1
|
Kyle RL, Prout M, Le Gros G, Robinson MJ. STAT6 tunes maximum T cell IL-4 production from stochastically regulated Il4 alleles. Immunol Cell Biol 2024; 102:194-211. [PMID: 38286436 DOI: 10.1111/imcb.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024]
Abstract
T helper 2 (Th2) cells stochastically express from the Il4 locus but it has not been determined whether allelic expression is linked or independent. Here, we provide evidence that alleles are independently activated and inactivated. We compared Il4 locus expression in T cells from hemizygous IL-4 reporter mice in culture and in vivo following exposure to type 2 immunogens. In culture, Il4 alleles had independent, heritable expression probabilities. Modeling showed that in co-expressors, dual allele transcription occurs for only short periods, limiting per-cell mRNA variation in individual cells within a population of Th2 cells. In vivo profiles suggested that early in the immune response, IL-4 output was derived predominantly from single alleles, but co-expression became more frequent over time and were tuned by STAT6, supporting the probabilistic regulation of Il4 alleles in vivo among committed IL-4 producers. We suggest an imprinted probability of expression from individual alleles with a short transcriptional shutoff time controls the magnitude of T cell IL-4 output, but the amount produced per allele is amplified by STAT6 signaling. This form of regulation may be a relevant general mechanism governing cytokine expression.
Collapse
Affiliation(s)
- Ryan L Kyle
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Melanie Prout
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Marcus J Robinson
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Immunology, Monash University, Prahran, VIC, Australia
| |
Collapse
|
2
|
Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep 2023; 42:111945. [PMID: 36640362 PMCID: PMC10484211 DOI: 10.1016/j.celrep.2022.111945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Elliott Ferris
- Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alun Thomas
- Department of Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Rosas Mejia O, Claeys TA, Williams A, Zafar A, Robinson RT. IL12RB1 allele bias in human T H cells is regulated by functional SNPs in its 3'UTR. Cytokine 2022; 158:155993. [PMID: 36007427 DOI: 10.1016/j.cyto.2022.155993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Allele bias is an epigenetic mechanism wherein only the maternal- or paternal-derived allele of a gene is preferentially expressed. Allele bias is used by T cells to regulate expression of numerous genes, including those which govern their development and response to cytokines. Here we demonstrate that human TH cell expression of the cytokine receptor gene IL12RB1 is subject to allele bias, and the extent to which this bias occurs is influenced by cells' differentiation status and two polymorphic sites in the IL12RB1 3'UTR. The single nucleotide polymorphisms (SNPs) at these sites, rs3746190 and rs404733, function to increase expression of their encoding allele. Modeling suggests this is due to a stabilizing effect of these SNPs on the predicted mRNA secondary structure. The SNP rs3746190 is also proximal to the predicted binding site of microRNA miR-1277, raising the possibility that miR-1277 cannot exert suppression in the presence of rs3746190. Functional experiments demonstrate, however, that miR-1277 suppression of IL12RB1 3'UTR expression-which itself has not been previously reported-is nevertheless independent of rs3746190. Collectively, these data demonstrate that rs3746190 and rs404733 are functional SNPs which regulate IL12RB1 allele bias in human TH cells.
Collapse
Affiliation(s)
- Oscar Rosas Mejia
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Tiffany A Claeys
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Amanda Williams
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Ayesha Zafar
- University of the Punjab, Lahore, Pakistan; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard T Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Sands B, Yun S, Mendenhall AR. Introns control stochastic allele expression bias. Nat Commun 2021; 12:6527. [PMID: 34764277 PMCID: PMC8585970 DOI: 10.1038/s41467-021-26798-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 10/19/2021] [Indexed: 01/26/2023] Open
Abstract
Monoallelic expression (MAE) or extreme allele bias can account for incomplete penetrance, missing heritability and non-Mendelian diseases. In cancer, MAE is associated with shorter patient survival times and higher tumor grade. Prior studies showed that stochastic MAE is caused by stochastic epigenetic silencing, in a gene and tissue-specific manner. Here, we used C. elegans to study stochastic MAE in vivo. We found allele bias/MAE to be widespread within C. elegans tissues, presenting as a continuum from fully biallelic to MAE. We discovered that the presence of introns within alleles robustly decreases MAE. We determined that introns control MAE at distinct loci, in distinct cell types, with distinct promoters, and within distinct coding sequences, using a 5'-intron position-dependent mechanism. Bioinformatic analysis showed human intronless genes are significantly enriched for MAE. Our experimental evidence demonstrates a role for introns in regulating MAE, possibly explaining why some mutations within introns result in disease.
Collapse
Affiliation(s)
- Bryan Sands
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| | - Soo Yun
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| | - Alexander R. Mendenhall
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
5
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Mendenhall AR, Martin GM, Kaeberlein M, Anderson RM. Cell-to-cell variation in gene expression and the aging process. GeroScience 2021; 43:181-196. [PMID: 33595768 PMCID: PMC8050212 DOI: 10.1007/s11357-021-00339-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
There is tremendous variation in biological traits, and much of it is not accounted for by variation in DNA sequence, including human diseases and lifespan. Emerging evidence points to differences in the execution of the genetic program as a key source of variation, be it stochastic variation or programmed variation. Here we discuss variation in gene expression as an intrinsic property and how it could contribute to variation in traits, including the rate of aging. The review is divided into sections describing the historical context and evidence to date for nongenetic variation, the different approaches that may be used to detect nongenetic variation, and recent findings showing that the amount of variation in gene expression can be both genetically programmed and epigenetically controlled. Finally, we present evidence that changes in cell-to-cell variation in gene expression emerge as part of the aging process and may be linked to disease vulnerability as a function of age. These emerging concepts are likely to be important across the spectrum of biomedical research and may well underpin what we understand as biological aging.
Collapse
Affiliation(s)
- Alexander R Mendenhall
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA.
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA.
| | - George M Martin
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin and Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
7
|
Chandradoss KR, Chawla B, Dhuppar S, Nayak R, Ramachandran R, Kurukuti S, Mazumder A, Sandhu KS. CTCF-Mediated Genome Architecture Regulates the Dosage of Mitotically Stable Mono-allelic Expression of Autosomal Genes. Cell Rep 2020; 33:108302. [PMID: 33113374 DOI: 10.1016/j.celrep.2020.108302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
The mechanisms that guide the clonally stable random mono-allelic expression of autosomal genes remain enigmatic. We show that (1) mono-allelically expressed (MAE) genes are assorted and insulated from bi-allelically expressed (BAE) genes through CTCF-mediated chromatin loops; (2) the cell-type-specific dynamics of mono-allelic expression coincides with the gain and loss of chromatin insulator sites; (3) dosage of MAE genes is more sensitive to the loss of chromatin insulation than that of BAE genes; and (4) inactive alleles of MAE genes are significantly more insulated than active alleles and are de-repressed upon CTCF depletion. This alludes to a topology wherein the inactive alleles of MAE genes are insulated from the spatial interference of transcriptional states from the neighboring bi-allelic domains via CTCF-mediated loops. We propose that CTCF functions as a typical insulator on inactive alleles, but facilitates transcription through enhancer-linking on active allele of MAE genes, indicating widespread allele-specific regulatory roles of CTCF.
Collapse
Affiliation(s)
- Keerthivasan Raanin Chandradoss
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Bindia Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Shivnarayan Dhuppar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Rakhee Nayak
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR) Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Knowledge City, Sector 81, SAS Nagar 140306, India.
| |
Collapse
|
8
|
Rao TN, Kumar S, Pulikkottil AJ, Oliveri F, Hendriks RW, Beckel F, Fehling HJ. Novel, Non-Gene-Destructive Knock-In Reporter Mice Refute the Concept of Monoallelic Gata3 Expression. THE JOURNAL OF IMMUNOLOGY 2020; 204:2600-2611. [PMID: 32213568 DOI: 10.4049/jimmunol.2000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
Accurately tuned expression levels of the transcription factor GATA-3 are crucial at several stages of T cell and innate lymphoid cell development and differentiation. Moreover, several lines of evidence suggest that Gata3 expression might provide a reliable molecular marker for the identification of elusive progenitor cell subsets at the earliest stages of T lineage commitment. To be able to faithfully monitor Gata3 expression noninvasively at the single-cell level, we have generated a novel strain of knock-in reporter mice, termed GATIR, by inserting an expression cassette encoding a bright fluorescent marker into the 3'-untranslated region of the endogenous Gata3 locus. Importantly, in contrast to three previously published strains of Gata3 reporter mice, GATIR mice preserve physiological Gata3 expression on the targeted allele. In this study, we show that GATIR mice faithfully reflect endogenous Gata3 expression without disturbing the development of GATA-3-dependent lymphoid cell populations. We further show that GATIR mice provide an ideal tool for noninvasive monitoring of Th2 polarization and straightforward identification of innate lymphoid cell 2 progenitor populations. Finally, as our reporter is non-gene-destructive, GATIR mice can be bred to homozygosity, not feasible with previously published strains of Gata3 reporter mice harboring disrupted alleles. The availability of hetero- and homozygous Gata3 reporter mice with an exceptionally bright fluorescent marker, allowed us to visualize allelic Gata3 expression in individual cells simply by flow cytometry. The unambiguous results obtained provide compelling evidence against previously postulated monoallelic Gata3 expression in early T lineage and hematopoietic stem cell subsets.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | | - Franziska Oliveri
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center, NL-3000 CA Rotterdam, the Netherlands
| | - Franziska Beckel
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | |
Collapse
|
9
|
Abadie K, Pease NA, Wither MJ, Kueh HY. Order by chance: origins and benefits of stochasticity in immune cell fate control. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 18:95-103. [PMID: 33791444 PMCID: PMC8009491 DOI: 10.1016/j.coisb.2019.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To protect against diverse challenges, the immune system must continuously generate an arsenal of specialized cell types, each of which can mount a myriad of effector responses upon detection of potential threats. To do so, it must generate multiple differentiated cell populations with defined sizes and proportions, often from rare starting precursor cells. Here, we discuss the emerging view that inherently probabilistic mechanisms, involving rare, rate-limiting regulatory events in single cells, control fate decisions and population sizes and fractions during immune development and function. We first review growing evidence that key fate control points are gated by stochastic signaling and gene regulatory events that occur infrequently over decision-making timescales, such that initially homogeneous cells can adopt variable outcomes in response to uniform signals. We next discuss how such stochastic control can provide functional capabilities that are harder to achieve with deterministic control strategies, and may be central to robust immune system function.
Collapse
Affiliation(s)
| | - Nicholas A Pease
- Department of Bioengineering, University of Washington
- Molecular and Cellular Biology Program, University of Washington
| | | | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington
| |
Collapse
|
10
|
Reeme AE, Claeys TA, Aggarwal P, Turner AJ, Routes JM, Broeckel U, Robinson RT. Human IL12RB1 expression is allele-biased and produces a novel IL12 response regulator. Genes Immun 2018; 20:181-197. [PMID: 29599514 PMCID: PMC6165718 DOI: 10.1038/s41435-018-0023-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Abstract
Human IL12RB1 is an autosomal gene that is essential for mycobacterial disease resistance and T cell differentiation. Using primary human tissue and PBMCs, we demonstrate that lung and T cell IL12RB1 expression is allele-biased, and the extent to which cells express one IL12RB1 allele is unaffected by activation. Furthermore, following its expression the IL12RB1 pre-mRNA is processed into either IL12RB1 Isoform 1 (IL12Rβ1, a positive regulator of IL12-responsiveness) or IL12RB1 Isoform 2 (a protein of heretofore unknown function). T cells’ choice to process pre-mRNA into Isoform 1 or Isoform 2 is controlled by intragenic competition of IL12RB1 exon 9-10 splicing with IL12RB1 exon 9b splicing, as well as an IL12RB1 exon 9b-associated polyadenylation site. Heterogeneous nuclear ribonucleoprotein H (hnRNP H) binds near the regulated polyadenylation site, but is not required for exon 9b polyadenylation. Finally, microRNA-mediated knockdown experiments demonstrated that IL12RB1 Isoform 2 promotes T cell IL12 responses. Collectively, our data support a model wherein tissue expression of human IL12RB1 is allele-biased and produces an hnRNP H bound pre-mRNA, the processing of which generates a novel IL12 response regulator.
Collapse
Affiliation(s)
- Allison E Reeme
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tiffany A Claeys
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy J Turner
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John M Routes
- Department of Pediatrics, Section of Asthma, Allergy and Clinical Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Abstract
Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.
Collapse
Affiliation(s)
- Andrew Chess
- Department of Genetics and Genomic Sciences, Department of Developmental and Regenerative Biology, Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574;
| |
Collapse
|
12
|
Ku CJ, Lim KC, Kalantry S, Maillard I, Engel JD, Hosoya T. A monoallelic-to-biallelic T-cell transcriptional switch regulates GATA3 abundance. Genes Dev 2015; 29:1930-41. [PMID: 26385963 PMCID: PMC4579350 DOI: 10.1101/gad.265025.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Ku et al. show that loss of one Gata3 allele leads to diminished expansion of immature T cells as well as aberrant induction of myeloid transcription factor PU.1. Gata3 is monoallelically expressed in hematopoietic stem cells and early T-cell progenitors. Half of the developing cells switch to biallelic Gata3 transcription abruptly at midthymopoiesis. Protein abundance must be precisely regulated throughout life, and nowhere is the stringency of this requirement more evident than during T-cell development: A twofold increase in the abundance of transcription factor GATA3 results in thymic lymphoma, while reduced GATA3 leads to diminished T-cell production. GATA3 haploinsufficiency also causes human HDR (hypoparathyroidism, deafness, and renal dysplasia) syndrome, often accompanied by immunodeficiency. Here we show that loss of one Gata3 allele leads to diminished expansion (and compromised development) of immature T cells as well as aberrant induction of myeloid transcription factor PU.1. This effect is at least in part mediated transcriptionally: We discovered that Gata3 is monoallelically expressed in a parent of origin-independent manner in hematopoietic stem cells and early T-cell progenitors. Curiously, half of the developing cells switch to biallelic Gata3 transcription abruptly at midthymopoiesis. We show that the monoallelic-to-biallelic transcriptional switch is stably maintained and therefore is not a stochastic phenomenon. This unique mechanism, if adopted by other regulatory genes, may provide new biological insights into the rather prevalent phenomenon of monoallelic expression of autosomal genes as well as into the variably penetrant pathophysiological spectrum of phenotypes observed in many human syndromes that are due to haploinsufficiency of the affected gene.
Collapse
Affiliation(s)
- Chia-Jui Ku
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Ivan Maillard
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Life Sciences Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Tomonori Hosoya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Reinius B, Sandberg R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 2015; 16:653-64. [PMID: 26442639 DOI: 10.1038/nrg3888] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Random monoallelic expression (RME) of genes represents a striking example of how stochastic molecular processes can result in cellular heterogeneity. Recent transcriptome-wide studies have revealed both mitotically stable and cell-to-cell dynamic forms of autosomal RME, with the latter presumably resulting from burst-like stochastic transcription. Here, we discuss the distinguishing features of these two forms of RME and revisit literature on their nature, pervasiveness and regulation. Finally, we explore how RME may contribute to phenotypic variation, including the incomplete penetrance and variable expressivity often seen in genetic disease.
Collapse
Affiliation(s)
- Björn Reinius
- Ludwig Institute for Cancer Research, Box 240, and the Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Box 240, and the Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
14
|
Takagi M, Nagasaki K, Fujiwara I, Ishii T, Amano N, Asakura Y, Muroya K, Hasegawa Y, Adachi M, Hasegawa T. Heterozygous defects in PAX6 gene and congenital hypopituitarism. Eur J Endocrinol 2015; 172:37-45. [PMID: 25342853 DOI: 10.1530/eje-14-0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The prevalence of congenital hypopituitarism (CH) attributable to known transcription factor mutations appears to be rare and other causative genes for CH remain to be identified. Due to the sporadic occurrence of CH, de novo chromosomal rearrangements could be one of the molecular mechanisms participating in its etiology, especially in syndromic cases. OBJECTIVE To identify the role of copy number variations (CNVs) in the etiology of CH and to identify novel genes implicated in CH. SUBJECTS AND METHODS We enrolled 88 (syndromic: 30; non-syndromic: 58) Japanese CH patients. We performed an array comparative genomic hybridization screening in the 30 syndromic CH patients. For all the 88 patients, we analyzed PAX6 by PCR-based sequencing. RESULTS We identified one heterozygous 310-kb deletion of the PAX6 enhancer region in one patient showing isolated GH deficiency (IGHD), cleft palate, and optic disc cupping. We also identified one heterozygous 6.5-Mb deletion encompassing OTX2 in a patient with bilateral anophthalmia and multiple pituitary hormone deficiency. We identified a novel PAX6 mutation, namely p.N116S in one non-syndromic CH patient showing IGHD. The p.N116S PAX6 was associated with an impairment of the transactivation capacities of the PAX6-binding elements. CONCLUSIONS This study showed that heterozygous PAX6 mutations are associated with CH patients. PAX6 mutations may be associated with diverse clinical features ranging from severely impaired ocular and pituitary development to apparently normal phenotype. Overall, this study identified causative CNVs with a possible role in the etiology of CH in <10% of syndromic CH patients.
Collapse
Affiliation(s)
- Masaki Takagi
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Keisuke Nagasaki
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Ikuma Fujiwara
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Tomohiro Ishii
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Naoko Amano
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Asakura
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Koji Muroya
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Yukihiro Hasegawa
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Masanori Adachi
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| | - Tomonobu Hasegawa
- Department of Endocrinology and MetabolismTokyo Metropolitan Children's Medical Center, Tokyo, JapanDepartment of PediatricsSchool of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, JapanDivision of PediatricsDepartment of Homeostatic Regulation and Development, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JapanDepartment of PediatricsSchool of Medicine, Tohoku University, Miyagi, JapanDepartment of Endocrinology and MetabolismKanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
15
|
Aberrant allele-switch imprinting of a novel IGF1R intragenic antisense non-coding RNA in breast cancers. Eur J Cancer 2014; 51:260-70. [PMID: 25465188 DOI: 10.1016/j.ejca.2014.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor type I receptor (IGF1R) is frequently dysregulated in breast cancers, yet the molecular mechanisms are unknown. A novel intragenic long non-coding RNA (lncRNA) IRAIN within the IGF1R locus has been recently identified in haematopoietic malignancies using RNA-guided chromatin conformation capture (R3C). In breast cancer tissues, we found that IRAIN lncRNA was transcribed from an intronic promoter in an antisense direction as compared to the IGF1R coding mRNA. Unlike the IGF1R coding RNA, this non-coding RNA was imprinted, with monoallelic expression from the paternal allele. In breast cancer tissues that were informative for single nucleotide polymorphism (SNP) rs8034564, there was an imbalanced expression of the two parental alleles, where the 'G' genotype was favorably imprinted over the 'A' genotype. In breast cancer patients, IRAIN was aberrantly imprinted in both tumours and peripheral blood leucocytes, exhibiting a pattern of allele-switch: the allele expressed in normal tissues was inactivated and the normally imprinted allele was expressed. Epigenetic analysis revealed that there was extensive DNA demethylation of CpG islands in the gene promoter. These data identify IRAIN lncRNA as a novel imprinted gene that is aberrantly regulated in breast cancer.
Collapse
|
16
|
Eckersley-Maslin MA, Spector DL. Random monoallelic expression: regulating gene expression one allele at a time. Trends Genet 2014; 30:237-244. [PMID: 24780084 PMCID: PMC4037383 DOI: 10.1016/j.tig.2014.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Monoallelic gene expression is a remarkable process in which transcription occurs from only one of two homologous alleles in a diploid cell. Interestingly, between 0.5% and 15% of autosomal genes exhibit random monoallelic gene expression, in which different cells express only one allele independently of the underlying genomic sequence, in a cell type-specific manner. Recently, genome-wide studies have increased our understanding of the cell type-specific incidence of random monoallelic gene expression, and how the imbalance in allelic expression is distinguished within the cell and potentially maintained across cell generations. Monoallelic gene expression is likely generated through stochastic independent regulation of the two alleles upon differentiation, and has varied implications for the cell and organism, in particular with respect to disease.
Collapse
Affiliation(s)
- Mélanie A Eckersley-Maslin
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
17
|
Gendrel AV, Attia M, Chen CJ, Diabangouaya P, Servant N, Barillot E, Heard E. Developmental dynamics and disease potential of random monoallelic gene expression. Dev Cell 2014; 28:366-80. [PMID: 24576422 DOI: 10.1016/j.devcel.2014.01.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
X chromosome inactivation (XCI) and allelic exclusion of olfactory receptors or immunoglobulin loci represent classic examples of random monoallelic expression (RME). RME of some single copy genes has also been reported, but the in vivo relevance of this remains unclear. Here we identify several hundred RME genes in clonal neural progenitor cell lines derived from embryonic stem cells. RME occurs during differentiation, and, once established, the monoallelic state can be highly stable. We show that monoallelic expression also occurs in vivo, in the absence of DNA sequence polymorphism. Several of the RME genes identified play important roles in development and have been implicated in human autosomal-dominant disorders. We propose that monoallelic expression of such genes contributes to the fine-tuning of the developmental regulatory pathways they control, and, in the context of a mutation, RME can predispose to loss of function in a proportion of cells and thus contribute to disease.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Institut Curie, 26 rue d'Ulm, Paris 75248, France; Genetics and Developmental Biology Unit, INSERM U934/CNRS UMR3215, Paris 75248, France
| | - Mikael Attia
- Institut Curie, 26 rue d'Ulm, Paris 75248, France; Genetics and Developmental Biology Unit, INSERM U934/CNRS UMR3215, Paris 75248, France
| | - Chong-Jian Chen
- Institut Curie, 26 rue d'Ulm, Paris 75248, France; Genetics and Developmental Biology Unit, INSERM U934/CNRS UMR3215, Paris 75248, France; Bioinformatics and Computational Systems Biology of Cancer, INSERM U900, Paris 75248, France; Mines ParisTech, Fontainebleau 77300, France
| | - Patricia Diabangouaya
- Institut Curie, 26 rue d'Ulm, Paris 75248, France; Genetics and Developmental Biology Unit, INSERM U934/CNRS UMR3215, Paris 75248, France
| | - Nicolas Servant
- Institut Curie, 26 rue d'Ulm, Paris 75248, France; Bioinformatics and Computational Systems Biology of Cancer, INSERM U900, Paris 75248, France; Mines ParisTech, Fontainebleau 77300, France
| | - Emmanuel Barillot
- Institut Curie, 26 rue d'Ulm, Paris 75248, France; Bioinformatics and Computational Systems Biology of Cancer, INSERM U900, Paris 75248, France; Mines ParisTech, Fontainebleau 77300, France
| | - Edith Heard
- Institut Curie, 26 rue d'Ulm, Paris 75248, France; Genetics and Developmental Biology Unit, INSERM U934/CNRS UMR3215, Paris 75248, France.
| |
Collapse
|
18
|
Song G, Guo Z, Liu Z, Cheng Q, Qu X, Chen R, Jiang D, Liu C, Wang W, Sun Y, Zhang L, Zhu Y, Yang D. Global RNA sequencing reveals that genotype-dependent allele-specific expression contributes to differential expression in rice F1 hybrids. BMC PLANT BIOLOGY 2013; 13:221. [PMID: 24358981 PMCID: PMC3878109 DOI: 10.1186/1471-2229-13-221] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/09/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Extensive studies on heterosis in plants using transcriptome analysis have identified differentially expressed genes (DEGs) in F1 hybrids. However, it is not clear why yield in heterozygotes is superior to that of the homozygous parents or how DEGs are produced. Global allele-specific expression analysis in hybrid rice has the potential to answer these questions. RESULTS We report a genome-wide allele-specific expression analysis using RNA-sequencing technology of 3,637-3,824 genes from three rice F1 hybrids. Of the expressed genes, 3.7% exhibited an unexpected type of monoallelic expression and 23.8% showed preferential allelic expression that was genotype-dependent in reciprocal crosses. Those genes exhibiting allele-specific expression comprised 42.4% of the genes differentially expressed between F1 hybrids and their parents. Allele-specific expression accounted for 79.8% of the genes displaying more than a 10-fold expression level difference between an F1 and its parents, and almost all (97.3%) of the genes expressed in F1, but non-expressed in one parent. Significant allelic complementary effects were detected in the F1 hybrids of rice. CONCLUSIONS Analysis of the allelic expression profiles of genes at the critical stage for highest biomass production from the leaves of three different rice F1 hybrids identified genotype-dependent allele-specific expression genes. A cis-regulatory mechanism was identified that contributes to allele-specific expression, leading to differential gene expression and allelic complementary effects in F1 hybrids.
Collapse
Affiliation(s)
- Gaoyuan Song
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Zhibin Guo
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Zhenwei Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Qin Cheng
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Xuefeng Qu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Rong Chen
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Daiming Jiang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Chuan Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Yunfang Sun
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Liping Zhang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| |
Collapse
|
19
|
Aseem O, Barth JL, Klatt SC, Smith BT, Argraves WS. Cubilin expression is monoallelic and epigenetically augmented via PPARs. BMC Genomics 2013; 14:405. [PMID: 23773363 PMCID: PMC3706236 DOI: 10.1186/1471-2164-14-405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
Background Cubilin is an endocytic receptor that is necessary for renal and intestinal absorption of a range of ligands. Endocytosis mediated by cubilin and its co-receptor megalin is the principal mechanism for proximal tubule reabsorption of proteins from the glomerular filtrate. Cubilin is also required for intestinal endocytosis of intrinsic factor-vitamin B12 complex. Despite its importance, little is known about the regulation of cubilin expression. Results Here we show that cubilin expression is under epigenetic regulation by at least two processes. The first process involves inactivation of expression of one of the cubilin alleles. This monoallelic expression state could not be transformed to biallelic by inhibiting DNA methylation or histone deacetylation. The second process involves transcriptional regulation of cubilin by peroxisome proliferator-activated receptor (PPAR) transcription factors that are themselves regulated by DNA methylation and histone deacetylation. This is supported by findings that inhibitors of DNA methylation and histone deacetylation, 5Aza and TSA, increase cubilin mRNA and protein in renal and intestinal cell lines. Not only was the expression of PPARα and γ inducible by 5Aza and TSA, but the positive effects of TSA and 5Aza on cubilin expression were also dependent on both increased PPAR transcription and activation. Additionally, 5Aza and TSA had similar effects on the expression of the cubilin co-receptor, megalin. Conclusions Together, these findings reveal that cubilin and megalin mRNA expression is under epigenetic control and thus point to new avenues for overcoming pathological suppression of these genes through targeting of epigenetic regulatory processes.
Collapse
Affiliation(s)
- Obaidullah Aseem
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
20
|
Kohda T. Effects of embryonic manipulation and epigenetics. J Hum Genet 2013; 58:416-20. [PMID: 23739123 DOI: 10.1038/jhg.2013.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/09/2022]
Abstract
Embryonic manipulation techniques, such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are widely used in assisted reproductive technology (ART), livestock propagation and application in other fields. Fertilization with IVF and ICSI have been shown to be highly effective, and the mice produced by these techniques develop healthily and with a normal appearance. However, there remains a possibility of epigenetic changes being induced by these techniques. The early stage of mammalian development from fertilization to implantation is a period in which global changes in the epigenetic landscape take place. The sperm and oocyte epigenetic profiles are very different from each other, and the epigenetic remodeling process after fertilization exhibits allelic differences. It is during this period that embryonic manipulation is performed. In this review, I discuss the effects of embryonic manipulation procedures in relation to the epigenetic asymmetry that is present in mammalian early development. Such regulation in the preimplantation embryo provides an important insight into epigenetics.
Collapse
Affiliation(s)
- Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
21
|
Abstract
Monoallelic expression poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and which can have absolutely identical sequences. This review will consider different known types of monoallelic expression. For all monoallelically expressed genes, their respective allele-specific patterns of expression have the potential to affect brain function and dysfunction.
Collapse
Affiliation(s)
- Andrew Chess
- Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
22
|
Li H, Su X, Gallegos J, Lu Y, Ji Y, Molldrem JJ, Liang S. dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes. BMC Bioinformatics 2012; 13:271. [PMID: 23083219 PMCID: PMC3497615 DOI: 10.1186/1471-2105-13-271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/28/2012] [Indexed: 12/01/2022] Open
Abstract
Background Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than 100 imprinted genes have been identified in the human genome. The recent availability of high-throughput technology makes it possible to have large-scale prediction of imprinted genes. Here we propose a Bayesian model (dsPIG) to predict imprinted genes on the basis of allelic expression observed in mRNA-Seq data of independent human tissues. Results Our model (dsPIG) was capable of identifying imprinted genes with high sensitivity and specificity and a low false discovery rate when the number of sequenced tissue samples was fairly large, according to simulations. By applying dsPIG to the mRNA-Seq data, we predicted 94 imprinted genes in 20 cerebellum samples and 57 imprinted genes in 9 diverse tissue samples with expected low false discovery rates. We also assessed dsPIG using previously validated imprinted and non-imprinted genes. With simulations, we further analyzed how imbalanced allelic expression of non-imprinted genes or different minor allele frequencies affected the predictions of dsPIG. Interestingly, we found that, among biallelically expressed genes, at least 18 genes expressed significantly more transcripts from one allele than the other among different individuals and tissues. Conclusion With the prevalence of the mRNA-Seq technology, dsPIG has become a useful tool for analysis of allelic expression and large-scale prediction of imprinted genes. For ease of use, we have set up a web service and also provided an R package for dsPIG at http://www.shoudanliang.com/dsPIG/.
Collapse
Affiliation(s)
- Hua Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Hirano K, Kaneko R, Izawa T, Kawaguchi M, Kitsukawa T, Yagi T. Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems. Front Mol Neurosci 2012; 5:90. [PMID: 22969705 PMCID: PMC3431597 DOI: 10.3389/fnmol.2012.00090] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/14/2012] [Indexed: 11/13/2022] Open
Abstract
The generation of complex neural circuits depends on the correct wiring of neurons with diverse individual characteristics. To understand the complexity of the nervous system, the molecular mechanisms for specifying the identity and diversity of individual neurons must be elucidated. The clustered protocadherins (Pcdh) in mammals consist of approximately 50 Pcdh genes (Pcdh-α, Pcdh-β, and Pcdh-γ) that encode cadherin-family cell surface adhesion proteins. Individual neurons express a random combination of Pcdh-α and Pcdh-γ, whereas the expression patterns for the Pcdh-β genes, 22 one-exon genes in mouse, are not fully understood. Here we show that the Pcdh-β genes are expressed in a 3'-polyadenylated form in mouse brain. In situ hybridization using a pan-Pcdh-β probe against a conserved Pcdh-β sequence showed widespread labeling in the brain, with prominent signals in the olfactory bulb, hippocampus, and cerebellum. In situ hybridization with specific probes for individual Pcdh-β genes showed their expression to be scattered in Purkinje cells from P10 to P150. The scattered expression patterns were confirmed by performing a newly developed single-cell 3'-RACE analysis of Purkinje cells, which clearly demonstrated that the Pcdh-β genes are expressed monoallelically and combinatorially in individual Purkinje cells. Scattered expression patterns of individual Pcdh-β genes were also observed in pyramidal neurons in the hippocampus and cerebral cortex, neurons in the trigeminal and dorsal root ganglion, GABAergic interneurons, and cholinergic neurons. Our results extend previous observations of diversity at the single-neuron level generated by Pcdh expression and suggest that the Pcdh-β cluster genes contribute to specifying the identity and diversity of individual neurons.
Collapse
Affiliation(s)
- Keizo Hirano
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet 2012; 13:421-8. [PMID: 22585065 DOI: 10.1038/nrg3239] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although random monoallelic expression has been known for decades to affect genes on the X chromosome in female placental mammals, until a few years ago it was thought that there were few autosomal genes that were regulated in this manner. New tools for assaying gene expression genome-wide are now revealing that there are perhaps more genes that are subject to random monoallelic expression on mammalian autosomes than there are on the X chromosome and that these expression properties are achieved by diverse molecular mechanisms. This mode of expression has the potential to have an impact on natural selection and on the evolution of gene families.
Collapse
|
25
|
Kurogi T, Inoue H, Guo Y, Nobukiyo A, Nohara K, Kanno M. A Methyl-Deficient Diet Modifies Early B Cell Development. Pathobiology 2012; 79:209-18. [DOI: 10.1159/000337290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/13/2012] [Indexed: 01/04/2023] Open
|
26
|
Zwemer LM, Zak A, Thompson BR, Kirby A, Daly MJ, Chess A, Gimelbrant AA. Autosomal monoallelic expression in the mouse. Genome Biol 2012; 13:R10. [PMID: 22348269 PMCID: PMC3334567 DOI: 10.1186/gb-2012-13-2-r10] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/10/2012] [Accepted: 02/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Random monoallelic expression defines an unusual class of genes displaying random choice for expression between the maternal and paternal alleles. Once established, the allele-specific expression pattern is stably maintained and mitotically inherited. Examples of random monoallelic genes include those found on the X-chromosome and a subset of autosomal genes, which have been most extensively studied in humans. Here, we report a genome-wide analysis of random monoallelic expression in the mouse. We used high density mouse genome polymorphism mapping arrays to assess allele-specific expression in clonal cell lines derived from heterozygous mouse strains. RESULTS Over 1,300 autosomal genes were assessed for allele-specific expression, and greater than 10% of them showed random monoallelic expression. When comparing mouse and human, the number of autosomal orthologs demonstrating random monoallelic expression in both organisms was greater than would be expected by chance. Random monoallelic expression on the mouse autosomes is broadly similar to that in human cells: it is widespread throughout the genome, lacks chromosome-wide coordination, and varies between cell types. However, for some mouse genes, there appears to be skewing, in some ways resembling skewed X-inactivation, wherein one allele is more frequently active. CONCLUSIONS These data suggest that autosomal random monoallelic expression was present at least as far back as the last common ancestor of rodents and primates. Random monoallelic expression can lead to phenotypic variation beyond the phenotypic variation dictated by genotypic variation. Thus, it is important to take into account random monoallelic expression when examining genotype-phenotype correlation.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Proudhon C, Bourc'his D. Identification and resolution of artifacts in the interpretation of imprinted gene expression. Brief Funct Genomics 2010; 9:374-84. [PMID: 20829207 DOI: 10.1093/bfgp/elq020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.
Collapse
|
28
|
Rouhi A, Lai CB, Cheng TP, Takei F, Yokoyama WM, Mager DL. Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Res 2009; 37:5331-42. [PMID: 19605564 PMCID: PMC2760814 DOI: 10.1093/nar/gkp592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Stochastic expression is a hallmark of the Ly49 family that encode the main MHC class-I-recognizing receptors of mouse natural killer (NK) cells. This highly polygenic and polymorphic family includes both activating and inhibitory receptor genes and is one of genome's fastest evolving loci. The inhibitory Ly49 genes are expressed in a stochastic mono-allelic manner, possibly under the control of an upstream bi-directional early promoter and show mono-allelic DNA methylation patterns. To date, no studies have directly addressed the transcriptional regulation of the activating Ly49 receptors. Our study shows differences in DNA methylation pattern between activating and inhibitory genes in C57BL/6 and F1 hybrid mouse strains. We also show a bias towards bi-allelic expression of the activating receptors based on allele-specific single-cell RT–PCR in F1 hybrid NK cells for Ly49d and Ly49H expression in Ly49h+/− mice. Furthermore, we have identified a region of high sequence identity with possible transcriptional regulatory capacity for the activating Ly49 genes. Our results also point to a likely difference between NK and T-cells in their ability to transcribe the activating Ly49 genes. These studies highlight the complex regulation of this rapidly evolving gene family of central importance in mouse NK cell function.
Collapse
Affiliation(s)
- Arefeh Rouhi
- The Terry Fox laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells. PLoS One 2009; 4:e4970. [PMID: 19325893 PMCID: PMC2657208 DOI: 10.1371/journal.pone.0004970] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/26/2009] [Indexed: 12/02/2022] Open
Abstract
A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s) that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.
Collapse
|
30
|
Guo L, Hu-Li J, Paul WE. Probabilistic regulation of IL-4 production. J Clin Immunol 2009; 25:573-81. [PMID: 16380820 DOI: 10.1007/s10875-005-8218-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 08/26/2005] [Indexed: 11/25/2022]
Abstract
Among a population of uniformly differentiated TH(2) cells, only a portion express IL-4 upon stimulation and those that do often express the product of only a single allele. We review the evidence for the basis of IL-4 monoallelism and argue that it depends upon probabilistic expression of the Il4 gene. Further, we argue that probabilistic expression may provide a powerful mechanism through which certain key functions of IL-4, such as immunoglobulin class switching and determination of macrophage phenotype, may be efficiently regulated.
Collapse
Affiliation(s)
- Liying Guo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
31
|
Villaseñor J, Besse W, Benoist C, Mathis D. Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. Proc Natl Acad Sci U S A 2008; 105:15854-9. [PMID: 18836079 PMCID: PMC2572966 DOI: 10.1073/pnas.0808069105] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Indexed: 02/02/2023] Open
Abstract
Thymic medullary epithelial cells (MECs) express a broad repertoire of peripheral-tissue antigens (PTAs), many of which depend on the transcriptional regulatory factor Aire. Although Aire is known to be critically important for shaping a self-tolerant T cell repertoire, its role in MEC maturation and function remains poorly understood. Using a highly sensitive and reproducible single-cell PCR assay, we demonstrate that individual Aire-expressing MECs transcribe a subset of PTA genes in a probabilistic fashion, with no signs of preferential coexpression of genes characteristic of particular extrathymic epithelial cell lineages. In addition, Aire-dependent PTA genes in MECs are transcribed monoallelically or biallelically in a stochastic pattern, in contrast to the usually biallelic transcription of these same genes in the relevant peripheral cells or of Aire-independent genes in MECs. Expression of PTA genes in MECs depends on transcriptional regulators and uses transcriptional start sites different from those used in peripheral cells. These findings support the "terminal differentiation" model of Aire function: as MECs mature, they transcribe more and more PTA genes, culminating in a cell population that is both capable of presenting antigens (MHCII(hi), CD80(hi)) and can draw on a large repertoire of antigens to present.
Collapse
Affiliation(s)
- Jennifer Villaseñor
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| | - Whitney Besse
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
32
|
Wang J, Valo Z, Smith D, Singer-Sam J. Monoallelic expression of multiple genes in the CNS. PLoS One 2007; 2:e1293. [PMID: 18074017 PMCID: PMC2100171 DOI: 10.1371/journal.pone.0001293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 11/11/2007] [Indexed: 11/19/2022] Open
Abstract
The inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS. Selected genes were then tested for allele-specific expression in clonal neural stem cell lines derived from reciprocal F(1) (C57BL/6xJF1) hybrid mice. In addition, using a separate approach, we directly analyzed allele-specific expression of a group of genes interspersed within clusters of OlfR genes, since the latter are subject to allelic exclusion. Altogether, of the 500 known genes in the chromosomal region surveyed, five show monoallelic expression, four identified by the MAUD assay (Agc1, p (pink-eyed dilution), P4ha3 and Thrsp), and one by its proximity to OlfR genes (Trim12). Thrsp (thyroid hormone responsive SPOT14 homolog) is expressed in hippocampus, but the human protein homolog, S14, has also been implicated in aggressive breast cancer. Monoallelic expression of the five genes is not coordinated at a chromosome-wide level, but rather regulated at individual loci. Taken together, our results suggest that at least 1% of previously untested genes are subject to allelic exclusion, and demonstrate a dual approach to expedite their identification.
Collapse
Affiliation(s)
- Jinhui Wang
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Zuzana Valo
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - David Smith
- Division of Information Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Judith Singer-Sam
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. Widespread monoallelic expression on human autosomes. Science 2007; 318:1136-40. [PMID: 18006746 DOI: 10.1126/science.1148910] [Citation(s) in RCA: 440] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Monoallelic expression with random choice between the maternal and paternal alleles defines an unusual class of genes comprising X-inactivated genes and a few autosomal gene families. Using a genome-wide approach, we assessed allele-specific transcription of about 4000 human genes in clonal cell lines and found that more than 300 were subject to random monoallelic expression. For a majority of monoallelic genes, we also observed some clonal lines displaying biallelic expression. Clonal cell lines reflect an independent choice to express the maternal, the paternal, or both alleles for each of these genes. This can lead to differences in expressed protein sequence and to differences in levels of gene expression. Unexpectedly widespread monoallelic expression suggests a mechanism that generates diversity in individual cells and their clonal descendants.
Collapse
Affiliation(s)
- Alexander Gimelbrant
- Center for Human Genetic Research and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
34
|
Inoue KI, Ito K, Osato M, Lee B, Bae SC, Ito Y. The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. J Biol Chem 2007; 282:24175-84. [PMID: 17584746 DOI: 10.1074/jbc.m703746200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Runx3, a Runt domain transcription factor, determines neurotrophin receptor phenotype in dorsal root ganglion (DRG) neurons. Molecular mechanisms by which Runx3 controls distinct neurotrophin receptors are largely unknown. Here, we show that RUNX3 abolished mRNA induction of TRKB expression, and concomitantly altered the neurotrophin response in a differentiating neuroblastoma cell line. In contrast, RUNX3 did not play a significant role in TRKC regulation even under the relevant BMP signaling pathway. We identified putative regulatory elements of Ntrk2/NTRK2 (a gene that codes for TrkB) using an unbiased computational approach. One of these elements was a highly conserved intronic sequence that contains a cluster of Runx binding sites. In a primary culture of DRG neurons, endogenous Runx3 bound to the consensus cluster, which had repressor activity against the Ntrk2 promoter under the control of NT-3 signaling. Consistent with these findings, Runx3-deficient embryos showed an increased number of trkB+ DRG neurons and failed to maintain trkC expression. Taken together, Runx3 determines TrkC positive sensory neuron identities through the transcriptional repression of TrkB when Trk-BTrkC double positive neurons differentiate into TrkC single positive neurons.
Collapse
Affiliation(s)
- Ken-ichi Inoue
- Institute of Molecular and Cell Biology, Singapore 13 8673
| | | | | | | | | | | |
Collapse
|
35
|
Fuxa M, Busslinger M. Reporter Gene Insertions Reveal a Strictly B Lymphoid-Specific Expression Pattern of Pax5 in Support of Its B Cell Identity Function. THE JOURNAL OF IMMUNOLOGY 2007; 178:3031-7. [PMID: 17312149 DOI: 10.4049/jimmunol.178.5.3031] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcription factor Pax5 is essential for B cell commitment and development. Although the detailed Pax5 expression pattern within the hemopoietic system is still largely unknown, we previously reported that Pax5 is monoallelically transcribed in pro-B and mature B cells. In this study, we have investigated the expression of Pax5 at single-cell resolution by inserting a GFP or human cd2 indicator gene under the translational control of an internal ribosomal entry site element into the 3' untranslated region of Pax5. These insertions were noninvasive, as B cell development was normal in Pax5(ihCd2/ihCd2) and Pax5(iGFP/iGFP) mice. Transheterozygous Pax5(ihCd2/iGFP) mice coexpressed GFP and human CD2 at similar levels from pro-B to mature B cells, thus demonstrating biallelic expression of Pax5 at all stages of B cell development. No reporter gene expression could be detected in plasma cells and non-B cells of the hemopoietic system. Moreover, the vast majority of common lymphoid progenitors and pre-pro-B cells in the bone marrow Pax5(iGFP/iGFP) mice did not yet express GFP, indicating that Pax5 expression is fully switched on only during the transition from uncommitted pre-pro-B cells to committed pro-B cells. Hence, the transcriptional initiation and B cell-specific expression of Pax5 is entirely consistent with its B cell lineage commitment function.
Collapse
Affiliation(s)
- Martin Fuxa
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
36
|
Abstract
Imprinted genes are monoallelically expressed in a parent-of-origin-specific manner, but for many genes reported to be imprinted, the occurrence of preferential expression--where both alleles are expressed but one is expressed more strongly than the other in a parent-of-origin-specific way--has been reported. This preferential expression found in genes described as imprinted has not been thoroughly addressed in genomic imprinting studies. To study this phenomenon, 50 genes, reported to be imprinted in the mouse, were chosen for investigation. Preferential expression was observed for 21 of 27 maternally expressed genes. However, only 5 of 23 paternally expressed genes showed preferential expression. Recently, it has been reported that a remarkable proportion of non-imprinted genes show differential allelic expression. If there is overlap between non-imprinted genes that are differentially expressed and imprinted genes that are preferentially expressed, we need to set new definitions of imprinted genes that, in turn, would probably lead to reassessments of the total number of imprinted genes in mammalian species.
Collapse
Affiliation(s)
- Hasan Khatib
- Department of Dairy Science, 1675 Observatory Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
37
|
Ribich S, Tasic B, Maniatis T. Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 2006; 103:19719-24. [PMID: 17172445 PMCID: PMC1750919 DOI: 10.1073/pnas.0609445104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustered protocadherins (Pcdh) are encoded by three closely linked gene clusters (Pcdh-alpha, -beta, and -gamma) that span nearly 1 million base pairs of DNA. The Pcdh-alpha gene cluster encodes a family of 14 distinct cadherin-like cell surface proteins that are expressed in neurons and are present at synaptic junctions. Individual Pcdh-alpha mRNAs are assembled from one of 14 "variable" (V) exons and three "constant" exons in a process that involves both differential promoter activation and alternative pre-mRNA splicing. In individual neurons, only one (and rarely two) of the Pcdh alpha1-12 promoters is independently and randomly activated on each chromosome. Thus, in most cells, this unusual form of monoallelic expression leads to the expression of two different Pcdh-alpha 1-12 V exons, one from each chromosome. The two remaining V exons in the cluster (Pcdh-alphaC1 and alphaC2) are expressed biallelically in every neuron. The mechanisms that underlie promoter choice and monoallelic expression in the Pcdh-alpha gene cluster are not understood. Here we report the identification of two long-range cis-regulatory elements in the Pcdh-alpha gene cluster, HS5-1 and HS7. We show that HS5-1 is required for maximal levels of expression from the Pcdh alpha1-12 and alphaC1 promoters, but not the Pcdh-alphaC2 promoter. The nearly cluster-wide requirement of the HS5-1 element is consistent with the possibility that the monoallelic expression of Pcdh-alpha V exons is a consequence of competition between individual V exon promoters for the two regulatory elements.
Collapse
Affiliation(s)
- Scott Ribich
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Bosiljka Tasic
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Abstract
This protocol details a method for analyzing the expression of multiple genes from a single Purkinje neuron, including the determination of whether the gene expression is monoallelic or biallelic. The protocol describes how to extract a single, living Purkinje cell for reverse transcription, divide the cDNAs into three equal samples and subject those to triplicate amplification of multiple targets by two rounds of PCR (first a multiplex PCR then a gene-specific nested PCR) and finally discriminate the allelic expression of the transcript by direct sequencing of the PCR products. In optimal conditions, this method permits the analysis of the expression of 18 genes in a single Purkinje cell. This protocol can be completed in 5-6 d.
Collapse
Affiliation(s)
- Shigeyuki Esumi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
39
|
Benz CC, Fedele V, Xu F, Ylstra B, Ginzinger D, Yu M, Moore D, Hall RK, Wolff DJ, Disis ML, Eppenberger-Castori S, Eppenberger U, Schittulli F, Tommasi S, Paradiso A, Scott GK, Albertson DG. Altered promoter usage characterizes monoallelic transcription arising with ERBB2 amplification in human breast cancers. Genes Chromosomes Cancer 2006; 45:983-94. [PMID: 16883574 DOI: 10.1002/gcc.20364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of a collection of human breast cancers (n = 150), enriched in ERBB2-positive cases (n = 57) and involving tumor genotyping relative to population-matched blood genotyping (n = 749) for a common ERBB2 single nucleotide polymorphism Ala(G)1170Pro(C), revealed that ERBB2 amplification in breast cancer is invariably monoallelic. Analysis of paired breast cancer and blood samples from informative (G1170C heterozygotic) ERBB2-positive (n = 12) and ERBB2-negative (n = 17) cases not only confirmed monoallelic amplification and ERBB2 transcriptional overexpression but also revealed that most low ERBB2 expressing breast cancers (12/17) exhibit unbalanced allelic transcription, showing 3-fold to nearly 5,000-fold preferential expression from one of two inherited alleles. To explore cis-acting transcriptional mechanisms potentially selected during ERBB2 amplification, levels of four different ERBB2 transcript variants (5.2, 4.7, 2.1, and 1.4 kb) were correlated with total (4.6 kb) ERBB2 mRNA levels in ERBB2-positive (n = 14) versus ERBB2-negative (n = 43) primary breast cancers. Relative expression of only the 2.1 kb extracellular domain-encoding splice variant and a 4.7 kb mRNA variant that uses an alternative start site were significantly increased in association with ERBB2-positivity, implicating altered promoter usage and selective transcript regulation within the ERBB2 amplicon. Altogether, these findings provide new mechanistic insights into the development of ERBB2-positive breast cancer and strong rationale for delineating candidate cis-acting regulatory elements that may link allele-specific ERBB2 transcription in premalignant breast epithelia with subsequent development of breast cancers bearing monoallelic ERBB2 amplicons.
Collapse
|
40
|
Ideraabdullah FY, Kim K, Pomp D, Moran JL, Beier D, de Villena FPM. Rescue of the mouse DDK syndrome by parent-of-origin-dependent modifiers. Biol Reprod 2006; 76:286-93. [PMID: 17050856 DOI: 10.1095/biolreprod.106.056739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
When females of the DDK inbred mouse strain are mated to males of other strains, 90-100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Genetics, Curriculum in Genetics and Molecular Biology, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kaneko R, Kato H, Kawamura Y, Esumi S, Hirayama T, Hirabayashi T, Yagi T. Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells. J Biol Chem 2006; 281:30551-60. [PMID: 16893882 DOI: 10.1074/jbc.m605677200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular basis for providing the identity and diversity of single neurons is a key for realizing the brain system. Diverse protocadherin isoforms encoded by the Pcdh-alpha and Pcdh-gamma gene clusters are expressed in all of the vertebrates studied. For the Pcdh-alpha isoforms, differential expression patterns have been found in single Purkinje cells by unusual monoallelic and combinatorial types of gene regulation. Here we investigated total allelic gene regulation in the Pcdh-alpha and -gamma clusters, including the C-type variable exons (C1 to C5) and the Pcdh-gammaA and -gammaB variable exons in single Purkinje cells. Using split single-cell reverse transcription-PCR analysis, almost all of the Purkinje cells at postnatal day 21 biallelically expressed all the C-type isoforms, whereas the Pcdh-alpha isoforms showed both monoallelic and combinatorial expression. The Pcdh-gammaA and -gammaB isoforms also showed differential regulation in each cell with both monoallelic and combinatorial gene regulation. These data indicated that different types of allelic gene regulation (monoallelic versus biallelic) occurred in the Pcdh-alpha and -gamma clusters, although they were spliced into the same constant exons. It has been reported that each C-type Pcdh-alpha or -gamma transcript has a different expression pattern during brain development, suggesting that the different C-type variable exons may code temporal diversity, although the Pcdh-alpha, -gammaA, and -gammaB isoforms were differential and combinatorial gene regulation within a single cell. Thus, the multiple gene regulations in the Pcdh-alpha and -gamma clusters had a potential mechanism for increasing the diversity of individual neurons in the brain.
Collapse
Affiliation(s)
- Ryosuke Kaneko
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
van Rietschoten JGI, Verzijlbergen KF, Gringhuis SI, van der Pouw Kraan TCTM, Bayley JP, Wierenga EA, Jones PA, Kooter JM, Verweij CL. Differentially methylated alleles in a distinct region of the human interleukin-1alpha promoter are associated with allele-specific expression of IL-1alpha in CD4+ T cells. Blood 2006; 108:2143-9. [PMID: 16788102 PMCID: PMC1895553 DOI: 10.1182/blood-2006-01-021147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cytokine secretion profiles of activated T cells are critical for maintaining the immunologic balance between protection and tolerance. In mice, several cytokines have been reported to exhibit monoallelic expression. Previously, we found that the human interleukin-1 alpha (IL1A) gene exhibits a stable allele-specific expression pattern in CD4+ T-cell clones. We investigated whether DNA methylation is involved in the allele-specific expression of IL-1alpha. Here, we show that differential methylation of CpGs in the proximal promoter region is associated with allele-specific expression of IL-1alpha in CD4+ T cells. The differential methylation pattern is already observed in naive T cells. In keratinocytes, which constitutively produce IL-1alpha, the proximal promoter is hypomethylated. CpGs located further upstream and in intron 4 were almost all methylated, irrespective of expression. Treatment of nonexpressing cells and of T-cell clones with 5-aza-2'deoxycytidine induced IL-1alpha expression in the nonexpressing cells and induced expression of the formerly silent allele in T-cell clones. In addition, electrophoretic mobility shift assays showed that methylation of CpGs in the proximal promoter resulted in direct inhibition of binding of nuclear factor(s). Taken together, these results suggest that allele-specific expression of IL-1alpha in CD4+ cells is achieved, at least in part, by differential methylation of the promoter.
Collapse
Affiliation(s)
- Johanna G I van Rietschoten
- Department of Urology, Biochemistry, and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Rm 7341, Los Angeles, CA 90089-9181, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Esumi S, Kakazu N, Taguchi Y, Hirayama T, Sasaki A, Hirabayashi T, Koide T, Kitsukawa T, Hamada S, Yagi T. Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons. Nat Genet 2005; 37:171-6. [PMID: 15640798 DOI: 10.1038/ng1500] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 11/29/2004] [Indexed: 11/09/2022]
Abstract
Diverse protocadherin-alpha genes (Pcdha, also called cadherin-related neuronal receptor or CNR) are expressed in the vertebrate brain. Their genomic organization involves multiple variable exons and a set of constant exons, similar to the immunoglobulin (Ig) and T-cell receptor (TCR) genes. This diversity can be used to distinguish neurons. Using polymorphisms that distinguish the C57BL/6 and MSM mouse strains, we analyzed the allelic expression of the Pcdha gene cluster in individual neurons. Single-cell analysis of Purkinje cells using multiple RT-PCR reactions showed the monoallelic and combinatorial expression of each variable exon in the Pcdha genes. This report is the first description to our knowledge of the allelic expression of a diversified receptor family in the central nervous system. The allelic and combinatorial expression of distinct variable exons of the Pcdha genes is a potential mechanism for specifying neuron identity in the brain.
Collapse
Affiliation(s)
- Shigeyuki Esumi
- KOKORO-biology group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gimelbrant AA, Ensminger AW, Qi P, Zucker J, Chess A. Monoallelic Expression and Asynchronous Replication of p120 Catenin in Mouse and Human Cells. J Biol Chem 2005; 280:1354-9. [PMID: 15522875 DOI: 10.1074/jbc.m411283200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The number of autosomal mammalian genes subject to random monoallelic expression has been limited to genes highly specific to the function of chemosensory neurons or lymphocytes, making this phenomenon difficult to address systematically. Here we demonstrate that asynchronous DNA replication can be used as a marker for the identification of novel genes with monoallelic expression and identify p120 catenin, a gene involved in cell adhesion, as belonging to this class. p120 is widely expressed; its presence in available cell lines allowed us to address quantitative aspects of monoallelic expression. We show that the epigenetic choice of active allele is clonally stable and that biallelic clones express p120 at twice the level of monoallelic clones. Unlike previous reports about genes of this type, we found that expression of p120 can be monoallelic in one cell type and strictly biallelic in another. We show that in human lymphoblasts, the silencing of one allele is incomplete. These unexpected properties are likely to be wide-spread, as we show that the Tlr4 gene shares them. Identification of monoallelic expression of a nearly ubiquitous gene indicates that this type of gene regulation is more common than previously thought. This has important implications for carcinogenesis and definition of cell identity.
Collapse
|
45
|
Zhan XL, Clemens JC, Neves G, Hattori D, Flanagan JJ, Hummel T, Vasconcelos ML, Chess A, Zipursky SL. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 2004; 43:673-86. [PMID: 15339649 DOI: 10.1016/j.neuron.2004.07.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/21/2004] [Accepted: 06/18/2004] [Indexed: 10/25/2022]
Abstract
Dscam is an immunoglobulin (Ig) superfamily member that regulates axon guidance and targeting in Drosophila. Alternative splicing potentially generates 38,016 isoforms differing in their extracellular Ig and transmembrane domains. We demonstrate that Dscam mediates the sorting of axons in the developing mushroom body (MB). This correlates with the precise spatiotemporal pattern of Dscam protein expression. We demonstrate that MB neurons express different arrays of Dscam isoforms and that single MB neurons express multiple isoforms. Two different Dscam isoforms differing in their extracellular domains introduced as transgenes into single mutant cells partially rescued the mutant phenotype. Expression of one isoform of Dscam in a cohort of MB neurons induced dominant phenotypes, while expression of a single isoform in a single cell did not. We propose that different extracellular domains of Dscam share a common function and that differences in isoforms expressed on the surface of neighboring axons influence interactions between them.
Collapse
Affiliation(s)
- Xiao-Li Zhan
- Howard Hughes Medical Institute, Department of Biological Chemistry, The David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Thyroid gland organogenesis results in an organ the shape, size, and position of which are largely conserved among adult individuals of the same species, thus suggesting that genetic factors must be involved in controlling these parameters. In humans, the organogenesis of the thyroid gland is often disturbed, leading to a variety of conditions, such as agenesis, ectopy, and hypoplasia, which are collectively called thyroid dysgenesis (TD). The molecular mechanisms leading to TD are largely unknown. Studies in murine models and in a few patients with dysgenesis revealed that mutations in regulatory genes expressed in the developing thyroid are responsible for this condition, thus showing that TD can be a genetic and inheritable disease. These studies open the way to a novel working hypothesis on the molecular and genetic basis of this frequent human condition and render the thyroid an important model in the understanding of molecular mechanisms regulating the size, shape, and position of organs.
Collapse
Affiliation(s)
- Mario De Felice
- Stazione Zoologica Anton Dohrn, University of Naples Federico II, 80121 Naples, Italy
| | | |
Collapse
|
47
|
Abstract
Circulating platelets are continually replenished by fragmentation of terminally differentiated megakaryocytes. Processes disrupted in inherited thrombocytopenias frequently shed light on normal thrombopoietic mechanisms. An especially rare condition called Paris-Trousseau syndrome (PTS) seems to occur by virtue of hemizygous loss of the FLI1 transcription factor gene. Provocative new data suggest that FLI1 shows monoallelic expression during a brief window in megakaryocyte differentiation, which thus explains the dominant inheritance pattern of PTS despite the presence of one normal FLI1 allele.
Collapse
Affiliation(s)
- Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
48
|
Raslova H, Komura E, Le Couédic JP, Larbret F, Debili N, Feunteun J, Danos O, Albagli O, Vainchenker W, Favier R. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004; 114:77-84. [PMID: 15232614 PMCID: PMC437972 DOI: 10.1172/jci21197] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 04/20/2004] [Indexed: 11/17/2022] Open
Abstract
Paris-Trousseau syndrome (PTS; also known as Jacobsen syndrome) is characterized by several congenital anomalies including a dysmegakaryopoiesis with two morphologically distinct populations of megakaryocytes (MKs). PTS patients harbor deletions on the long arm of chromosome 11, including the FLI1 gene, which encodes a transcription factor essential for megakaryopoiesis. We show here that lentivirus-mediated overexpression of FLI1 in patient CD34(+) cells restores the megakaryopoiesis in vitro, indicating that FLI1 hemizygous deletion contributes to the PTS hematopoietic defects. FISH analysis on pre-mRNA and single-cell RT-PCR revealed that FLI1 expression is mainly monoallelic in CD41(+)CD42(-) progenitors, while it is predominantly biallelic in the other stages of megakaryopoiesis. In PTS cells, the hemizygous deletion of FLI1 generates a subpopulation of CD41(+)CD42(-) cells completely lacking FLI1 transcription. We propose that the absence of FLI1 expression in these CD41(+)CD42(-) cells might prevent their differentiation, which could explain the segregation of the PTS MKs into two subpopulations: one normal and one composed of small immature MKs undergoing a massive lysis, presumably originating from either FLI1(+) or FLI1(-) CD41(+)CD42(-) cells, respectively. Thus, we point to the role of transient monoallelic expression of a gene essential for differentiation in the genesis of human haploinsufficiency-associated disease and suggest that such a mechanism may be involved in the pathogenesis of other congenital or acquired genetic diseases.
Collapse
Affiliation(s)
- Hana Raslova
- Institut National de la Santé et de la Recherche Médicale U 362, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Capparelli R, Costabile A, Viscardi M, Iannelli D. Monoallelic expression of mouse Cd4 gene. Mamm Genome 2004; 15:579-84. [PMID: 15457337 DOI: 10.1007/s00335-004-2351-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/30/2004] [Indexed: 12/01/2022]
Abstract
A 7-bp deletion in the Cd4 gene, present in the strain MOLF/Ei of Mus musculus molossinus and absent in laboratory mouse strains ( Mus musculus musculus), provided the means to distinguish the parental origin of the Cd4 alleles expressed in single cells of F1 (AKR x MOLF/Ei) and F1 (Balb/C x MOLF/Ei) hybrids. Single-cell RT-PCR showed that the individual CD4+ lymphocyte expresses either the maternal or the paternal Cd4 allele, never both. In situ hybridization proved that Cd4 alleles replicate asynchronously, as expected in the case of genes expressed monoallelically.
Collapse
Affiliation(s)
- Rosanna Capparelli
- School of Biotechnological Sciences, University of Naples Federico II, Italy
| | | | | | | |
Collapse
|
50
|
Abstract
Members of the Ly49 gene family of natural killer (NK) cell receptors in mice are expressed in seemingly stochastic combinations such that each NK cell expresses a handful of family members. A transcriptional switch appears to establish this interesting pattern of expression.
Collapse
Affiliation(s)
- Alexander W Ensminger
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|