mesenchymal cells. Most of the homozygous mice died shortly after birth, most likely as a consequence of their lung abnormalities and consequent respiratory failure. E18.5 embryonic lungs showed a reduction of alveolar type II cells, smaller bronchi, and an increased lung tissue density. Global mass spectrometry-based quantitative proteomics identified 97 proteins with significantly and at least 1.5-fold differential abundance between genotypes. Twenty-five of these had been assigned to the extracellular region and 15 to the mouse matrisome. Specifically, fibromodulin and matrilin-4, which are involved in extracellular matrix organization, were significantly more abundant in lungs from Pkdcc knockout embryos. These results support a role for mesenchyme-derived VLK in lung development through regulation of matrix dynamics and the resulting modulation of alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Salome M Brütsch
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Sophia Pantasis
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Till Wüstemann
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010, Bern, Switzerland.,Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Gisela Kuhn
- Department of Health Sciences and Technology, Institute of Biomechanics, ETH Zurich, 8093, Zurich, Switzerland
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Saverio Bellusci
- German Lung Research Center (DCL), Giessen, Germany.,Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Aulweg 130, 35392, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany.,Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| | - Mattia R Bordoli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
10
|
Chen X, Xu J, Bao W, Li H, Wu W, Liu J, Pi J, Tomlinson B, Chan P, Ruan C, Zhang Q, Zhang L, Fan H, Morrisey E, Liu Z, Zhang Y, Lin L, Liu J, Zhuang T. Endothelial Foxp1 Regulates Neointimal Hyperplasia Via Matrix Metalloproteinase-9/Cyclin Dependent Kinase Inhibitor 1B Signal Pathway. J Am Heart Assoc 2022; 11:e026378. [PMID: 35904197 PMCID: PMC9375493 DOI: 10.1161/jaha.122.026378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The endothelium is essential for maintaining vascular physiological homeostasis and the endothelial injury leads to the neointimal hyperplasia because of the excessive proliferation of vascular smooth muscle cells. Endothelial Foxp1 (forkhead box P1) has been shown to control endothelial cell (EC) proliferation and migration in vitro. However, whether EC-Foxp1 participates in neointimal formation in vivo is not clear. Our study aimed to investigate the roles and mechanisms of EC-Foxp1 in neointimal hyperplasia. Methods and Results The wire injury femoral artery neointimal hyperplasia model was performed in Foxp1 EC-specific loss-of-function and gain-of-function mice. EC-Foxp1 deletion mice displayed the increased neointimal formation through elevation of vascular smooth muscle cell proliferation and migration, and the reduction of EC proliferation hence reendothelialization after injury. In contrast, EC-Foxp1 overexpression inhibited the neointimal formation. EC-Foxp1 paracrine regulated vascular smooth muscle cell proliferation and migration via targeting matrix metalloproteinase-9. Also, EC-Foxp1 deletion impaired EC repair through reduction of EC proliferation via increasing cyclin dependent kinase inhibitor 1B expression. Delivery of cyclin dependent kinase inhibitor 1B-siRNA to ECs using RGD (Arg-Gly-Asp)-peptide magnetic nanoparticle normalized the EC-Foxp1 deletion-mediated impaired EC repair and attenuated the neointimal formation. EC-Foxp1 regulates matrix metalloproteinase-9/cyclin dependent kinase inhibitor 1B signaling pathway to control injury induced neointimal formation. Conclusions Our study reveals that targeting EC-Foxp1-matrix metalloproteinase-9/cyclin dependent kinase inhibitor 1B pathway might provide future novel therapeutic interventions for restenosis.
Collapse
Affiliation(s)
- Xiaoli Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jianfei Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Wenzhen Bao
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Hongda Li
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Wenrun Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jiwen Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jingjiang Pi
- Department of CardiologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Brian Tomlinson
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Paul Chan
- Division of CardiologyDepartment of Internal MedicineWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Chengchao Ruan
- Department of Physiology and Pathophysiology School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Qi Zhang
- Department of CardiologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Lin Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huimin Fan
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Edward Morrisey
- Department of Cell and Developmental Biology (R.W., E.E.M.)Department of Medicine (E.E.M.)Penn Cardiovascular Institute (E.E.M.), and Penn Institute for Regenerative Medicine (E.E.M.)University of PennsylvaniaPhiladelphiaPennsylvania
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Li Lin
- Department of CardiologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jie Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaResearch Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina,Department of Physiology and Pathophysiology School of Basic Medical SciencesFudan UniversityShanghaiChina,Shanghai Jinshan Eye Disease Prevention and Treatment InstituteShanghai Jinshan Nuclear and Chemical Injury Emergency Treatment CenterJinshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will Host Genetics Affect the Response to SARS-CoV-2 Vaccines? Historical Precedents. Front Med (Lausanne) 2022; 9:802312. [PMID: 35360730 PMCID: PMC8962369 DOI: 10.3389/fmed.2022.802312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Donaldson DS, Shih BB, Mabbott NA. Aging-Related Impairments to M Cells in Peyer's Patches Coincide With Disturbances to Paneth Cells. Front Immunol 2021; 12:761949. [PMID: 34938288 PMCID: PMC8687451 DOI: 10.3389/fimmu.2021.761949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer’s patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer’s patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer’s patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.
Collapse
Affiliation(s)
- David S Donaldson
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Barbara B Shih
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
13
|
Zhang S, Wan J, Chen M, Cai D, Xu J, Chen Q. Tumor-Infiltrating CD8+ T Cells Driven by the Immune Checkpoint-Associated Gene IDO1 Are Associated With Cervical Cancer Prognosis. Front Oncol 2021; 11:720447. [PMID: 34778035 PMCID: PMC8578845 DOI: 10.3389/fonc.2021.720447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-infiltrating immune cells, associated with tumor progression, are promising prognostic biomarkers. However, the relationship between levels of gene expression and that of immune cell infiltration in cervical cancer prognosis is unknown. In this study, three cervical cancer gene expression microarrays (GSE6791, GSE63678 and GSE55940) were obtained from the GEO database. The IDO1 gene was identified by differentially expressed gene screening. The gene expression profiles of TCGA and GTEx databases along with comprehensive bioinformatics analysis identified that the IDO1 gene was upregulated in cervical cancer with significant difference in expression at different N stages. In addition, it was also upregulated in HPV16 positive sample. The pan-cancer analysis identified that IDO1 was highly expressed in most cancers. TIMER analysis revealed that the expression of IDO1 in CESC shows positive correlation with CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells. IDO1 expression showed remarkable positive correlation with all immune cell markers except M1 macrophages. CD8+ T cell infiltration GSEA results showed that IDO1 was mainly associated with tumor immune-related signaling pathways.
Collapse
Affiliation(s)
- Shun Zhang
- General Surgery Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junhui Wan
- Obstetrics and Gynaecology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minjie Chen
- Queen Mary College, Nanchang University, Nanchang, China
| | - Desheng Cai
- Obstetrics and Gynaecology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junlan Xu
- Obstetrics and Gynaecology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Chen
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
The Forkhead Box Transcription Factor FoxP4 Regulates Thermogenic Programs in Adipocytes. J Lipid Res 2021; 62:100102. [PMID: 34384787 PMCID: PMC8411233 DOI: 10.1016/j.jlr.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Forkhead box transcription factors have been shown to be involved in various developmental and differentiation processes. In particular, members of the FoxP family have been previously characterized in depth for their participation in the regulation of lung and neuronal cell differentiation and T-cell development and function; however, their role in adipocyte functionality has not yet been investigated. Here, we report for the first time that Forkhead box P4 (FoxP4) is expressed at high levels in subcutaneous fat depots and mature thermogenic adipocytes. Through molecular and gene expression analyses, we revealed that FoxP4 is induced in response to thermogenic stimuli, both in vivo and in isolated cells, and is regulated directly by the heat shock factor protein 1 through a heat shock response element identified in the proximal promoter region of FoxP4. Further detailed analysis involving chromatin immunoprecipitation and luciferase assays demonstrated that FoxP4 directly controls the levels of uncoupling protein 1, a key regulator of thermogenesis that uncouples fatty acid oxidation from ATP production. In addition, through our gain-of-function and loss-of-function studies, we showed that FoxP4 regulates the expression of a number of classic brown and beige fat genes and affects oxygen consumption in isolated adipocytes. Overall, our data demonstrate for the first time the novel role of FoxP4 in the regulation of thermogenic adipocyte functionality.
Collapse
|
15
|
Snijders Blok L, Vino A, den Hoed J, Underhill HR, Monteil D, Li H, Reynoso Santos FJ, Chung WK, Amaral MD, Schnur RE, Santiago-Sim T, Si Y, Brunner HG, Kleefstra T, Fisher SE. Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genet Med 2021; 23:534-542. [PMID: 33110267 PMCID: PMC7935712 DOI: 10.1038/s41436-020-01016-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described. METHODS We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants. RESULTS We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein. CONCLUSION Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities.
Collapse
Affiliation(s)
- Lot Snijders Blok
- Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Arianna Vino
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Joery den Hoed
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Hunter R Underhill
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Danielle Monteil
- Department of Pediatrics, Naval Medical Center, Portsmouth, VA, USA
| | - Hong Li
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Francis Jeshira Reynoso Santos
- Department of Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Yue Si
- GeneDx, Gaithersburg, MD, USA
| | - Han G Brunner
- Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, MHeNS School of Neuroscience, and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tjitske Kleefstra
- Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
The influence of various regions of the FOXP2 sequence on its structure and DNA-binding function. Biosci Rep 2021; 41:227301. [PMID: 33319247 PMCID: PMC7789814 DOI: 10.1042/bsr20202128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
FOX proteins are a superfamily of transcription factors which share a DNA-binding domain referred to as the forkhead domain. Our focus is on the FOXP subfamily members, which are involved in language and cognition amongst other things. The FOXP proteins contain a conserved zinc finger and a leucine zipper motif in addition to the forkhead domain. The remainder of the sequence is predicted to be unstructured and includes an acidic C-terminal tail. In the present study, we aim to investigate how both the structured and unstructured regions of the sequence cooperate so as to enable FOXP proteins to perform their function. We do this by studying the effect of these regions on both oligomerisation and DNA binding. Structurally, the FOXP proteins appear to be comparatively globular with a high proportion of helical structure. The proteins multimerise via the leucine zipper, and the stability of the multimers is controlled by the unstructured interlinking sequence including the acid rich tail. FOXP2 is more compact than FOXP1, has a greater propensity to form higher order oligomers, and binds DNA with stronger affinity. We conclude that while the forkhead domain is necessary for DNA binding, the affinity of the binding event is attributable to the leucine zipper, and the unstructured regions play a significant role in the specificity of binding. The acid rich tail forms specific contacts with the forkhead domain which may influence oligomerisation and DNA binding, and therefore the acid rich tail may play an important regulatory role in FOXP transcription.
Collapse
|
17
|
Palazzo O, Rass M, Brembs B. Identification of FoxP circuits involved in locomotion and object fixation in Drosophila. Open Biol 2020; 10:200295. [PMID: 33321059 PMCID: PMC7776582 DOI: 10.1098/rsob.200295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The FoxP family of transcription factors is necessary for operant self-learning, an evolutionary conserved form of motor learning. The expression pattern, molecular function and mechanisms of action of the Drosophila FoxP orthologue remain to be elucidated. By editing the genomic locus of FoxP with CRISPR/Cas9, we find that the three different FoxP isoforms are expressed in neurons, but not in glia and that not all neurons express all isoforms. Furthermore, we detect FoxP expression in, e.g. the protocerebral bridge, the fan-shaped body and in motor neurons, but not in the mushroom bodies. Finally, we discover that FoxP expression during development, but not adulthood, is required for normal locomotion and landmark fixation in walking flies. While FoxP expression in the protocerebral bridge and motor neurons is involved in locomotion and landmark fixation, the FoxP gene can be excised from dorsal cluster neurons and mushroom-body Kenyon cells without affecting these behaviours.
Collapse
Affiliation(s)
- Ottavia Palazzo
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Mathias Rass
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
An offset ON-OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nat Neurosci 2020; 24:105-115. [PMID: 33230322 PMCID: PMC7769921 DOI: 10.1038/s41593-020-00747-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023]
Abstract
In the vertebrate retina, the location of a neuron's receptive field in visual space closely corresponds to the physical location of synaptic input onto its dendrites, a relationship called the retinotopic map. We report the discovery of a systematic spatial offset between the ON and OFF receptive subfields in F-mini-ON retinal ganglion cells (RGCs). Surprisingly, this property does not come from spatially offset ON and OFF layer dendrites, but instead arises from a network of electrical synapses via gap junctions to RGCs of a different type, the F-mini-OFF. We show that the asymmetric morphology and connectivity of these RGCs can explain their receptive field offset, and we use a multicell model to explore the effects of receptive field offset on the precision of edge-location representation in a population. This RGC network forms a new electrical channel combining the ON and OFF feedforward pathways within the output layer of the retina.
Collapse
|
19
|
Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e375. [PMID: 31999079 PMCID: PMC8286808 DOI: 10.1002/wdev.375] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Ashley G Anderson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
Taylor MR, Roby CR, Elziny S, Duricy E, Taylor TM, Bowers JM. Age, but Not Sex, Modulates Foxp3 Expression in the Rat Brain across Development. Neuroscience 2020; 442:87-99. [PMID: 32599120 DOI: 10.1016/j.neuroscience.2020.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
The interconnectivity between brain development and the immune system has become an area of interest for many neuroscientists. However, to date, a limited number of known immune mediators of the peripheral nervous system (PNS) have been found to influence the development of the central nervous system (CNS). FOXP3 is a well-established mediator of regulatory T-cells in the PNS. However, the expression pattern of FOXP3 in the CNS and the PNS throughout development is unknown. To fill this void, we have characterized, in several brain regions, the developmental profile of Foxp3 for both sexes using rats. We found different patterns of Foxp3 in the CNS and PNS. In the CNS, we found Foxp3 was ubiquitously expressed, with the levels of Foxp3 varying by brain region. We also found both Foxp3 mRNA and protein levels peak during embryonic development and then steadily decrease with a peak increase during adulthood. In adulthood, the protein but not mRNA increases to the equivalent levels found at the embryonic stage of life. In the PNS, Foxp3 protein levels were low embryonically and increased steadily over the life of the animal with maximal levels reached in adulthood. Patterns observed for both the PNS and CNS were similar in males and females across all developmental timepoints. Our novel findings have implications for understanding how the neural immune system impacts neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Makenzlie R Taylor
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Clinton R Roby
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Soad Elziny
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Erin Duricy
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Tina M Taylor
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - J Michael Bowers
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA.
| |
Collapse
|
21
|
Weng JS, Nakamura T, Moriizumi H, Takano H, Yao R, Takekawa M. MCRIP1 promotes the expression of lung-surfactant proteins in mice by disrupting CtBP-mediated epigenetic gene silencing. Commun Biol 2019; 2:227. [PMID: 31240265 PMCID: PMC6586819 DOI: 10.1038/s42003-019-0478-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
Proper regulation of epigenetic states of chromatin is crucial to achieve tissue-specific gene expression during embryogenesis. The lung-specific gene products, surfactant proteins B (SP-B) and C (SP-C), are synthesized in alveolar epithelial cells and prevent alveolar collapse. Epigenetic regulation of these surfactant proteins, however, remains unknown. Here we report that MCRIP1, a regulator of the CtBP transcriptional co-repressor, promotes the expression of SP-B and SP-C by preventing CtBP-mediated epigenetic gene silencing. Homozygous deficiency of Mcrip1 in mice causes fatal respiratory distress due to abnormal transcriptional repression of these surfactant proteins. We found that MCRIP1 interferes with interactions of CtBP with the lung-enriched transcriptional repressors, Foxp1 and Foxp2, thereby preventing the recruitment of the CtBP co-repressor complex to the SP-B and SP-C promoters and maintaining them in an active chromatin state. Our findings reveal a molecular mechanism by which cells prevent inadvertent gene silencing to ensure tissue-specific gene expression during organogenesis.
Collapse
Affiliation(s)
- Jane S. Weng
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
| | - Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| | - Hiroshi Takano
- Division of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Ryoji Yao
- Division of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| |
Collapse
|
22
|
Morrisey EE, Rustgi AK. The Lung and Esophagus: Developmental and Regenerative Overlap. Trends Cell Biol 2018; 28:738-748. [PMID: 29871822 DOI: 10.1016/j.tcb.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
Lung and esophageal development and organogenesis involve a complex interplay of signaling pathways and transcriptional factors. Once the lung and esophagus do separate, their epithelial proliferation and differentiation programs share certain common properties that may fuel adaptive responses to injury and subsequent regeneration. Lung and esophageal tissue organogenesis and regeneration provide perspectives on squamous cell cancers and adenocarcinomas in each tissue.
Collapse
Affiliation(s)
- Edward E Morrisey
- Division of Cardiovascular Medicine, Center for Pulmonary Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Institute for Regenerative Medicine, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
24
|
Wong KK, Gascoyne DM, Soilleux EJ, Lyne L, Spearman H, Roncador G, Pedersen LM, Møller MB, Green TM, Banham AH. FOXP2-positive diffuse large B-cell lymphomas exhibit a poor response to R-CHOP therapy and distinct biological signatures. Oncotarget 2018; 7:52940-52956. [PMID: 27224915 PMCID: PMC5288160 DOI: 10.18632/oncotarget.9507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
FOXP2 shares partially overlapping normal tissue expression and functionality with FOXP1; an established diffuse large B-cell lymphoma (DLBCL) oncogene and marker of poor prognosis. FOXP2 is expressed in the plasma cell malignancy multiple myeloma but has not been studied in DLBCL, where a poor prognosis activated B-cell (ABC)-like subtype display partially blocked plasma cell differentiation. FOXP2 protein expression was detected in ABC-DLBCL cell lines, and in primary DLBCL samples tumoral FOXP2 protein expression was detected in both germinal center B-cell-like (GCB) and non-GCB DLBCL. In biopsies from DLBCL patients treated with immunochemotherapy (R-CHOP), ≥ 20% nuclear tumoral FOXP2-positivity (n = 24/158) correlated with significantly inferior overall survival (OS: P = 0.0017) and progression-free survival (PFS: P = 0.0096). This remained significant in multivariate analysis against either the international prognostic index score or the non-GCB DLBCL phenotype (P < 0.05 for both OS and PFS). Expression of BLIMP1, a marker of plasmacytic differentiation that is commonly inactivated in ABC-DLBCL, did not correlate with patient outcome or FOXP2 expression in this series. Increased frequency of FOXP2 expression significantly correlated with FOXP1-positivity (P = 0.0187), and FOXP1 co-immunoprecipitated FOXP2 from ABC-DLBCL cells indicating that these proteins can co-localize in a multi-protein complex. FOXP2-positive DLBCL had reduced expression of HIP1R (P = 0.0348), which is directly repressed by FOXP1, and exhibited distinct patterns of gene expression. Specifically in ABC-DLBCL these were associated with lower expression of immune response and T-cell receptor signaling pathways. Further studies are warranted to investigate the potential functional cooperativity between FOXP1 and FOXP2 in repressing immune responses during the pathogenesis of high-risk DLBCL.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Duncan M Gascoyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Elizabeth J Soilleux
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Linden Lyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hayley Spearman
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giovanna Roncador
- Monoclonal Antibody Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Lars M Pedersen
- Department of Haematology, Roskilde Hospital, Roskilde, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Alison H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
25
|
Manichaikul A, Wang XQ, Sun L, Dupuis J, Borczuk AC, Nguyen JN, Raghu G, Hoffman EA, Onengut-Gumuscu S, Farber EA, Kaufman JD, Rabinowitz D, Stukovsky KDH, Kawut SM, Hunninghake GM, Washko GR, O'Connor GT, Rich SS, Barr RG, Lederer DJ. Genome-wide association study of subclinical interstitial lung disease in MESA. Respir Res 2017; 18:97. [PMID: 28521775 PMCID: PMC5437638 DOI: 10.1186/s12931-017-0581-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Background We conducted a genome-wide association study (GWAS) of subclinical interstitial lung disease (ILD), defined as high attenuation areas (HAA) on CT, in the population-based Multi-Ethnic Study of Atherosclerosis Study. Methods We measured the percentage of high attenuation areas (HAA) in the lung fields on cardiac CT scan defined as voxels with CT attenuation values between -600 and -250 HU. Genetic analyses were performed in MESA combined across race/ethnic groups: non-Hispanic White (n = 2,434), African American (n = 2,470), Hispanic (n = 2,065) and Chinese (n = 702), as well as stratified by race/ethnicity. Results Among 7,671 participants, regions at genome-wide significance were identified for basilar peel-core ratio of HAA in FLJ35282 downstream of ANRIL (rs7852363, P = 2.1x10−9) and within introns of SNAI3-AS1 (rs140142658, P = 9.6x10−9) and D21S2088E (rs3079677, P = 2.3x10−8). Within race/ethnic groups, 18 additional loci were identified at genome-wide significance, including genes related to development (FOXP4), cell adhesion (ALCAM) and glycosylation (GNPDA2, GYPC, GFPT1 and FUT10). Among these loci, SNP rs6844387 near GNPDA2 demonstrated nominal evidence of replication in analysis of n = 1,959 participants from the Framingham Heart Study (P = 0.029). FOXP4 region SNP rs2894439 demonstrated evidence of validation in analysis of n = 228 White ILD cases from the Columbia ILD Study compared to race/ethnicity-matched controls from MESA (one-sided P = 0.007). In lung tissue from 15 adults with idiopathic pulmonary fibrosis compared to 15 adults without lung disease. ANRIL (P = 0.001), ALCAM (P = 0.03) and FOXP4 (P = 0.046) were differentially expressed. Conclusions Our results suggest novel roles for protein glycosylation and cell cycle disinhibition by long non-coding RNA in the pathogenesis of ILD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0581-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. .,Department of Public Health Sciences, Biostatistics Section, University of Virginia, Charlottesville, VA, USA. .,Center for Public Health Genomics, University of Virginia School of Medicine, West Complex Room 6115, Charlottesville, VA, 22903, USA.
| | - Xin-Qun Wang
- Department of Public Health Sciences, Biostatistics Section, University of Virginia, Charlottesville, VA, USA
| | - Li Sun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer N Nguyen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ganesh Raghu
- University of Washington Center for Interstitial Lung Diseases, Seattle, WA, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Emily A Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Joel D Kaufman
- Departmenst of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, WA, USA
| | - Dan Rabinowitz
- Department of Statistics, Columbia University, New York, NY, USA
| | | | - Steven M Kawut
- Department of Medicine and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George T O'Connor
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA.,Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David J Lederer
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Hawkins F, Kramer P, Jacob A, Driver I, Thomas DC, McCauley KB, Skvir N, Crane AM, Kurmann AA, Hollenberg AN, Nguyen S, Wong BG, Khalil AS, Huang SX, Guttentag S, Rock JR, Shannon JM, Davis BR, Kotton DN. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest 2017; 127:2277-2294. [PMID: 28463226 DOI: 10.1172/jci89950] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However, this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity, these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support, this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively, when recombined with fetal mouse lung mesenchyme, the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved, stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted, patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.
Collapse
Affiliation(s)
- Finn Hawkins
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Philipp Kramer
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anjali Jacob
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ian Driver
- Department of Anatomy, UCSF, San Francisco, California, USA
| | | | - Katherine B McCauley
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anita A Kurmann
- Center for Regenerative Medicine, and.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Brandon G Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Sarah Xl Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA.,Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA
| | - Susan Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason R Rock
- Department of Anatomy, UCSF, San Francisco, California, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Mendoza E, Scharff C. Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Front Mol Neurosci 2017; 10:112. [PMID: 28507505 PMCID: PMC5410569 DOI: 10.3389/fnmol.2017.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
The Forkhead transcription factor FOXP2 is implicated in speech perception and production. The avian homolog, FoxP21 contributes to song learning and production in birds. In human cell lines, transcriptional activity of FOXP2 requires homo-dimerization or dimerization with paralogs FOXP1 or FOXP4. Whether FoxP dimerization occurs in the brain is unknown. We recently showed that FoxP1, FoxP2 and FoxP4 (FoxP1/2/4) proteins are co-expressed in neurons of Area X, a song control region in zebra finches. We now report on dimer- and oligomerization of zebra finch FoxPs and how this affects transcription. In cell lines and in the brain we identify homo- and hetero-dimers, and an oligomer composed of FoxP1/2/4. We further show that FoxP1/2 but not FoxP4 bind to the regulatory region of the target gene Contactin-associated protein-like 2 (CNTNAP2). In addition, we demonstrate that FoxP1/4 bind to the regulatory region of very low density lipoprotein receptor (VLDLR), as has been shown for FoxP2 previously. Interestingly, FoxP1/2/4 individually or in combinations regulate the promoters for SV40, zebra finch VLDLR and CNTNAP2 differentially. These data exemplify the potential for complex transcriptional regulation of FoxP1/2/4, highlighting the need for future functional studies dissecting their differential regulation in the brain.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität BerlinBerlin, Germany
| | - Constance Scharff
- Institut für Verhaltensbiologie, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
28
|
Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Dev Biol 2016; 416:338-46. [PMID: 27341756 DOI: 10.1016/j.ydbio.2016.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/21/2023]
Abstract
The inhibitory mechanisms that prevent gene expression programs from one tissue to be expressed in another are poorly understood. Foxp1/2/4 are forkhead transcription factors that repress gene expression and are individually important for endoderm development. We show that combined loss of all three Foxp1/2/4 family members in the developing anterior foregut endoderm leads to a loss of lung endoderm lineage commitment and subsequent development. Foxp1/2/4 deficient lungs express high levels of transcriptional regulators not normally expressed in the developing lung, including Pax2, Pax8, Pax9 and the Hoxa9-13 cluster. Ectopic expression of these transcriptional regulators is accompanied by decreased expression of lung restricted transcription factors including Nkx2-1, Sox2, and Sox9. Foxp1 binds to conserved forkhead DNA binding sites within the Hoxa9-13 cluster, indicating a direct repression mechanism. Thus, Foxp1/2/4 are essential for promoting lung endoderm development by repressing expression of non-pulmonary transcription factors.
Collapse
|
29
|
Morris G, Fanucchi S. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain. Biochemistry 2016; 55:1959-67. [PMID: 26950495 DOI: 10.1021/acs.biochem.5b01271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.
Collapse
Affiliation(s)
- Gavin Morris
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand , 1 Jan Smuts Avenue, Braamfontein, 2050, Johannesburg, Gauteng, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand , 1 Jan Smuts Avenue, Braamfontein, 2050, Johannesburg, Gauteng, South Africa
| |
Collapse
|
30
|
The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Sci Rep 2016; 6:20911. [PMID: 26867680 PMCID: PMC4751435 DOI: 10.1038/srep20911] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/13/2016] [Indexed: 11/08/2022] Open
Abstract
Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and identified members of the PIAS family as novel FOXP2 interactors. PIAS proteins mediate post-translational modification of a range of target proteins with small ubiquitin-like modifiers (SUMOs). We found that FOXP2 can be modified with all three human SUMO proteins and that PIAS1 promotes this process. An aetiological FOXP2 mutation found in a family with speech and language disorder markedly reduced FOXP2 SUMOylation. We demonstrate that FOXP2 is SUMOylated at a single major site, which is conserved in all FOXP2 vertebrate orthologues and in the paralogues FOXP1 and FOXP4. Abolishing this site did not lead to detectable changes in FOXP2 subcellular localization, stability, dimerization or transcriptional repression in cellular assays, but the conservation of this site suggests a potential role for SUMOylation in regulating FOXP2 activity in vivo.
Collapse
|
31
|
Spaeth JM, Hunter CS, Bonatakis L, Guo M, French CA, Slack I, Hara M, Fisher SE, Ferrer J, Morrisey EE, Stanger BZ, Stein R. The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia 2015; 58:1836-44. [PMID: 26021489 PMCID: PMC4785827 DOI: 10.1007/s00125-015-3635-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Several forkhead box (FOX) transcription factor family members have important roles in controlling pancreatic cell fates and maintaining beta cell mass and function, including FOXA1, FOXA2 and FOXM1. In this study we have examined the importance of FOXP1, FOXP2 and FOXP4 of the FOXP subfamily in islet cell development and function. METHODS Mice harbouring floxed alleles for Foxp1, Foxp2 and Foxp4 were crossed with pan-endocrine Pax6-Cre transgenic mice to generate single and compound Foxp mutant mice. Mice were monitored for changes in glucose tolerance by IPGTT, serum insulin and glucagon levels by radioimmunoassay, and endocrine cell development and proliferation by immunohistochemistry. Gene expression and glucose-stimulated hormone secretion experiments were performed with isolated islets. RESULTS Only the triple-compound Foxp1/2/4 conditional knockout (cKO) mutant had an overt islet phenotype, manifested physiologically by hypoglycaemia and hypoglucagonaemia. This resulted from the reduction in glucagon-secreting alpha cell mass and function. The proliferation of alpha cells was profoundly reduced in Foxp1/2/4 cKO islets through the effects on mediators of replication (i.e. decreased Ccna2, Ccnb1 and Ccnd2 activators, and increased Cdkn1a inhibitor). Adult islet Foxp1/2/4 cKO beta cells secrete insulin normally while the remaining alpha cells have impaired glucagon secretion. CONCLUSIONS/INTERPRETATION Collectively, these findings reveal an important role for the FOXP1, 2, and 4 proteins in governing postnatal alpha cell expansion and function.
Collapse
Affiliation(s)
- Jason M. Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Chad S. Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
- Department of Medicine, Division of Endocrinology Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren Bonatakis
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Catherine A. French
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ian Slack
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jorge Ferrer
- Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Edward E. Morrisey
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z. Stanger
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Mendoza E, Tokarev K, Düring DN, Retamosa EC, Weiss M, Arpenik N, Scharff C. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system. J Comp Neurol 2015; 523:1318-40. [PMID: 25556631 DOI: 10.1002/cne.23731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 11/07/2022]
Abstract
Heterozygous disruptions of the Forkhead transcription factor FoxP2 impair acquisition of speech and language. Experimental downregulation in brain region Area X of the avian ortholog FoxP2 disrupts song learning in juvenile male zebra finches. In vitro, transcriptional activity of FoxP2 requires dimerization with itself or with paralogs FoxP1 and FoxP4. Whether this is the case in vivo is unknown. To provide the means for future functional studies we cloned FoxP4 from zebra finches and compared regional and cellular coexpression of FoxP1, FoxP2, and FoxP4 mRNA and protein in brains of juvenile and adult male zebra finches. In the telencephalic song nuclei HVC, RA, and Area X, the three investigated FoxPs were either expressed alone or occurred in specific combinations with each other, as shown by double in situ hybridization and triple immunohistochemistry. FoxP1 and FoxP4 but not FoxP2 were expressed in RA and in the HVCRA and HVCX projection neurons. In Area X and the surrounding striatum the density of neurons expressing all three FoxPs together or FoxP1 and FoxP4 together was significantly higher than the density of neurons expressing other combinations. Interestingly, the proportions of Area X neurons expressing particular combinations of FoxPs remained constant at all ages. In addition, FoxP-expressing neurons in adult Area X express dopamine receptors 1A, 1B, and 2. Together, these data provide the first evidence that Area X neurons can coexpress all avian FoxP subfamily members, thus allowing for a variety of regulatory possibilities via heterodimerization that could impact song behavior in zebra finches.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhao H, Zhou W, Yao Z, Wan Y, Cao J, Zhang L, Zhao J, Li H, Zhou R, Li B, Wei G, Zhang Z, French CA, Dekker JD, Yang Y, Fisher SE, Tucker HO, Guo X. Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Dev Biol 2015; 398:242-54. [PMID: 25527076 PMCID: PMC4342236 DOI: 10.1016/j.ydbio.2014.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
Abstract
Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification.
Collapse
Affiliation(s)
- Haixia Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenrong Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengju Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingling Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianzhi Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanjun Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rujiang Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Wei
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhenlin Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated the Sixth People׳s Hospital, Shanghai, China
| | - Catherine A French
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joseph D Dekker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yingzi Yang
- Developmental Genetics Section, National Human Genome Research Institute, NIH, MD 20892, USA
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Haley O Tucker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Xizhi Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
34
|
Donovan SM, Monaco MH, Drnevich J, Kvistgaard AS, Hernell O, Lönnerdal B. Bovine osteopontin modifies the intestinal transcriptome of formula-fed infant rhesus monkeys to be more similar to those that were breastfed. J Nutr 2014; 144:1910-9. [PMID: 25320184 DOI: 10.3945/jn.114.197558] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Osteopontin (OPN) is a multifunctional protein found in human milk at high concentration. OBJECTIVE The impact of supplemental bovine OPN on growth, body composition, and the jejunal transcriptome was assessed. METHODS Newborn rhesus monkeys were randomly assigned to be breastfed (n = 4) or to receive formula [formula fed (FF), n = 6] or formula supplemented with 125 mg/L of bovine OPN (bOPN, n = 6) for 3 mo. Jejunal mRNA was extracted and subjected to microarray analysis. RESULTS Growth was similar among all the treatment groups, but breastfed monkeys were ∼25% leaner at 3 mo. Pairwise comparisons demonstrated that 1017 genes were differentially expressed between breastfed and FF groups, 217 between breastfed and bOPN groups, and 119 between FF and bOPN groups. The data were also analyzed with the use of weighted gene coexpression network analysis, which revealed 6 modules of coexpressed genes that differed among the 3 treatments. Nearly 50% of genes were assigned to one module in which breastfed differed from FF and bOPN expression was intermediate. This module was enriched for genes related to cell adhesion and motility, cytoskeletal remodeling, wingless and integration site signaling, and neuronal development. Most of these canonical pathways centered on integrins, which are receptors for OPN. CONCLUSIONS The intestinal transcriptome of breastfed and FF monkeys differs, but bovine OPN at levels similar to human milk shifts gene expression profiles to be more similar to breastfed monkeys.
Collapse
Affiliation(s)
| | | | - Jenny Drnevich
- High Performance Biological Computing Group and the Carver Biotechnology Center, University of Illinois, Urbana, IL
| | | | - Olle Hernell
- Department of Clinical Sciences, University of Umea, Umea, Sweden; and
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA
| |
Collapse
|
35
|
Devanna P, Middelbeek J, Vernes SC. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Front Cell Neurosci 2014; 8:305. [PMID: 25309332 PMCID: PMC4176457 DOI: 10.3389/fncel.2014.00305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 11/14/2022] Open
Abstract
FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.
Collapse
Affiliation(s)
- Paolo Devanna
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Netherlands
| | - Sonja C Vernes
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| |
Collapse
|
36
|
Hogan BLM, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CCW, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014; 15:123-38. [PMID: 25105578 PMCID: PMC4212493 DOI: 10.1016/j.stem.2014.07.012] [Citation(s) in RCA: 658] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This Review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA.
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke Medicine, Durham, NC 27705, USA
| | - Harold A Chapman
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Elizabeth Calle
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Andrew Le
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melinda Snitow
- Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Krummel
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barry R Stripp
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thiennu Vu
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric S White
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey A Whitsett
- Section of Neonatology, Perinatal and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward E Morrisey
- Departments of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Abstract
Embryonic stem (ES) cells have been shown to recapitulate normal developmental stages. They are therefore a highly useful tool in the study of developmental biology. Profiling of ES cell-derived cells has yielded important information about the characteristics of differentiated cells, and allowed the identification of novel marker genes and pathways of differentiation. In this review, we focus on recent results from profiling studies of mouse embryos, human islets, and human ES cell-derived differentiated cells from several research groups. Global gene expression data from mouse embryos have been used to identify novel genes or pathways involved in the developmental process, and to search for transcription factors that regulate direct reprogramming. We introduce gene expression databases of human pancreas cells (Beta Cell Gene Atlas, EuroDia database), and summarize profiling studies of islet- or human ES cell-derived pancreatic cells, with a focus on gene expression, microRNAs, epigenetics, and protein expression. Then, we describe our gene expression profile analyses and our search for novel endoderm, or pancreatic, progenitor marker genes. We differentiated mouse ES cells into mesendoderm, definitive endoderm (DE), mesoderm, ectoderm, and Pdx1-expressing pancreatic lineages, and performed DNA microarray analyses. Genes specifically expressed in DE, and/or in Pdx1-expressing cells, were extracted and their expression patterns in normal embryonic development were studied by in situ hybridization. Out of 54 genes examined, 27 were expressed in the DE of E8.5 mouse embryos, and 15 genes were expressed in distinct domains in the pancreatic buds of E14.5 mouse embryos. Akr1c19, Aebp2, Pbxip1, and Creb3l1 were all novel, and none has been described as being expressed, either in the DE, or in the pancreas. By introducing the profiling results of ES cell-derived cells, the benefits of using ES cells to study early embryonic development will be discussed.
Collapse
Affiliation(s)
- Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | - Soichiro Ogaki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| |
Collapse
|
38
|
Condro MC, White SA. Recent Advances in the Genetics of Vocal Learning. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2014; 9:75-98. [PMID: 26052371 DOI: 10.3819/ccbr.2014.90003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future.
Collapse
Affiliation(s)
- Michael C Condro
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| |
Collapse
|
39
|
Hodge E, Nelson CP, Miller S, Billington CK, Stewart CE, Swan C, Malarstig A, Henry AP, Gowland C, Melén E, Hall IP, Sayers I. HTR4 gene structure and altered expression in the developing lung. Respir Res 2013; 14:77. [PMID: 23890215 PMCID: PMC3750317 DOI: 10.1186/1465-9921-14-77] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meta-analyses of genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) spanning the 5-hydroxytryptamine receptor 4 (5-HT₄R) gene (HTR4) associated with lung function. The aims of this study were to i) investigate the expression profile of HTR4 in adult and fetal lung tissue and cultured airway cells, ii) further define HTR4 gene structure and iii) explore the potential functional implications of key SNPs using a bioinformatic approach. METHODS Following reverse transcription (RT)-PCR in human brain, 5' rapid amplification of cDNA ends (5' RACE) was used to examine the exonic structure of HTR4 at the 5' end. Quantitative (Q)-PCR was used to quantify HTR4 mRNA expression in total RNA from cultured airway cells and whole lung tissue. Publically available gene microarray data on fetal samples of estimated gestational age 7-22 weeks were mined for HTR4 expression. Immunohistochemistry (IHC; in adult and fetal lung tissue) and a radioligand binding assay (in cultured airway cells) were used to analyze 5-HT₄R protein expression. RESULTS IHC in adult lung, irrespective of the presence of chronic obstructive pulmonary disease (COPD), suggested low level expression of 5-HT₄R protein, which was most prominent in alveolar pneumocytes. There was evidence of differential 5-HT₄R protein levels during gestation in fetal lung, which was also evident in gene expression microarray data. HTR4 mRNA expression, assessed by Q-PCR, was <0.5% relative to brain in total adult lung tissue and in human airway smooth muscle (HASM) and bronchial epithelial cells (HBEC) derived from adult donors. Radioligand binding experiments also indicated that HBEC and HASM cells did not express a significant 5-HT₄R population. 5' RACE in brain identified a novel N-terminal variant, containing an extended N-terminal sequence. The functional significance of key HTR4 SNPs was investigated using the encyclopedia of DNA elements consortium (ENCODE) dataset. These analyses identified multiple alterations in regulatory motifs for transcription factors implicated in lung development, including Foxp1. CONCLUSIONS Taken together, these data suggest a role for HTR4 in lung development, which may at least in part explain the genetic association with lung function.
Collapse
Affiliation(s)
- Emily Hodge
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Carl P Nelson
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Suzanne Miller
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Ceri E Stewart
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Caroline Swan
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Anders Malarstig
- Precision Medicine Unit, Pfizer Global Research and Development, Cambridge, UK
| | - Amanda P Henry
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Catherine Gowland
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs’ Children’s Hospital, Stockholm, Sweden
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
40
|
Abstract
The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.
Collapse
|
41
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
42
|
Rousso DL, Pearson CA, Gaber ZB, Miquelajauregui A, Li S, Portera-Cailliau C, Morrisey EE, Novitch BG. Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 2012; 74:314-30. [PMID: 22542185 DOI: 10.1016/j.neuron.2012.02.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
Abstract
Neuroepithelial attachments at adherens junctions are essential for the self-renewal of neural stem and progenitor cells and the polarized organization of the developing central nervous system. The balance between stem cell maintenance and differentiation depends on the precise assembly and disassembly of these adhesive contacts, but the gene regulatory mechanisms orchestrating this process are not known. Here, we demonstrate that two Forkhead transcription factors, Foxp2 and Foxp4, are progressively expressed upon neural differentiation in the spinal cord. Elevated expression of either Foxp represses the expression of a key component of adherens junctions, N-cadherin, and promotes the detachment of differentiating neurons from the neuroepithelium. Conversely, inactivation of Foxp2 and Foxp4 function in both chick and mouse results in a spectrum of neural tube defects associated with neuroepithelial disorganization and enhanced progenitor maintenance. Together, these data reveal a Foxp-based transcriptional mechanism that regulates the integrity and cytoarchitecture of neuroepithelial progenitors.
Collapse
Affiliation(s)
- David L Rousso
- Department of Neurobiology, David Geffen School of Medicine at UCLA, 610 Charles Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li S, Wang Y, Zhang Y, Lu MM, DeMayo FJ, Dekker JD, Tucker PW, Morrisey EE. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development 2012; 139:2500-9. [PMID: 22675208 DOI: 10.1242/dev.079699] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular pathways regulating cell lineage determination and regeneration in epithelial tissues are poorly understood. The secretory epithelium of the lung is required for production of mucus to help protect the lung against environmental insults, including pathogens and pollution, that can lead to debilitating diseases such as asthma and chronic obstructive pulmonary disease. We show that the transcription factors Foxp1 and Foxp4 act cooperatively to regulate lung secretory epithelial cell fate and regeneration by directly restricting the goblet cell lineage program. Loss of Foxp1/4 in the developing lung and in postnatal secretory epithelium leads to ectopic activation of the goblet cell fate program, in part, through de-repression of the protein disulfide isomerase anterior gradient 2 (Agr2). Forced expression of Agr2 is sufficient to promote the goblet cell fate in the developing airway epithelium. Finally, in a model of lung secretory cell injury and regeneration, we show that loss of Foxp1/4 leads to catastrophic loss of airway epithelial regeneration due to default differentiation of secretory cells into the goblet cell lineage. These data demonstrate the importance of Foxp1/4 in restricting cell fate choices during development and regeneration, thereby providing the proper balance of functional epithelial lineages in the lung.
Collapse
Affiliation(s)
- Shanru Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chu YP, Chang CH, Shiu JH, Chang YT, Chen CY, Chuang WJ. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: insight into its domain swapping and DNA binding. Protein Sci 2011; 20:908-24. [PMID: 21416545 DOI: 10.1002/pro.626] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/15/2011] [Accepted: 03/02/2011] [Indexed: 11/09/2022]
Abstract
FOXP1 belongs to the P-subfamily of forkhead transcription factors and contains a conserved forkhead DNA-binding domain. According to size exclusion chromatography analysis, the forkhead domain of FOXP1 existed as a mixture of monomer and dimer. The dissociation constants of the forkhead domain of wild-type, C61S, and C61Y mutants of FOXP1 were 27.3, 28.8, and 332.0 μM, respectively. In contrast, FOXP1 A39P mutant formed only a monomer. NMR analysis also showed that FOXP1 C61S and C61Y mutants existed as a mixture. The solution structure of FOXP1 A39P/C61Y mutant was similar to the X-ray structure of the FOXP2 monomer. Comparison of backbone dynamics of FOXP1 A39P/C61Y and C61Y mutants showed that the residues preceding helix 3, the hinge region, exhibited the largest conformational exchange in FOXP1 monomer. The A39 residue of FOXP1 dimer has a lower order parameter with internal motion on the ps-ns timescale, suggesting that the dynamics of the hinge region of FOXP1 are important in the formation of the swapped dimer. The analysis also showed that the residues exhibiting the motions on the ps-ns and μs-ms timescales were located at the DNA-binding surface of FOXP1, suggesting the interactions between FOXP1 and DNA may be highly dynamic.
Collapse
Affiliation(s)
- Yuan-Ping Chu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Ogaki S, Harada S, Shiraki N, Kume K, Kume S. An expression profile analysis of ES cell-derived definitive endodermal cells and Pdx1-expressing cells. BMC DEVELOPMENTAL BIOLOGY 2011; 11:13. [PMID: 21362171 PMCID: PMC3058101 DOI: 10.1186/1471-213x-11-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/01/2011] [Indexed: 12/16/2022]
Abstract
Background We developed an efficient in vitro method to differentiate mouse ES cells into the definitive endoderm (DE) and then Pdx1-expressing pancreatic lineages using mesodermal-derived supporting cells, M15. Using this method, resulting ES cell-derived DE and Pdx1-expressing cells were isolated by cell sorting, and their gene expression profiles were investigated with DNA microarray. Genes that were specifically expressed in DE and/or in Pdx1-expressing cells were extracted and their expression patterns in normal embryonic development were studied. Results Genes whose expression increased in DE and Pdx1 positive cells compared to the undifferentiated ES cells were chosen and in situ hybridizations were performed. Out of 54 genes examined, 27 were expressed in the DE of E8.5 mouse embryos and 15 genes were expressed in distinct domains in the pancreatic buds of E14.5 embryos. Among those genes expressed were Foxq1, CpM, Foxp4, Pcdh1, and Zmiz1, which were previously reported in other endodermal tissues. Genes, such as Parm1, Tmem184a, Hipk2 and Sox4 were reported to be expressed during early pancreatic development. Nptx2, C2cd4b, Tcf7l2 and Kiss1r were reported to be associated with beta cell or pancreatic functions in the adult. Akr1c19, Aebp2, Pbxip1 and Creb3l1, were novel and have not been described as being expressed either in DE or the pancreas. Conclusions We identified 27 genes, including 4 novel genes expressed in DE and pancreatic progenitor cells during normal development using an ES cell in vitro differentiation system. These results showed that DE cells and Pdx1/GFP-expressing cells obtained from our M15 based differentiation method mimic cells during the normal developmental processes. Additionally, ES cells are an excellent model for studies of early developmental processes.
Collapse
Affiliation(s)
- Soichiro Ogaki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
46
|
Zhang Y, Li S, Yuan L, Tian Y, Weidenfeld J, Yang J, Liu F, Chokas AL, Morrisey EE. Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev 2010; 24:1746-57. [PMID: 20713518 DOI: 10.1101/gad.1929210] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiomyocyte proliferation is high in early development and decreases progressively with gestation, resulting in the lack of a robust cardiomyocyte proliferative response in the adult heart after injury. Little is understood about how both cell-autonomous and nonautonomous signals are integrated to regulate the balance of cardiomyocyte proliferation during development. In this study, we show that a single transcription factor, Foxp1, can control the balance of cardiomyocyte proliferation during development by targeting different pathways in the endocardium and myocardium. Endocardial loss of Foxp1 results in decreased Fgf3/Fgf16/Fgf17/Fgf20 expression in the heart, leading to reduced cardiomyocyte proliferation. This loss of myocardial proliferation can be rescued by exogenous Fgf20, and is mediated, in part, by Foxp1 repression of Sox17. In contrast, myocardial-specific loss of Foxp1 results in increased cardiomyocyte proliferation and decreased differentiation, leading to increased myocardial mass and neonatal demise. We show that Nkx2.5 is a direct target of Foxp1 repression, and Nkx2.5 expression is increased in Foxp1-deficient myocardium. Moreover, transgenic overexpression of Nkx2.5 leads to increased cardiomyocyte proliferation and increased ventricular mass, similar to the myocardial-specific loss of Foxp1. These data show that Foxp1 coordinates the balance of cardiomyocyte proliferation and differentiation through cell lineage-specific regulation of Fgf ligand and Nkx2.5 expression.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chokas AL, Trivedi CM, Lu MM, Tucker PW, Li S, Epstein JA, Morrisey EE. Foxp1/2/4-NuRD interactions regulate gene expression and epithelial injury response in the lung via regulation of interleukin-6. J Biol Chem 2010; 285:13304-13. [PMID: 20185820 DOI: 10.1074/jbc.m109.088468] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To determine the underlying mechanism of Foxp1/2/4-mediated transcriptional repression, a yeast two-hybrid screen was performed that identified p66beta, a transcriptional repressor and component of the NuRD chromatin-remodeling complex. We show that direct interactions between Foxp1/4 and p66beta are mediated by the CR2 domain within p66beta and the zinc finger/leucine zipper repression domain found in Foxp1/2/4. These direct interactions are functionally relevant as overexpression of p66beta in combination with Foxp factors cooperatively represses Foxp target gene expression, whereas loss of p66 and Foxp factors results in de-repression of endogenous Foxp target genes in lung epithelial cells. Moreover, the NuRD components HDAC1/2 associate in a macromolecular complex with Foxp proteins, and loss of expression or inhibition of HDAC1/2 activity leads to de-repression of Foxp target gene expression. Importantly, we show in vivo that Foxp1 and HDAC2 act cooperatively to regulate expression of the cytoprotective cytokine interleukin-6, which results in increased resistance to hyperoxic lung injury in Foxp1/HDAC2 compound mutant animals. These data reveal an important interaction between the Foxp transcription factors and the NuRD chromatin-remodeling complex that modulates transcriptional repression critical for the lung epithelial injury response.
Collapse
Affiliation(s)
- Ann L Chokas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Yang M, Wang Y, Wang X, Chen C, Zhou H. Characterization of grass carp (Ctenopharyngodon idellus) Foxp1a/1b/2: evidence for their involvement in the activation of peripheral blood lymphocyte subpopulations. FISH & SHELLFISH IMMUNOLOGY 2010; 28:289-295. [PMID: 19922798 DOI: 10.1016/j.fsi.2009.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/14/2009] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
Foxp subfamily belongs to the Fox family of winged-helix transcription factors and plays critical roles in multiple biological processes including development and immunoregulation. However, little is known about the regulation and function of Foxp subfamily in fish immune system. In this study, we obtained the complete cDNAs of grass carp Foxp1a, Foxp1b and Foxp2. They possess the conserved leucine zipper domain, zinc finger domain and forkhead domain when compared with their mammalian counterparts, except that Foxp1a lacks the forkhead domain. Real-time RT-PCR analysis showed that their transcripts were mainly found in thymus, spleen and peripheral blood lymphocytes (PBLs). In grass carp PBLs, both LPS and PHA were effective in elevating Foxp1b mRNA levels but had no effect on Foxp1a mRNA, while only PHA affected Foxp2 mRNA expression. Using the same cell model, PHA was revealed to up-regulate mRNA expression of T-cell marker genes (CD4-like, CD8alpha and CD8beta) but not B-cell marker gene (IgM). Unlike PHA, LPS increased IgM mRNA level but did not affect T-cell marker gene expression. These findings suggest that PHA and LPS may act on distinct lymphocyte subpopulations in grass carp PBLs and provide evidence for the involvement of Foxp1b and Foxp2 in the activation of different lymphocyte subpopulations in grass carp.
Collapse
Affiliation(s)
- Mu Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 PMCID: PMC3340128 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Takahashi K, Liu FC, Hirokawa K, Takahashi H. Expression of Foxp4 in the developing and adult rat forebrain. J Neurosci Res 2009; 86:3106-16. [PMID: 18561326 DOI: 10.1002/jnr.21770] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many members of the Fox family are transcription factors that regulate the morphogenesis of various organs. In the present study, we examined the expression pattern of Foxp4, a member of the Foxp subfamily, and compared its pattern with the patterns of Foxp2 and Foxp1 in the developing rat brain. In general, these three Foxp genes shared partially overlapping and yet differentially regulated expression patterns in the striatum, the cerebral cortex, and the thalamus during development. In the developing dorsal telencephalon, a mediolateral gradient of Foxp4 was present in the cortical primordium, with high levels in the ventricular zone of the medial cortex. By contrast, no gradient of Foxp2 and Foxp1 was detected in the dorsal telencephalon. At later stages, Foxp4 was expressed throughout all cortical layers as opposed to the layer-specific expression of Foxp2 and Foxp1. In the developing striatum, the pattern of Foxp4 expression was distinct from the patterns of Foxp2 and Foxp1. The spatial expression pattern of Foxp4 was similar to that of Foxp2 during the early embryonic stage. However, from the late embryonic stage to postnatal day 4, Foxp4 was expressed in a mediolateral gradient and decreased in the striosomal compartment, in contrast to the striosomal expression of Foxp2 and homogeneous expression of Foxp1. Foxp4 was developmentally down-regulated such that Foxp4 was undetectable in the forebrain after postnatal day 14, whereas Foxp2 and Foxp1 were persistently expressed in adulthood. Given that Foxp4, Foxp2, and Foxp1 are capable of heterodimerization for transcriptional regulation, the partially overlapping expression patterns of Foxp4, Foxp2, and Foxp1 in different domains of the developing forebrain suggest that each member and/or different combinatory actions of the Foxp subfamily may play a pivotal role in regulating forebrain development.
Collapse
Affiliation(s)
- Kaoru Takahashi
- Developmental Neurobiology Group, Mitsubishi Kagaku Institute of Life Sciences, Tokyo, Japan.
| | | | | | | |
Collapse
|