1
|
Lei WL, Qian WP, Sun QY. Critical Functions of PP2A-Like Protein Phosphotases in Regulating Meiotic Progression. Front Cell Dev Biol 2021; 9:638559. [PMID: 33718377 PMCID: PMC7947259 DOI: 10.3389/fcell.2021.638559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Meiosis is essential to the continuity of life in sexually-reproducing organisms through the formation of haploid gametes. Unlike somatic cells, the germ cells undergo two successive rounds of meiotic divisions after a single cycle of DNA replication, resulting in the decrease in ploidy. In humans, errors in meiotic progression can cause infertility and birth defects. Post-translational modifications, such as phosphorylation, ubiquitylation and sumoylation have emerged as important regulatory events in meiosis. There are dynamic equilibrium of protein phosphorylation and protein dephosphorylation in meiotic cell cycle process, regulated by a conservative series of protein kinases and protein phosphatases. Among these protein phosphatases, PP2A, PP4, and PP6 constitute the PP2A-like subfamily within the serine/threonine protein phosphatase family. Herein, we review recent discoveries and explore the role of PP2A-like protein phosphatases during meiotic progression.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
2
|
Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol 2018; 144:33-74. [PMID: 29804676 DOI: 10.1016/bs.mcb.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitosis is an essential process that takes place in all eukaryotes and involves the equal division of genetic material from a parental cell into two identical daughter cells. During mitosis, chromosome movement and segregation are orchestrated by a specialized structure known as the mitotic spindle, composed of a bipolar array of microtubules. The fundamental structure of microtubules comprises of α/β-tubulin heterodimers that associate head-to-tail and laterally to form hollow filaments. In vivo, microtubules are modified by abundant and evolutionarily conserved tubulin posttranslational modifications (PTMs), giving these filaments the potential for a wide chemical diversity. In recent years, the concept of a "tubulin code" has emerged as an extralayer of regulation governing microtubule function. A range of tubulin isoforms, each with a diverse set of PTMs, provides a readable code for microtubule motors and other microtubule-associated proteins. This chapter focuses on the complexity of tubulin PTMs with an emphasis on detyrosination and summarizes the methods currently used in our laboratory to experimentally manipulate these modifications and study their impact in mitosis.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Danilo Lopes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Miao Y, Zhou C, Cui Z, Tang L, ShiYang X, Lu Y, Zhang M, Dai X, Xiong B. Dynein promotes porcine oocyte meiotic progression by maintaining cytoskeletal structures and cortical granule arrangement. Cell Cycle 2017; 16:2139-2145. [PMID: 28933593 DOI: 10.1080/15384101.2017.1380133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein is a family of cytoskeletal motor proteins that move towards the minus-end of the microtubules to perform functions in a variety of mitotic processes such as cargo transport, organelle positioning, chromosome movement and centrosome assembly. However, its specific roles during mammalian oocyte meiosis have not been fully defined. Herein, we investigated the critical events during porcine oocyte meiotic maturation after inhibition of dynein by Ciliobrevin D treatment. We found that oocyte meiotic progression was arrested when inhibited of dynein by showing the poor expansion of cumulus cells and decreased rate of polar body extrusion. Meanwhile, the spindle assembly and chromosome alignment were disrupted, accompanied by the reduced level of acetylated α-tubulin, indicative of weakened microtubule stability. Defective actin polymerization on the plasma membrane was also observed in dynein-inhibited oocytes. In addition, inhibition of dynein caused the abnormal distribution of cortical granules and precocious exocytosis of ovastacin, a cortical granule component, which predicts that ZP2, the sperm binding site in the zona pellucida, might be prematurely cleaved in the unfertilized dynein-inhibited oocytes, potentially leading to the fertilization failure. Collectively, our findings reveal that dynein plays a part in porcine oocyte meiotic progression by regulating the cytoskeleton dynamics including microtubule stability, spindle assembly, chromosome alignment and actin polymerization. We also find that dynein mediates the normal cortical granule distribution and exocytosis timing of ovastacin in unfertilized eggs which are the essential for the successful fertilization.
Collapse
Affiliation(s)
- Yilong Miao
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Changyin Zhou
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Zhaokang Cui
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Liansheng Tang
- b Shandong Institute of Pharmaceutical Industry, Shandong Provincial Key Laboratory of Chemical Drugs , Jinan , China
| | - Xiayan ShiYang
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Yajuan Lu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Mianqun Zhang
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xiaoxin Dai
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Bo Xiong
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
4
|
Chang AY, Marshall WF. Organelles - understanding noise and heterogeneity in cell biology at an intermediate scale. J Cell Sci 2017; 130:819-826. [PMID: 28183729 DOI: 10.1242/jcs.181024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies over the years have shown that non-genetic mechanisms for producing cell-to-cell variation can lead to highly variable behaviors across genetically identical populations of cells. Most work to date has focused on gene expression noise as the primary source of phenotypic heterogeneity, yet other sources may also contribute. In this Commentary, we explore organelle-level heterogeneity as a potential secondary source of cellular 'noise' that contributes to phenotypic heterogeneity. We explore mechanisms for generating organelle heterogeneity and present evidence of functional links between organelle morphology and cellular behavior. Given the many instances in which molecular-level heterogeneity has been linked to phenotypic heterogeneity, we posit that organelle heterogeneity may similarly contribute to overall phenotypic heterogeneity and underline the importance of studying organelle heterogeneity to develop a more comprehensive understanding of phenotypic heterogeneity. Finally, we conclude with a discussion of the medical challenges associated with phenotypic heterogeneity and outline how improved methods for characterizing and controlling this heterogeneity may lead to improved therapeutic strategies and outcomes for patients.
Collapse
Affiliation(s)
- Amy Y Chang
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Kilner J, Corfe BM, McAuley MT, Wilkinson SJ. A deterministic oscillatory model of microtubule growth and shrinkage for differential actions of short chain fatty acids. MOLECULAR BIOSYSTEMS 2016; 12:93-101. [DOI: 10.1039/c5mb00211g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Short-chain fatty acids have distinct effects on cytoskeletal proteins at the level of expression and organisation. We report a new oscillatory, deterministic model which accounts for different actions and predicts response according to fatty acid chain length.
Collapse
Affiliation(s)
- Josephine Kilner
- Biological and Systems Engineering Group
- ChELSI Institute
- Department of Chemical and Biological Engineering
- University of Sheffield S1 3JD
- UK
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group
- Academic Unit of Surgical Oncology
- Department of Oncology
- University of Sheffield
- The Medical School
| | | | - Stephen J. Wilkinson
- Biological and Systems Engineering Group
- ChELSI Institute
- Department of Chemical and Biological Engineering
- University of Sheffield S1 3JD
- UK
| |
Collapse
|
6
|
Islam MS, Kabir AMR, Inoue D, Sada K, Kakugo A. Enhanced dynamic instability of microtubules in a ROS free inert environment. Biophys Chem 2015; 211:1-8. [PMID: 26774598 DOI: 10.1016/j.bpc.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS), one of the regulators in various biological processes, have recently been suspected to modulate microtubule (MT) dynamics in cells. However due to complicated cellular environment and unavailability of any in vitro investigation, no detail is understood yet. Here, by performing simple in vitro investigations, we have unveiled the effect of ROS on MT dynamics. By studying dynamic instability of MTs in a ROS free environment and comparing with that in the presence of ROS, we disclosed that MTs showed enhanced dynamics in the ROS free environment. All the parameters that define dynamic instability of MTs e.g., growth and shrinkage rates, rescue and catastrophe frequencies were significantly affected by the presence of ROS. This work clearly reveals the role of ROS in modulating MT dynamics in vitro, and would be a great help in understanding the role of ROS in regulation of MT dynamics in cells.
Collapse
Affiliation(s)
- Md Sirajul Islam
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | | | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
7
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Lu Y, Liu C, Xu YF, Cheng H, Shi S, Wu CT, Yu XJ. Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition. Hepatobiliary Pancreat Dis Int 2014; 13:386-94. [PMID: 25100123 DOI: 10.1016/s1499-3872(14)60038-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Stathmin is a ubiquitous cytosolic regulatory phosphoprotein and is overexpressed in different human malignancies. The main physiological function of stathmin is to interfere with microtubule dynamics by promoting depolymerization of microtubules or by preventing polymerization of tubulin heterodimers. Stathmin plays important roles in regulating many cellular functions as a result of its microtubule-destabilizing activity. Currently, the critical roles of stathmin in cancer cells, as well as in lymphocytes have been valued. This review discusses stathmin and microtubule dynamics in cancer development, and hypothesizes their possible relationship with epithelial-mesenchymal transition (EMT). DATA SOURCES A PubMed search using such terms as "stathmin", "microtubule dynamics", "epithelial-mesenchymal transition", "EMT", "malignant potential" and "cancer" was performed to identify relevant studies published in English. More than 100 related articles were reviewed. RESULTS The literature clearly documented the relationship between stathmin and its microtubule-destabilizing activity of cancer development. However, the particular mechanism is poorly understood. Microtubule disruption is essential for EMT, which is a crucial process during cancer development. As a microtubule-destabilizing protein, stathmin may promote malignant potential in cancer cells by initiating EMT. CONCLUSIONS We propose that there is a stathmin-microtubule dynamics-EMT (S-M-E) axis during cancer development. By this axis, stathmin together with its microtubule-destabilizing activity contributes to EMT, which stimulates the malignant potential in cancer cells.
Collapse
Affiliation(s)
- Yu Lu
- Pancreatic Cancer Institute, Fudan University; Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Genotoxicity of microcystin-LR in in vitro and in vivo experimental models. BIOMED RESEARCH INTERNATIONAL 2014; 2014:949521. [PMID: 24955368 PMCID: PMC4052155 DOI: 10.1155/2014/949521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/30/2014] [Indexed: 01/21/2023]
Abstract
Microcystin-LR (MCLR) is a cyanobacterial toxin known for its acute hepatotoxicity. Despite being recognized as tumour promoter, its genotoxicity is far from being completely clarified, particularly in organs other than liver. In this work, we used the comet and/or the micronucleus (MN) assays to study the genotoxicity of MCLR in kidney- (Vero-E6) and liver-derived (HepG2) cell lines and in blood cells from MCLR-exposed mice. MCLR treatment (5 and 20 μM) caused a significant induction in the MN frequency in both cell lines and, interestingly, a similar positive effect was observed in mouse reticulocytes (37.5 μg MCLR/kg, i.p. route). Moreover, the FISH-based analysis of the MN content (HepG2 cells) suggested that MCLR induces both chromosome breaks and loss. On the other hand, the comet assay results were negative in Vero-E6 cells and in mouse leukocytes, with the exception of a transient increase in the level of DNA damage 30 minutes after mice exposure. Overall, the present findings contributed to increase the weight of evidence in favour of MCLR genotoxicity, based on its capacity to induce permanent genetic damage either in vitro or in vivo. Moreover, they suggest a clastogenic and aneugenic mode of action that might underlie a carcinogenic effect.
Collapse
|
10
|
Lysko DE, Putt M, Golden JA. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules. J Neurosci 2014; 34:4941-62. [PMID: 24695713 PMCID: PMC3972721 DOI: 10.1523/jneurosci.4351-12.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/21/2022] Open
Abstract
Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.
Collapse
Affiliation(s)
- Daniel E. Lysko
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mary Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jeffrey A. Golden
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
11
|
Xu X, Zhang Q, Hu JY, Zhang DX, Jiang XP, Jia JZ, Zhu JC, Huang YS. Phosphorylation of DYNLT1 at serine 82 regulates microtubule stability and mitochondrial permeabilization in hypoxia. Mol Cells 2013; 36:322-32. [PMID: 24170091 PMCID: PMC3887991 DOI: 10.1007/s10059-013-0114-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/09/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-induced microtubule disruption and mitochondrial permeability transition (mPT) are crucial events leading to fatal cell damage and recent studies showed that microtubules (MTs) are involved in the modulation of mitochondrial function. Dynein light chain Tctex-type 1 (DYNLT1) is thought to be associated with MTs and mitochondria. Previously we demonstrated that DYNLT1 knockdown aggravates hypoxia-induced mitochondrial permeabilization, which indicates a role of DYNLT1 in hypoxic cytoprotection. But the underlying regulatory mechanism of DYNLT1 remains illusive. Here we aimed to investigate the phosphorylation alteration of DYNLT1 at serine 82 (S82) in hypoxia (1% O2). We therefore constructed recombinant adenoviruses to generate S82E and S82A mutants, used to transfect H9c2 and HeLa cell lines. Development of hypoxia-induced mPT (MMP examining, Cyt c release and mPT pore opening assay), hypoxic energy metabolism (cellular viability and ATP quantification), and stability of MTs were examined. Our results showed that phosph-S82 (S82-P) expression was increased in early hypoxia; S82E mutation (phosphomimic) aggravated mitochondrial damage, elevated the free tubulin in cytoplasm and decreased the cellular viability; S82A mutation (dephosphomimic) seemed to diminish the hypoxia-induced injury. These data suggest that DYNLT1 phosphorylation at S82 is involved in MTs and mitochondria regulation, and their interaction and cooperation contribute to the cellular hypoxic tolerance. Thus, we provide new insights into a DYNLT1 mechanism in stabilizing MTs and mitochondria, and propose a potential therapeutic target for hypoxia cytoprotective studies.
Collapse
Affiliation(s)
- Xue Xu
- School of Nursing, The Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jiong-yu Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Dong-xia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xu-pin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - jie-zhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jing-ci Zhu
- School of Nursing, The Third Military Medical University, Chongqing, China
| | - Yue-sheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
12
|
Shi Z, Hou J, Guo X, Zhang H, Yang F, Dai J. Testicular phosphoproteome in perfluorododecanoic acid-exposed rats. Toxicol Lett 2013; 221:91-101. [DOI: 10.1016/j.toxlet.2013.06.219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
|
13
|
Park J, Rhee K. NEK2 phosphorylation antagonizes the microtubule stabilizing activity of centrobin. Biochem Biophys Res Commun 2013; 431:302-8. [PMID: 23291182 DOI: 10.1016/j.bbrc.2012.12.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
Centrobin was initially identified as a centrosome protein for centriole duplication. Centrobin is also detected outside the centrosome and involved in other cellular functions, such as spindle assembly. We previously reported that centrobin is a substrate of both NEK2 and PLK1, but it is not clear what functional properties of centrobin are regulated by two kinases. Here, we report that centrobin is involved in cell spreading, migration and microtubule stabilization in interphase cells. The NEK2-depleted cells looked spread with well-developed microtubule networks and migrated faster than the control cells. The microtubule stability in NEK2-depleted cells was higher than the control cells. However, the opposite was the case in centrobin-depleted cells. The opposite outcomes in NEK2- and centrobin-depleted cells suggest that NEK2 antagonizes biological functions of centrobin. We identified NEK2 phosphorylation sites within centrobin, which is distinct from the PLK1 phosphorylation sites. In fact, the phospho-resistant mutant of centrobin against NEK2 stabilized microtubule networks in vivo. Based on the results, we propose that NEK2 phosphorylation antagonizes the microtubule stabilizing activity of centrobin. Centrobin is a novel example that NEK2 and PLK1 independently phosphorylate a substrate and result in opposite outcomes in substrate function.
Collapse
Affiliation(s)
- Joonhyun Park
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | | |
Collapse
|
14
|
Teng M, Jiang XP, Zhang Q, Zhang JP, Zhang DX, Liang GP, Huang YS. Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes. PLoS One 2012; 7:e35017. [PMID: 22506063 PMCID: PMC3323643 DOI: 10.1371/journal.pone.0035017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/08/2012] [Indexed: 12/04/2022] Open
Abstract
Background Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. Methodology/Principal Findings In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule–depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. Conclusions/Significance This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue-sheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
15
|
Expression of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs. Cell Oncol (Dordr) 2012; 35:85-93. [PMID: 22278362 DOI: 10.1007/s13402-011-0066-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2011] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND The evolutionarily conserved septin family of genes encode GTP binding proteins involved in a variety of cellular functions including cytokinesis, apoptosis, membrane dynamics and vesicle trafficking. Septin proteins can form hetero-oligomeric complexes and interact with other proteins including actin and tubulin. The human SEPT9 gene on chromosome 17q25.3 has a complex genomic architecture with 18 different transcripts that can encode 15 distinct polypeptides. Two distinct transcripts with unique 5' ends (SEPT9_v4 and SEPT9_v4*) encode the same protein. In tumours the ratio of these transcripts changes with elevated levels of SEPT9_v4* mRNA, a transcript that is translated with enhanced efficiency leading to increased SEPT9_i4 protein. METHODS We have examined the effect of over-expression of SEPT9_i4 on the dynamics of microtubule polymer mass in cultured cells. RESULTS We show that the microtubule network in SEPT9_i4 over-expressing cells resists disruption by paclitaxel or cold incubation but also repolymerises tubulin more slowly after microtubule depolymerisation. Finally we show that SEPT9_i4 over-expressing cells have enhanced survival in the presence of clinically relevant microtubule acting drugs but not after treatment with DNAinteracting agents. CONCLUSIONS Given that SEPT9 over-expression is seen in diverse tumours and in particular ovarian and breast cancer, such data indicate that SEPT9_v4 expression may be clinically relevant and contribute to some forms of drug resistance.
Collapse
|
16
|
Tan HT, Wu W, Ng YZ, Zhang X, Yan B, Ong CW, Tan S, Salto-Tellez M, Hooi SC, Chung MCM. Proteomic analysis of colorectal cancer metastasis: stathmin-1 revealed as a player in cancer cell migration and prognostic marker. J Proteome Res 2012; 11:1433-45. [PMID: 22181002 DOI: 10.1021/pr2010956] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastasis accounts largely for the high mortality rate of colorectal cancer (CRC) patients. In this study, we performed comparative proteome analysis of primary CRC cell lines HCT-116 and its metastatic derivative E1 using 2-D DIGE. We identified 74 differentially expressed proteins, many of which function in transcription, translation, angiogenesis signal transduction, or cytoskeletal remodeling pathways, which are indispensable cellular processes involved in the metastatic cascade. Among these proteins, stathmin-1 (STMN1) was found to be highly up-regulated in E1 as compared to HCT-116 and was thus selected for further functional studies. Our results showed that perturbations in STMN1 levels resulted in significant changes in cell migration, invasion, adhesion, and colony formation. We further showed that the differential expression of STMN1 correlated with the cells' metastatic potential in other paradigms of CRC models. Using immunohistochemistry, we also showed that STMN1 was highly expressed in colorectal primary tumors and metastatic tissues as compared to the adjacent normal colorectal tissues. Furthermore, we also showed via tissue microarray analyses of 324 CRC tissues and Kaplan-Meier survival plot that CRC patients with higher expression of STMN1 have poorer prognosis.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Alisaraie L, Tuszynski JA. Determination of Noscapine’s Localization and Interaction with the Tubulin-α/β Heterodimer. Chem Biol Drug Des 2011; 78:535-46. [DOI: 10.1111/j.1747-0285.2011.01189.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Guo CW, Xiong S, Liu G, Wang YF, He QY, Zhang XE, Zhang ZP, Ge F, Kitazato K. Proteomic analysis reveals novel binding partners of MIP-T3 in human cells. Proteomics 2010; 10:2337-47. [PMID: 20391533 DOI: 10.1002/pmic.201000130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MIP-T3 (microtubule-interacting protein associated with TRAF3) is a microtubule-interacting protein that evolutionarily conserved from worms to humans, but whose cellular functions remains unknown. To get insight into the functions of MIP-T3, we set out to identify MIP-T3 interacting proteins by immunoprecipitation in human embryonic kidney 293 cells and MS analysis. As the results, a total of 34 proteins were identified and most of them were novel MIP-T3 putative partners. The MIP-T3-associated proteins could be grouped into nine clusters based on their molecule functions, including cytoskeleton, chaperone, nucleic acid binding, kinase and so on. Three MIP-T3-interacted proteins - actin, HSPA8 and tubulin - were further confirmed by reciprocal coimmunoprecipitations and colocalization analysis. The interaction of MIP-T3 with both actin filaments and microtubule suggested that MIP-T3 may play an important role in regulation of cytoskeleton dynamics in cells. Our results therefore not only uncover a large number of MIP-T3-associated proteins that possess a variety of cellular functions, but also provide new research directions for the study of the functions of MIP-T3.
Collapse
Affiliation(s)
- Chao-Wan Guo
- Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee J, Jeong Y, Jeong S, Rhee K. Centrobin/NIP2 is a microtubule stabilizer whose activity is enhanced by PLK1 phosphorylation during mitosis. J Biol Chem 2010; 285:25476-84. [PMID: 20511645 PMCID: PMC2919111 DOI: 10.1074/jbc.m109.099127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/24/2010] [Indexed: 11/06/2022] Open
Abstract
Centrobin/NIP2 is a centrosomal protein that is required for centrosome duplication. It is also critical for microtubule organization in both interphase and mitotic cells. In the present study, we observed that centrobin is phosphorylated in a cell cycle stage-specific manner, reaching its maximum at M phase. PLK1 is a kinase that is responsible for M phase-specific phosphorylation of centrobin. The microtubule forming activity of centrobin was enhanced by PLK1 phosphorylation. Furthermore, mitotic spindles were not assembled properly with the phospho-resistant mutant of centrobin. Based on these results, we propose that centrobin functions as a microtubule stabilizing factor and PLK1 enhances centrobin activity for proper spindle formation during mitosis.
Collapse
Affiliation(s)
- Jungmin Lee
- From the Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Yeontae Jeong
- From the Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Saimi Jeong
- From the Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Kunsoo Rhee
- From the Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
20
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
21
|
Chen PW, Lin SJ, Tsai SC, Lin JH, Chen MR, Wang JT, Lee CP, Tsai CH. Regulation of microtubule dynamics through phosphorylation on stathmin by Epstein-Barr virus kinase BGLF4. J Biol Chem 2010; 285:10053-10063. [PMID: 20110360 DOI: 10.1074/jbc.m109.044420] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stathmin is an important microtubule (MT)-destabilizing protein, and its activity is differently attenuated by phosphorylation at one or more of its four phosphorylatable serine residues (Ser-16, Ser-25, Ser-38, and Ser-63). This phosphorylation of stathmin plays important roles in mitotic spindle formation. We observed increasing levels of phosphorylated stathmin in Epstein-Barr virus (EBV)-harboring lymphoblastoid cell lines (LCLs) and nasopharyngeal carcinoma (NPC) cell lines during the EBV lytic cycle. These suggest that EBV lytic products may be involved in the regulation of stathmin phosphorylation. BGLF4 is an EBV-encoded kinase and has similar kinase activity to cdc2, an important kinase that phosphorylates serine residues 25 and 38 of stathmin during mitosis. Using an siRNA approach, we demonstrated that BGLF4 contributes to the phosphorylation of stathmin in EBV-harboring NPC. Moreover, we confirmed that BGLF4 interacts with and phosphorylates stathmin using an in vitro kinase assay and an in vivo two-dimensional electrophoresis assay. Interestingly, unlike cdc2, BGLF4 was shown to phosphorylate non-proline directed serine residues of stathmin (Ser-16) and it mediated phosphorylation of stathmin predominantly at serines 16, 25, and 38, indicating that BGLF4 can down-regulate the activity of stathmin. Finally, we demonstrated that the pattern of MT organization was changed in BGLF4-expressing cells, possibly through phosphorylation of stathmin. In conclusion, we have shown that a viral Ser/Thr kinase can directly modulate the activity of stathmin and this contributes to alteration of cellular MT dynamics and then may modulate the associated cellular processes.
Collapse
Affiliation(s)
- Po-Wen Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Sue-Jane Lin
- Research Center for Emerging Viral Infections and Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Shu-Chun Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jiun-Han Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jiin-Tarng Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chung-Pei Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
22
|
Quantitative Analysis of MAP-Mediated Regulation of Microtubule Dynamic Instability In Vitro. Methods Cell Biol 2010; 95:481-503. [DOI: 10.1016/s0091-679x(10)95024-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Kamath K, Oroudjev E, Jordan MA. Determination of microtubule dynamic instability in living cells. Methods Cell Biol 2010; 97:1-14. [PMID: 20719262 DOI: 10.1016/s0091-679x(10)97001-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The precise regulation of microtubules and their dynamics is critical for cell cycle progression, cell signaling, intracellular transport, cell polarization, and organismal development. For example, mitosis, cell migration, and axonal outgrowth all involve rapid and dramatic changes in microtubule organization and dynamics. Microtubule-associated proteins (MAPs) such as MAP2 and tau (Bunker et al., 2004; Dhamodharan and Wadsworth, 1995) and microtubule-interacting proteins such as stathmin, the kinesin MCAK, and EB1 (Cassimeris, 1999; Moore and Wordeman, 2004; Ringhoff and Cassimeris, 2009; Rusan et al., 2001) as well as numerous clinically approved or experimental anti-mitotic drugs including the taxanes, vinca alkaloids, and colchicine-like compounds modulate microtubule dynamic in cells (Jordan, 2002; Jordan and Kamath, 2007). In this chapter, we describe methods to analyze the dynamic instability of microtubules in living cells by microscopy of microinjected or expressed fluorescent tubulin, time-lapse microscopy, and analysis of time-dependent microtubule length changes.
Collapse
Affiliation(s)
- Kathy Kamath
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
24
|
Hu JY, Chu ZG, Han J, Dang YM, Yan H, Zhang Q, Liang GP, Huang YS. The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol Life Sci 2010; 67:321-33. [PMID: 19915797 PMCID: PMC11115776 DOI: 10.1007/s00018-009-0187-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 02/07/2023]
Abstract
In both cardiomyocytes and HeLa cells, hypoxia (1% O(2)) quickly leads to microtubule disruption, but little is known about how microtubule dynamics change during the early stages of hypoxia. We demonstrate that microtubule associated protein 4 (MAP4) phosphorylation increases while oncoprotein 18/stathmin (Op18) phosphorylation decreases after hypoxia, but their protein levels do not change. p38/MAPK activity increases quickly after hypoxia concomitant with MAP4 phosphorylation, and the activated p38/MAPK signaling leads to MAP4 phosphorylation and to Op18 dephosphorylation, both of which induce microtubule disruption. We confirmed the interaction between phospho-p38 and MAP4 using immunoprecipitation and found that SB203580, a p38/MAPK inhibitor, increases and MKK6(Glu) overexpression decreases hypoxic cell viability. Our results demonstrate that hypoxia induces microtubule depolymerization and decreased cell viability via the activation of the p38/MAPK signaling pathway and changes the phosphorylation levels of its downstream effectors, MAP4 and Op18.
Collapse
Affiliation(s)
- Jiong-Yu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Zhi-Gang Chu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Jian Han
- Department of Gynecology and Obstetrics, Daping Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Yong-ming Dang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Hong Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Guang-ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| | - Yue-Sheng Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, 400038 Chongqing, People’s Republic of China
| |
Collapse
|
25
|
Malz M, Weber A, Singer S, Riehmer V, Bissinger M, Riener MO, Longerich T, Soll C, Vogel A, Angel P, Schirmacher P, Breuhahn K. Overexpression of far upstream element binding proteins: a mechanism regulating proliferation and migration in liver cancer cells. Hepatology 2009; 50:1130-9. [PMID: 19585652 DOI: 10.1002/hep.23051] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED Microtubule-dependent effects are partly regulated by factors that coordinate polymer dynamics such as the microtubule-destabilizing protein stathmin (oncoprotein 18). In cancer cells, increased microtubule turnover affects cell morphology and cellular processes that rely on microtubule dynamics such as mitosis and migration. However, the molecular mechanisms deregulating modifiers of microtubule activity in human hepatocarcinogenesis are poorly understood. Based on profiling data of human hepatocellular carcinoma (HCC), we identified far upstream element binding proteins (FBPs) as significantly coregulated with stathmin. Coordinated overexpression of two FBP family members (FBP-1 and FBP-2) in >70% of all analyzed human HCCs significantly correlated with poor patient survival. In vitro, FBP-1 predominantly induced tumor cell proliferation, while FBP-2 primarily supported migration in different HCC cell lines. Surprisingly, reduction of FBP-2 levels was associated with elevated FBP-1 expression, suggesting a regulatory interplay of FBP family members that functionally discriminate between cell division and mobility. Expression of FBP-1 correlated with stathmin expression in HCC tissues and inhibition of FBP-1 but not of FBP-2 drastically reduced stathmin at the transcript and protein levels. In contrast, further overexpression of FBP-1 did not affect stathmin bioavailability. Accordingly, analyzing nuclear and cytoplasmic areas of HCC cells revealed that reduced FBP-1 levels affected cell morphology and were associated with a less malignant phenotype. CONCLUSION The coordinated activation of FBP-1 and FBP-2 represents a novel and frequent pro-tumorigenic mechanism promoting proliferation (tumor growth) and motility (dissemination) of human liver cancer cells. FBPs promote tumor-relevant functions by at least partly employing the microtubule-destabilizing factor stathmin and represent a new potential target structure for HCC treatment.
Collapse
Affiliation(s)
- Mona Malz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The regulation of survival and cell death is a key determinant of cell fate. Recent evidence shows that survival and death machineries are regulated along the cell cycle. In the present paper, we show that BimEL [a BH3 (Bcl-2 homology 3)-only member of the Bcl-2 family of proteins; Bim is Bcl-2-interacting mediator of cell death; EL is the extra-long form] is phosphorylated in mitosis. This post-translational modification is dependent on MEK (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase) and growth factor signalling. Interestingly, FGF (fibroblast growth factor) signalling seems to play an essential role in this process, since, in the presence of serum, inhibition of FGF receptors abrogated phosphorylation of Bim in mitosis. Moreover, we have shown bFGF (basic FGF) to be sufficient to induce phosphorylation of Bim in serum-free conditions in any phase of the cell cycle, and also to significantly rescue cells from serum-deprivation-induced apoptosis. Our results show that, in mitosis, Bim is phosphorylated downstream of growth factor signalling in a MEK-dependent manner, with FGF signalling playing an important role. We suggest that phosphorylation of Bim is a decisive step for the survival of proliferating cells.
Collapse
Affiliation(s)
- Mário Grãos
- Centro Biologia Desenvolvimento, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Alexandra D. Almeida
- Centro Biologia Desenvolvimento, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Sukalyan Chatterjee
- Centro Biologia Desenvolvimento, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 2009; 122:3531-41. [PMID: 19737819 DOI: 10.1242/jcs.046813] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the role of a class II histone deacetylase, HDAC6, known to function as a potent alpha-tubulin deacetylase, in the regulation of microtubule dynamics. Treatment of cells with the class I and II histone deacetylase inhibitor TSA, as well as the selective HDAC6 inhibitor tubacin, increased microtubule acetylation and significantly reduced velocities of microtubule growth and shrinkage. siRNA-mediated knockdown of HDAC6 also increased microtubule acetylation but, surprisingly, had no effect on microtubule growth velocity. At the same time, HDAC6 knockdown abolished the effect of tubacin on microtubule growth, demonstrating that tubacin influences microtubule dynamics via specific inhibition of HDAC6. Thus, the physical presence of HDAC6 with impaired catalytic activity, rather than tubulin acetylation per se, is the factor responsible for the alteration of microtubule growth velocity in HDAC6 inhibitor-treated cells. In support of this notion, HDAC6 mutants bearing inactivating point mutations in either of the two catalytic domains mimicked the effect of HDAC6 inhibitors on microtubule growth velocity. In addition, HDAC6 was found to be physically associated with the microtubule end-tracking protein EB1 and a dynactin core component, Arp1, both of which accumulate at the tips of growing microtubules. We hypothesize that inhibition of HDAC6 catalytic activity may affect microtubule dynamics by promoting the interaction of HDAC6 with tubulin and/or with other microtubule regulatory proteins.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Ban R, Matsuzaki H, Akashi T, Sakashita G, Taniguchi H, Park SY, Tanaka H, Furukawa K, Urano T. Mitotic regulation of the stability of microtubule plus-end tracking protein EB3 by ubiquitin ligase SIAH-1 and Aurora mitotic kinases. J Biol Chem 2009; 284:28367-28381. [PMID: 19696028 DOI: 10.1074/jbc.m109.000273] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microtubule plus-end tracking proteins (+TIPs) control microtubule dynamics in fundamental processes such as cell cycle, intracellular transport, and cell motility, but how +TIPs are regulated during mitosis remains largely unclear. Here we show that the endogenous end-binding protein family EB3 is stable during mitosis, facilitates cell cycle progression at prometaphase, and then is down-regulated during the transition to G(1) phase. The ubiquitin-protein isopeptide ligase SIAH-1 facilitates EB3 polyubiquitination and subsequent proteasome-mediated degradation, whereas SIAH-1 knockdown increases EB3 stability and steady-state levels. Two mitotic kinases, Aurora-A and Aurora-B, phosphorylate endogenous EB3 at Ser-176, and the phosphorylation triggers disruption of the EB3-SIAH-1 complex, resulting in EB3 stabilization during mitosis. Our results provide new insight into a regulatory mechanism of +TIPs in cell cycle transition.
Collapse
Affiliation(s)
- Reiko Ban
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550.
| | - Hideki Matsuzaki
- Institute for Enzyme Research, University of Tokushima, 3-15-18 Kuramoto, Tokushima 770-8503
| | - Tomohiro Akashi
- Division of Molecular Mycology and Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, 3-15-18 Kuramoto, Tokushima 770-8503
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045
| | - Hirofumi Tanaka
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | - Koichi Furukawa
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501; Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550.
| |
Collapse
|
29
|
Kuo MF, Wang HS, Kuo QT, Shun CT, Hsu HC, Yang SH, Yuan RH. High expression of stathmin protein predicts a fulminant course in medulloblastoma. J Neurosurg Pediatr 2009; 4:74-80. [PMID: 19569914 DOI: 10.3171/2009.2.peds08287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Stathmin, an important cytosolic phosphoprotein, is involved in cell proliferation and motility. This study was performed to elucidate the role of stathmin in the progression of medulloblastoma. METHODS The expression of stathmin protein was examined by immunohistochemical staining of tumor sections obtained in 17 consecutive patients with medulloblastoma who underwent resection between 1995 and 2005. Four patients were excluded because they were either lost to follow-up or underwent biopsy sampling only, leaving a total of 13 patients in the study. The stathmin expression was scored according to the immunoreactive fraction of tumor cells, and the level was correlated with various clinicopathological factors. RESULTS The expression level of stathmin protein was < or = 10% in 9 patients, 11-50% in 1, and > 50% in 3. No staining was seen in the tissues adjacent to the tumors. For comparison, the authors grouped the expression level of stathmin into high (> 50%) and low (< or = 50%). It was found that patients with high expression of stathmin had more frequent tumor dissemination at the time of resection or soon after total excision of the tumor (p = 0.0035), and hence experienced a fulminant course with lower patient survival (p < 0.0001), with an average survival period of 6.7 months (range 2-10 months). The expression level of stathmin did not correlate with patient age, sex, CSF cytological findings, use of adjuvant therapies, Ki 67 index, or risk classification of the tumors according to previously described categories in the literature. CONCLUSIONS High stathmin expression correlates with tumor dissemination, is an important prognostic factor of medulloblastoma, and may serve as a useful marker for more intensive adjuvant therapies.
Collapse
Affiliation(s)
- Meng-Fai Kuo
- Division of Neurosurgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Venoux M, Delmouly K, Milhavet O, Vidal-Eychenié S, Giorgi D, Rouquier S. Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9). BMC Genomics 2008; 9:406. [PMID: 18782428 PMCID: PMC2551623 DOI: 10.1186/1471-2164-9-406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 09/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background ASAP is a newly characterized microtubule-associated protein (MAP) essential for proper cell-cycling. We have previously shown that expression deregulation of human ASAP results in profound defects in mitotic spindle formation and mitotic progression leading to aneuploidy, cytokinesis defects and/or cell death. In the present work we analyze the structure and evolution of the ASAP gene, as well as the domain composition of the encoded protein. Mouse and Xenopus cDNAs were cloned, the tissue expression characterized and the overexpression profile analyzed. Results Bona fide ASAP orthologs are found in vertebrates with more distantly related potential orthologs in invertebrates. This single-copy gene is conserved in mammals where it maps to syntenic chromosomal regions, but is also clearly identified in bird, fish and frog. The human gene is strongly expressed in brain and testis as a 2.6 Kb transcript encoding a ~110 KDa protein. The protein contains MAP, MIT-like and THY domains in the C-terminal part indicative of microtubule interaction, while the N-terminal part is more divergent. ASAP is composed of ~42% alpha helical structures, and two main coiled-coil regions have been identified. Different sequence features may suggest a role in DNA damage response. As with human ASAP, the mouse and Xenopus proteins localize to the microtubule network in interphase and to the mitotic spindle during mitosis. Overexpression of the mouse protein induces mitotic defects similar to those observed in human. In situ hybridization in testis localized ASAP to the germ cells, whereas in culture neurons ASAP localized to the cell body and growing neurites. Conclusion The conservation of ASAP indicated in our results reflects an essential function in vertebrates. We have cloned the ASAP orthologs in mouse and Xenopus, two valuable models to study the function of ASAP. Tissue expression of ASAP revealed a high expression in brain and testis, two tissues rich in microtubules. ASAP associates to the mitotic spindle and cytoplasmic microtubules, and represents a key factor of mitosis with possible involvement in other cell cycle processes. It may have a role in spermatogenesis and also represents a potential new target for antitumoral drugs. Possible involvement in neuron dynamics also highlights ASAP as a candidate target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Magali Venoux
- Groupe Microtubules et Cycle Cellulaire, Institut de Génétique Humaine, CNRS UPR 1142, rue de cardonille, 34396 Montpellier cédex 5, France.
| | | | | | | | | | | |
Collapse
|
31
|
Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics. Proc Natl Acad Sci U S A 2007; 104:19470-5. [PMID: 18048340 DOI: 10.1073/pnas.0705149104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tubulin cofactor B (TCoB) plays an important role in microtubule dynamics by facilitating the dimerization of alpha- and beta-tubulin. Recent evidence suggests that p21-activated kinase 1 (Pak1), a major signaling nodule in eukaryotic cells, phosphorylates TCoB on Ser-65 and Ser-128 and plays an essential role in microtubule regrowth. However, to date, no upstream signaling molecules have been identified to antagonize the functions of TCoB, which might help in maintaining the equilibrium of microtubules. Here, we discovered that TCoB is efficiently nitrated, mainly on Tyr-64 and Tyr-98, and nitrated-TCoB attenuates the synthesis of new microtubules. In addition, we found that nitration of TCoB antagonizes signaling-dependent phosphorylation of TCoB, whereas optimal nitration of TCoB requires the presence of functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate phosphorylation-dependent MT regrowth. Together these findings identified TCoB as the third cytoskeleton protein to be nitrated and suggest a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics.
Collapse
|
32
|
Hauge H, Patzke S, Aasheim HC. Characterization of the FAM110 gene family. Genomics 2007; 90:14-27. [PMID: 17499476 DOI: 10.1016/j.ygeno.2007.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 03/05/2007] [Accepted: 03/08/2007] [Indexed: 01/14/2023]
Abstract
We have previously characterized the centrosome/spindle pole-associated protein (CSPP) involved in cell cycle progression. The open reading frame C20orf55 was identified in a yeast two-hybrid screen in a search for CSPP-interacting proteins. A homology search revealed that C20orf55 belongs to a gene family consisting of three members that have not yet been described. The HUGO Nomenclature Committee has assigned these genes the names FAM110A-FAM110C. Studies of transfectants showed that the FAM110 proteins localized to centrosomes and accumulated at the microtubule organization center in interphase and at spindle poles in mitosis. In addition, overexpression of FAM110C induced microtubule aberrancies. Our data also indicated a cell cycle-regulated expression of FAM110A. Moreover, ectopic expression of FAM110B and FAM110C proteins impaired cell cycle progression in G1 phase. To summarize, we have characterized a novel family of genes encoding proteins with distinct conserved motifs, of which all members localize to centrosomes and spindle poles.
Collapse
Affiliation(s)
- Helena Hauge
- Faculty of Medicine, University of Oslo, and Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | | | | |
Collapse
|
33
|
Holmfeldt P, Stenmark S, Gullberg M. Interphase-specific phosphorylation-mediated regulation of tubulin dimer partitioning in human cells. Mol Biol Cell 2007; 18:1909-17. [PMID: 17344472 PMCID: PMC1855035 DOI: 10.1091/mbc.e07-01-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.
Collapse
Affiliation(s)
- Per Holmfeldt
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
34
|
Schlaitz AL, Srayko M, Dammermann A, Quintin S, Wielsch N, MacLeod I, de Robillard Q, Zinke A, Yates JR, Müller-Reichert T, Shevchenko A, Oegema K, Hyman AA. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 2007; 128:115-27. [PMID: 17218259 PMCID: PMC2987564 DOI: 10.1016/j.cell.2006.10.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 09/28/2006] [Accepted: 10/20/2006] [Indexed: 01/08/2023]
Abstract
Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.
Collapse
Affiliation(s)
- Anne-Lore Schlaitz
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Martin Srayko
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Alexander Dammermann
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093
| | - Sophie Quintin
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Natalie Wielsch
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ian MacLeod
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Quentin de Robillard
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Andrea Zinke
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Thomas Müller-Reichert
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Andrei Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093
| | - Anthony A. Hyman
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
35
|
Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 2007; 28:155-83. [PMID: 17464966 DOI: 10.1002/med.20097] [Citation(s) in RCA: 354] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, an attempt has been made to throw light on the mechanism of action of colchicine and its different analogs as anti-cancer agents. Colchicine interacts with tubulin and perturbs the assembly dynamics of microtubules. Though its use has been limited because of its toxicity, colchicine can still be used as a lead compound for the generation of potent anti-cancer drugs. Colchicine binds to tubulin in a poorly reversible manner with high activation energy. The binding interaction is favored entropically. In contrast, binding of its simple analogs AC or DAAC is enthalpically favored and commences with comparatively low activation energy. Colchicine-tubulin interaction, which is normally pH dependent, has been found to be independent of pH in the presence of microtubule-associated proteins, salts or upon cleavage of carboxy termini of tubulin. Biphasic kinetics of colchicines-tubulin interaction has been explained in light of the variation in the residues around the drug-binding site on beta-tubulin. Using the crystal structure of the tubulin-DAMAcolchicine complex, a detailed discussion on the pharmacophore concept that explains the variation of affinity for different colchicine site inhibitors (CSI) has been discussed.
Collapse
Affiliation(s)
- Bhabatarak Bhattacharyya
- Department of Biochemistry, Bose Institute, Centenary Campus P1/12, CIT Scheme VIIM, Kolkata 700054, India.
| | | | | | | |
Collapse
|
36
|
Kamath K, Okouneva T, Larson G, Panda D, Wilson L, Jordan MA. 2-Methoxyestradiol suppresses microtubule dynamics and arrests mitosis without depolymerizing microtubules. Mol Cancer Ther 2006; 5:2225-33. [PMID: 16985056 DOI: 10.1158/1535-7163.mct-06-0113] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2ME2), a metabolite of estradiol-17beta, is a novel antimitotic and antiangiogenic drug candidate in phase I and II clinical trials for the treatment of a broad range of tumor types. 2ME2 binds to tubulin at or near the colchicine site and inhibits the polymerization of tubulin in vitro, suggesting that it may work by interfering with normal microtubule function. However, the role of microtubule depolymerization in its antitumor mechanism of action has been controversial. To determine the mechanism by which 2ME2 induces mitotic arrest, we analyzed its effects on microtubule polymerization in vitro and its effects on dynamic instability both in vitro and in living MCF7 cells. In vitro, 2ME2 (5-100 micromol/L) inhibited assembly of purified tubulin in a concentration-dependent manner, with maximal inhibition (60%) at 200 micromol/L 2ME2. However, with microtubule-associated protein-containing microtubules, significantly higher 2ME2 concentrations were required to depolymerize microtubules, and polymer mass was reduced by only 13% at 500 micromol/L 2ME2. In vitro, dynamic instability was inhibited at lower concentrations. Specifically, 4 micromol/L 2ME2 reduced the mean growth rate by 17% and dynamicity by 27%. In living interphase MCF7 cells at the IC50 for mitotic arrest (1.2 micromol/L), 2ME2 significantly suppressed the mean microtubule growth rate, duration and length, and the overall dynamicity, consistent with its effects in vitro, and without any observable depolymerization of microtubules. Taken together, the results suggest that the major mechanism of mitotic arrest at the lowest effective concentrations of 2ME2 is suppression of microtubule dynamics rather than microtubule depolymerization per se.
Collapse
Affiliation(s)
- Kathy Kamath
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Bio II Room 3106, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Shahani N, Subramaniam S, Brandt R. Purification of MINUS: A negative regulator of microtubule nucleation in a variety of organisms. Int J Biol Macromol 2006; 39:15-22. [PMID: 16420961 DOI: 10.1016/j.ijbiomac.2005.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 12/14/2005] [Accepted: 12/14/2005] [Indexed: 11/19/2022]
Abstract
Microtubules (MT) are important for cell behavior and maintenance, yet the factors regulating MT assembly in vivo remain obscure. In a biochemical search, we have isolated a small (4.7 kDa) acidic, phosphorylated polypeptide, which we named MINUS (microtubule nucleation suppressor) for its activity to inhibit MT nucleation [P. Fanara, B. Oback, K. Ashman, A. Podtelejnikov, R. Brandt, EMBO J. 18 (1999) 565]. Here, the purification strategy was optimized and the polypeptide purified to homogeneity from bovine brain, Drosophila, Caenorhabditis elegans and yeast. Amino acid analysis showed similar composition of MINUS from different species. In particular, MINUS was rich in glycine, threonine, isoleucine, leucine and acidic amino acids. Inductively coupled plasma mass spectrometry revealed a large peak for phosphorus confirming its identity as a phosphopeptide. For further purification, MINUS was separated as a single peak on reverse phase-HPLC (RP-HPLC). Preliminary sequence analysis suggested MINUS to be N-terminally blocked. However, conventional enzymatic digestions did not reveal differences in the peak profile compared to undigested MINUS. Hence, partial acid hydrolysis and proteinase K digestion was performed followed by RP-HPLC. The proteinase K digested peaks were subjected to Edman degradation (first peak, ser-pro-ser/gly-ser; second peak, tyr/arg-leu), mass spectrometry (no result) and MALDI analysis (no result). Collectively, the data suggest that MINUS belongs to a new class of MT assembly regulators. Sequence information and antibody development will be useful to examine its biological role in a definitive manner.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany.
| | | | | |
Collapse
|
38
|
Abstract
Microtubules are very dynamic polymers whose assembly and disassembly is determined by whether their heterodimeric tubulin subunits are in a straight or curved conformation. Curvature is introduced by bending at the interfaces between monomers. Assembly and disassembly are primarily controlled by the hydrolysis of guanosine triphosphate (GTP) in a site that is completed by the association of two heterodimers. However, a multitude of associated proteins are able to fine-tune these dynamics so that microtubules are assembled and disassembled where and when they are required by the cell. We review the recent progress that has been made in obtaining a glimpse of the structural interactions involved.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
39
|
Barros TP, Kinoshita K, Hyman AA, Raff JW. Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. ACTA ACUST UNITED AC 2005; 170:1039-46. [PMID: 16186253 PMCID: PMC2171528 DOI: 10.1083/jcb.200504097] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Centrosomes are the dominant sites of microtubule (MT) assembly during mitosis in animal cells, but it is unclear how this is achieved. Transforming acidic coiled coil (TACC) proteins stabilize MTs during mitosis by recruiting Minispindles (Msps)/XMAP215 proteins to centrosomes. TACC proteins can be phosphorylated in vitro by Aurora A kinases, but the significance of this remains unclear. We show that Drosophila melanogaster TACC (D-TACC) is phosphorylated on Ser863 exclusively at centrosomes during mitosis in an Aurora A–dependent manner. In embryos expressing only a mutant form of D-TACC that cannot be phosphorylated on Ser863 (GFP-S863L), spindle MTs are partially destabilized, whereas astral MTs are dramatically destabilized. GFP-S863L is concentrated at centrosomes and recruits Msps there but cannot associate with the minus ends of MTs. We propose that the centrosomal phosphorylation of D-TACC on Ser863 allows D-TACC–Msps complexes to stabilize the minus ends of centrosome-associated MTs. This may explain why centrosomes are such dominant sites of MT assembly during mitosis.
Collapse
Affiliation(s)
- Teresa P Barros
- The Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Genetics, Cambridge CB2 1QN, England, UK
| | | | | | | |
Collapse
|
40
|
Slack BE, Siniaia MS. Adhesion-dependent redistribution of MAP kinase and MEK promotes muscarinic receptor-mediated signaling to the nucleus. J Cell Biochem 2005; 95:366-78. [PMID: 15779001 PMCID: PMC2593131 DOI: 10.1002/jcb.20431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mitogen-activated protein kinases (MAPKs) are activated by extracellular signals, and translocate to the nucleus where they modulate transcription. Integrin-mediated cell adhesion to extracellular matrix (ECM) proteins is required for efficient transmission of MAPK-based signals initiated by growth factors. However, the modulation of G protein-coupled receptor (GPCR) signaling by adhesion is less well understood. In the present study, we assessed the impact of cell adhesion on MAPK activation by muscarinic M3 receptors. The muscarinic agonist carbachol more efficiently promoted stress fiber formation and tyrosine phosphorylation of focal adhesion-associated proteins in M3 receptor-expressing cells adherent to fibronectin or collagen type I, as compared to polylysine. Overall MAPK activation was robust in cells adherent to all three substrata. However, total levels of MAPK and mitogen-activated protein kinase kinase (MEK) in the nucleus were significantly greater in cells adherent to ECM proteins for 2.5 h, and levels of activated MAPK and MEK in the nuclei of these cells were higher following carbachol stimulation, relative to levels in cells adherent to polylysine. MEK inhibitors did not prevent adhesion-dependent translocation of MAPK and MEK to the nucleus, and increased nuclear phospho-MEK levels in carbachol-stimulated cells. The results suggest that adhesion of cells to ECM triggers the redistribution of MAPK and MEK to the nucleus, possibly as a result of the cytoskeletal rearrangements that accompany cell spreading. This may represent a mechanism for priming the nucleus with MEK and MAPK, leading to more rapid and pronounced increases in intranuclear phospho-MAPK upon GPCR stimulation.
Collapse
Affiliation(s)
- Barbara E Slack
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
41
|
Hayashi I, Wilde A, Mal TK, Ikura M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol Cell 2005; 19:449-60. [PMID: 16109370 DOI: 10.1016/j.molcel.2005.06.034] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/19/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Plus-end tracking proteins, such as EB1 and the dynein/dynactin complex, regulate microtubule dynamics. These proteins are thought to stabilize microtubules by forming a plus-end complex at microtubule growing ends with ill-defined mechanisms. Here we report the crystal structure of two plus-end complex components, the carboxy-terminal dimerization domain of EB1 and the microtubule binding (CAP-Gly) domain of the dynactin subunit p150Glued. Each molecule of the EB1 dimer contains two helices forming a conserved four-helix bundle, while also providing p150Glued binding sites in its flexible tail region. Combining crystallography, NMR, and mutational analyses, our studies reveal the critical interacting elements of both EB1 and p150Glued, whose mutation alters microtubule polymerization activity. Moreover, removal of the key flexible tail from EB1 activates microtubule assembly by EB1 alone, suggesting that the flexible tail negatively regulates EB1 activity. We, therefore, propose that EB1 possesses an auto-inhibited conformation, which is relieved by p150Glued as an allosteric activator.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.
| | | | | | | |
Collapse
|
42
|
Schaar BT, Kinoshita K, McConnell SK. Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 2005; 41:203-13. [PMID: 14741102 DOI: 10.1016/s0896-6273(03)00843-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Doublecortin (Dcx) is a microtubule-associated protein that is mutated in X-linked lissencephaly (X-LIS), a neuronal migration disorder associated with epilepsy and mental retardation. Although Dcx can bind ubiquitously to microtubules in nonneuronal cells, Dcx is highly enriched in the leading processes of migrating neurons and the growth cone region of differentiating neurons. We present evidence that Dcx/microtubule interactions are negatively controlled by Protein Kinase A (PKA) and the MARK/PAR-1 family of protein kinases. In addition to a consensus MARK site, we identified a serine within a novel sequence that is crucial for the PKA- and MARK-dependent regulation of Dcx's microtubule binding activity in vitro. This serine is mutated in two families affected by X-LIS. Immunostaining neurons with an antibody that recognizes phosphorylated substrates of MARK supports the conclusion that Dcx localization and function are regulated at the leading edge of migrating cells by a balance of kinase and phosphatase activity.
Collapse
Affiliation(s)
- Bruce T Schaar
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
43
|
Permana S, Hisanaga SI, Nagatomo Y, Iida J, Hotani H, Itoh TJ. Truncation of the projection domain of MAP4 (microtubule-associated protein 4) leads to attenuation of microtubule dynamic instability. Cell Struct Funct 2005; 29:147-57. [PMID: 15840946 DOI: 10.1247/csf.29.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MAP4, a ubiquitous heat-stable MAP, is composed of an asymmetric structure common to the heat-stable MAPs, consisting of an N-terminal projection (PJ) domain and a C-terminal microtubule (MT)-binding (MTB) domain. Although the MTB domain has been intensively studied, the role of the PJ domain, which protrudes from MT-wall and does not bind to MTs, remains unclear. We investigated the roles of the PJ domain on the dynamic instability of MTs by dark-field microscopy using various PJ domain deletion constructs of human MAP4 (PJ1, PJ2, Na-MTB and KDM-MTB). There was no obvious difference in the dynamic instability between the wtMAP4 and any fragments at 0.1 microM, the minimum concentration required to stabilize MTs. The individual MTs stochastically altered between polymerization and depolymerization phases with similar profiles of length change as had been observed in the presence of MAP2 or tau. We also examined the effects at the increased concentrations of 0.7 microM, and found that in some cases the dynamic instability was almost entirely attenuated. The length of both the polymerization and depolymerization phases decreased and "pause-phases" were occasionally observed, especially in the case of PJ1, PJ2 or Na-MTB. No obvious change was observed in the increased concentration of wtMAP4 and KDM-MTB. Additionally, the profiles of MT length change were quite different in 0.7 microM PJ2. Relatively rapid and long depolymerization phases were sometimes observed among quite slow length changes. Perhaps, this unusual profile could be due to the uneven distribution of PJ2 along the MT lattice. These results indicate that the PJ domain of MAP4 participates in the regulation of the dynamic instability.
Collapse
Affiliation(s)
- Sofy Permana
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Pellegrini F, Budman DR. Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest 2005; 23:264-73. [PMID: 15948296 DOI: 10.1081/cnv-200055970] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anticancer agents that interfere with microtubulin function are in widespread use in man and have a broad spectrum of activity against both hematological malignancies and solid tumors. The mechanisms of actions of these agents have been better defined during the past decade, indicating that there are distinct binding sites for these agents and that they interfere with microtubulin dynamics (growth and shortening of tubules) at low concentrations and only evoke microtubulin aggregation or dissociation at high concentrations. Tubulin has been recently described in the nucleus of cells and in mitochondria. Downstream events from tubulin binding are believed to be critical events for the generation of apoptosis in the malignant cell. The effects of vinca alkaloids and taxanes are distinct, suggesting that the interference with the tubulin cap by high-affinity binding of effective agents is not the only mechanism of cytotoxic effect, and the low-affinity binding of drug, which distorts microtubulin function, may also be important. The epothilones share some of the binding characteristics of the taxanes and are in clinical trials because of cytoxic activity in taxane resistant cells. Tubulin has additional target sites for anticancer drugs including interference with the binding and function of microtubule associated proteins and interference with motor proteins which are essential for the transport of substances within the cell. Because many of these microtubule associated proteins have an ATP binding site, both computer-aided design and combinatorial chemistry techniques can be used to make agents to interfere with their function analogous to imatinib mesylate (Gleevec). Agents that interfere with the motor protein kinesin are entering clinical trials.
Collapse
Affiliation(s)
- Federico Pellegrini
- Experimental Therapeutics Section, Don Monti Division of Oncology, North Shore University Hospital, New York University School of Medicine, Manhasset, New York 11030, USA
| | | |
Collapse
|
45
|
Vadlamudi RK, Barnes CJ, Rayala S, Li F, Balasenthil S, Marcus S, Goodson HV, Sahin AA, Kumar R. p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol Cell Biol 2005; 25:3726-36. [PMID: 15831477 PMCID: PMC1084301 DOI: 10.1128/mcb.25.9.3726-3736.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) induces cytoskeleton reorganization in part by regulating microtubule dynamics through an elusive mechanism. Using a yeast two-hybrid screen, we identified tubulin cofactor B (TCoB) (a cofactor in the assembly of the alpha/beta-tubulin heterodimers) as an interacting substrate of Pak1. Pak1 directly phosphorylated TCoB in vitro and in vivo on serines 65 and 128 and colocalized with TCoB on newly polymerized microtubules and on centrosomes. TCoB interacted with the GTPase-binding domain of Pak1 and activated Pak1 in vitro and in vivo. In contrast to wild-type TCoB, an S65A, S128A double mutant and knock-down of the endogenous TCoB or Pak1 reduced microtubule polymerization, suggesting that Pak1 phosphorylation is necessary for normal TCoB function. Overexpression of TCoB dramatically increased the number of gamma-tubulin-containing microtubule-organizing centers, a phenotype reminiscent of cells overexpressing Pak1. TCoB was overexpressed and phosphorylated in breast tumors. These findings reveal a novel role for TCoB and Pak1 in regulating microtubule dynamics.
Collapse
Affiliation(s)
- Ratna K Vadlamudi
- Box 108, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mazurais D, Montfort J, Delalande C, Le Gac F. Transcriptional analysis of testis maturation using trout cDNA macroarrays. Gen Comp Endocrinol 2005; 142:143-54. [PMID: 15862558 DOI: 10.1016/j.ygcen.2005.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
The project seeks to identify genes involved in key stages of trout spermatogenesis and their regulation. Within the framework of the French project of farm animal genomics (AGENAE) we produced an original normalised trout testis cDNA library and obtained 1152 trout ESTs corresponding to 967 potential genes. To study the expression of those genes throughout first stages of spermatogenesis, we used nylon macroarray. Gonads in stage of immaturity (stage I), or at initiation of spermatogonial proliferation (stage II), meiosis (stage III) or spermiogenesis were selected by histological analysis. Total RNA was extracted and then used to produce complex targets labelled with [33P]dCTP and hybridised with cDNA arrays. After filtering and normalisation of hybridisation signals, genes presenting differential expression as revealed by ANOVA analysis were submitted to k-means clustering and hierarchical classification. Genes were separated into five clusters which presented distinct profiles. One cluster overexpressed in stage I could be involved in the initial events of spermatogenesis as seminiferous tubule organisation. The second cluster displays a transient increase at the beginning of testicular recrudescence (stage II). Three other clusters group several genes involved in cell proliferation and protein synthesis and modification. One is particularly down-expressed during stage I, the two others show increased expression during stages III and IV and appear to be involved in spermatogonial and meiotic proliferation and in protein metabolism linked to cellular growth. This allows us to plan further experiments to better understand the functional implication of some of the genes that are found to be significantly regulated like CDC2, hematological and neurological expressed gene 1-like protein, HCDI protein, Mago Nashi, a BMP-like, and a steroid receptor binding protein. These data demonstrate the applicability of the array based technology using our trout cDNA arrays and highlight genes that are potential targets for the control of puberty and fertility in farmed fish.
Collapse
Affiliation(s)
- D Mazurais
- INRA-SCRIBE, Equipe Sexualité et Reproduction des Poissons Campus Beaulieu, 35042 Rennes Cedex, France
| | | | | | | |
Collapse
|
47
|
Kamath K, Wilson L, Cabral F, Jordan MA. BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 2005; 280:12902-7. [PMID: 15695826 DOI: 10.1074/jbc.m414477200] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of resistance to paclitaxel in tumors is one of the most significant obstacles to successful therapy. Overexpression of the betaIII-tubulin isotype has been associated with paclitaxel resistance in a number of cancer cell lines and in tumors, but the mechanism of resistance has remained unclear. Paclitaxel inhibits cancer cell proliferation by binding to the beta-subunit of tubulin in microtubules and suppressing microtubule dynamic instability, leading to mitotic arrest and cell death. We hypothesized that betaIII-tubulin overexpression induces resistance to paclitaxel either by constitutively enhancing microtubule dynamic instability in resistant cells or by rendering the microtubules less sensitive to the suppression of dynamics by paclitaxel. Using Chinese hamster ovary cells that inducibly overexpress either betaI- or betaIII-tubulin, we analyzed microtubule dynamic instability during interphase by microinjection of rhodamine-labeled tubulin and time-lapse fluorescence microscopy. In the absence of paclitaxel, there were no differences in any aspect of dynamic instability between the two beta-tubulin-overexpressing cell types. However, in the presence of 150 nm paclitaxel, dynamic instability was suppressed to a significantly lesser extent (suppressed only 12%) in cells overexpressing betaIII-tubulin than in cells overexpressing similar levels of betaI-tubulin (suppressed 47%). The results suggest that overexpression of betaIII-tubulin induces paclitaxel resistance by reducing the ability of paclitaxel to suppress microtubule dynamics. The results also suggest that endogenous regulators of microtubule dynamics may differentially interact with individual tubulin isotypes, supporting the idea that differential expression of tubulin isotypes has functional consequences in cells.
Collapse
Affiliation(s)
- Kathy Kamath
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
48
|
Feinstein SC, Wilson L. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta Mol Basis Dis 2005; 1739:268-79. [PMID: 15615645 DOI: 10.1016/j.bbadis.2004.07.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/20/2004] [Indexed: 11/21/2022]
Abstract
Interest in the microtubule-associated protein tau stems from its critical roles in neural development and maintenance, as well as its role in Alzheimer's, FTDP-17 and related neurodegenerative diseases. Under normal circumstances, tau performs its functions by binding to microtubules and powerfully regulating their stability and growing and shortening dynamics. On the other hand, genetic analyses have established a clear cause-and-effect relationship between tau dysfunction/mis-regulation and neuronal cell death and dementia in FTDP-17, but the molecular basis of tau's destructive action(s) remains poorly understood. One attractive model suggests that the intracellular accumulation of abnormal tau aggregates causes cell death, i.e., a gain-of-toxic function model. Here, we describe the evidence and arguments for an alternative loss-of-function model in which tau-mediated neuronal cell death is caused by the inability of affected cells to properly regulate their microtubule dynamic due to mis-regulation by tau. In support of this model, our recent data demonstrate that missense FTDP-17 mutations that alter amino acid residues near tau's microtubule binding region strikingly modify the ability of tau to modulate microtubule dynamics. Additional recent data from our labs support the notion that the same dysfunction occurs in the FTDP-17 regulatory mutations that alter tau RNA splicing patterns. Our model posits that the dynamics of microtubules in neuronal cells must be tightly regulated to enable them to carry out their diverse functions, and that microtubules that are either over-stabilized or under-stabilized, that is, outside an acceptable window of dynamic activity, lead to neurodegeneration. An especially attractive aspect of this model is that it readily accommodates both the structural and regulatory classes of FTDP-17 mutations.
Collapse
Affiliation(s)
- Stuart C Feinstein
- Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
49
|
Rong R, Jin W, Zhang J, Sheikh MS, Huang Y. Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene 2004; 23:8216-30. [PMID: 15378022 DOI: 10.1038/sj.onc.1207901] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RASSF1A is a putative tumor suppressor gene that is inactivated in a variety of human tumors. Expression of exogenous RASSF1A has been shown to inhibit tumor growth in vitro and in animals. However, the molecular mechanisms by which RASSF1A mediates its tumor suppressive effects remain to be elucidated. Here, we report that RASSF1A is a microtubule-binding protein that interacts with and stabilizes microtubules. We have identified the RASSF1A region harboring a basic domain that appears to mediate the interactions between RASSF1A and microtubules. The basic domain-containing RASSF1C isoform also interacts with and stabilizes microtubules. We further show that in addition to G1 arrest, RASSF1A promotes growth arrest in the G2/M phase of the cell cycle and endogenous RASSF1A also interacts with microtubules. Based on our results, we propose that RASSF1A may mediate its tumor suppressive effects by inducing growth arrest in the G1 and G2/M phases. Together, these results provide important new insights into the molecular mechanisms by which this novel tumor suppressor mediates its biological effects.
Collapse
Affiliation(s)
- Rong Rong
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 E Adams Street Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
50
|
Teixeira CE, Webb RC. Cold-induced vasoconstriction: a Waltz pairing Rho-kinase signaling and alpha2-adrenergic receptor translocation. Circ Res 2004; 94:1273-5. [PMID: 15166113 DOI: 10.1161/01.res.0000131755.49084.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|