1
|
Boniolo G. Demented patients and the quandaries of identity: setting the problem, advancing a proposal. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:21. [PMID: 33587205 PMCID: PMC7884352 DOI: 10.1007/s40656-021-00365-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/01/2021] [Indexed: 05/19/2023]
Abstract
In the paper, after clarifying terms such as 'identity', 'self' and 'personhood', I propose an empirical account of identity based on the notion of "whole phenotype". This move allows one to claim the persistence of the individuals before and after their being affected by dementia. Furthermore, I show how this account permits us to address significant questions related to demented individuals' loss of the capacity of moral decisions.
Collapse
Affiliation(s)
- Giovanni Boniolo
- Dipartimento di Neuroscienze e Riabilitazione, University of Ferrara, Ferrara, Italy.
- Civitas Vitae Research Centre at Fondazione OIC onlus, Padova, Italy.
| |
Collapse
|
2
|
Rapid Immunoassay Method for Deoxynivalenol Analysis in Barley. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2014-1029-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Boniolo G. Is an account of identity necessary for bioethics? What post-genomic biomedicine can teach us. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2013; 44:401-411. [PMID: 23751792 DOI: 10.1016/j.shpsc.2013.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Is a theory of identity necessary for bioethics? In this paper I investigate that question starting from an empirical explication of identity based on post-genomics, in particular on epigenetics. After analysing whether the classic problems a theory of identity has to cope with (fictional transplants; conjoined twins; and definition of death) also affect the proposed epigenetic account of identity, I deal with three topics (the assumption of moral responsibility; decision maintenance in the case of advance directives; and the attribution of value to human beings at given developmental stages) to offer an insight on the relationship between that account and bioethics.
Collapse
Affiliation(s)
- Giovanni Boniolo
- Department of Health Sciences, University of Milano, European Institute of Oncology (IEO), Milano Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
4
|
Ngo KT, Wang J, Junker M, Kriz S, Vo G, Asem B, Olson JM, Banerjee U, Hartenstein V. Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev Biol 2010; 346:284-95. [PMID: 20692248 PMCID: PMC3551593 DOI: 10.1016/j.ydbio.2010.07.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/12/2010] [Accepted: 07/30/2010] [Indexed: 11/28/2022]
Abstract
The optic lobe forms a prominent compartment of the Drosophila adult brain that processes visual input from the compound eye. Neurons of the optic lobe are produced during the larval period from two neuroepithelial layers called the outer and inner optic anlage (OOA, IOA). In the early larva, the optic anlagen grow as epithelia by symmetric cell division. Subsequently, neuroepithelial cells (NE) convert into neuroblasts (NB) in a tightly regulated spatio-temporal progression that starts at the edges of the epithelia and gradually move towards its centers. Neuroblasts divide at a much faster pace in an asymmetric mode, producing lineages of neurons that populate the different parts of the optic lobe. In this paper we have reconstructed the complex morphogenesis of the optic lobe during the larval period, and established a role for the Notch and Jak/Stat signaling pathways during the NE-NB conversion. After an early phase of complete overlap in the OOA, signaling activities sort out such that Jak/Stat is active in the lateral OOA which gives rise to the lamina, and Notch remains in the medial cells that form the medulla. During the third instar, a wave front of enhanced Notch activity progressing over the OOA from medial to lateral controls the gradual NE-NB conversion. Neuroepithelial cells at the medial edge of the OOA, shortly prior to becoming neuroblasts, express high levels of Delta, which activates the Notch pathway and thereby maintains the OOA in an epithelial state. Loss of Notch signaling, as well as Jak/Stat signaling, results in a premature NE-NB conversion of the OOA, which in turn has severe effects on optic lobe patterning. Our findings present the Drosophila optic lobe as a useful model to analyze the key signaling mechanisms controlling transitions of progenitor cells from symmetric (growth) to asymmetric (differentiative) divisions.
Collapse
Affiliation(s)
- Kathy T. Ngo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Jay Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Markus Junker
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Steve Kriz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Gloria Vo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Bobby Asem
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - John M. Olson
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
5
|
Tong XL, Dai FY, Su MK, Ma Y, Tan D, Zhang Z, He NJ, Xia QY, Lu C, Xiang ZH. Identification and expression of the achaete-scute complex in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2008; 17:395-404. [PMID: 18651921 DOI: 10.1111/j.1365-2583.2008.00811.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently, the study of achaete-scute (AS-C) homologues has contributed enormously to understanding of gene duplication and function evolution, particularly in Diptera. We identified four AS-C homologue genes in the silkworm, Bombyx mori, referred to as BmASH, BmASH2, BmASH3, and Bmase. The complex displayed tandem array structure in the genome. Analysis of spatial expression profiles showed that they all were expressed in obviously higher levels in wing disc than in other tissues, suggesting that they might play important roles in the development of the wing. Furthermore, we found that their expression profiles in the wing discs were mostly correlated with the development of the scales, especially the BmASH gene. RNA interference results further indicated that BmASH was necessary for scale formation in silkworm wing.
Collapse
Affiliation(s)
- X-L Tong
- The Key Sericultural Laboratory of Agricultural Ministry, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kumar M, Bagchi B, Gupta SK, Meena AS, Gressens P, Mani S. Neurospheres derived from human embryoid bodies treated with retinoic Acid show an increase in nestin and ngn2 expression that correlates with the proportion of tyrosine hydroxylase-positive cells. Stem Cells Dev 2007; 16:667-81. [PMID: 17784840 DOI: 10.1089/scd.2006.0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the central nervous system (CNS), generation of phenotypic diversity within the neuronal lineage is precisely regulated in a spatial and temporal fashion. Neural basic helix-loop-helix (bHLH) transcription factors are cell intrinsic factors that control commitment to neuronal lineage and play an important role in neuronal cell type specification. The ability to differentiate human embryonic stem (hES) cells into neurons provides a good model system to address human neuronal specification. Previous studies have shown neurogenin-2 (Ngn2) to be involved in the development of mesencephalic dopaminergic neurons. Toward the goal of correlating neuronal phenotype with early gene expression pattern, we have characterized the expression of Ngn2 during hES cell differentiation. Our results show that treatment of embryoid bodies (EBs) with retinoic acid (RA) leads to the greatest proportion of tyrosine hydroxylase (TH)-positive cells followed by vasoactive intestinal peptide (VIP)-treated EBs as compared to untreated EBs. This increase in the proportion of TH-positive neurons was correlated with the unique morphology of RA-treated aggregates and the spatial delocalization of the expression of Ngn2 within the EB. Neurospheres derived from RA-treated EBs contained many nestin-positive cells within regions that expressed Ngn2. We show that the extent of nestin-positive cells that arise from the region of Ngn2 expression is correlated with the appearance of TH-positive neurons. Our results show for the first time the expression of Ngn2 during the differentiation of hES cells.
Collapse
Affiliation(s)
- Manoj Kumar
- National Brain Research Centre, Manesar, Gurgaon 122050, India
| | | | | | | | | | | |
Collapse
|
7
|
Von Ohlen T, Syu LJ, Mellerick DM. Conserved properties of the Drosophila homeodomain protein, Ind. Mech Dev 2007; 124:925-34. [PMID: 17900877 DOI: 10.1016/j.mod.2007.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 07/11/2007] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
Ind-Gsh-type homeodomain proteins are critical to patterning of intermediate domains in the developing CNS; yet, the molecular basis for the activities of these homeodomain proteins is not well understood. Here we identify domains within the Ind protein that are responsible for transcriptional repression, as well as those required for its interaction with the co-repressor, Groucho. To do this, we utilized a combination of chimeric transient transfection assays, co-immunoprecipitation and in vivo expression assays. We show that Ind's candidate Eh1 domain is essential to the embryonic repression activity of this protein, and that Groucho interacts with Ind via this domain. However, when activity is assayed in transient transfection assays using Ind-Gal4 DNA binding domain chimeras to determine domain activity, the repression activity of the Eh1 domain is minimal. This result is similar to previous results on the transcription factors, Vnd and Engrailed. Furthermore, the Eh1 domain is necessary, but not sufficient, for binding to Groucho; the C terminus of Ind, including the homeodomain also affects the interaction with this co-repressor in co-immunoprecipitations. Finally, we show that aspects of the cross-repressive activities of Ind/Gsh2-Ey/Pax6 are evolutionarily conserved. Taken together, these results point to conserved mechanisms used by Gsh/Ind-type homeodomain protein in regulating the expression of target genes.
Collapse
Affiliation(s)
- T Von Ohlen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
8
|
Shetty RS, Bose SC, Nickell MD, McIntyre JC, Hardin DH, Harris AM, McClintock TS. Transcriptional changes during neuronal death and replacement in the olfactory epithelium. Mol Cell Neurosci 2005; 30:90-107. [PMID: 16027002 DOI: 10.1016/j.mcn.2005.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 11/30/2022] Open
Abstract
The olfactory epithelium has the unusual ability to replace its neurons. We forced replacement of mouse olfactory sensory neurons by bulbectomy. Microarray, bioinformatics, and in situ hybridization techniques detected a rapid shift in favor of pro-apoptotic proteins, a progressive immune response by macrophages and dendritic cells, and identified or predicted 439 mRNAs enriched in olfactory sensory neurons, including gene silencing factors and sperm flagellar proteins. Transcripts encoding cell cycle regulators, axonogenesis proteins, and transcription factors and signaling proteins that promote proliferation and differentiation were increased at 5--7 days after bulbectomy and were expressed by basal progenitor cells or immature neurons. The transcription factors included Nhlh 1, Hes 6, Lmyc 1, c-Myc, Mxd 4, Id 1, Nmyc 1, Cited 2, c-Myb, Mybl 1, Tead 2, Dp 1, Gata 2, Lmo 1, and Sox1 1. The data reveal significant similarities with embryonic neurogenesis and make several mechanistic predictions, including the roles of the transcription factors in the olfactory sensory neuron lineage.
Collapse
Affiliation(s)
- Ranjit S Shetty
- Department of Physiology, Cellular and Molecular Neuroscience of Sensory Systems Training Program, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Lichtneckert R, Reichert H. Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity (Edinb) 2005; 94:465-77. [PMID: 15770230 DOI: 10.1038/sj.hdy.6800664] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent molecular genetic analyses of Drosophila melanogaster and mouse central nervous system (CNS) development revealed strikingly similar genetic patterning mechanisms in the formation of the insect and vertebrate brain. Thus, in both insects and vertebrates, the correct regionalization and neuronal identity of the anterior brain anlage is controlled by the cephalic gap genes otd/Otx and ems/Emx, whereas members of the Hox genes are involved in patterning of the posterior brain. A third intermediate domain on the anteroposterior axis of the vertebrate and insect brain is characterized by the expression of the Pax2/5/8 orthologues, suggesting that the tripartite ground plans of the protostome and deuterostome brains share a common evolutionary origin. Furthermore, cross-phylum rescue experiments demonstrate that insect and mammalian members of the otd/Otx and ems/Emx gene families can functionally replace each other in embryonic brain patterning. Homologous genes involved in dorsoventral regionalization of the CNS in vertebrates and insects show remarkably similar patterning and orientation with respect to the neurogenic region (ventral in insects and dorsal in vertebrates). This supports the notion that a dorsoventral body axis inversion occurred after the separation of protostome and deuterostome lineages in evolution. Taken together, these findings demonstrate conserved genetic patterning mechanisms in insect and vertebrate brain development and suggest a monophyletic origin of the brain in protostome and deuterostome bilaterians.
Collapse
Affiliation(s)
- R Lichtneckert
- Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
10
|
Kim IO, Kim IC, Kim S, Kwon YK, Han PL, Jeon SH, Kim SH. CNS midline cells contribute to maintenance of the initial dorsoventral patterning of the Drosophila ventral neuroectoderm. ACTA ACUST UNITED AC 2005; 62:397-405. [PMID: 15547936 DOI: 10.1002/neu.20104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dorsoventral patterning of the Drosophila ventral neuroectoderm is established by the expression of three evolutionarily conserved homeodomain genes: ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh) in the medial, intermediate, and lateral columns of the ventral neuroectoderm, respectively. It was not clear whether extrinsic factor(s) from the CNS midline cells influence the initial dorsoventral patterning by controlling the expression of the dorsoventral patterning genes. We show here that the CNS midline cells, specified by single-minded (sim), are essential for maintaining expression of the dorsoventral patterning genes. Ectopic expression of sim in the ventral neuroectoderm during the blastoderm stage repressed expression of the three homeodomain genes in the ventral neuroectoderm. This indicates that the identity of the CNS midline cells is established by a series of repressions of the three homeodomain genes in the ventral neuroectoderm. Ectopic expression of sim in the ventral neuroectoderm during initial neurogenesis induced ectopic ind expression in the medial column in addition to that in the intermediate column via EGFR signaling between the ventral neuroectoderm and midline cells. In contrast, it repressed the expression of vnd and msh in the medial and lateral columns, respectively. Our findings demonstrate that the CNS midline cells provide extrinsic positional information via EGFR signaling that maintains the initial subdivision of the ventral neuroectoderm into three dorsoventral columns during initial neurogenesis.
Collapse
Affiliation(s)
- In Ok Kim
- Department of Chemistry, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Cave JW, Loh F, Surpris JW, Xia L, Caudy MA. A DNA transcription code for cell-specific gene activation by notch signaling. Curr Biol 2005; 15:94-104. [PMID: 15668164 DOI: 10.1016/j.cub.2004.12.070] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 11/22/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cell-specific gene regulation is often controlled by specific combinations of DNA binding sites in target enhancers or promoters. A key question is whether these sites are randomly arranged or if there is an organizational pattern or "architecture" within such regulatory modules. During Notch signaling in Drosophila proneural clusters, cell-specific activation of certain Notch target genes is known to require transcriptional synergy between the Notch intracellular domain (NICD) complexed with CSL proteins bound to "S" DNA sites and proneural bHLH activator proteins bound to nearby "A" DNA sites. Previous studies have implied that arbitrary combinations of S and A DNA binding sites (an "S+A" transcription code) can mediate the Notch-proneural transcriptional synergy. RESULTS By contrast, we show that the Notch-proneural transcriptional synergy critically requires a particular DNA site architecture ("SPS"), which consists of a pair of specifically-oriented S binding sites. Native and synthetic promoter analysis shows that the SPS architecture in combination with proneural A sites creates a minimal DNA regulatory code, "SPS+A", that is both sufficient and critical for mediating the Notch-proneural synergy. Transgenic Drosophila analysis confirms the SPS orientation requirement during Notch signaling in proneural clusters. We also present evidence that CSL interacts directly with the proneural Daughterless protein, thus providing a molecular mechanism for this synergy. CONCLUSIONS The SPS architecture functions to mediate or enable the Notch-proneural transcriptional synergy which drives Notch target gene activation in specific cells. Thus, SPS+A is an architectural DNA transcription code that programs a cell-specific pattern of gene expression.
Collapse
Affiliation(s)
- John W Cave
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | | | | | | | | |
Collapse
|
12
|
Huber R. Amines and motivated behaviors: a simpler systems approach to complex behavioral phenomena. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:231-9. [PMID: 15685443 DOI: 10.1007/s00359-004-0585-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 10/15/2004] [Accepted: 10/30/2004] [Indexed: 11/25/2022]
Abstract
Recent investigations in invertebrate neurobiology have opened up new lines of research into the basic roles of behavioral, neurochemical, and physiological effects in complex behavioral phenomena, such as aggression and drug-sensitive reward. This review summarizes a body of quantitative work, which identifies biogenic amines as a pharmacological substrate for motivated behaviors in the crayfish, Orconectes rusticus. Specifically, this paper details progress that has (1) explored links between serotonin and an individual's aggressive state, and (2) demonstrated the existence of crayfish reward systems that are sensitive to human drugs of abuse, such as psychostimulants. First, we summarize a set of experimental approaches that explore aggression in crayfish and the significance of aminergic systems in its control. Agonistic behavior in crustaceans can be characterized within a quantitative framework; different types of behavioral plasticity in aggressive behavior are in need of physiological explanation, and pharmacological intervention involving serotonergic systems bring about characteristic changes in behavior. A second set of experiments demonstrates that psychostimulants (cocaine and D: -amphetamine) serve as rewards when an intra-circulatory infusion is coupled to a distinct visual environment. Work in novel model systems such as crayfish constitutes a useful comparative approach to the study of aggression and drug addiction.
Collapse
Affiliation(s)
- Robert Huber
- Center for Neuroscience, Mind and Behavior, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
13
|
Cunliffe VT. Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 2004; 131:2983-95. [PMID: 15169759 DOI: 10.1242/dev.01166] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone deacetylases (Hdacs) are widely implicated as key components of transcriptional silencing mechanisms. Here, I show that hdac1 is specifically required in the zebrafish embryonic CNS to maintain neurogenesis. In hdac1 mutant embryos, the Notch-responsive E(spl)-related neurogenic gene her6 is ectopically expressed at distinct sites within the developing CNS and proneural gene expression is correspondingly reduced or eliminated. Using an hdac1-specific morpholino, I show that this requirement for hdac1 is epistatic to the requirement for Notch signalling. Consequently, hdac1-deficient embryos exhibit several defects of neuronal specification and patterning, including a dramatic deficit of hedgehog-dependent branchiomotor neurones that is refractory to elevated levels of hedgehog signalling. Thus, in the zebrafish embryo, hdac1 is an essential component of the transcriptional silencing machinery that supports the formation and subsequent differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Vincent T Cunliffe
- Centre for Developmental Genetics, School of Medicine and Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
14
|
Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 2003; 26:565-97. [PMID: 12730322 DOI: 10.1146/annurev.neuro.26.041002.131334] [Citation(s) in RCA: 489] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive studies of three proteins--Presenilin, Notch, and the amyloid precursor protein (APP)--have led to the recognition of a direct intersection between early development and late-life neurodegeneration. Notch signaling mediates many different intercellular communication events that are essential for determining the fates of neural and nonneural cells during development and in the adult. The Notch receptor acts in a core pathway as a membrane-bound transcription factor that is released to the nucleus by a two-step cleavage mechanism called regulated intramembrane proteolysis (RIP). The second cleavage is effected by Presenilin, an unusual polytopic aspartyl protease that apparently cleaves Notch and numerous other single-transmembrane substrates within the lipid bilayer. Another Presenilin substrate, APP, releases the amyloid ss-protein that can accumulate over time in limbic and association cortices and help initiate Alzheimer's disease. Elucidating the detailed mechanism of Presenilin processing of membrane proteins is important for understanding diverse signal transduction pathways and potentially for treating and preventing Alzheimer's disease.
Collapse
Affiliation(s)
- Dennis Selkoe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
15
|
Sprecher SG, Reichert H. The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:141-156. [PMID: 18089000 DOI: 10.1016/s1467-8039(03)00007-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 03/20/2003] [Indexed: 05/25/2023]
Abstract
Classical phylogenetic, neuroanatomical and neuroembryological studies propose an independent evolutionary origin of the brains of insects and vertebrates. Contrasting with this, data from three sets of molecular and genetic analyses indicate that the developmental program of brains of insects and vertebrates might be highly conserved and suggest a monophyletic origin of the brain of protostomes and deuterostomes. First, recent results of molecular phylogeny imply that none of the currently living animals correspond to evolutionary intermediates between protostomes and deuterostomes, thus making it impossible to infer the morphological organization of an ancestral bilaterian brain from living specimens. Second, recent molecular genetic evidence provides support for the body axis inversion hypothesis, which implies that a dorsoventral inversion of the body axis occurred in protostomes versus deuterostomes, leading to the inverted location of neurogenic regions in these animal groups. Third, recent developmental genetic analyses are uncovering the existence of structurally and functionally homologous genes that have comparable and interchangeable functions in early brain development in insect and vertebrate model systems. Thus, development of the anteriormost part of the embryonic brain in both insects and vertebrates depends upon the otd/Otx and ems/Emx genes; development of the posterior part of the embryonic brain in both insects and vertebrates involves homologous control genes of the Hox cluster. These findings, which demonstrate the conserved expression and function of key patterning genes involved in embryonic brain development in insects and vertebrates support the hypothesis that the brains of protostomes and deuterostomes are of monophyletic, urbilaterian origin.
Collapse
Affiliation(s)
- Simon G Sprecher
- Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | |
Collapse
|
16
|
Abstract
Cell signaling plays a key role in the development of all multicellular organisms. Numerous studies have established the importance of Hedgehog signaling in a wide variety of regulatory functions during the development of vertebrate and invertebrate organisms. Several reviews have discussed the signaling components in this pathway, their various interactions, and some of the general principles that govern Hedgehog signaling mechanisms. This review focuses on the developing systems themselves, providing a comprehensive survey of the role of Hedgehog signaling in each of these. We also discuss the increasing significance of Hedgehog signaling in the clinical setting.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
17
|
Abstract
Evolution shaped the vertebrate ear into a complicated three-dimensional structure and positioned the sensory epithelia so that they can extract specific aspects of mechanical stimuli to govern vestibular and hearing-related responses of the whole organism. This information is conducted from the ear via specific neuronal connections to distinct areas of the hindbrain for proper processing. During development, the otic placode, a simple sheet of epidermal cells, transforms into a complicated system of ducts and recesses. This placode also generates the mechanoelectrical transducers, the hair cells, and sensory neurons of the vestibular and cochlear (spiral) ganglia of the ear. We argue that ear development can be broken down into dynamic processes that use a number of known and unknown genes to govern the formation of the three-dimensional labyrinth in an interactive fashion. Embedded in this process, but in large part independent of it, is an evolutionary conserved process that induces early the development of the neurosensory component of the ear. We present molecular data suggesting that this later process is, in its basic aspects, related to the mechanosensory cell formation across phyla and is extremely conserved at the molecular level. We suggest that sensory neuron development and maintenance are vertebrate or possibly chordate novelties and present the molecular data to support this notion.
Collapse
Affiliation(s)
- B Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
18
|
Göpfert MC, Stocker H, Robert D. atonal is required for exoskeletal joint formation in the Drosophila auditory system. Dev Dyn 2002; 225:106-9. [PMID: 12203727 DOI: 10.1002/dvdy.10136] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Hearing relies on the delicate arrangement of mechanoreceptor neurones and an acoustomechanical interface. The concerted action of these neural and non-neural components is essential to audition, raising the question of whether they also develop in a concerted way. Drosophila hears with its antennae. A specialized antennal joint allows the distal part of the antenna to vibrate in response to sound and, thus, to serve as the sound receiver. This receiver's vibration is transduced by a chordotonal sense organ (CHO) that is closely associated with the joint. Here, we report that atonal (ato), the proneural gene for CHOs, is required for the formation of this antennal joint. Biophysical measurements in hemi- and homozygous ato(1) mutant flies show that, in addition to eliminating the auditory CHO, loss of ato function makes the antennal receiver insensitive to sound, impairing its auditory function. Anatomically, the cause for this mechanical effect resides in the deprivation of mobile exoskeletal joint structures. Hence, ato, the homologue of mouse Math1, is required for the formation of both the auditory CHO and joint, providing a genetic link between the very neural and exoskeletal components that together transform fly antennae into ears.
Collapse
Affiliation(s)
- M C Göpfert
- Institute of Zoology, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
19
|
Abstract
Genetic and neurobiological research is reviewed as related to controversy over the extent to which neocortical organization and associated cognitive functions are genetically constrained or emerge through patterns of developmental experience. An evolutionary framework that accommodates genetic constraint and experiential modification of brain organization and cognitive function is then proposed. The authors argue that 4 forms of modularity and 3 forms of neural and cognitive plasticity define the relation between genetic constraint and the influence of developmental experience. For humans, the result is the ontogenetic emergence of functional modules in the domains of folk psychology, folk biology, and folk physics. The authors present a taxonomy of these modules and review associated research relating to brain and cognitive plasticity in these domains.
Collapse
Affiliation(s)
- David C Geary
- Department of Psychological Sciences, University of Missouri-Columbia 65211-2500, USA.
| | | |
Collapse
|
20
|
Zine A, de Ribaupierre F. Notch/Notch ligands and Math1 expression patterns in the organ of Corti of wild-type and Hes1 and Hes5 mutant mice. Hear Res 2002; 170:22-31. [PMID: 12208538 DOI: 10.1016/s0378-5955(02)00449-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory epithelium of the mammalian cochlea (the organ of Corti) represents an excellent developmental system. The organ of Corti contains two main cell types: the sensory hair cells and the supporting cells which are organized in a defined mosaic pattern. Previous results have demonstrated the participation of Notch signaling in the regulation of the pattern of hair cell differentiation within this sensory mosaic. It has also been shown that the basic helix-loop-helix (bHLH) transcription factor Math1 is a positive regulator of hair cell differentiation. We demonstrated that Hes1 and Hes5, two members of the inhibitory bHLH transcription factors, act as negative regulators of hair cell differentiation. Loss-of-function studies implicating the neurogenic genes Notch1, Jag2, Hes1 and Hes5 generated a significant increase in the number of hair cells. However, their functional interplay within the organ of Corti has not been determined. To clarify the mechanisms that regulate hair cell differentiation, we examined the expression of Notch/Notch ligand system and Math1 in the developing organ of Corti of Hes1- and Hes5-deficient mice. Our study suggests complex specific relationships between Notch signaling, Math1 and Hes1/Hes5 in the control of hair cell differentiation in the developing organ of Corti.
Collapse
Affiliation(s)
- Azel Zine
- Institute of Physiology, University of Lausanne, 7 Rue du Bugnon, CH-1005, Lausanne, Switzerland.
| | | |
Collapse
|
21
|
Skaer N, Pistillo D, Gibert JM, Lio P, Wülbeck C, Simpson P. Gene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera. Trends Genet 2002; 18:399-405. [PMID: 12142008 DOI: 10.1016/s0168-9525(02)02747-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The number of achaete-scute genes increased during insect evolution, particularly in the Diptera lineage. Sequence comparison indicates that the four achaete-scute genes of Drosophila result from three independent duplication events. After duplication, the new genes acquired individual expression patterns but, in Drosophila, their products can compensate for one another, which raises the question: why retain all four genes? The complexity of the spatial expression of these genes on the notum increased in the lineage leading to the higher Diptera, allowing the development of stereotyped bristle patterns. This probably coincided in time with gene duplication events, raising the possibility that an increase in gene copy number might have provided the flexibility necessary for more complex transcriptional regulation.
Collapse
Affiliation(s)
- Nick Skaer
- Dept of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, National Museum of Natural History, Washington, D.C. 20560, USA.
| | | |
Collapse
|
23
|
Tárnok K, Pataki A, Kovács J, Schlett K, Madarász E. Stage-dependent effects of cell-to-cell connections on in vitro induced neurogenesis. Eur J Cell Biol 2002; 81:403-12. [PMID: 12160148 DOI: 10.1078/0171-9335-00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NE-4C, a p53-deficient, immortalized neuroectodermal progenitor cell line, was used to investigate the role and importance of cellular interactions in neural commitment and differentiation. NE-4C cells give rise to neurons and astrocytes in the presence of all-trans retinoic acid, if they can establish intercellular contacts. Aggregation per se, however, was insufficient to induce large-scale neuron formation. In the absence of RA, the majority of the aggregated cells died. For neuron formation, therefore, concerted actions of RA and cellular interaction were needed. Electron microscopic and electrophysiological studies revealed that gap junctions were formed between the cells. Persistent blockage of communication via gap junctions with gap junction blockers, however, had no effects on neuron formation. If cell-to-cell connections were disrupted on the fourth day after induction, the rate of neuron production increased significantly. The contact interactions formed between already committed progenitor cells seemed to hinder the formation of novel neurons. The process resembled the phenomenon called "lateral inhibition" first observed in the course of neurogenesis in Drosophila. Our results indicate that NE-4C cells provide a useful model system to investigate the role of contact communication during some early steps of neurogenesis.
Collapse
Affiliation(s)
- Krisztián Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
24
|
Smith E, Hargrave M, Yamada T, Begley CG, Little MH. Coexpression of SCL and GATA3 in the V2 interneurons of the developing mouse spinal cord. Dev Dyn 2002; 224:231-7. [PMID: 12112475 DOI: 10.1002/dvdy.10093] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The differentiation of neural progenitors into the many classes of neurons that exist in the mature spinal cord is a process that relies heavily on the activation of precise combinations of transcription factors. Defining these transcription factor combinations is an important aspect of research in developmental neurobiology that promises to provide incredible insights into the structure, function, and pathology of the central nervous system. The present study aimed to investigate a possible role for the Stem Cell Leukemia (SCL) gene, a basic helix-loop-helix (bHLH) transcription factor gene, in the specification of a population of neural cells in the ventral neural tube. Section RNA in situ hybridisation revealed that SCL is transiently expressed within the V2 postmitotic domain of the developing mouse spinal cord between 10.5 and 13.5 days post coitum. Double-immunofluorescence experiments were subsequently carried out to directly compare the expression of SCL with other V2-specific markers at the cellular level. These experiments revealed that SCL is expressed in a medially restricted subpopulation of GATA-3 producing cells, suggesting a possible role for this factor in the differentiation of the GATA population of V2 interneurons.
Collapse
Affiliation(s)
- Emma Smith
- Institute for Molecular Bioscience, incorporating the Special Research Centre for Functional and Applied Genomics, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
25
|
Cornell RA, Eisen JS. Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 2002; 129:2639-48. [PMID: 12015292 DOI: 10.1242/dev.129.11.2639] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In zebrafish, cells at the lateral edge of the neural plate become Rohon-Beard primary sensory neurons or neural crest. Delta/Notch signaling is required for neural crest formation. ngn1 is expressed in primary neurons; inhibiting Ngn1 activity prevents Rohon-Beard cell formation but not formation of other primary neurons. Reducing Ngn1 activity in embryos lacking Delta/Notch signaling restores neural crest formation, indicating Delta/Notch signaling inhibits neurogenesis without actively promoting neural crest. Ngn1 activity is also required for later development of dorsal root ganglion sensory neurons; however, Rohon-Beard neurons and dorsal root ganglion neurons are not necessarily derived from the same precursor cell. We propose that temporally distinct episodes of Ngn1 activity in the same precursor population specify these two different types of sensory neurons.
Collapse
Affiliation(s)
- Robert A Cornell
- Institute of Neuroscience, 1254 University of Oregon, Eugene 97403, USA.
| | | |
Collapse
|
26
|
Westerman BA, Poutsma A, Maruyama K, Schrijnemakers HFJ, van Wijk IJ, Oudejans CBM. The proneural genes NEUROD1 and NEUROD2 are expressed during human trophoblast invasion. Mech Dev 2002; 113:85-90. [PMID: 11900979 DOI: 10.1016/s0925-4773(01)00665-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During early human pregnancy, extravillous trophoblast cells invade the maternal tissue of the uterus in a way similar to invasion by cancer cells. However, the process of trophoblast invasion is regulated in a time and place restricted way, in contrast to cancer invasion. We screened first trimester placental tissue enriched by extravillous invasive trophoblasts for the expression of proneural basic helix-loop-helix (bHLH) transcription factors, which are important controllers of cell fate. Surprisingly, the presence of NEUROD1, NEUROD2 and ATH2 transcripts was found by reverse transcriptase polymerase chain reaction (RT-PCR) analysis in first trimester placentabed. Of these genes, the proneural genes NEUROD1 and NEUROD2 are expressed in different subsets of invasive trophoblasts. NEUROD1 expression is found in interstitial and endovascular invasive cells, while NEUROD2 expression is observed mainly in endovascular invasive cells, respectively. These data suggest that in addition to the involvement of proneural genes in neuron, neurendocrine and pancreas differentiation, these genes are involved in trophoblast differentation during progression of invasion.
Collapse
Affiliation(s)
- Bart A Westerman
- Molecular Biology Laboratory, Department of Clinical Chemistry, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Reichert H, Simeone A. Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos Trans R Soc Lond B Biol Sci 2001; 356:1533-44. [PMID: 11604121 PMCID: PMC1088534 DOI: 10.1098/rstb.2001.0972] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The widely held notion of an independent evolutionary origin of invertebrate and vertebrate brains is based on classical phylogenetic, neuroanatomical and embryological data. The interpretation of these data in favour of a polyphyletic origin of animals brains is currently being challenged by three fundamental findings that derive from comparative molecular, genetic and developmental analyses. First, modern molecular systematics indicates that none of the extant animals correspond to evolutionary intermediates between the protostomes and the deuterostomes, thus making it impossible to deduce the morphological organization of the ancestral bilaterian or its brain from living species. Second, recent molecular genetic evidence for the body axis inversion hypothesis now supports the idea that the basic body plan of vertebrates and invertebrates is similar but inverted, suggesting that the ventral nerve chord of protostome invertebrates is homologous to the dorsal nerve cord of deuterostome chordates. Third, a developmental genetic analysis of the molecular control elements involved in early embryonic brain patterning is uncovering the existence of structurally and functionally homologous genes that have comparable and interchangeable functions in key aspects of brain development in invertebrate and vertebrate model systems. All three of these findings are compatible with the hypothesis of a monophyletic origin of the bilaterian brain. Here we review these findings and consider their significance and implications for current thinking on the evolutionary origin of bilaterian brains. We also preview the impact of comparative functional genomic analyses on our understanding of brain evolution.
Collapse
Affiliation(s)
- H Reichert
- Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
28
|
Ruan Y, Tecott L, Jiang MM, Jan LY, Jan YN. Ethanol hypersensitivity and olfactory discrimination defect in mice lacking a homolog of Drosophila neuralized. Proc Natl Acad Sci U S A 2001; 98:9907-12. [PMID: 11481456 PMCID: PMC55551 DOI: 10.1073/pnas.171321098] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2001] [Indexed: 11/18/2022] Open
Abstract
Neurogenic genes in the Notch receptor-mediated signaling pathway play important roles in neuronal cell fate specification as well as neuronal differentiation. The Drosophila neuralized gene is one of the neurogenic genes. We have cloned a mouse homolog of Drosophila neuralized, m-neu1, and found that the m-neu1 transcript is expressed in differentiated neurons. Mice deficient for m-neu1 are viable and morphologically normal, but exhibit specific defects in olfactory discrimination and hypersensitivity to ethanol. These findings reveal an essential role of m-neu1 in ensuring proper processing of certain information in the adult brain.
Collapse
Affiliation(s)
- Y Ruan
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
This review outlines major aspects of development and evolution of the ear, specifically addressing issues of cell fate commitment and the emerging molecular governance of these decisions. Available data support the notion of homology of subsets of mechanosensors across phyla (proprioreceptive mechanosensory neurons in insects, hair cells in vertebrates). It is argued that this conservation is primarily related to the specific transducing environment needed to achieve mechanosensation. Achieving this requires highly conserved transcription factors that regulate the expression of the relevant structural genes for mechanosensory transduction. While conserved at the level of some cell fate assignment genes (atonal and its mammalian homologue), the ear has also radically reorganized its development by implementing genes used for cell fate assignment in other parts of the developing nervous systems (e.g., neurogenin 1) and by evolving novel sets of genes specifically associated with the novel formation of sensory neurons that contact hair cells (neurotrophins and their receptors). Numerous genes have been identified that regulate morphogenesis, but there is only one common feature that emerges at the moment: the ear appears to have co-opted genes from a large variety of other parts of the developing body (forebrain, limbs, kidneys) and establishes, in combination with existing transcription factors, an environment in which those genes govern novel, ear-related morphogenetic aspects. The ear thus represents a unique mix of highly conserved developmental elements combined with co-opted and newly evolved developmental elements.
Collapse
Affiliation(s)
- B Fritzsch
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA.
| | | |
Collapse
|
30
|
Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 2001. [PMID: 11425898 DOI: 10.1523/jneurosci.21-13-04712.2001] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian inner ear contains two sensory organs, the cochlea and vestibule. Their sensory neuroepithelia are characterized by a mosaic of hair cells and supporting cells. Cochlear hair cells differentiate in four rows: a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs). Recent studies have shown that Math1, a mammalian homolog of Drosophila atonal is a positive regulator of hair cell differentiation. The basic helix-loop-helix (bHLH) genes Hes1 and Hes5 (mammalian hairy and Enhancer-of-split homologs) can influence cell fate determination by acting as negative regulators to inhibit the action of bHLH-positive regulators. We show by using reverse transcription-PCR analysis that Hes1, Hes5, and Math1 are expressed in the developing mouse cochleae. In situ hybridization revealed a widespread expression of Hes1 in the greater epithelial ridge (GER) and in lesser epithelial ridge (LER) regions. Hes5 is predominantly expressed in the LER, in supporting cells, and in a narrow band of cells within the GER. Examination of cochleae from Hes1(-/-) mice showed a significant increase in the number of IHCs, whereas cochleae from Hes5(-/-) mice showed a significant increase in the number of OHCs. In the vestibular system, targeted deletion of Hes1 and to a lesser extent Hes5 lead to formation of supernumerary hair cells in the saccule and utricle. The supernumerary hair cells in the mutant mice showed an upregulation of Math1. These data indicate that Hes1 and Hes5 participate together for the control of inner ear hair cell production, likely through the negative regulation of Math1.
Collapse
|
31
|
Buzanska L, Spassky N, Belin MF, Giangrande A, Guillemot F, Klämbt C, Labouesse M, Thomas JL, Domanska-Janik K, Zalc B. Human medulloblastoma cell line DEV is a potent tool to screen for factors influencing differentiation of neural stem cells. J Neurosci Res 2001; 65:17-23. [PMID: 11433425 DOI: 10.1002/jnr.1123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of our study was to investigate whether a human neural cell line could be used as a reliable screening tool to examine the functional conservation, in humans, of transcription factors involved in neuronal or glial specification in other species. Gain-of-function experiments were performed on DEV cells, a cell line derived from a human medulloblastoma. Genes encoding nine different transcription factors were tested for their influence on the process of specification of human DEV cells towards a neuronal or glial fate. In a first series of experiments, DEV cells were transfected with murine genes encoding transcription factors known to be involved in the neuronal differentiation cascade. Neurogenins-1, -2, and -3; Mash-1; and NeuroD increased the differentiation of DEV cells towards a neuronal phenotype by a factor of 2-3.5. In a second series of experiments, we tested transcription factors involved in invertebrate glial specification. In the embryonic Drosophila CNS, the development of most glial cells depends on the master regulatory gene glial cell missing (gcm). Expression of gcm in DEV cells induced a twofold increase of astrocytic and a sixfold increase of oligodendroglial cell types. Interestingly, expression of tramtrack69, which is required in all Drosophila glial cells, resulted in a fourfold increase of only the oligodendrocyte phenotype. Expression of the related tramtrack88 protein, which is not expressed in the fly glia, or the C. elegans lin26 protein showed no effect. These results show that the Drosophila transcription factor genes tested can conserve their function upon transfection into the human DEV cells, qualifying this cell line as a screening tool to analyze the mechanisms of neuronal and glial specification.
Collapse
Affiliation(s)
- L Buzanska
- Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nepveu A. Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 2001; 270:1-15. [PMID: 11403998 DOI: 10.1016/s0378-1119(01)00485-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CDP/Cux/Cut proteins are an evolutionarily conserved family of proteins containing several DNA binding domains: one Cut homeodomain and one, two or three Cut repeats. In Drosophila melanogaster, genetic studies indicated that Cut functions as a determinant of cell-type specification in several tissues, notably in the peripheral nervous system, the wing margin and the Malpighian tubule. Moreover, Cut was found to be a target and an effector of the Notch signaling pathway. In vertebrates, the same functions appear to be fulfilled by two cut-related genes with distinct patterns of expression. Cloning of the cDNA for the CCAAT-displacement protein (CDP) revealed that it was the human homologue of Drosophila Cut. CDP was later found be the DNA binding protein of the previously characterized histone nuclear factor D (HiNF-D). CDP and its mouse counterpart, Cux, were also reported to interact with regulatory elements from a large number of genes, including matrix attachment regions (MARs). CDP/Cut proteins were found generally to function as transcriptional repressors, although a participation in transcriptional activation is suggested by some data. Repression by CDP/Cut involves competition for binding site occupancy and active repression via the recruitment of a histone deacetylase activity. Various combinations of Cut repeats and the Cut homeodomains can generate distinct DNA binding activities. These activities are elevated in proliferating cells and decrease during terminal differentiation. One activity, involving the Cut homeodomain, is upregulated in S phase. CDP/Cut function is regulated by several post-translational modification events including phosphorylation, dephosphorylation, and acetylation. The CUTL1 gene in human was mapped to 7q22, a chromosomal region that is frequently rearranged in various cancers.
Collapse
Affiliation(s)
- A Nepveu
- Molecular Oncology Group, McGill University Health Center, 687 Pine Ave West, Quebec, H3A 1A1, Montreal, Canada.
| |
Collapse
|
33
|
Abstract
The generation of distinct classes of neurons at defined positions is a fundamental step in the development of the vertebrate central nervous system. Recent work has begun to reveal the extracellular signals and transcriptional mediators that direct the pattern of generation of distinct neuronal subtypes in the neural tube. This work has provided a framework to understand the patterning of the ventral neural tube and is permitting molecular analyses of the assembly of functional neuronal circuits.
Collapse
Affiliation(s)
- J Briscoe
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
34
|
Fritzsch B, Beisel KW, Bermingham NA. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. Neuroreport 2000; 11:R35-44. [PMID: 11117521 DOI: 10.1097/00001756-200011270-00013] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.
Collapse
Affiliation(s)
- B Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | | | | |
Collapse
|
35
|
Abstract
Traditional schemes of classifying nervous system malformations are based on descriptive morphogenesis of anatomic processes of ontogenesis, such as neurulation, neuroblast migration, and axonal pathfinding. This proposal is a first attempt to incorporate the recent molecular genetic data that explain programming of development etiologically. A scheme based purely on genetic mutations would not be practical, in part because only in a few dysgeneses are the specific defects known, but also because several genes might be involved sequentially and many genes inhibit or augment the expression of others. The same genes serve different functions at different stages and are involved in multiple organ systems. Some complex malformations, such as holoprosencephaly, result from several unrelated defective genes. Finally, a pure genetic classification would be too inflexible to incorporate some anatomic criteria. The basis for the proposed scheme is, therefore, disturbances in patterns of genetic expression; polarity gradients of the axes of the neural tube (eg, upregulation or downregulation of genetic influences); segmentation (eg, deletions of specific neuromeres, ectopic expression); mutations that cause change in cell lineage (eg, dysplastic gangliocytoma of cerebellum, myofiber differentiation within brain); and specific genes or molecules that mediate neuroblast migration in its early (eg, filamin-1), middle (eg, LIS1, double-cortin), or late course (eg, reelin, L1-CAM). The proposed scheme undoubtedly will undergo many future revisions, but it provides a starting point using currently available data.
Collapse
Affiliation(s)
- H B Sarnat
- Department of Neurology, University of Washington School of Medicine, Seattle, USA.
| |
Collapse
|
36
|
Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 2000; 1:20-9. [PMID: 11262869 DOI: 10.1038/35049541] [Citation(s) in RCA: 1563] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural circuits are assembled with remarkable precision during embryonic development, and the selectivity inherent in their formation helps to define the behavioural repertoire of the mature organism. In the vertebrate central nervous system, this developmental program begins with the differentiation of distinct classes of neurons from progenitor cells located at defined positions within the neural tube. The mechanisms that specify the identity of neural cells have been examined in many regions of the nervous system and reveal a high degree of conservation in the specification of cell fate by key signalling molecules.
Collapse
Affiliation(s)
- T M Jessell
- Howard Hughes Medical Institute, Center for Neurobiology and Behavior, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
37
|
Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, Farhangfar F, Kage K, Krzystolik MG, Lyass LA, Robbins JT. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 2000; 27:513-23. [PMID: 11055434 DOI: 10.1016/s0896-6273(00)00062-3] [Citation(s) in RCA: 418] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mice express S and M opsins that form visual pigments for the detection of light and visual signaling in cones. Here, we show that S opsin transcription is higher than that of M opsin, which supports ultraviolet (UV) sensitivity greater than midwavelength sensitivity. Surprisingly, most cones coexpress both S and M opsins in a common cone cell type throughout the retina. All cones express M opsin, but the levels are graded from dorsal to ventral. The levels of S opsin are relatively constant. However, in the far dorsal retina, S opsin is repressed stochastically, such that some cones express M opsin only. These observations indicate that two different mechanisms control M and S opsin expression. We suggest that a common cone type is patterned across the retinal surface to produce phenotypic cone subtypes.
Collapse
Affiliation(s)
- M L Applebury
- The Howe Laboratory, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cau E, Gradwohl G, Casarosa S, Kageyama R, Guillemot F. Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Development 2000; 127:2323-32. [PMID: 10804175 DOI: 10.1242/dev.127.11.2323] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterised the functions of the bHLH transcriptional repressors HES1 and HES5 in neurogenesis, using the development of the olfactory placodes in mouse embryos as a model. Hes1 and Hes5 are expressed with distinct patterns in the olfactory placodes and are subject to different regulatory mechanisms. Hes1 is expressed in a broad placodal domain, which is maintained in absence of the neural determination gene Mash1. In contrast, expression of Hes5 is restricted to clusters of neural progenitor cells and requires Mash1 function. Mutations in Hes1 and Hes5 also have distinct consequences on olfactory placode neurogenesis. Loss of Hes1 function leads both to expression of Mash1 outside of the normal domain of neurogenesis and to increased density of MASH1-positive progenitors within this domain, and results in an excess of neurons after a delay. A mutation in Hes5 does not produce any apparent defect. However, olfactory placodes that are double mutant for Hes1 and Hes5 upregulate Ngn1, a neural bHLH gene activated downstream of Mash1, and show a strong and rapid increase in neuronal density. Together, our results suggest that Hes1 regulates Mash1 transcription in the olfactory placode in two different contexts, initially as a prepattern gene defining the placodal domain undergoing neurogenesis and, subsequently, as a neurogenic gene controlling the density of neural progenitors in this domain. Hes5 synergizes with Hes1 and regulates neurogenesis at the level of Ngn1 expression. Therefore, the olfactory sensory neuron lineage is regulated at several steps by negative signals acting through different Hes genes and targeting the expression of different proneural gene homologs.
Collapse
Affiliation(s)
- E Cau
- IGBMC, CNRS/INSERM/Université Louis Pasteur, BP 163, CU de Strasbourg, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
According to the classical model of insect neurogenesis, neuron fate and survival is determined largely by cell autonomous mechanisms with no requirement for cell-cell interactions to control the total number of neurons. In a recent paper by Booth et al.,(1) however, the central tenet of this model has been called into question. Using a combination of mutations and targeted glial ablation, this paper shows that, contrary to common thinking, neuron survival in the embryonic nervous system of Drosophila is dependent upon normal glial function. This surprising result suggests that insect neurogenesis may have more in common with vertebrate neurogenesis than previously thought.
Collapse
Affiliation(s)
- D Shepherd
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK.
| |
Collapse
|
40
|
|
41
|
Affiliation(s)
- M P Scott
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5329, USA
| |
Collapse
|