1
|
Carli ALE, Hardy JM, Hoblos H, Ernst M, Lucet IS, Buchert M. Structure-Guided Prediction of the Functional Impact of DCLK1 Mutations on Tumorigenesis. Biomedicines 2023; 11:biomedicines11030990. [PMID: 36979969 PMCID: PMC10046695 DOI: 10.3390/biomedicines11030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a functional serine/threonine (S/T)-kinase and a member of the doublecortin family of proteins which are characterized by their ability to bind to microtubules (MTs). DCLK1 is a proposed cancer driver gene, and its upregulation is associated with poor overall survival in several solid cancer types. However, how DCLK1 associates with MTs and how its kinase function contributes to pro-tumorigenic processes is poorly understood. This review builds on structural models to propose not only the specific functions of the domains but also attempts to predict the impact of individual somatic missense mutations on DCLK1 functions. Somatic missense mutations in DCLK1 are most frequently located within the N-terminal MT binding region and likely impact on the ability of DCLK1 to bind to αβ-tubulin and to polymerize and stabilize MTs. Moreover, the MT binding affinity of DCLK1 is negatively regulated by its auto-phosphorylation, and therefore mutations that affect kinase activity are predicted to indirectly alter MT dynamics. The emerging picture portrays DCLK1 as an MT-associated protein whose interactions with tubulin heterodimers and MTs are tightly controlled processes which, when disrupted, may confer pro-tumorigenic properties.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joshua M Hardy
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hanadi Hoblos
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
2
|
Verdugo-Sivianes EM, Carnero A. SPINOPHILIN: a multiplayer tumor suppressor. Genes Dis 2022; 10:187-198. [PMID: 37013033 PMCID: PMC10066247 DOI: 10.1016/j.gendis.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
SPINOPHILIN (SPN, PPP1R9B or NEURABIN-2) is a multifunctional protein that regulates protein-protein interactions in different cell signaling pathways. SPN is also one of the regulatory subunits of protein phosphatase 1 (PP1), implicated in the dephosphorylation of retinoblastoma protein (pRB) during cell cycle. The SPN gene has been described as a tumor suppressor in different human tumor contexts, in which low levels of SPN are correlated with a higher grade and worse prognosis. In addition, mutations of the SPN protein have been reported in human tumors. Recently, an oncogenic mutation of SPN, A566V, was described, which affects both the SPN-PP1 interaction and the phosphatase activity of the holoenzyme, and promotes p53-dependent tumorigenesis by increasing the cancer stem cell (CSC) pool in breast tumors. Thus, the loss or mutation of SPN could be late events that promotes tumor progression by increasing the CSC pool and, eventually, the malignant behavior of the tumor.
Collapse
|
3
|
Li P, Li L, Yu B, Wang X, Wang Q, Lin J, Zheng Y, Zhu J, He M, Xia Z, Tu M, Liu JS, Lin Z, Fu X. Doublecortin facilitates the elongation of the somatic Golgi apparatus into proximal dendrites. Mol Biol Cell 2021; 32:422-434. [PMID: 33405953 PMCID: PMC8098852 DOI: 10.1091/mbc.e19-09-0530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in the doublecortin (DCX) gene, which encodes a microtubule (MT)-binding protein, cause human cortical malformations, including lissencephaly and subcortical band heterotopia. A deficiency in DCX and DCX-like kinase 1 (DCLK1), a functionally redundant and structurally similar cognate of DCX, decreases neurite length and increases the number of primary neurites directly arising from the soma. The underlying mechanism is not completely understood. In this study, the elongation of the somatic Golgi apparatus into proximal dendrites, which have been implicated in dendrite patterning, was significantly decreased in the absence of DCX/DCLK1. Phosphorylation of DCX at S47 or S327 was involved in this process. DCX deficiency shifted the distribution of CLASP2 proteins to the soma from the dendrites. In addition to CLASP2, dynein and its cofactor JIP3 were abnormally distributed in DCX-deficient neurons. The association between JIP3 and dynein was significantly increased in the absence of DCX. Down-regulation of CLASP2 or JIP3 expression with specific shRNAs rescued the Golgi phenotype observed in DCX-deficient neurons. We conclude that DCX regulates the elongation of the Golgi apparatus into proximal dendrites through MT-associated proteins and motors.
Collapse
Affiliation(s)
- Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Luyao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Binyuan Yu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xinye Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jingjing Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yihui Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinjin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Minzhi He
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhaonan Xia
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengjing Tu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Judy S Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
4
|
Timely Inhibitory Circuit Formation Controlled by Abl1 Regulates Innate Olfactory Behaviors in Mouse. Cell Rep 2021; 30:187-201.e4. [PMID: 31914386 DOI: 10.1016/j.celrep.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/16/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
More than one-half of the interneurons in a mouse olfactory bulb (OB) develop during the first week after birth and predominantly connect to excitatory tufted cells near the superficial granule cell layer (sGCL), unlike late-born interneurons. However, the molecular mechanisms underlying the temporal specification are yet to be identified. In this study, we determined the role of Abelson tyrosine-protein kinase 1 (Abl1) in the temporal development of early-born OB interneurons. Lentiviral knockdown of Abl1 disrupts the sGCL circuit of early-born interneurons through defects in function and circuit integration, resulting in olfactory hyper-sensitivity. We show that doublecortin (Dcx) is phosphorylated by Abl1, which contributes to the stabilization of Dcx, thereby regulating microtubule dynamics. Finally, Dcx overexpression rescues Abl1 knockdown-induced anatomic or functional defects. In summary, specific signaling by Abl1-Dcx in early-born interneurons facilitates the temporal development of the sGCL circuit to regulate innate olfactory functions, such as detection and sensitivity.
Collapse
|
5
|
Brocos-Mosquera I, Gabilondo AM, Meana JJ, Callado LF, Erdozain AM. Spinophilin expression in postmortem prefrontal cortex of schizophrenic subjects: Effects of antipsychotic treatment. Eur Neuropsychopharmacol 2021; 42:12-21. [PMID: 33257116 DOI: 10.1016/j.euroneuro.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Schizophrenia has been associated with alterations in neurotransmission and synaptic dysfunction. Spinophilin is a multifunctional scaffold protein that modulates excitatory synaptic transmission and dendritic spine morphology. Spinophilin can also directly interact with and regulate several receptors for neurotransmitters, such as dopamine D2 receptors, which play a role in the pathophysiology of schizophrenia and are targets of antipsychotics. Several studies have thus suggested an implication of spinophilin in schizophrenia. In the present study spinophilin protein expression was determined by western blot in the postmortem dorsolateral prefrontal cortex of 24 subjects with schizophrenia (12 antipsychotic-free and 12 antipsychotic-treated subjects) and 24 matched controls. Experiments were performed in synaptosomal membranes (SPM) and in postsynaptic density fractions (PSD). As previously reported, two specific bands for this protein were observed: an upper 120-130 kDa band and a lower 80-95 kDa band. The spinophilin lower band showed a significant decrease in schizophrenia subjects compared to matched controls, both in SPM and PSD fractions (-15%, p = 0.007 and -15%, p = 0.039, respectively). When schizophrenia subjects were divided by the presence or absence of antipsychotics in blood at death, the lower band showed a significant decrease in antipsychotic-treated schizophrenia subjects (-24%, p = 0.003 for SPM and -26%, p = 0.014 for PSD), but not in antipsychotic-free subjects, compared to their matched controls. These results suggest that antipsychotics could produce alterations in spinophilin expression that do not seem to be related to schizophrenia per se. These changes may underlie some of the side effects of antipsychotics.
Collapse
Affiliation(s)
- Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Ane M Gabilondo
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
6
|
Welbat JU, Naewla S, Pannangrong W, Sirichoat A, Aranarochana A, Wigmore P. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. Biochem Pharmacol 2020; 178:114083. [PMID: 32522593 DOI: 10.1016/j.bcp.2020.114083] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Methotrexate (MTX) induces the formation of reactive oxygen species (ROS) and leads to neurotoxicity. The drug also negatively impacts neurogenesis and memory. Hesperidin (Hsd) is a major flavanoid with multiple beneficial pharmacological effects such as anti-oxidation, anti-inflammation, and neuroprotective effects. The aim of our study was to investigate the neuroprotective effects of Hsd against MTX-induced alterations in oxidative stress and neurogenesis. Sprague Dawley rats were divided into four groups: 1) a vehicle group, which received saline and propylene glycol, 2) an Hsd group, which was orally administered with Hsd (100 mg/kg) for 21 days, 3) an MTX group, which received MTX (75 mg/kg) by intravenous injection on days 8 and 15, and 4) an MTX + Hsd group, which received both MTX and Hsd. After treatment with MTX, p21-positive cells had increased significantly and doublecortin (DCX) expression in the hippocampus had decreased significantly. Treatment with MTX also increased malondialdehyde (MDA) in both the hippocampus and prefrontal cortex and decreased levels of brain-derived neurotropic factor (BDNF) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and prefrontal cortex. Additionally, there were significant decreases in superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in the hippocampus and prefrontal cortex in the MTX group. However, co-treatment with Hsd ameliorated the negative effects of MTX on neurogenesis, oxidative stress, and antioxidant enzymes. These findings suggest that Hsd may be able to prevent neurotoxic effects of MTX by reducing oxidative stress and enhancing hippocampal neurogenesis.
Collapse
Affiliation(s)
- Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Salinee Naewla
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, United Kingdom
| |
Collapse
|
7
|
Martineau FS, Sahu S, Plantier V, Buhler E, Schaller F, Fournier L, Chazal G, Kawasaki H, Represa A, Watrin F, Manent JB. Correct Laminar Positioning in the Neocortex Influences Proper Dendritic and Synaptic Development. Cereb Cortex 2019; 28:2976-2990. [PMID: 29788228 PMCID: PMC6041803 DOI: 10.1093/cercor/bhy113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/28/2023] Open
Abstract
The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.
Collapse
Affiliation(s)
| | - Surajit Sahu
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | | | | | | | | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Alfonso Represa
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | |
Collapse
|
8
|
Naewla S, Sirichoat A, Pannangrong W, Chaisawang P, Wigmore P, Welbat JU. Hesperidin Alleviates Methotrexate-Induced Memory Deficits via Hippocampal Neurogenesis in Adult Rats. Nutrients 2019; 11:nu11040936. [PMID: 31027240 PMCID: PMC6521088 DOI: 10.3390/nu11040936] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/25/2023] Open
Abstract
Methotrexate (MTX), a folic acid antagonist, is widely used in cancer treatment. However, treatment with MTX reduces hippocampal neurogenesis, leading to memory deficits. Hesperidin (Hsd) is a flavonoid glycoside that promotes anti-inflammation, acts as an antioxidant, and has neuroprotective properties. Consumption of Hsd enhances learning and memory. In the present study, we investigated the protective effects of Hsd against MTX-induced impairments of memory and neurogenesis; male Sprague Dawley rats were administered with a single dose of MTX (75 mg/kg) by intravenous (i.v.) injection on days 8 and 15 or Hsd (100 mg/kg) by oral gavage for 21 days. Memory was tested using novel object location (NOL) and novel object recognition (NOR) tasks. Immunofluorescence staining of Ki-67, bromodeoxyuridine (BrdU), and doublecortin (DCX) was performed to assess cell proliferation, survival, and immature neurons. The data showed that Hsd and MTX did not disable locomotor ability. The MTX animals exhibited memory deficits in both memory tests. There were significant decreases in the numbers of cell proliferation, survival, and immature neurons in the MTX animals. However, co-administration with MTX and Hsd alleviated memory loss and neurogenesis decline. These results revealed that Hsd could protect against MTX side effects in the animals in this study.
Collapse
Affiliation(s)
- Salinee Naewla
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pornthip Chaisawang
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham University, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
9
|
Moslehi M, Ng DCH, Bogoyevitch MA. Doublecortin X (DCX) serine 28 phosphorylation is a regulatory switch, modulating association of DCX with microtubules and actin filaments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:638-649. [PMID: 30625347 DOI: 10.1016/j.bbamcr.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022]
Abstract
Doublecortin X (DCX) plays essential roles in neuronal development via its regulation of cytoskeleton dynamics. This is mediated through direct interactions between its doublecortin (DC) domains (DC1 and DC2) with microtubules (MTs) and indirect association with actin filaments (F-ACT). While the regulatory role of the DCX C-terminus following DC2 (i.e. DCX residues 275-366) has been established, less is known of the possible contributions made by the DCX N-terminus preceding DC1 (i.e. DCX residues 1-44). Here, we assessed the influence of DCX Ser28 within the DCX N-terminus, on the association of DCX with MTs and F-ACT. We compared the cytoskeletal interactions of the DCX S28E phosphomimetic and DCX S28A phospho-resistant mutants and wild-type DCX. Immunoprecipitation and colocalisation analyses indicated increased association of DCX S28E with F-ACT but decreased interaction with MTs, and conversely enhanced DCX S28A association with MTs but decreased association with F-ACT. To evaluate the impact of DCX mutants on cytoskeletal filaments we performed fluorescence recovery after photobleaching (FRAP) studies on SiR-tubulin and β-actin-mCherry and observed comparable tubulin and actin exchange rates in the presence of DCX WT and DCX S28A. However, we observed faster tubulin exchange rates but slower actin exchange rates in the presence of DCX S28E. Moreover, DCX S28E enhanced the association with the actin-binding protein spinophilin (Spn) suggesting the shift to favour association with both F-ACT and Spn in the presence of DCX S28E. Taken together, our results highlight a new role for DCX S28 as a regulatory switch for cytoskeletal organisation.
Collapse
Affiliation(s)
- Maryam Moslehi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
10
|
Yap CC, Digilio L, Kruczek K, Roszkowska M, Fu XQ, Liu JS, Winckler B. A dominant dendrite phenotype caused by the disease-associated G253D mutation in doublecortin (DCX) is not due to its endocytosis defect. J Biol Chem 2018; 293:18890-18902. [PMID: 30291144 DOI: 10.1074/jbc.ra118.004462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/29/2018] [Indexed: 01/14/2023] Open
Abstract
Doublecortin (DCX) is a protein needed for cortical development, and DCX mutations cause cortical malformations in humans. The microtubule-binding activity of DCX is well-described and is important for its function, such as supporting neuronal migration and dendrite growth during development. Previous work showed that microtubule binding is not sufficient for DCX-mediated promotion of dendrite growth and that domains in DCX's C terminus are also required. The more C-terminal regions of DCX bind several other proteins, including the adhesion receptor neurofascin and clathrin adaptors. We recently identified a role for DCX in endocytosis of neurofascin. The disease-associated DCX-G253D mutant protein is known to be deficient in binding neurofascin, and we now asked if disruption of neurofascin endocytosis underlies the DCX-G253D-associated pathology. We first demonstrated that DCX functions in endocytosis as a complex with both the clathrin adaptor AP-2 and neurofascin: disrupting either clathrin adaptor binding (DCX-ALPA) or neurofascin binding (DCX-G253D) decreased neurofascin endocytosis in primary neurons. We then investigated a known function for DCX, namely, increasing dendrite growth in cultured neurons. Surprisingly, we found that the DCX-ALPA and DCX-G253D mutants yield distinct dendrite phenotypes. Unlike DCX-ALPA, DCX-G253D caused a dominant-negative dendrite growth phenotype. The endocytosis defect of DCX-G253D thus was separable from its detrimental effects on dendrite growth. We recently identified Dcx-R59H as a dominant allele and can now classify Dcx-G253D as a second Dcx allele that acts dominantly to cause pathology, but does so via a different mechanism.
Collapse
Affiliation(s)
- Chan Choo Yap
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Laura Digilio
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | | | - Matylda Roszkowska
- the Faculty of Biology and Earth Sciences, Jagiellonian University, 31-007 Cracow, Poland, and
| | - Xiao-Qin Fu
- the Department of Neurology, Brown University, Providence, Rhode Island 02912
| | - Judy S Liu
- the Department of Neurology, Brown University, Providence, Rhode Island 02912
| | - Bettina Winckler
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908,
| |
Collapse
|
11
|
Characterisation of spinophilin immunoreactivity in postmortem human brain homogenates. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:236-242. [PMID: 28941770 DOI: 10.1016/j.pnpbp.2017.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022]
Abstract
Spinophilin is a multifunctional scaffold protein that regulates the formation and function of dendritic spines and plays a role in neuronal migration. The distinct roles of spinophilin depend on its localization and the direct interaction with other proteins, which may target spinophilin to specific locations within the cell. Several studies suggest a role of spinophilin in the pathophysiology of neurological or psychiatric diseases. However, the majority have been performed in animals or cultured cells. Thus, the aim of the present study was to characterise the regional and subcellular expression of spinophilin immunoreactivity by western blot in postmortem human brain. Two specific immunoreactive bands for spinophilin were observed: an intense band migrating at around 120kDa, which seems to correspond to the apparent molecular weight of spinophilin described by other authors, and a less intense band of around 95kDa. This second form seems to be a proteolysis or cleavage product of the ~120kDa spinophilin. Interestingly, the subcellular distribution of both bands was different. In membrane fraction, the ~120kDa spinophilin band was the most abundant, whereas in cytosol it was the ~95kDa form. Furthermore, a different regional distribution for ~120kDa spinophilin band was observed, with the highest expression in prefrontal cortex, followed by hippocampus and cerebellum, and the lowest in caudate nucleus. Altogether, these results constitute a useful reference for future studies of spinophilin in pathological and non-pathological human brain tissues.
Collapse
|
12
|
Verdugo-Sivianes EM, Navas L, Molina-Pinelo S, Ferrer I, Quintanal-Villalonga A, Peinado J, Garcia-Heredia JM, Felipe-Abrio B, Muñoz-Galvan S, Marin JJ, Montuenga L, Paz-Ares L, Carnero A. Coordinated downregulation of Spinophilin and the catalytic subunits of PP1, PPP1CA/B/C, contributes to a worse prognosis in lung cancer. Oncotarget 2017; 8:105196-105210. [PMID: 29285244 PMCID: PMC5739631 DOI: 10.18632/oncotarget.22111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
Abstract
The scaffold protein Spinophilin (Spinophilin, PPP1R9B) is one of the regulatory subunits of phosphatase-1 (PP1), directing it to distinct subcellular locations and targets. The loss of Spinophilin reduces PP1 targeting to pRb, thereby maintaining higher levels of phosphorylated pRb. Spinophilin is absent or reduced in approximately 40% of human lung tumors, correlating with the malignant grade. However, little is known about the relevance of the coordinated activity or presence of Spinophilin and its reported catalytic partners in the prognosis of lung cancer. In the present work, we show that the downregulation of Spinophilin, either by protein or mRNA, is related to a worse prognosis in lung tumors. This effect is more relevant in squamous cell carcinoma, SCC, than in adenocarcinoma. Downregulation of Spinophilin is related to a decrease in the levels of its partners PPP1CA/B/C, the catalytic subunits of PP1. A decrease in these subunits is also related to prognosis in SCC and, in combination with a decrease in Spinophilin, are markers of a poor prognosis in these tumors. The analysis of the genes that correlate to Spinophilin in lung tumors showed clear enrichment in ATP biosynthesis and protein degradation GO pathways. The analysis of the response to several common and pathway-related drugs indicates a direct correlation between the Spinophilin/PPP1Cs ratio and the response to oxaliplatin and bortezomib. This finding indicates that this ratio may be a good predictive biomarker for the activity of the drugs in these tumors with a poor prognosis.
Collapse
Affiliation(s)
- Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| | - Lola Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| | - Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| | - Irene Ferrer
- CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain.,H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre and CNIO, Madrid, Spain
| | - Alvaro Quintanal-Villalonga
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre and CNIO, Madrid, Spain
| | - Javier Peinado
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,Radiation Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Jose M Garcia-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain.,Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| | - Blanca Felipe-Abrio
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| | - Sandra Muñoz-Galvan
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| | - Juan J Marin
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain.,Department of Predictive Medicine and Public Health, Universidad de Sevilla, Sevilla, Spain
| | - Luis Montuenga
- CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain.,Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Luis Paz-Ares
- CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain.,H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre and CNIO, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| |
Collapse
|
13
|
Ayanlaja AA, Xiong Y, Gao Y, Ji G, Tang C, Abdikani Abdullah Z, Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front Mol Neurosci 2017; 10:199. [PMID: 28701917 PMCID: PMC5487455 DOI: 10.3389/fnmol.2017.00199] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.
Collapse
Affiliation(s)
- Abiola A Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Ye Xiong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Zamzam Abdikani Abdullah
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
14
|
Yap CC, Digilio L, McMahon L, Roszkowska M, Bott CJ, Kruczek K, Winckler B. Different Doublecortin (DCX) Patient Alleles Show Distinct Phenotypes in Cultured Neurons: EVIDENCE FOR DIVERGENT LOSS-OF-FUNCTION AND "OFF-PATHWAY" CELLULAR MECHANISMS. J Biol Chem 2016; 291:26613-26626. [PMID: 27799303 DOI: 10.1074/jbc.m116.760777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Indexed: 11/06/2022] Open
Abstract
Doublecortin on the X-chromosome (DCX) is a neuronal microtubule-binding protein with a multitude of roles in neurodevelopment. In humans, DCX is a major genetic locus for X-linked lissencephaly. The best studied defects are in neuronal migration during corticogenesis and in the hippocampus, as well as axon and dendrite growth defects. Much effort has been directed at understanding the molecular and cellular bases of DCX-linked lissencephaly. The focus has been in particular on defects in microtubule assembly and bundling, using knock-out mice and expression of WT and mutant Dcx in non-neuronal cells. Dcx also binds other proteins besides microtubules, such as spinophilin (abbreviated spn; gene name Ppp1r9b protein phosphatase 1 regulatory subunit 9b) and the clathrin adaptors AP-1 and AP-2. Even though many non-sense and missense mutations of Dcx are known, their molecular and cellular defects are still only incompletely understood. It is also largely unknown how neurons are affected by expression of DCX patient alleles. We have now characterized several patient DCX alleles (DCX-R89G, DCX-R59H, DCX-246X, DCX-272X, and DCX-303X) using a gain-of-function dendrite growth assay in cultured rat neurons in combination with the determination of molecular binding activities and subcellular localization in non-neuronal and neuronal cells. First, we find that several mutants (Dcx-R89G and Dcx-272X) were loss-of-function alleles (as had been postulated) but surprisingly acted via different cellular mechanisms. Second, one allele (Dcx-R59H) formed cytoplasmic aggregates, which contained Hspa1B (heat shock protein 1B hsp70) and ubiquitinated proteins, trapped other cytoskeletal proteins, including spinophilin, and led to increased autophagy. This allele could thus be categorized as "off-pathway"/possibly neomorph. Our findings thus suggested that distinct DCX alleles caused dysfunction by different mechanisms.
Collapse
Affiliation(s)
- Chan Choo Yap
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Laura Digilio
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Lloyd McMahon
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Matylda Roszkowska
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Christopher J Bott
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Kamil Kruczek
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Bettina Winckler
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
15
|
Yoshihara SI, Takahashi H, Tsuboi A. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner. Front Neurosci 2016; 9:514. [PMID: 26793053 PMCID: PMC4709855 DOI: 10.3389/fnins.2015.00514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb.
Collapse
Affiliation(s)
- Sei-Ichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| |
Collapse
|
16
|
Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors. Oncogene 2015; 35:2777-88. [DOI: 10.1038/onc.2015.341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/14/2022]
|
17
|
Greenman R, Gorelik A, Sapir T, Baumgart J, Zamor V, Segal-Salto M, Levin-Zaidman S, Aidinis V, Aoki J, Nitsch R, Vogt J, Reiner O. Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Front Neurosci 2015; 9:53. [PMID: 25788872 PMCID: PMC4349085 DOI: 10.3389/fnins.2015.00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.
Collapse
Affiliation(s)
- Raanan Greenman
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Jan Baumgart
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany ; Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Vanessa Zamor
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Michal Segal-Salto
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot, Israel
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming' Athens, Greece
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University Miyagi, Japan
| | - Robert Nitsch
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Johannes Vogt
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
18
|
Yoshihara SI, Takahashi H, Nishimura N, Kinoshita M, Asahina R, Kitsuki M, Tatsumi K, Furukawa-Hibi Y, Hirai H, Nagai T, Yamada K, Tsuboi A. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons. Cell Rep 2014; 8:843-57. [DOI: 10.1016/j.celrep.2014.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023] Open
|
19
|
Mark/Par-1 Marking the Polarity of Migrating Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:97-111. [DOI: 10.1007/978-94-007-7687-6_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat Commun 2013; 4:1440. [PMID: 23385585 PMCID: PMC4017031 DOI: 10.1038/ncomms2443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
Collapse
Affiliation(s)
- Euikyung Shin
- Department of Cellular Neurobiology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Angiotensin IV upregulates the activity of protein phosphatase 1α in Neura-2A cells. Protein Cell 2013; 4:520-8. [PMID: 23744339 DOI: 10.1007/s13238-013-3005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 01/21/2023] Open
Abstract
The peptide angiotensin IV (Ang IV) is a derivative of angiotensin II. While insulin regulated amino peptidase (IRAP) has been proposed as a potential receptor for Ang IV, the signalling pathways of Ang IV through IRAP remain elusive. We applied high-resolution mass spectrometry to perform a systemic quantitative phosphoproteome of Neura-2A (N2A) cells treated with and without Ang IV using sta ble-isotope labeling by amino acids in cell culture (SILAC), and identified a reduction in the phosphorylation of a major Ser/Thr protein phosphorylase 1 (PP1) upon Ang IV treatment. In addition, spinophilin (spn), a PP1 regulatory protein that plays important functions in the neural system, was expressed at higher levels. Immunoblotting revealed decreased phosphorylation of p70S6 kinase (p70(S6K)) and the major cell cycle modulator retinoblastoma protein (pRB). These changes are consistent with an observed decrease in cell proliferation. Taken together, our study suggests that Ang IV functions via regulating the activity of PP1.
Collapse
|
22
|
Bahi-Buisson N, Souville I, Fourniol FJ, Toussaint A, Moores CA, Houdusse A, Lemaitre JY, Poirier K, Khalaf-Nazzal R, Hully M, Leger PL, Elie C, Boddaert N, Beldjord C, Chelly J, Francis F. New insights into genotype-phenotype correlations for the doublecortin-related lissencephaly spectrum. ACTA ACUST UNITED AC 2013; 136:223-44. [PMID: 23365099 DOI: 10.1093/brain/aws323] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
X-linked isolated lissencephaly sequence and subcortical band heterotopia are allelic human disorders associated with mutations of doublecortin (DCX), giving both familial and sporadic forms. DCX encodes a microtubule-associated protein involved in neuronal migration during brain development. Structural data show that mutations can fall either in surface residues, likely to impair partner interactions, or in buried residues, likely to impair protein stability. Despite the progress in understanding the molecular basis of these disorders, the prognosis value of the location and impact of individual DCX mutations has largely remained unclear. To clarify this point, we investigated a cohort of 180 patients who were referred with the agyria-pachygyria subcortical band heterotopia spectrum. DCX mutations were identified in 136 individuals. Analysis of the parents' DNA revealed the de novo occurrence of DCX mutations in 76 cases [62 of 70 females screened (88.5%) and 14 of 60 males screened (23%)], whereas in the remaining cases, mutations were inherited from asymptomatic (n = 14) or symptomatic mothers (n = 11). This represents 100% of families screened. Female patients with DCX mutation demonstrated three degrees of clinical-radiological severity: a severe form with a thick band (n = 54), a milder form (n = 24) with either an anterior thin or an intermediate thickness band and asymptomatic carrier females (n = 14) with normal magnetic resonance imaging results. A higher proportion of nonsense and frameshift mutations were identified in patients with de novo mutations. An analysis of predicted effects of missense mutations showed that those destabilizing the structure of the protein were often associated with more severe phenotypes. We identified several severe- and mild-effect mutations affecting surface residues and observed that the substituted amino acid is also critical in determining severity. Recurrent mutations representing 34.5% of all DCX mutations often lead to similar phenotypes, for example, either severe in sporadic subcortical band heterotopia owing to Arg186 mutations or milder in familial cases owing to Arg196 mutations. Taken as a whole, these observations demonstrate that DCX-related disorders are clinically heterogeneous, with severe sporadic and milder familial subcortical band heterotopia, each associated with specific DCX mutations. There is a clear influence of the individual mutated residue and the substituted amino acid in determining phenotype severity.
Collapse
Affiliation(s)
- Nadia Bahi-Buisson
- Pediatric Neurology Hopital Necker Enfants Malades, Université Paris Descartes, APHP, 149 rue de Sevres 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Reiner O. LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. SCIENTIFICA 2013; 2013:393975. [PMID: 24278775 PMCID: PMC3820303 DOI: 10.1155/2013/393975] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/07/2013] [Indexed: 05/29/2023]
Abstract
Proper lamination of the cerebral cortex requires the orchestrated motility of neurons from their place of birth to their final destination. Improper neuronal migration may result in a wide range of diseases, including brain malformations, such as lissencephaly, mental retardation, schizophrenia, and autism. Ours and other studies have implicated that microtubules and microtubule-associated proteins play an important role in the regulation of neuronal polarization and neuronal migration. Here, we will review normal processes of brain development and neuronal migration, describe neuronal migration diseases, and will focus on the microtubule-associated functions of LIS1 and DCX, which participate in the regulation of neuronal migration and are involved in the human developmental brain disease, lissencephaly.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
24
|
Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. J Neurosci 2013; 33:709-21. [PMID: 23303949 DOI: 10.1523/jneurosci.4603-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.
Collapse
|
25
|
Jean DC, Baas PW, Black MM. A novel role for doublecortin and doublecortin-like kinase in regulating growth cone microtubules. Hum Mol Genet 2012; 21:5511-27. [PMID: 23001563 DOI: 10.1093/hmg/dds395] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Doublecortin (DCX) and doublecortin-like kinase (DCLK), closely related family members, are microtubule-associated proteins with overlapping functions in both neuronal migration and axonal outgrowth. In growing axons, these proteins appear to have their primary functions in the growth cone. Here, we used siRNA to deplete these proteins from cultured rat sympathetic neurons. Normally, microtubules in the growth cone exhibit a gently curved contour as they extend from the base of the cone toward its periphery. However, following depletion of DCX and DCLK, microtubules throughout the growth cone become much more curvy, with many microtubules exhibiting multiple prominent bends over relatively short distances, creating a configuration that we termed wave-like folds. Microtubules with these folds appeared as if they were buckling in response to powerful forces. Indeed, inhibition of myosin-II, which generates forces on the actin cytoskeleton to push microtubules in the growth cone back toward the axonal shaft, significantly decreases the frequency of these wave-like folds. In addition, in the absence of DCX and DCLK, the depth of microtubule invasion into filopodia is reduced compared with controls, and at a functional level, growth cone responses to substrate guidance cues are altered. Conversely, overexpression of DCX results in microtubules that are straighter than usual, suggesting that higher levels of these proteins can enable an even greater resistance to folding. These findings support a role for DCX and DCLK in enabling microtubules to overcome retrograde actin-based forces, thereby facilitating the ability of the growth cone to carry out its crucial path-finding functions.
Collapse
Affiliation(s)
- Daphney C Jean
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
26
|
Doublecortin (DCX) mediates endocytosis of neurofascin independently of microtubule binding. J Neurosci 2012; 32:7439-53. [PMID: 22649224 DOI: 10.1523/jneurosci.5318-11.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Doublecortin on X chromosome (DCX) is one of two major genetic loci underlying human lissencephaly, a neurodevelopmental disorder with defects in neuronal migration and axon outgrowth. DCX is a microtubule-binding protein, and much work has focused on its microtubule-associated functions. DCX has other reported binding partners, including the cell adhesion molecule neurofascin, but the functional significance of the DCX-neurofascin interaction is not understood. Neurofascin localizes strongly to the axon initial segment in mature neurons, where it plays a role in assembling and maintaining other axon initial segment components. During development, neurofascin likely plays additional roles in axon guidance and in GABAergic synaptogenesis. We show here that DCX can modulate the surface distribution of neurofascin in developing cultured rat neurons and thereby the relative extent of accumulation between the axon initial segment and soma and dendrites. Mechanistically, DCX acts via increasing endocytosis of neurofascin from soma and dendrites. Surprisingly, DCX increases neurofascin endocytosis apparently independently of its microtubule-binding activity. We additionally show that the patient allele DCXG253D still binds microtubules but is deficient in promoting neurofascin endocytosis. We propose that DCX acts as an endocytic adaptor for neurofascin to fine-tune its surface distribution during neuronal development.
Collapse
|
27
|
Werner L, Müller-Fielitz H, Ritzal M, Werner T, Rossner M, Schwaninger M. Involvement of doublecortin-expressing cells in the arcuate nucleus in body weight regulation. Endocrinology 2012; 153:2655-64. [PMID: 22492306 DOI: 10.1210/en.2011-1760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypothalamic functions, including feeding behavior, show a high degree of plasticity throughout life. Doublecortin (DCX) is a marker of plasticity and neuronal migration expressed in the hypothalamus. Therefore, we wanted to map the fate of DCX(+) cells in the arcuate nucleus (ARC) of the hypothalamus. For this purpose, we generated a BAC transgenic mouse line that expresses the inducible recombinase CreER(T2) under control of the DCX locus. Crossing this line with the Rosa26 or Ai14 reporter mouse lines, we found reporter(+) cells in the ARC upon tamoxifen treatment. They were born prenatally and expressed both DCX and the plasticity marker TUC-4. Immediately after labeling, reporter(+) cells had an enlarged soma that normalized over time, suggesting morphological remodeling. Reporter(+) cells expressed β-endorphin and BSX, neuronal markers of the feeding circuit. Furthermore, leptin treatment led to phosphorylation of STAT3 in reporter(+) cells in accordance with the concept that they are part of the feeding circuits. Indeed, we found a negative correlation between the number of reporter(+) cells and body weight and epididymal fat pads. Our data suggest that DCX(+) cells in the ARC represent a cellular correlate of plasticity that is involved in controlling energy balance in adult mice.
Collapse
Affiliation(s)
- Lars Werner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Meyer I, Kuhnert O, Gräf R. Functional analyses of lissencephaly-related proteins in Dictyostelium. Semin Cell Dev Biol 2011; 22:89-96. [DOI: 10.1016/j.semcdb.2010.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/15/2010] [Accepted: 10/20/2010] [Indexed: 02/05/2023]
|
29
|
Blackmore MG, Moore DL, Smith RP, Goldberg JL, Bixby JL, Lemmon VP. High content screening of cortical neurons identifies novel regulators of axon growth. Mol Cell Neurosci 2010; 44:43-54. [PMID: 20159039 DOI: 10.1016/j.mcn.2010.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/28/2010] [Accepted: 02/08/2010] [Indexed: 12/14/2022] Open
Abstract
Neurons in the central nervous system lose their intrinsic capacity for axon regeneration as they mature, and it is widely hypothesized that changes in gene expression are responsible. Testing this hypothesis and identifying the relevant genes has been challenging because hundreds to thousands of genes are developmentally regulated in CNS neurons, but only a small subset are likely relevant to axon growth. Here we used automated high content analysis (HCA) methods to functionally test 743 plasmids encoding developmentally regulated genes in neurite outgrowth assays using postnatal cortical neurons. We identified both growth inhibitors (Ephexin, Aldolase A, Solute Carrier 2A3, and Chimerin), and growth enhancers (Doublecortin, Doublecortin-like, Kruppel-like Factor 6, and CaM-Kinase II gamma), some of which regulate established growth mechanisms like microtubule dynamics and small GTPase signaling. Interestingly, with only one exception the growth-suppressing genes were developmentally upregulated, and the growth-enhancing genes downregulated. These data provide important support for the hypothesis that developmental changes in gene expression control neurite outgrowth, and identify potential new gene targets to promote neurite outgrowth.
Collapse
Affiliation(s)
- Murray G Blackmore
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Baucum AJ, Jalan-Sakrikar N, Jiao Y, Gustin RM, Carmody LC, Tabb DL, Ham AJL, Colbran RJ. Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach. Mol Cell Proteomics 2010; 9:1243-59. [PMID: 20124353 DOI: 10.1074/mcp.m900387-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinophilin regulates excitatory postsynaptic function and morphology during development by virtue of its interactions with filamentous actin, protein phosphatase 1, and a plethora of additional signaling proteins. To provide insight into the roles of spinophilin in mature brain, we characterized the spinophilin interactome in subcellular fractions solubilized from adult rodent striatum by using a shotgun proteomics approach to identify proteins in spinophilin immune complexes. Initial analyses of samples generated using a mouse spinophilin antibody detected 23 proteins that were not present in an IgG control sample; however, 12 of these proteins were detected in complexes isolated from spinophilin knock-out tissue. A second screen using two different spinophilin antibodies and either knock-out or IgG controls identified a total of 125 proteins. The probability of each protein being specifically associated with spinophilin in each sample was calculated, and proteins were ranked according to a chi(2) analysis of the probabilities from analyses of multiple samples. Spinophilin and the known associated proteins neurabin and multiple isoforms of protein phosphatase 1 were specifically detected. Multiple, novel, spinophilin-associated proteins (myosin Va, calcium/calmodulin-dependent protein kinase II, neurofilament light polypeptide, postsynaptic density 95, alpha-actinin, and densin) were then shown to interact with GST fusion proteins containing fragments of spinophilin. Additional biochemical and transfected cell imaging studies showed that alpha-actinin and densin directly interact with residues 151-300 and 446-817, respectively, of spinophilin. Taken together, we have developed a multi-antibody, shotgun proteomics approach to characterize protein interactomes in native tissues, delineating the importance of knock-out tissue controls and providing novel insights into the nature and function of the spinophilin interactome in mature striatum.
Collapse
Affiliation(s)
- Anthony J Baucum
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J Neurosci 2009; 29:10995-1010. [PMID: 19726658 DOI: 10.1523/jneurosci.3399-09.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we studied doublecortin (DCX) in cultured hippocampal and sympathetic neurons during axonal development. In both types of neurons, DCX is abundant in the growth cone, in which it primarily localizes with microtubules. Its abundance is lowest on microtubules in the neck region of the growth cone and highest on microtubules extending into the actin-rich lamellar regions. Interestingly, the microtubule polymer richest in DCX is also deficient in tau. In hippocampal neurons but not sympathetic neurons, discrete focal patches of microtubules rich in DCX and deficient in tau are present along the axonal shaft. Invariably, these patches have actin-rich protrusions resembling those of growth cones. Many of the DCX/actin filament patches exhibit vigorous protrusive activity and also undergo a proximal-to-distal redistribution within the axon at average rates approximately 2 microm/min and thus closely resemble the growth-cone-like waves described by previous authors. Depletion of DCX using small interfering RNA had little effect on the appearance of the growth cone or on axonal growth in either type of neuron. However, DCX depletion significantly delayed collateral branching in hippocampal neurons and also significantly lowered the frequency of actin-rich patches along hippocampal axons. Branching by sympathetic neurons, which occurs by growth cone splitting, was not impaired by DCX depletion. These findings reveal a functional relationship between the DCX/actin filament patches and collateral branching. Based on the striking resemblance of these patches to growth cones, we discuss the possibility that they reflect a mechanism for locally boosting morphogenetic activity to facilitate axonal growth and collateral branching.
Collapse
|
32
|
Reiner O, Sapir T. Polarity regulation in migrating neurons in the cortex. Mol Neurobiol 2009; 40:1-14. [PMID: 19330467 DOI: 10.1007/s12035-009-8065-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
The formation of the cerebral cortex requires migration of billions of cells from their birth position to their final destination. A motile cell must have internal polarity in order to move in a specified direction. Locomotory polarity requires the coordinated polymerization of cytoskeletal elements such as microtubules and actin combined with regulated activities of the associated molecular motors. This review is focused on migrating neurons in the developing cerebral cortex, which need to attain internal polarity in order to reach their proper target. The position and dynamics of the centrosome plays an important function in this directed motility. We highlight recent interesting findings connecting polarity proteins with neuronal migration events regulated by the microtubule-associated molecular motor, cytoplasmic dynein.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
33
|
Abstract
Abnormal neuronal migration is manifested in brain malformations such as lissencephaly. The impairment in coordinated cell motility likely reflects a faulty mechanism of cell polarization or coupling between polarization and movement. Here we report on the relationship between the polarity kinase MARK2/Par-1 and its substrate, the well-known lissencephaly-associated gene doublecortin (DCX), during cortical radial migration. We have previously shown using in utero electroporation that reduced MARK2 levels resulted in multipolar neurons stalled at the intermediate zone border, similar to the phenotype observed in the case of DCX silencing. However, whereas reduced MARK2 stabilized microtubules, we show here that knock-down of DCX increased microtubule dynamics. This led to the hypothesis that simultaneous reduction may alleviate the phenotype. Coreduction of MARK2 and DCX resulted in a partial restoration of the normal neuronal migration phenotype in vivo. The kinetic behavior of the centrosomes reflected the different molecular mechanisms activated when either protein was reduced. In the case of reducing MARK2 processive motility of the centrosome was hindered, whereas when DCX was reduced, centrosomes moved quickly but bidirectionally. Our results stress the necessity for successful coupling between the polarity pathway and cytoplasmic dynein-dependent activities for proper neuronal migration.
Collapse
|
34
|
The Yin–Yang of Dendrite Morphology: Unity of Actin and Microtubules. Mol Neurobiol 2008; 38:270-84. [DOI: 10.1007/s12035-008-8046-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
35
|
Fitzsimons CP, Ahmed S, Wittevrongel CFW, Schouten TG, Dijkmans TF, Scheenen WJJM, Schaaf MJM, de Kloet ER, Vreugdenhil E. The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 2008; 22:248-62. [PMID: 17975023 PMCID: PMC5419639 DOI: 10.1210/me.2007-0233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023] Open
Abstract
In neuronal cells, activated glucocorticoid receptor (GR) translocates to the nucleus guided by the cytoskeleton. However, the detailed mechanisms underlying GR translocation remain unclear. Using gain and loss of function studies, we report here for the first time that the microtubule-associated protein doublecortin-like (DCL) controls GR translocation to the nucleus. DCL overexpression in COS-1 cells, neuroblastoma cells, and rat hippocampus organotypic slice cultures impaired GR translocation and decreased GR-dependent transcriptional activity, measured by a specific reporter gene assay, in COS-1 cells. Moreover, DCL and GR directly interact on microtubule bundles formed by DCL overexpression. A C-terminal truncated DCL with conserved microtubule-bundling activity did not influence GR translocation. In N1E-115 mouse neuroblastoma cells and neuronal progenitor cells in rat hippocampus organotypic slice cultures, laser-scanning confocal microscopy showed colabeling of endogenously expressed DCL and GR. In these systems, RNA-interference-mediated DCL knockdown hampered GR translocation. Thus, we conclude that DCL expression is tightly regulated to adequately control GR transport. Because DCL is primarily expressed in neuronal progenitor cells, our results introduce this microtubule-associated protein as a new modulator of GR signaling in this cell type and suggest the existence of cell-specific mechanisms regulating GR translocation to the nucleus.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Leiden/Amsterdam Center for Drug Research/Medical Pharmacology Department, Einsteinweg 55, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bai J, Ramos RL, Paramasivam M, Siddiqi F, Ackman JB, LoTurco JJ. The role of DCX and LIS1 in migration through the lateral cortical stream of developing forebrain. Dev Neurosci 2008; 30:144-56. [PMID: 18075262 DOI: 10.1159/000109859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 01/13/2007] [Indexed: 11/19/2022] Open
Abstract
During forebrain development the lateral cortical stream (LCS) supplies neurons to structures in the ventral telencephalon including the amygdala and piriform cortex. In the current study, we used spatially directed in utero electroporation and RNAi to investigate mechanisms of migration to the ventral telencephalon. Cells labeled by in utero electroporation of the lateral ventricular zone migrated into the LCS, and entered the lateral neocortex, piriform cortex and amygdala, where they differentiated primarily as pyramidal neurons. RNAi of DCX or LIS1 disrupted migration into amygdala and piriform cortex and caused many neurons to accumulate in the external and amygdalar capsules. RNAi of LIS1 and DCX had similar as well as distinguishable effects on the pattern of altered migration. Combinatorial RNAi of LIS1 and DCX further suggested interaction in the functions of LIS1 and DCX on the morphology and migration of migrating neurons in the LCS. Together, these results confirm that the LCS contributes pyramidal neurons to ventral forebrain structures and reveals that DCX and LIS1 have important functions in this major migratory pathway in the developing forebrain.
Collapse
Affiliation(s)
- Jilin Bai
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bielas SL, Serneo FF, Chechlacz M, Deerinck TJ, Perkins GA, Allen PB, Ellisman MH, Gleeson JG. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 2007; 129:579-91. [PMID: 17482550 PMCID: PMC1920181 DOI: 10.1016/j.cell.2007.03.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/13/2006] [Accepted: 03/13/2007] [Indexed: 11/16/2022]
Abstract
The axonal shafts of neurons contain bundled microtubules, whereas extending growth cones contain unbundled microtubule filaments, suggesting that localized activation of microtubule-associated proteins (MAP) at the transition zone may bundle these filaments during axonal growth. Dephosphorylation is thought to lead to MAP activation, but specific molecular pathways have remained elusive. We find that Spinophilin, a Protein-phosphatase 1 (PP1) targeting protein, is responsible for the dephosphorylation of the MAP Doublecortin (Dcx) Ser 297 selectively at the "wrist" of growing axons, leading to activation. Loss of activity at the "wrist" is evident as an impaired microtubule cytoskeleton along the shaft. These findings suggest that spatially restricted adaptor-specific MAP reactivation through dephosphorylation is important in organization of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Stephanie L Bielas
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Sarrouilhe D, di Tommaso A, Métayé T, Ladeveze V. Spinophilin: from partners to functions. Biochimie 2006; 88:1099-113. [PMID: 16737766 DOI: 10.1016/j.biochi.2006.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 04/21/2006] [Indexed: 01/14/2023]
Abstract
Spinophilin/neurabin 2 has been isolated independently by two laboratories as a protein interacting with protein phosphatase 1 (PP1) and F-actin. Gene analysis and biochemical approaches have contributed to define a number of distinct modular domains in spinophilin that govern protein-protein interactions such as two F-actin-, three potential Src homology 3 (SH3)-, a receptor- and a PP1-binding domains, a PSD95/DLG/zo-1 (PDZ) and three coiled-coil domains, and a potential leucine/isoleucine zipper (LIZ) motif. More than 30 partner proteins of spinophilin have been discovered, including cytoskeletal and cell adhesion molecules, enzymes, guanine nucleotide exchange factors (GEF) and regulator of G-protein signalling protein, membrane receptors, ion channels and others proteins like the tumour suppressor ARF. The physiological relevance of some of these interactions remains to be demonstrated. However, spinophilin structure suggests that the protein is a multifunctional protein scaffold that regulates both membrane and cytoskeletal functions. Spinophilin plays important functions in the nervous system where it is implicated in spine morphology and density regulation, synaptic plasticity and neuronal migration. Spinophilin regulates also seven-transmembrane receptor signalling and may provide a link between some of these receptors and intracellular mitogenic signalling events dependent on p70(S6) kinase and Rac G protein-GEF. Strikingly a role for spinophilin in cell growth was demonstrated and this effect was enhanced by its interaction with ARF. Here we review the current knowledge of the protein partners of spinophilin and present the available data that are contributing to the appreciation of spinophilin functions.
Collapse
Affiliation(s)
- D Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 34, rue du Jardin-des-Plantes, BP 199, 86005 Poitiers cedex, France.
| | | | | | | |
Collapse
|
40
|
Tsukada M, Prokscha A, Eichele G. Neurabin II mediates doublecortin-dephosphorylation on actin filaments. Biochem Biophys Res Commun 2006; 343:839-47. [PMID: 16564023 DOI: 10.1016/j.bbrc.2006.03.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 03/07/2006] [Indexed: 11/20/2022]
Abstract
Mutations in the human Doublecortin (DCX) gene cause X-linked lissencephaly, a neuronal migration disorder. DCX binds to microtubules and actin filaments. Association of Dcx with F-actin is regulated by site-specific phosphorylation and by neurabin II, an F-actin binding protein that also binds to Dcx. We show here that neurabin II mediates dephosphorylation of Dcx by protein phosphatase 1 (PP1). Furthermore, overexpression of PP1 reduces Dcx phosphorylation and decreases Dcx binding to F-actin. By contrast, abolishing PP1 binding to neurabin II maintains phosphorylation levels of Dcx, leading to a retention of Dcx at F-actin. We suggest that a dynamic regulation of Dcx mediated by neurabin II regulates the translocation of Dcx from F-actin to microtubules and vice versa.
Collapse
Affiliation(s)
- Miki Tsukada
- Max-Planck-Institute for Experimental Endocrinology, Feodor-Lynen-Strasse 7, D-30625 Hannover, Germany.
| | | | | |
Collapse
|
41
|
Shmueli A, Gdalyahu A, Sapoznik S, Sapir T, Tsukada M, Reiner O. Site-specific dephosphorylation of doublecortin (DCX) by protein phosphatase 1 (PP1). Mol Cell Neurosci 2006; 32:15-26. [PMID: 16530423 DOI: 10.1016/j.mcn.2006.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/21/2005] [Accepted: 01/30/2006] [Indexed: 11/19/2022] Open
Abstract
Mutations in doublecortin (DCX) cause X-linked lissencephaly ("smooth brain") and double cortex syndrome in humans. DCX is highly phosphorylated in migrating neurons. Here, we demonstrate that dephosphorylation of specific sites phosphorylated by JNK is mediated by Neurabin II, which recruits the phosphatase PP1. During cortical development, the expression pattern of PP1 is widespread, while the expression of DCX and Neurabin II is dynamic, and they are coexpressed in migrating neurons. In vitro, DCX is site-specific dephosphorylated by PP1 without the presence of Neurabin II, this dephosphorylation requires an intact RVXF motif in DCX. Overexpression of the coiled-coil domain of Neurabin II, which is sufficient for interacting with DCX and recruiting the endogenous Neurabin II with PP1, induced dephosphorylation of DCX on one of the JNK-phosphorylated sites. We hypothesize that the transient recruitment of DCX to different scaffold proteins, JIP-1/2, which will regulate its phosphorylation by JNK, and Neurabin II, which will regulate its dephosphorylation by PP1, plays an important role in normal neuronal migration.
Collapse
Affiliation(s)
- Anat Shmueli
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Francis F, Meyer G, Fallet-Bianco C, Moreno S, Kappeler C, Socorro AC, Tuy FPD, Beldjord C, Chelly J. Human disorders of cortical development: from past to present. Eur J Neurosci 2006; 23:877-93. [PMID: 16519653 DOI: 10.1111/j.1460-9568.2006.04649.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epilepsy and mental retardation, originally of unknown cause, are now known to result from many defects including cortical malformations, neuronal circuitry disorders and perturbations of neuronal communication and synapse function. Genetic approaches in combination with MRI and related imaging techniques continually allow a re-evaluation and better classification of these disorders. Here we review our current understanding of some of the primary defects involved, with insight from recent molecular biology advances, the study of mouse models and the results of neuropathology analyses. Through these studies the molecular determinants involved in the control of neuron number, neuronal migration, generation of cortical laminations and convolutions, integrity of the basement membrane at the pial surface, and the establishment of neuronal circuitry are being elucidated. We have attempted to integrate these results with the available data concerning, in particular, human brain development, and to emphasize the limitations in some cases of extrapolating from rodent models. Taking such species differences into account is clearly critical for understanding the pathophysiological mechanisms associated with these disorders.
Collapse
Affiliation(s)
- Fiona Francis
- Institut Cochin, Département de Génétique et Développement, Paris, F-75014 France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Capes-Davis A, Tolhurst O, Dunn JM, Jeffrey PL. Expression of doublecortin (DCX) and doublecortin-like kinase (DCLK) within the developing chick brain. Dev Dyn 2005; 232:457-67. [PMID: 15614772 DOI: 10.1002/dvdy.20240] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Doublecortin (DCX) is a microtubule-associated protein widely expressed in the developing mammalian nervous system and important for neuronal migration. DCX is known to belong to a novel protein family defined by sequence homology and the presence of a conserved microtubule-binding domain, but the functions of other members of this family are still undefined. In this study, we describe the cloning of the chick ortholog of doublecortin-like kinase (DCLK), a member of this family, and assess the expression of DCX and DCLK in the layered regions of the developing chick brain. DCX and DCLK are widely expressed in pallial and subpallial structures, including the telencephalon, optic tectum, and cerebellum, in similar distribution patterns. In addition to their expression in migrating cells, both proteins were also detected in the ventricular zone and in postmigratory Purkinje cells. Finally, DCX and DCLK were found to be coexpressed in all areas examined. In postmigratory Purkinje cells, DCX and DCLK both colocalized to the cell membrane, although DCLK was also distributed more generally throughout the cell soma. These data are consistent with multiple roles for DCX and DCLK in the developing chicken brain and suggest that the chick cerebellum will be an intriguing system to explore the effects of DCX and DCLK on postmigratory neuronal function.
Collapse
|
44
|
Tsukada M, Prokscha A, Ungewickell E, Eichele G. Doublecortin Association with Actin Filaments Is Regulated by Neurabin II. J Biol Chem 2005; 280:11361-8. [PMID: 15632197 DOI: 10.1074/jbc.m405525200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in the human Doublecortin (DCX) gene cause X-linked lissencephaly, a neuronal migration disorder affecting the neocortex and characterized by mental retardation and epilepsy. Because dynamic cellular asymmetries such as those seen in cell migration critically depend on a cooperation between the microtubule and actin cytoskeletal filament systems, we investigated whether Dcx, a microtubule-associated protein, is engaged in cytoskeletal cross-talk. We now demonstrate that Dcx co-sediments with actin filaments (F-actin), and using light and electron microscopy and spin down assays, we show that Dcx induces bundling and cross-linking of microtubules and F-actin in vitro. It has recently been shown that binding of Dcx to microtubules is negatively regulated by phosphorylation of the Dcx at Ser-47 or Ser-297. Although the phosphomimetic green fluorescent protein (GFP)-Dcx(S47E) transfected into COS-7 cells had a reduced affinity for microtubules, we found that pseudophosphorylation was not sufficient to cause Dcx to bind to F-actin. When cells were co-transfected with neurabin II, a protein that binds F-actin as well as Dcx, GFP-Dcx and to an even greater extent GFP-Dcx(S47E) became predominantly associated with filamentous actin. Thus Dcx phosphorylation and neurabin II combinatorially enhance Dcx binding to F-actin. Our findings raise the possibility that Dcx acts as a molecular link between microtubule and actin cytoskeletal filaments that is regulated by phosphorylation and neurabin II.
Collapse
Affiliation(s)
- Miki Tsukada
- Max Planck Institute for Experimental Endocrinology, Feodor-Lynen-Strasse 7, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
45
|
Moores CA, Perderiset M, Francis F, Chelly J, Houdusse A, Milligan RA. Mechanism of Microtubule Stabilization by Doublecortin. Mol Cell 2004; 14:833-9. [PMID: 15200960 DOI: 10.1016/j.molcel.2004.06.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/26/2004] [Accepted: 04/28/2004] [Indexed: 02/03/2023]
Abstract
Neurons undertake an amazing journey from the center of the developing mammalian brain to the outer layers of the cerebral cortex. Doublecortin, a component of the microtubule cytoskeleton, is essential in postmitotic neurons and was identified because its mutation disrupts human brain development. Doublecortin stabilizes microtubules and stimulates their polymerization but has no homology with other MAPs. We used electron microscopy to characterize microtubule binding by doublecortin and visualize its binding site. Doublecortin binds selectively to 13 protofilament microtubules, its in vivo substrate, and also causes preferential assembly of 13 protofilament microtubules. This specificity was explained when we found that doublecortin binds between the protofilaments from which microtubules are built, a previously uncharacterized binding site that is ideal for microtubule stabilization. These data reveal the structural basis for doublecortin's binding selectivity and provide insight into its role in maintaining microtubule architecture in maturing neurons.
Collapse
Affiliation(s)
- Carolyn A Moores
- Department of Cell Biology, CB227, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
46
|
Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O. DCX, a new mediator of the JNK pathway. EMBO J 2004; 23:823-32. [PMID: 14765123 PMCID: PMC380994 DOI: 10.1038/sj.emboj.7600079] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 12/16/2003] [Indexed: 01/09/2023] Open
Abstract
Mutations in the X-linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts with both c-Jun N-terminal kinase (JNK) and JNK interacting protein (JIP). The localization of this signaling module in the developing brain suggests its functionality in migrating neurons. The localization of DCX at neurite tips is determined by its interaction with JIP and by the interaction of the latter with kinesin. DCX is phosphorylated by JNK in growth cones. DCX mutated in sites phosphorylated by JNK affected neurite outgrowth, and the velocity and relative pause time of migrating neurons. We hypothesize that during neuronal migration, there is a need to regulate molecular motors that are working in the cell in opposite directions: kinesin (a plus-end directed molecular motor) versus dynein (a minus-end directed molecular motor).
Collapse
Affiliation(s)
- Amos Gdalyahu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Indraneel Ghosh
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Talia Levy
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Sapoznik
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Yael Fishler
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - David Azoulai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel. Tel.: +972 8 9342319; Fax: +972 8 9344108; E-mail:
| |
Collapse
|