1
|
Lloren KKS, Senevirathne A, Lee JH. Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria. Mater Today Bio 2024; 29:101349. [PMID: 39850273 PMCID: PMC11754135 DOI: 10.1016/j.mtbio.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision. Concurrently, commensal bacteria, which coexist harmlessly with their hosts and contribute to immune system regulation, are also being explored as novel delivery systems and in microbiome-based therapy. These bacteria can modulate immune responses, offering a promising avenue for developing effective and personalized vaccines. Integrating the distinctive characteristics of pathogenic and commensal bacteria with advanced bacterial engineering techniques paves the way for innovative vaccine and therapeutic platforms that could address a wide range of infectious diseases and potentially non-infectious conditions. This holistic approach signifies a paradigm shift in vaccine development and immunotherapy, emphasizing the intricate interplay between the bacteria and the immune systems to achieve optimal immunological outcomes.
Collapse
Affiliation(s)
- Khristine Kaith S. Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| |
Collapse
|
2
|
Ayalew W, Xiaoyun W, Tarekegn GM, Tessema TS, Chu M, Liang C, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Ping Y. Whole-genome sequencing of copy number variation analysis in Ethiopian cattle reveals adaptations to diverse environments. BMC Genomics 2024; 25:1088. [PMID: 39548375 PMCID: PMC11566455 DOI: 10.1186/s12864-024-10936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Genomic structural variations (GSVs), notably copy number variations (CNVs), significantly shape genetic diversity and facilitate adaptation in cattle populations. Despite their importance, the genome-wide characterization of CNVs in indigenous Ethiopian cattle breeds-Abigar, Fellata, and Gojjam-Highland remains largely unexplored. In this study, we applied a read-depth approach to whole genome sequencing (WGS) data to conduct the first comprehensive analysis of CNVs in these populations. RESULTS We identified 3,893 CNV regions (CNVRs) covering 19.15 Mb (0.71% of the cattle genome). These CNVRs ranged from 1.60 kb to 488.0 kb, with an average size of 4.92 kb. These CNVRs included deletions (1713), duplications (1929), and mixed events (251) showing notable differences in distribution among the breeds. Four out of five randomly selected CNVRs were successfully validated using real time polymerase chain reaction (qPCR). Further analyses identified candidate genes associated with high-altitude adaptation (GBE1 and SOD1), heat stress adaptation (HSPA13, DNAJC18, and DNAJC8) and resistance to tick infestations (BoLA and KRT33A). In addition, variance stabilizing transformation (VST) statistics highlighted population-specific CNVRs, emphasizing the unique genetic signatures of high-altitude adaptation in the Gojjam-Highland cattle breed. Among the detected CNVRs, 4.93% (192 out of 3,893) overlapped with 520 quantitative traits loci (QTLs) associated with six economically important trait categories suggesting that these CNVRs may significantly contribute to the genetic variation underlying these traits. CONCLUSIONS Our comprehensive analysis reveals significant CNVRs associated with key adaptive traits in Ethiopian cattle breeds highlighting their genetic diversity and resilience. These findings offer valuable insights into the genetic basis of adaptability and can inform sustainable breeding practices and conservation efforts. Future research should prioritize the functional validation of these CNVRs and their integration into breeding programs to enhance traits such as disease resistance and environmental adaptability.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wu Xiaoyun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China.
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
- Scotland's Rural College (SRUC), Roslin Institute Building, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, Stockholm, 17177, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Yan Ping
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China.
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, 831100, P.R. China.
| |
Collapse
|
3
|
Kraski A, Migdał P, Klopfleisch R, Räckel C, Sharbati J, Heimesaat MM, Alter T, Hanisch C, Gölz G, Einspanier R, Sharbati S. Structured multicellular intestinal spheroids (SMIS) as a standardized model for infection biology. Gut Pathog 2024; 16:47. [PMID: 39289703 PMCID: PMC11406839 DOI: 10.1186/s13099-024-00644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND 3D cell culture models have recently garnered increasing attention for replicating organ microarchitecture and eliciting in vivo-like responses, holding significant promise across various biological disciplines. Broadly, 3D cell culture encompasses organoids as well as single- and multicellular spheroids. While the latter have found successful applications in tumor research, there is a notable scarcity of standardized intestinal models for infection biology that mimic the microarchitecture of the intestine. Hence, this study aimed to develop structured multicellular intestinal spheroids (SMIS) specifically tailored for studying molecular basis of infection by intestinal pathogens. RESULTS We have successfully engineered human SMIS comprising four relevant cell types, featuring a fibroblast core enveloped by an outer monolayer of enterocytes and goblet cells along with monocytic cells. These SMIS effectively emulate the in vivo architecture of the intestinal mucosal surface and manifest differentiated morphological characteristics, including the presence of microvilli, within a mere two days of culture. Through analysis of various differentiation factors, we have illustrated that these spheroids attain heightened levels of differentiation compared to 2D monolayers. Moreover, SMIS serve as an optimized intestinal infection model, surpassing the capabilities of traditional 2D cultures, and exhibit a regulatory pattern of immunological markers similar to in vivo infections after Campylobacter jejuni infection. Notably, our protocol extends beyond human spheroids, demonstrating adaptability to other species such as mice and pigs. CONCLUSION Based on the rapid attainment of enhanced differentiation states, coupled with the emergence of functional brush border features, increased cellular complexity, and replication of the intestinal mucosal microarchitecture, which allows for exposure studies via the medium, we are confident that our innovative SMIS model surpasses conventional cell culture methods as a superior model. Moreover, it offers advantages over stem cell-derived organoids due to scalability and standardization capabilities of the protocol. By showcasing differentiated morphological attributes, our model provides an optimal platform for diverse applications. Furthermore, the investigated differences of several immunological factors compared to monotypic monolayers after Campylobacter jejuni infection underline the refinement of our spheroid model, which closely mimics important features of in vivo infections.
Collapse
Affiliation(s)
- Angelina Kraski
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Paweł Migdał
- Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Clara Räckel
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | | | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Ko SH, Choi JH, Kim JM. Bacteroides fragilis Enterotoxin Induces Autophagy through an AMPK and FoxO3-Pathway, Leading to the Inhibition of Apoptosis in Intestinal Epithelial Cells. Toxins (Basel) 2023; 15:544. [PMID: 37755970 PMCID: PMC10535581 DOI: 10.3390/toxins15090544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Macroautophagy/autophagy is essential for preserving cellular homeostasis by recycling nutrients and removing spoiled or aged proteins and organelles. It also has an essential role in defense mechanisms against microbial infections. However, the role of autophagy in enterotoxigenic Bacteroides fragilis infection remains largely unknown. In this study, we explored the role of B. fragilis enterotoxin (BFT) in the autophagic process of intestinal epithelial cells (IECs). The LC3-I of human HCT-116 IECs was converted to LC3-II by BFT stimulation. In addition, BFT-exposed cells showed the decreased expression of p62 in a time-dependent manner and increased levels of ATG5 and ATG12 gradually. Evidence of an enhanced autophagic process was supported by autophagosomes co-localized with LC3-lysosome-associated protein 2 in BFT-stimulated cells. The AMP-activated protein kinase (AMPK) and Forkhead box O3 (FoxO3a) axis were required for BFT-induced autophagy activation. In contrast with the activation of autophagy at 3-6 h after BFT exposure, IECs induced apoptosis-related signals at 12-48 h. HCT-116 IECs suppressing the formation of autophagosomes significantly activated apoptosis signals instead of autophagy early after BFT exposure. These data suggest that BFT can activate autophagy through the AMPK-FoxO3a pathway and the autophagy may suppress apoptosis during early exposure of IECs to BFT.
Collapse
Affiliation(s)
- Su Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Ho Choi
- Department of Microbiology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jung Mogg Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Ramos EI, Veerapandian R, Das K, Chacon JA, Gadad SS, Dhandayuthapani S. Pathogenic mycoplasmas of humans regulate the long noncoding RNAs in epithelial cells. Noncoding RNA Res 2023; 8:282-293. [PMID: 36970372 PMCID: PMC10031284 DOI: 10.1016/j.ncrna.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A. Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
| |
Collapse
|
6
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|
7
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
8
|
Starch-based NP act as antigen delivery systems without immunomodulating effect. PLoS One 2022; 17:e0272234. [PMID: 35905121 PMCID: PMC9337643 DOI: 10.1371/journal.pone.0272234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
The nasal route of immunization has become a real alternative to injections. It is indeed described as more efficient at inducing immune protection, since it initiates both mucosal and systemic immunity, thus protecting against both the infection itself and the transmission of pathogens by the host. However, the use of immunomodulators should be limited since they induce inflammation. Here we investigated in vitro the mechanisms underlying the enhancement of antigen immunogenicity by starch nanoparticles (NPL) delivery systems in H292 epithelial cells, as well as the NPL’s immunomodulatory effect. We observed that NPL had no intrinsic immunomodulatory effect but enhanced the immunogenicity of an E. coli lysate (Ag) merely by increasing its intracellular delivery. Moreover, we demonstrated the importance of the NPL density on their efficiency by comparing reticulated (NPL) and non-reticulated particles (NPL·NR). These results show that an efficient delivery system is sufficient to induce a mucosal immune response without the use of immunomodulators.
Collapse
|
9
|
Fomicheva M, Macara IG. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. eLife 2020; 9:63603. [PMID: 33185187 PMCID: PMC7685705 DOI: 10.7554/elife.63603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial cells possess intrinsic mechanisms to maintain an appropriate cell density for normal tissue morphogenesis and homeostasis. Defects in such mechanisms likely contribute to hyperplasia and cancer initiation. To identify genes that regulate the density-dependent proliferation of murine mammary epithelial cells, we developed a fluorescence-activated cell sorting assay based on fluorescence ubiquitination cell cycle indicator, which marks different stages of the cell cycle with distinct fluorophores. Using this powerful assay, we performed a genome-wide CRISPR/Cas9 knockout screen, selecting for cells that proliferate normally at low density but continue to divide at high density. Unexpectedly, one top hit was Traf3, a negative regulator of NF-κB signaling that has never previously been linked to density-dependent proliferation. We demonstrate that loss of Traf3 specifically activates noncanonical NF-κB signaling. This in turn triggers an innate immune response and drives cell division independently of known density-dependent proliferation mechanisms, including YAP/TAZ signaling and cyclin-dependent kinase inhibitors, by blocking entry into quiescence.
Collapse
Affiliation(s)
- Maria Fomicheva
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine Nashville, Nashville, United States
| | - Ian G Macara
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine Nashville, Nashville, United States
| |
Collapse
|
10
|
Menanteau-Ledouble S, Nöbauer K, Razzazi-Fazeli E, El-Matbouli M. Effects of Yersinia ruckeri invasion on the proteome of the Chinook salmon cell line CHSE-214. Sci Rep 2020; 10:11840. [PMID: 32678312 PMCID: PMC7366648 DOI: 10.1038/s41598-020-68903-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Yersinia ruckeri is an important bacterial pathogen of fish, in particular salmonids, it has been associated with systemic infections worldwide and, like many enteric bacteria, it is a facultative intracellular pathogen. However, the effect of Y. ruckeri's interactions with the host at the cellular level have received little investigation. In the present study, a culture of Chinook Salmon Embryo (CHSE) cell line was exposed to Y. ruckeri. Afterwards, the proteins were investigated and identified by mass spectrometry and compared to the content of unexposed cultures. The results of this comparison showed that 4.7% of the identified proteins were found at significantly altered concentrations following infection. Interestingly, infection with Y. ruckeri was associated with significant changes in the concentration of surface adhesion proteins, including a significantly decreased presence of β-integrins. These surface adhesion molecules are known to be the target for several adhesion molecules of Yersiniaceae. The concentration of several anti-apoptotic regulators (HSP90 and two DNAj molecules) appeared similarly downregulated. Taken together, these findings suggest that Y. ruckeri affects the proteome of infected cells in a notable manner and our results shed some light on the interaction between this important bacterial pathogen and its host.
Collapse
Affiliation(s)
- Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
11
|
Gene microarray integrated with iTRAQ-based proteomics for the discovery of NLRP3 in LPS-induced inflammatory response of bovine mammary epithelial cells. J DAIRY RES 2019; 86:416-424. [PMID: 31722754 DOI: 10.1017/s0022029919000761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mastitis, a major infectious disease in dairy cows, is characterized by an inflammatory response to pathogens such as Escherichia coli and Staphylococcus aureus. To better understand the immune and inflammatory response of the mammary gland, we stimulated bovine mammary gland epithelial cells (BMECs) with E. coli-derived lipopolysaccharide (LPS). Using transcriptomic and proteomic analyses, we identified 1019 differentially expressed genes (DEGs, fold change ≥2 and P-value < 0.05) and 340 differentially expressed proteins (DEPs, fold change ≥1.3 and P-value < 0.05), of which 536 genes and 162 proteins were upregulated and 483 genes and 178 proteins were downregulated following exposure to LPS. These differentially expressed genes were associated with 172 biological processes; 15 Gene Ontology terms associated with response to stimulus, 4 associated with immune processes, and 3 associated with inflammatory processes. The DEPs were associated with 51 biological processes; 2 Gene Ontology terms associated with response to stimulus, 1 associated with immune processes, and 2 associated with inflammatory processes. Meanwhile, several pathways involved in mammary inflammation, such as Toll-like receptor, NF-κB, and NOD-like receptor signaling pathways were also represented. NLRP3 depletion significantly inhibited the expression of IL-1β and PTGS2 by blocking caspase-1 activity in LPS-induced BMECs. These results suggest that NLR signaling pathways works in coordination with TLR4/NF-κB signaling pathways via NLRP3-inflammasome activation and pro-inflammatory cytokine secretion in LPS-induced mastitis. The study highlights the function of NLRP3 in an inflammatory microenvironment, making NLRP3 a promising therapeutic target in Escherichia coli mastitis.
Collapse
|
12
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
13
|
Zhang X, Li P, Zheng Q, Hou J. Lactobacillus acidophilus S-layer protein-mediated inhibition of PEDV-induced apoptosis of Vero cells. Vet Microbiol 2019; 229:159-167. [PMID: 30642593 PMCID: PMC7127310 DOI: 10.1016/j.vetmic.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Lactobacillus S-layer protein plays an inhibitory role during PEDV infection. In Vero cells infected with PEDV, apoptosis was mediated by caspase-8/3 activation. Lactobacillus S-layer protein inhibited PEDV-induced apoptosis in Vero cells. S-layer protein reduced caspase-8/3 activation against PEDV-induced apoptosis.
To gain insight into the mechanism of Lactobacillus acidophilus (L. acidophilus) S-layer protein antiviral activity, we examined how S-layer protein impacts porcine epidemic diarrhea virus (PEDV) infection and PEDV-induced apoptosis of Vero cells. Pretreatment (exclusion assay), coincubation (competition assay), and post-treatment (displacement assay) of PEDV-infected Vero cells with the S-layer protein was examined. Interestingly, significant inhibition of PEDV by S-layer protein was only observed in the exclusion assay. In Vero cells infected with PEDV, we found that apoptosis was mediated by activation of caspase-8 and caspase-3 in the late stage of infection. When PEDV-infected Vero cells were pretreated with S-layer protein, rates of Vero cell apoptosis were markedly decreased and cell damage was significantly reduced, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer protein inhibited caspase-8 and caspase-3 activity. Taken together, our results suggest that L. acidophilus S-layer protein plays an inhibitory role during PEDV infection of Vero cells, and that the antagonistic activity of the protein is not via competition with PEDV for binding sites. In addition, the findings suggest that L. acidophilus S-layer protein protects against PEDV-induced apoptosis through reduced caspase-8 and caspase-3 activation in the later stages of infection. This mechanism may represent a novel approach for antagonizing PEDV and other viruses.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Pengcheng Li
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, China.
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| |
Collapse
|
14
|
Wang Y, Liu X, Liu Q. NOD2 Expression in Streptococcus pneumoniae Meningitis and Its Influence on the Blood-Brain Barrier. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:7292084. [PMID: 30186539 PMCID: PMC6109993 DOI: 10.1155/2018/7292084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae meningitis is one of the most common disorders seen in clinical practice. It is believed that the brain tissue immune injury is caused by the expression of pattern-recognition receptors (PRR) which can further induce the release of other cytokines and inflammatory cascades. The aim of this study is to investigate the expression of nucleotide-binding oligomerization domain 2 (NOD2) and inflammatory factors in rat brain tissues infected with Streptococcus pneumoniae and its influence on the blood-brain barrier (BBB) permeability. Rats were given an intracranial injection of Streptococcus pneumoniae to construct the Streptococcus pneumoniae meningitis rat models. The expression change curves of NOD2 and inflammatory factors at different time points (0 h, 12 h, 24 h, 48 h, and 7 d) after Streptococcus pneumoniae were evaluated by enzyme-linked immunosorbent assay (ELISA). Western blotting analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were engaged to examine the expression of NOD2. Furthermore, the changing processes of pathological characteristics, nervous system score, cerebral oedema, and BBB permeability were observed. Our results showed that NOD2 expression began to increase in the 12 h after Streptococcus pneumoniae infection group, while the remaining inflammatory factors were not obviously increased. Meanwhile, the levels of NOD2, as well as inflammatory factors IL-1β, TNF-α, and IL-6 were markedly elevated in 24 h and 48 h infection groups, which were consistent with the increases in BBB permeability and BWC, and the positive expression of NOD2 in the infected rat brain tissues was observed using immunohistochemistry (IHC). This study suggests that NOD2 might be related to the activation of inflammation pathways and the damage to the blood-brain barrier. NOD2 and inflammatory factors have played vital roles in the pathogenesis of Streptococcus pneumoniae meningitis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Qilu Hospital, Shandong University, 107# Wen Hua Xi Road, Jinan, Shandong 250012, China
- The People's Hospital in Zoucheng, 59# Qian Quan Road, Zoucheng, Shandong 273500, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, 107# Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Qi Liu
- The People's Hospital in Zoucheng, 59# Qian Quan Road, Zoucheng, Shandong 273500, China
| |
Collapse
|
15
|
Wu H, Dai A, Chen X, Yang X, Li X, Huang C, Jiang K, Deng G. Leonurine ameliorates the inflammatory responses in lipopolysaccharide-induced endometritis. Int Immunopharmacol 2018; 61:156-161. [DOI: 10.1016/j.intimp.2018.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023]
|
16
|
Wan MLY, Chen Z, Shah NP, El-Nezami H. Effects of Lactobacillus rhamnosus GG and Escherichia coli Nissle 1917 Cell-Free Supernatants on Modulation of Mucin and Cytokine Secretion on Human Intestinal Epithelial HT29-MTX Cells. J Food Sci 2018; 83:1999-2007. [PMID: 29863797 DOI: 10.1111/1750-3841.14168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
This study examined modulation effects of cell-free supernatants of two commonly studied probiotic bacteria Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle 1917 (EcN) on mucin and cytokine profiles of human intestinal epithelial HT29-MTX cells. It was found that LGG and EcN supernatants differentially modulated MUC5AC and MUC5B mRNA and protein, and total mucin-like glycoprotein secretion. Regarding modulation of cytokine profiles, LGG supernatants moderately influenced the secretion of anti-inflammatory cytokines such as interleukin (IL)-4, IL-5, and IL-10, while those of EcN exerted a broad proinflammatory effect to intestinal epithelial cells by inducing the secretion of proinflammatory cytokines such as IL-8, monocyte chemotactic protein-1, transforming growth factor α, tumor necrosis factor α, granulocyte macrophage colony-stimulating factor, and interferon γ. These results suggested that LGG and EcN might produce different bioactive products that display differential modulation of mucin and cytokines, which may contribute to intestinal health and/or defense against bacteria/pathogens. PRACTICAL APPLICATION The results suggested that LGG and EcN might produce different bioactive products that display differential modulation of mucin and cytokines, which may contribute to intestinal health and/or defense against bacteria/pathogens.
Collapse
Affiliation(s)
- Murphy Lam-Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Zhijian Chen
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Nagendra P Shah
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The Univ. of Hong Kong, Pokfulam, Hong Kong.,Inst. of Public Health and Clinical Nutrition, Univ. of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Bi D, Gao Y, Chu Q, Cui J, Xu T. NOD1 is the innate immune receptor for iE-DAP and can activate NF-κB pathway in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:238-246. [PMID: 28655577 DOI: 10.1016/j.dci.2017.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The innate immune system is the first line for organisms defense against microbial infection, and NOD-like receptors (NLRs) protein family is an important member of innate immunity effector molecules. It has been proved that NLRs are located in the endochylema and can senses of microbial products. NOD1 is one of the representatives of this family, it has been proved that in mammals, NOD1 can distinguish a specific muropeptide (G-d-glutamyl-meso-diaminopimelic acid, iE-DAP) which was derived from bacterial peptidoglycans. However, the NOD-mediated intracellular recognition of microorganisms remains largely uncharacterized in teleost fishes. In this study, we use miiuy croaker (Miichthys miiuy) as a model to determine NOD1 can response to the infection of Gram-negative bacteria and it is the receptor that can recognize of iE-DAP by LRRs domain, it can activate the NF-κB signaling pathway through recruit RIP2 to induce inflammatory response in teleost fishes. Results showed that NOD1 can recognize the components of Gram-negative bacteria and activate inflammatory response to resistance of bacterial infection. Our study can improve the knowledge on immune system of fishes and provide a theoretical basis for the study of prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Dekun Bi
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yunhang Gao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
18
|
Zhang D, Wu M, Guo Y, Xun M, Wang W, Wu Z, Pan D. Purification of Lactobacillus acidophilus surface-layer protein and its immunomodulatory effects on RAW264.7 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4204-4209. [PMID: 28244103 DOI: 10.1002/jsfa.8294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Surface-layer proteins (SLP) have been found in the outermost layer of the cell wall in many types of lactobacillus are considered to be an important factor with respect to intestinal immunity. RESULTS The present study compared the effects of SLP extracted by different concentrations of LiCl and carbamide, and subsequently identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism and differential scanning calorimetry. Furthermore, RAW 264.7 cells were used to evaluate the immunomodulatory effects of SLP. SLP were derived from Lactobacillus acidophilus CICC6074 with a molecular weight of 46 kDa, and consisted of 16.9% α-helix, 42.3% β-sheet, 20.8% β-turns and 22.5% random coils. SLP promoted NO secretion and higher quantities of NO were produced as the SLP concentrations increased. SLP concentrations over 50 µg mL-1 significantly decreased the amount of tumor necrosis factor-α secreted by RAW264.7 cells. CONCLUSION SLP can trigger immunomodulatory effects in RAW 264.7 cells. This provides crucial information that will enable the further use of L. acidophilus in food, medicine and other products. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Food Science & Nutrition, Ginling College, Nanjing Normal University, Nanjing, PR China
| | - Mengting Wu
- Department of Food Science & Nutrition, Ginling College, Nanjing Normal University, Nanjing, PR China
| | - Yuxing Guo
- Department of Food Science & Nutrition, Ginling College, Nanjing Normal University, Nanjing, PR China
| | - Mingyue Xun
- Department of Food Science & Nutrition, Ginling College, Nanjing Normal University, Nanjing, PR China
| | - Wenwen Wang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, PR China
| | - Daodong Pan
- Department of Food Science & Nutrition, Ginling College, Nanjing Normal University, Nanjing, PR China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
19
|
Meng J, Zhang QX, Lu RR. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells. Int J Biol Macromol 2017; 96:766-774. [DOI: 10.1016/j.ijbiomac.2016.12.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 09/29/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
|
20
|
Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell 2017; 8:90-102. [PMID: 27866330 PMCID: PMC5291774 DOI: 10.1007/s13238-016-0338-6] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Hu X, Fu Y, Lu X, Zhang Z, Zhang W, Cao Y, Zhang N. Protective Effects of Platycodin D on Lipopolysaccharide-Induced Acute Lung Injury by Activating LXRα-ABCA1 Signaling Pathway. Front Immunol 2017; 7:644. [PMID: 28096801 PMCID: PMC5206804 DOI: 10.3389/fimmu.2016.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate the protective effects of platycodin D (PLD) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the possible mechanism. An LPS-induced ALI model was used to confirm the anti-inflammatory activity of PLD in vivo. The A549 lung epithelial cells were used to investigate the molecular mechanism and targets of PLD in vitro. In vivo, the results showed that PLD significantly attenuated lung histopathologic changes, myeloperoxidase activity, and pro-inflammatory cytokines levels, including TNF-α, IL-1β, and IL-6. In vitro, PLD inhibited LPS-induced IL-6 and IL-8 production in LPS-stimulated A549 lung epithelial cells. Western blot analysis showed that PLD suppressed LPS-induced NF-κB and IRF3 activation. Moreover, PLD did not act though affecting the expression of TLR4. We also showed that PLD disrupted the formation of lipid rafts by depleting cholesterol and prevented LPS-induced TLR4 trafficking to lipid rafts, thereby blocking LPS-induced inflammatory response. Finally, PLD activated LXRα-ABCA1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of PLD. The anti-inflammatory effects of PLD was associated with upregulation of the LXRα-ABCA1 pathway, which resulted in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
22
|
Kim DS, Kim SH, Kee JY, Han YH, Park J, Mun JG, Joo MJ, Jeon YD, Kim SJ, Park SH, Park SJ, Um JY, Hong SH. Eclipta prostrataImproves DSS-Induced Colitis through Regulation of Inflammatory Response in Intestinal Epithelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1047-1060. [DOI: 10.1142/s0192415x17500562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Eclipta prostrata (EP) and its compounds are known to have several pharmacological effects including anti-inflammatory effects. In the present study, we demonstrated that EP improves the dextran sulfate sodium (DSS)-induced colitis symptoms such as body weight loss, colon length shortening and disease activity index. In DSS-induced colitis tissue, EP controls the protein expressions of cyclooxygenase-2 (COX-2) and hypoxia inducible factor-1[Formula: see text] (HIF-1[Formula: see text]). In addition, the release of prostaglandin E2and vascular endothelial growth factor-A were significantly reduced by EP administration. EP also inhibited COX-2 and HIF-1[Formula: see text] expressions in the tumor necrosis factor-[Formula: see text] stimulated HT-29 cells. These inhibitory effects of EP occurred by reducing the phosphorylation of I[Formula: see text]B and the translocation of the nuclear factor-[Formula: see text]B (NF-[Formula: see text]B). Additionally, we found through HPLC analysis that wedelolactone, which is an inhibitor of NF-[Formula: see text]B transcription, was contained in water extract of EP. These results indicate that EP can improve colitis symptoms through the modulation of immune function in intestinal epithelial cells and suggests that EP has the potential therapeutic effect to intestinal inflammation.
Collapse
Affiliation(s)
- Dae-Seung Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Hee Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yo-Han Han
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - JinBong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02453, Republic of Korea
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Moon-Jung Joo
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yong-Deok Jeon
- Department of Herbal Medicine Resources, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Su-Jin Kim
- Department of Cosmeceutical Science, DaeguHanny University, Kyungsan, Kyungbuk 38610, Republic of Korea
| | - Sang-Hyun Park
- Isotope Sciences Lab, Korea Atomic Energy Research Institute, 1266 Shinjeong-Dong, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, College of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02453, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
23
|
Abstract
Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include ease of administration without needles that reduces issues associated with needlestick injuries and disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus should be brought to designing delivery strategies that take into account the broad range of diseases, populations and healthcare delivery settings that stand to benefit from this unique mucosal route.
Collapse
Affiliation(s)
- Helmy Yusuf
- a School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| | - Vicky Kett
- b School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| |
Collapse
|
24
|
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Battistoni A, Ajello M, Ammendola S, Superti F, Rotilio G, Valenti P. Involvement of Reactive Oxygen Species in Bacterial Killing within Epithelial Cells. Int J Immunopathol Pharmacol 2016; 17:71-6. [PMID: 15000869 DOI: 10.1177/039463200401700110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several non-phagocytic cells can actively generate the superoxide anion by NAD(P)H oxidases resembling the enzymatic complex typical of phagocytes. Overexpression of periplasmic Cu,ZnSOD rescues invasive E. coli strains from killing within epithelial cells, suggesting that superoxide generation by such cells can oxidatively damage invading bacteria. Pre-treatment of HeLa cells with diphenyl iodonium or 4′-hydroxy-3′-methoxyacetophenone, two inhibitors of NAD(P)H oxidase, significantly enhances intracellular survival of wild type invasive E. coli cells. On the contrary, these inhibitors have no effect on the intracellular survival of an invasive E. coli strain engineered to overexpress Cu,ZnSOD. These results support the hypothesis that superoxide generation by a NAD(P)H oxidase-like complex can limit bacterial survival within epithelial cells and suggest that the role of periplasmic Cu,ZnSOD in bacterial infections is not simply that of conferring protection against the phagocytic oxidative burst.
Collapse
Affiliation(s)
- A Battistoni
- Dipartmento di Biologia, Università di Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Bagratuni T, Terpos E, Eleutherakis-Papaiakovou E, Kalapanida D, Gavriatopoulou M, Migkou M, Liacos CI, Tasidou A, Matsouka C, Mparmparousi D, Dimopoulos MA, Kastritis E. TLR4/TIRAP polymorphisms are associated with progression and survival of patients with symptomatic myeloma. Br J Haematol 2015; 172:44-7. [PMID: 26564000 DOI: 10.1111/bjh.13786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/03/2015] [Indexed: 12/01/2022]
Abstract
Myeloma cells thrive in an environment of sustained inflammation, which impacts the development and evolution of the disease, as well as drug resistance. We evaluated the impact of genetic polymorphisms in the Toll-like receptor 4 (TLR4) pathway, which have been implicated in different inflammatory responses in the outcomes of patients with symptomatic multiple myeloma (MM) who have received contemporary therapies. We found that the presence of single nucleotide polymorphisms (SNPs) in both the TLR4 and toll/interleukin-1 receptor (TIR)-associated protein (TIRAP) genes was associated with lower response to primary therapy mainly for patients who received immunomodulatory drugs but not in patients treated with bortezomib-based therapies. Furthermore, TIRAP SNP was associated with a significantly shorter progression-free survival and overall survival, independently of other prognostic factors, such as age, transplant, International Staging System stage, lactate dehydrogenase and cytogenetics. This is the first study to demonstrate the effect of SNPs in TLR4/TIRAP in MM. Our data indicate that genetic variability in the immune system may be associated with different responses to antimyeloma therapies and may be a critical component affecting the natural history of the disease, providing the basis for further investigation of the role of these pathways in myeloma.
Collapse
Affiliation(s)
- Tina Bagratuni
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Despoina Kalapanida
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Tasidou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Charis Matsouka
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Mparmparousi
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Kaur A, Kumar V, Singh S, Singh J, Upadhyay N, Datta S, Singla S, Kumar V. Toll-like receptor-associated keratitis and strategies for its management. 3 Biotech 2015; 5:611-619. [PMID: 28324534 PMCID: PMC4569616 DOI: 10.1007/s13205-015-0280-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
Keratitis is an inflammatory condition, characterized by involvement of corneal tissues. Most recurrent challenge of keratitis is infection. Bacteria, virus, fungus and parasitic organism have potential to cause infection. TLR are an important class of protein which has a major role in innate immune response to combat with pathogens. In last past years, extensive research efforts have provided considerable abundance information regarding the role of TLR in various types of keratitis. This paper focuses to review the recent literature illustrating amoebic, bacterial, fungal and viral keratitis associated with Toll-like receptor molecules and summarize existing thoughts on pathogenesis and treatment besides future probabilities for prevention against TLR-associated keratitis.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vijay Kumar
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Joginder Singh
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Niraj Upadhyay
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Shivika Datta
- Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sourav Singla
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Virender Kumar
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
28
|
|
29
|
Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Mol Immunol 2014; 64:183-9. [PMID: 25481370 DOI: 10.1016/j.molimm.2014.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 12/14/2022]
Abstract
Lactobacilli are probiotic bacteria that are considered to be beneficial in the gastrointestinal tract of humans. Although lactobacilli are well known to alleviate intestinal inflammation, the molecular basis of this phenomenon is poorly understood. In this study, we investigated the effect of Lactobacillus plantarum lipoteichoic acid (Lp.LTA), which is a major cell wall component of this species, on the production of interleukin (IL)-8 in human intestinal epithelial Caco-2 cells. Treatment with Pam2CSK4, a synthetic lipopeptide that is known to mimic Gram-positive bacterial lipoproteins as an important virulence factor, significantly induced IL-8 expression in Caco-2 cells. However, neither heat-inactivated L. plantarum nor L. plantarum peptidoglycan inhibited Pam2CSK4-induced IL-8 mRNA expression. In addition, both a deacylated form and a dealanylated form of Lp.LTA failed to inhibit Pam2CSK4-induced IL-8 expression, indicating that the lipid and D-alanine moieties are critical for Lp.LTA-mediated inhibition. Moreover, Lp.LTA inhibited Pam2CSK4-induced activation of p38 kinase, JNK, and NF-κB transcription factor by suppressing toll-like receptor 2 activation. Collectively, these results suggest that Lp.LTA exerts anti-inflammatory effects on human intestinal epithelial cells by blocking IL-8 production.
Collapse
|
30
|
Domínguez-López A, Bautista-de Lucio VM, Serafín-López J, Robles-Sánchez E, Garfias Y. Amniotic membrane modulates innate immune response inhibiting PRRs expression and NF-κB nuclear translocation on limbal myofibroblasts. Exp Eye Res 2014; 127:215-23. [PMID: 25117451 DOI: 10.1016/j.exer.2014.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/18/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
Corneal damage observed in a viral infection such as herpetic stromal keratitis is mainly caused by proinflammatory molecules released by resident cells in the response to viral antigens. There are pattern recognition receptors like MDA5, RIG-1, and TLR3, that recognize viral dsRNA and after activation, the innate immune response is exacerbated inducing the synthesis and secretion of inflammatory cytokines through NF-κB activation. Amniotic membrane (AM) has demonstrated to reduce inflammation by several mechanisms, however the effect of AM on innate immune receptors such as MDA5, RIG-1, and TLR3 has not been reported. In this study, we have determined that the presence of AM significantly inhibited the synthesis and secretion of proinflammatory cytokines on human limbal myofibroblasts (HLM) stimulated with poly I:C. Similarly, the presence of AM reduced the protein expression of MDA5, RIG-1, and TLR3 on poly I:C stimulated HLM. Additionally, the presence of the AM significantly inhibited the NF-κB nuclear translocation when the HLM were poly I:C stimulated, and concomitantly, the AM was able to relocate cadherins affecting the myofibroblastic cellular morphology. These results suggest that AM generates an anti-inflammatory microenvironment, and specific inhibition of NFκB nuclear translocation on infected corneal tissue would reduce the inflammation undesirable effects, explaining in part the beneficial usefulness of transplanting AM on herpetic stromal keratitis.
Collapse
Affiliation(s)
- Alfredo Domínguez-López
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Insurgentes Sur 3000, 04510 Mexico City, Mexico
| | | | - Janet Serafín-López
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, 11340 Mexico City, Mexico
| | - Edson Robles-Sánchez
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Insurgentes Sur 3000, 04510 Mexico City, Mexico
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Insurgentes Sur 3000, 04510 Mexico City, Mexico.
| |
Collapse
|
31
|
Hung SC, Choi CH, Said-Sadier N, Johnson L, Atanasova KR, Sellami H, Yilmaz Ö, Ojcius DM. P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation. PLoS One 2013; 8:e70210. [PMID: 23936165 PMCID: PMC3723664 DOI: 10.1371/journal.pone.0070210] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/17/2013] [Indexed: 01/17/2023] Open
Abstract
We have previously reported that Porphyromonas gingivalis infection of gingival epithelial cells (GEC) requires an exogenous danger signal such as ATP to activate an inflammasome and caspase-1, thereby inducing secretion of interleukin (IL)-1β. Stimulation with extracellular ATP also stimulates production of reactive oxygen species (ROS) in GEC. However, the mechanism by which ROS is generated in response to ATP, and the role that different purinergic receptors may play in inflammasome activation, is still unclear. In this study, we revealed that the purinergic receptor P2X4 is assembled with the receptor P2X7 and its associated pore, pannexin-1. ATP induces ROS production through a complex consisting of the P2X4, P2X7, and pannexin-1. P2X7−mediated ROS production can activate the NLRP3 inflammasome and caspase-1. Furthermore, separate depletion or inhibition of P2X4, P2X7, or pannexin-1 complex blocks IL-1β secretion in P. gingivalis-infected GEC following ATP treatment. However, activation via P2X4 alone induces ROS generation but not inflammasome activation. These results suggest that ROS is generated through stimulation of a P2X4/P2X7/pannexin-1 complex, and reveal an unexpected role for P2X4, which acts as a positive regulator of inflammasome activation during microbial infection.
Collapse
Affiliation(s)
- Shu-Chen Hung
- Department of Molecular Cell Biology, University of California Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California Merced, Merced, California, United States of America
| | - Chul Hee Choi
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Najwane Said-Sadier
- Department of Molecular Cell Biology, University of California Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California Merced, Merced, California, United States of America
| | - Larry Johnson
- Department of Molecular Cell Biology, University of California Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California Merced, Merced, California, United States of America
| | | | - Hanen Sellami
- Department of Molecular Cell Biology, University of California Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California Merced, Merced, California, United States of America
- Department of Microbiology, Habib Bourguiba University Hospital, Medical School of Sfax, University of Sfax, Sfax, Tunisia
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - David M. Ojcius
- Department of Molecular Cell Biology, University of California Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Individual and combined effects of Fusarium toxins on the mRNA expression of pro-inflammatory cytokines in swine jejunal epithelial cells. Toxicol Lett 2013; 220:238-46. [DOI: 10.1016/j.toxlet.2013.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
|
33
|
Bawa M, Saraswat VA. Gut-liver axis: role of inflammasomes. J Clin Exp Hepatol 2013; 3:141-9. [PMID: 25755488 PMCID: PMC4216435 DOI: 10.1016/j.jceh.2013.03.225] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 03/29/2013] [Indexed: 02/08/2023] Open
Abstract
Inflammasomes are large multiprotein complexes that have the ability to sense intracellular danger signals through special NOD-like receptors or NLRs. They include NLRP3, NLRC4, AIM2 and NLRP6. They are involved in recognizing diverse microbial (bacteria, viruses, fungi and parasites), stress and damage signals, which result in direct activation of caspase-1, leading to secretion of potent pro-inflammatory cytokines and pyroptosis. NLRP3 is the most studied antimicrobial immune response inflammasome. Recent studies reveal expression of inflammasomes in innate immune response cells including monocytes, macrophages, neutrophils, and dendritic cells. Inflammasome deficiency has been linked to alterations in the gastrointestinal microflora. Alterations in the microbiome population and/or changes in gut permeability promote microbial translocation into the portal circulation and thus directly to the liver. Gut derived lipopolysaccharides (LPS) play a significant role in several liver diseases. Recent advancements in the sequencing technologies along with improved methods in metagenomics and bioinformatics have provided effective tools for investigating the 10(14) microorganisms of the human microbiome that inhabit the human gut. In this review, we examine the significance of inflammasomes in relation to the gut microflora and liver. This review also highlights the emerging functions of human microbiota in health and liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ATP, adenosine triphosphate
- BMDMs, bone marrow-derived macrophages
- CARD, caspase activation and recruitment domain
- CTB, Cholera toxin B
- DAMP, damage associated molecular patterns
- HMGB1, high-mobility group box1
- IFN, interferon
- IL, interleukin
- LPS, lipopolysaccharides
- LRR, leucine-rich repeat
- MDP, muramyl dipeptide
- NACHT, domain present in NAIP, CIITA, HET-E (Podospora anserina incompatibility, locus protein) and telomerase associated protein
- NAFLD, non-alcoholic fatty liver disease
- NAIP, neuronal apoptosis inhibitor protein
- NK/NKT, natural killer/natural killer T cells
- NLR, NOD-like receptor
- NOD, nucleotide-binding oligomerization domain
- PAMPs, pathogen associated molecular patterns
- ROS, reactive oxygen species
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- inflammasomes
- inflammation
- liver disease
- mCMV, mouse cytomegalovirus
- microbiota
Collapse
Affiliation(s)
- Manan Bawa
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, Haryana 160012, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
34
|
Krzymińska S, Ochocka K, Kaznowski A. Apoptosis of epithelial cells and macrophages due to nonpigmented Serratia marcescens strains. ScientificWorldJournal 2012; 2012:679639. [PMID: 22649305 PMCID: PMC3354595 DOI: 10.1100/2012/679639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/29/2011] [Indexed: 11/17/2022] Open
Abstract
Serratia marcescens strains are opportunistic pathogens that are increasingly recognized as a cause of severe nosocomial infections. In this study we observed interactions between nonpigmented strains with human epithelial and macrophage-like cells. The strains revealed hemolytic activity only after the contact of the cells with erythrocytes. The contact of the bacteria with the host cells was also essential to their cytotoxicity. Moreover, all strains revealed adherence ability and were invasive to epithelial cells. Analyses of cellular morphology and DNA fragmentation of the HEp-2 and J774 cells exhibited typical features of cells undergoing apoptosis. We observed morphological changes, including condensation of nuclear chromatin and formation of membrane-bound apoptotic bodies. The lowest apoptotic index in HEp-2 cells did not exceed 25%, whereas the highest reached 59% at 24 h and 72% at 48 h after infection. Most of the strains (60%) induced fragmentation of nuclear DNA. The process depended on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. This study provided new insights into the mechanisms of nonpigmented S. marcescens pathogenesis. The results revealed that the strains produce cell-contact toxins that facilitate bacterial invasion, induce hemolysis, cytotoxicity, and apoptosis of host cells.
Collapse
Affiliation(s)
- Sylwia Krzymińska
- Department of Microbiology, Faculty of Biology, A Mickiewicz University, Ulica Umultowska 89, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
35
|
IFN-γ renders human intestinal epithelial cells responsive to lipopolysaccharide of Vibrio cholerae by down-regulation of DMBT1. Comp Immunol Microbiol Infect Dis 2012; 35:345-54. [PMID: 22437006 DOI: 10.1016/j.cimid.2012.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/18/2012] [Accepted: 02/24/2012] [Indexed: 11/23/2022]
Abstract
Although intestinal epithelial cells (IECs) are continuously exposed to high densities of enteric bacteria, they are not highly responsive to microbe-associated molecular patterns (MAMPs). However, inflammatory cytokines such as interferon-γ (IFN-γ) are potentially capable of priming IECs to enhance responsiveness to MAMPs. In this study, we observed that heat-killed Vibrio cholerae (HKVC) and its lipopolysaccharide (LPS) poorly induced IL-8 production in a human IEC line, HT-29. However, both HKVC and the LPS showed a substantial induction of IL-8 production in IFN-γ-primed HT-29 cells. LPS-induced IL-8 production was proportional to the IFN-γ-priming period and LPS could not induce IL-8 production in the presence of polymyxin B. Moreover, LPS-induced IL-8 production in the IFN-γ-primed HT-29 cells was mediated through signaling pathways requiring p38 kinase and ERK, but not the JNK/SAPK pathway. Since deleted in malignant brain tumor 1 (DMBT1) is known to interact with and antagonize the action of LPS, we hypothesized that IFN-γ enhanced the responsiveness to LPS in HT-29 through down-regulation of DMBT1. We found that IFN-γ indeed attenuated DMBT1 expression at both the mRNA and protein levels in HT-29 cells. Conversely, when the cells were transfected with small interfering RNA to specifically silence DMBT1, IL-8 expression was augmented even in the absence of IFN-γ and the augmentation was further enhanced by treatment with V. cholerae LPS. Since IFN-γ is known to increase IFN-β expression in the IECs, we examined if IFN-β functioned similar to IFN-γ. Although IFN-β alone was able to induce IL-8 expression, it failed to render HT-29 cells responsive to V. cholerae LPS. In conclusion, our study suggests that IFN-γ primes IECs to become responsive to V. cholerae and its LPS by suppressing the expression of DMBT1.
Collapse
|
36
|
McMullan R, Anderson A, Nurrish S. Behavioral and immune responses to infection require Gαq- RhoA signaling in C. elegans. PLoS Pathog 2012; 8:e1002530. [PMID: 22359503 PMCID: PMC3280986 DOI: 10.1371/journal.ppat.1002530] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
Following pathogen infection the hosts' nervous and immune systems react with coordinated responses to the danger. A key question is how the neuronal and immune responses to pathogens are coordinated, are there common signaling pathways used by both responses? Using C. elegans we show that infection by pathogenic strains of M. nematophilum, but not exposure to avirulent strains, triggers behavioral and immune responses both of which require a conserved Gαq-RhoGEF Trio-Rho signaling pathway. Upon infection signaling by the Gαq pathway within cholinergic motorneurons is necessary and sufficient to increase release of the neurotransmitter acetylcholine and increase locomotion rates and these behavioral changes result in C. elegans leaving lawns of M. nematophilum. In the immune response to infection signaling by the Gαq pathway within rectal epithelial cells is necessary and sufficient to cause changes in cell morphology resulting in tail swelling that limits the infection. These Gαq mediated behavioral and immune responses to infection are separate, act in a cell autonomous fashion and activation of this pathway in the appropriate cells can trigger these responses in the absence of infection. Within the rectal epithelium the Gαq signaling pathway cooperates with a Ras signaling pathway to activate a Raf-ERK-MAPK pathway to trigger the cell morphology changes, whereas in motorneurons Gαq signaling triggers behavioral responses independent of Ras signaling. Thus, a conserved Gαq pathway cooperates with cell specific factors in the nervous and immune systems to produce appropriate responses to pathogen. Thus, our data suggests that ligands for Gq coupled receptors are likely to be part of the signals generated in response to M. nematophilum infection. Once infected by a pathogen the nervous and immune systems of many animals react with coordinated responses to the danger. A key question is what are the pathways by which responses to infection occur and to what extent are the same pathways involved in differing responses? Here we demonstrate that a Gαq-RhoA pathway is required for both behavioral and immune responses to infection in C. elegans. We show that Gαq-RhoA signaling is a late step in the response to infection and their site of action defines the cellular targets of signals generated internally in response to infection. One response is to move away from sites of pathogenic bacteria and Gαq-RhoA signaling acts in motorneurons to achieve this. A second response is an innate immune response where Gαq-RhoA signaling acts within cells close to sites of infection, the rectal epithelial cells, to cause major changes in their size and shape to mitigate the effects of infection. Our work demonstrates that ligands for Gq coupled GPCRs are likely to be required for response to infection. Identifying these ligands and the cells that release them will help define the mechanisms by which C. elegans recognizes pathogens and coordinates behavioral and immune responses to infection.
Collapse
Affiliation(s)
- Rachel McMullan
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail: (RM); (SN)
| | - Alexandra Anderson
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- * E-mail: (RM); (SN)
| |
Collapse
|
37
|
Putaala H, Barrangou R, Leyer GJ, Ouwehand AC, Hansen EB, Romero DA, Rautonen N. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli. Benef Microbes 2011; 1:283-95. [PMID: 21831765 DOI: 10.3920/bm2010.0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The complex microbial population residing in the human gastrointestinal tract consists of commensal, potential pathogenic and beneficial species, which are probably perceived differently by the host and consequently could be expected to trigger specific transcriptional responses. Here, we provide a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33 DCE-induced changes were overall more similar to those of B. lactis 420 than to L. acidophilus NCFM™, which is consistent with previously observed in vivo immunomodulation properties. In the gene ontology and pathway analyses both specific and unspecific changes were observed. Common to all was the regulation of apoptosis and adipogenesis, and lipid-metabolism related regulation by the probiotics. Specific changes such as regulation of cell-cell adhesion by B. lactis 420, superoxide metabolism by L. salivarius Ls-33, and regulation of MAPK pathway by L. acidophilus NCFM™ were noted. Furthermore, fundamental differences were observed between the pathogenic and probiotic treatments in the Toll-like receptor pathway, especially for adapter molecules with a lowered level of transcriptional activation of MyD88, TRIF, IRAK1 and TRAF6 by probiotics compared to EHEC. The results in this study provide insights into the relationship between probiotics and human intestinal epithelial cells, notably with regard to strain-specific responses, and highlight the differences between transcriptional responses to pathogenic and probiotic bacteria.
Collapse
Affiliation(s)
- H Putaala
- Health & Nutrition, Danisco Sweeteners, Kantvik, Finland
| | | | | | | | | | | | | |
Collapse
|
38
|
Marques R, Boneca IG. Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 2011; 68:3661-73. [PMID: 21984599 PMCID: PMC11115018 DOI: 10.1007/s00018-011-0829-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors are somatically encoded and participate in the innate immune responses of a host to microbes. It is increasingly acknowledged that these receptors play a central role both in beneficial and pathogenic interactions with microbes. In particular, these receptors participate actively in shaping the gut environment to establish a fruitful life-long relationship between a host and its microbiota. Commensal bacteria engage Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) to induce specific responses by intestinal epithelial cells such as production of antimicrobial products or of a functional mucus layer. Furthermore, a complex crosstalk between intestinal epithelial cells and the immune system is initiated leading to a mature gut-associated lymphoid tissue to secrete IgA. Impairment in NLR and TLR functionality in epithelial cells is strongly associated with chronic inflammatory diseases such as Crohn's disease, cancer, and with control of the commensal microbiota creating a more favorable environment for the emergence of new infections.
Collapse
Affiliation(s)
- Rute Marques
- Development of Lymphoid Tissue Unit, Institut Pasteur, Paris, France.
| | | |
Collapse
|
39
|
Naglik JR, Moyes DL, Wächtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 2011; 13:963-76. [PMID: 21801848 DOI: 10.1016/j.micinf.2011.06.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/10/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022]
Abstract
Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response.
Collapse
Affiliation(s)
- Julian R Naglik
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London SE1 9RT, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Abstract
Systemic and local inflammation in relation to the resident microbiota of the human gastro-intestinal (GI) tract and administration of probiotics are the main themes of the present review. The dominating taxa of the human GI tract and their potential for aggravating or suppressing inflammation are described. The review focuses on human trials with probiotics and does not include in vitro studies and animal experimental models. The applications of probiotics considered are systemic immune-modulation, the metabolic syndrome, liver injury, inflammatory bowel disease, colorectal cancer and radiation-induced enteritis. When the major genomic differences between different types of probiotics are taken into account, it is to be expected that the human body can respond differently to the different species and strains of probiotics. This fact is often neglected in discussions of the outcome of clinical trials with probiotics.
Collapse
|
41
|
Kastner R, Dussurget O, Archambaud C, Kernbauer E, Soulat D, Cossart P, Decker T. LipA, a tyrosine and lipid phosphatase involved in the virulence of Listeria monocytogenes. Infect Immun 2011; 79:2489-98. [PMID: 21444667 PMCID: PMC3125854 DOI: 10.1128/iai.05073-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 03/17/2011] [Indexed: 11/20/2022] Open
Abstract
Intracellular bacterial pathogens manipulate host cell functions by producing enzymes that stimulate or antagonize signal transduction. The Listeria monocytogenes genome contains a gene, lmo1800, encoding a protein with a conserved motif of conventional tyrosine phosphatases. Here, we report that the lmo1800-encoded protein LipA is secreted by Listeria and displays tyrosine as well as lipid phosphatase activity in vitro. Bacteria lacking LipA are severely attenuated in virulence in vivo, thus revealing a so-far-undescribed enzymatic activity involved in Listeria infection.
Collapse
Affiliation(s)
- Renate Kastner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France
- Inserm U604, F-75015 Paris, France
- INRA USC2020, F-75015 Paris, France
- University Paris 7, F-75013 Paris, France
| | - Cristel Archambaud
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France
- Inserm U604, F-75015 Paris, France
- INRA USC2020, F-75015 Paris, France
| | - Elisabeth Kernbauer
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Didier Soulat
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France
- Inserm U604, F-75015 Paris, France
- INRA USC2020, F-75015 Paris, France
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
42
|
Li P, Yin Y, Yu Q, Yang Q. Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-induced apoptosis in Caco-2 cells. Biochem Biophys Res Commun 2011; 409:142-7. [DOI: 10.1016/j.bbrc.2011.04.131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/27/2011] [Indexed: 01/16/2023]
|
43
|
Aoyagi Y, Nagata S, Kudo T, Fujii T, Wada M, Chiba Y, Ohtsuka Y, Yamashiro Y, Shimizu T, Ohkusa T. Peroxisome proliferator-activated receptor γ 2 mutation may cause a subset of ulcerative colitis. Pediatr Int 2010; 52:729-34. [PMID: 20591056 DOI: 10.1111/j.1442-200x.2010.03195.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Previous studies suggest the homeostasis between acquisition of tolerance to the indigenous microflora and protective immune responses appears to be disrupted in inflammatory bowel disease (IBD). Some experimental studies indicate peroxisome proliferator-activated receptor γ (PPARγ) has been implicated as a regulator of intestinal inflammatory responses. In addition, the toll-like receptor (TLR)-4 can regulate expression of PPARγ in colonic epithelial cells. We attempted to demonstrate whether the functional imbalance between TLRs and PPARγ could lead to the onset and some polymorphisms of those genes could contribute to susceptibility to IBD. METHODS RT-PCR analysis were performed to detect TLR4 and PPARγ mRNA associated with those of P65 of NFκB, TNFα, MyD88, NOD2/CARD15, TLR-2,5,9, in the diseased colonic mucosa in ulcerative colitis (UC; n = 13) and Crohn's disease (CD; n = 7) compared with normal controls (n = 18). Consequently, we genotyped UC (n = 29) and CD (n = 10) compared with normal controls (n = 134) for the prevalence of suspicious mutations. RESULTS In a subset of UC patients who were revealed to carry PPARγ Pro12Ala mutation later, impaired expression of normal PPARγ mRNA was noted in the diseased mucosa accompanied with upregulations of MyD88 TLR-4, 5, 9, P65 and TNFα in mRNA levels. The prevalence of PPARγ Pro12Ala mutation was more frequently found in UC patients compared with CD patients and normal controls (P < 0.05). CONCLUSIONS These findings suggested that imbalances between TLRs and PPARγ in response to luminal bacteria could lead to colonic inflammation in some UC patients. Alternative explanations will be needed for the onset of the rest of UC and CD.
Collapse
Affiliation(s)
- Yo Aoyagi
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Quintar AA, Doll A, Leimgruber C, Palmeri CM, Roth FD, Maccioni M, Maldonado CA. Acute inflammation promotes early cellular stimulation of the epithelial and stromal compartments of the rat prostate. Prostate 2010; 70:1153-65. [PMID: 20564470 DOI: 10.1002/pros.21150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND It has been proposed that prostatic inflammation plays a pivotal role in the pathophysiology of benign hyperplasia and prostate cancer. However, little information is available about the prostatic reaction to bacterial compounds in vivo. Our aim was therefore to evaluate the early effects of bacterial infection on rat ventral prostate compartments. METHODS Using a rat model of acute bacterial prostatitis by Escherichia coli, we analyzed the histological and ultrastructural changes in the prostate at 24, 48, and 72 hr postinfection. Prostatic tissues were immunostained for prostatic binding protein (PBP), ACTA2, ErbB1, and ErbB2 receptors, TUNEL, and markers of cell proliferation. Dot and Western blots for PBP, ACTA2, ErbB1, ErbB2, and TGFbeta1 were also performed. RESULTS The prostatic epithelium became hypertrophied, with increases in PBP and ErbB1 expression at 24 hr postinfection. Moreover, inflammation induced the expression of ErbB2, a receptor strongly involved in carcinogenesis. These alterations were more pronounced at 48 hr, but the epithelium also showed apoptosis and finally atrophy at 72 hr postinfection, with a decrease in PBP and ErbB receptors. Interestingly, the epithelial cells exhibited a high level of proliferation in response to the bacteria. The stromal reaction to acute inflammation was initially characterized by smooth muscle hypertrophy. Afterwards, muscle cells acquired a secretory phenotype, with a reduction in ACTA2 at 72 hr postinfection. CONCLUSIONS Prostatic inflammation, even at the early stages, promotes atrophic and proliferative changes, and the upregulation of ErbB receptors together with dedifferentiation of smooth muscle cells. These data suggest that repetitive reinfections could lead to uncontrolled growth in the prostate gland.
Collapse
Affiliation(s)
- Amado A Quintar
- Center of Electron Microscopy, School of Medical Sciences, National University of Cordoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm 2010; 2010:976024. [PMID: 20396665 PMCID: PMC2853082 DOI: 10.1155/2010/976024] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/10/2010] [Accepted: 02/15/2010] [Indexed: 12/25/2022] Open
Abstract
The mucosal surface of the female genital tract is a complex biosystem, which provides a barrier against the outside world and participates in both innate and acquired immune defense systems. This mucosal compartment has adapted to a dynamic, non-sterile environment challenged by a variety of antigenic/inflammatory stimuli associated with sexual intercourse and endogenous vaginal microbiota. Rapid innate immune defenses against microbial infection usually involve the recognition of invading pathogens by specific pattern-recognition receptors recently attributed to the family of Toll-like receptors (TLRs). TLRs recognize conserved pathogen-associated molecular patterns (PAMPs) synthesized by microorganisms including bacteria, fungi, parasites, and viruses as well as endogenous ligands associated with cell damage. Members of the TLR family, which includes 10 human TLRs identified to date, recognize distinct PAMPs produced by various bacterial, fungal, and viral pathogens. The available literature regarding the innate immune system of the female genital tract during human reproductive processes was reviewed in order to identify studies specifically related to the expression and function of TLRs under normal as well as pathological conditions. Increased understanding of these molecules may provide insight into site-specific immunoregulatory mechanisms in the female reproductive tract.
Collapse
Affiliation(s)
- Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita 879-5593, Japan.
| | | |
Collapse
|
47
|
Dreher-Lesnick SM, Ceraul SM, Lesnick SC, Gillespie JJ, Anderson JM, Jochim RC, Valenzuela JG, Azad AF. Analysis of Rickettsia typhi-infected and uninfected cat flea (Ctenocephalides felis) midgut cDNA libraries: deciphering molecular pathways involved in host response to R. typhi infection. INSECT MOLECULAR BIOLOGY 2010; 19:229-41. [PMID: 20017753 PMCID: PMC3179627 DOI: 10.1111/j.1365-2583.2009.00978.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Murine typhus is a flea-borne febrile illness that is caused by the obligate intracellular bacterium, Rickettsia typhi. The cat flea, Ctenocephalides felis, acquires R. typhi by imbibing a bloodmeal from a rickettsemic vertebrate host. To explore which transcripts are expressed in the midgut in response to challenge with R. typhi, cDNA libraries of R. typhi-infected and uninfected midguts of C. felis were constructed. In this study, we examined midgut transcript levels for select C. felis serine proteases, GTPases and defence response genes, all thought to be involved in the fleas response to feeding or infection. An increase in gene expression was observed for the serine protease inhibitors and vesicular trafficking proteins in response to feeding. In addition, R. typhi infection resulted in an increase in gene expression for the chymotrypsin and rab5 that we studied. Interestingly, R. typhi infection had little effect on expression of any of the defence response genes that we studied. We are unsure as to the physiological significance of these gene expression profiles and are currently investigating their potential roles as it pertains to R. typhi infection. To our knowledge, this is the first report of differential expression of flea transcripts in response to infection with R. typhi.
Collapse
Affiliation(s)
- S M Dreher-Lesnick
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Arce C, Ramírez-Boo M, Lucena C, Garrido J. Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium. Comp Immunol Microbiol Infect Dis 2010; 33:161-74. [DOI: 10.1016/j.cimid.2008.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2008] [Indexed: 12/25/2022]
|
49
|
Bernal-Bayard J, Ramos-Morales F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J Biol Chem 2009; 284:27587-95. [PMID: 19690162 DOI: 10.1074/jbc.m109.010363] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica encodes two virulence-related type III secretion systems in Salmonella pathogenicity islands 1 and 2, respectively. These systems mediate the translocation of protein effectors into the eukaryotic host cell, where they alter cell signaling and manipulate host cell functions. However, the precise role of most effectors remains unknown. Using a genetic screen, we identified the small, reduction/oxidation-regulatory protein thioredoxin as a mammalian binding partner of the Salmonella effector SlrP. The interaction was confirmed by affinity chromatography and coimmunoprecipitation. In vitro, SlrP was able to mediate ubiquitination of ubiquitin and thioredoxin. A Cys residue conserved in other effectors of the same family that also possess E3 ubiquitin ligase activity was essential for this catalytic function. Stable expression of SlrP in HeLa cells resulted in a significant decrease of thioredoxin activity and in an increase of cell death. The physiological significance of these results was strengthened by the finding that Salmonella was able to trigger cell death and inhibit thioredoxin activity in HeLa cells several hours post-infection. This study assigns a functional role to the Salmonella effector SlrP as a binding partner and an E3 ubiquitin ligase for mammalian thioredoxin.
Collapse
Affiliation(s)
- Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Sevilla, Spain
| | | |
Collapse
|
50
|
Nogueira CV, Lindsten T, Jamieson AM, Case CL, Shin S, Thompson CB, Roy CR. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 2009; 5:e1000478. [PMID: 19521510 PMCID: PMC2689937 DOI: 10.1371/journal.ppat.1000478] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 05/18/2009] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) are specialized phagocytes that internalize exogenous antigens and microbes at peripheral sites, and then migrate to lymphatic organs to display foreign peptides to naïve T cells. There are several examples where DCs have been shown to be more efficient at restricting the intracellular replication of pathogens compared to macrophages, a property that could prevent DCs from enhancing pathogen dissemination. To understand DC responses to pathogens, we investigated the mechanisms by which mouse DCs are able to restrict replication of the intracellular pathogen Legionella pneumophila. We show that both DCs and macrophages have the ability to interfere with L. pneumophila replication through a cell death pathway mediated by caspase-1 and Naip5. L. pneumophila that avoided Naip5-dependent responses, however, showed robust replication in macrophages but remained unable to replicate in DCs. Apoptotic cell death mediated by caspase-3 was found to occur much earlier in DCs following infection by L. pneumophila compared to macrophages infected similarly. Eliminating the pro-apoptotic proteins Bax and Bak or overproducing the anti-apoptotic protein Bcl-2 were both found to restore L. pneumophila replication in DCs. Thus, DCs have a microbial response pathway that rapidly activates apoptosis to limit pathogen replication.
Collapse
Affiliation(s)
- Catarina V. Nogueira
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomedicas Dr. Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tullia Lindsten
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amanda M. Jamieson
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Christopher L. Case
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sunny Shin
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Thompson
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Craig R. Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|