1
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Dong YN, Ngaba LV, An J, Adeshina MW, Warren N, Wong J, Lynch DR. A peptide derived from TID1S rescues frataxin deficiency and mitochondrial defects in FRDA cellular models. Front Pharmacol 2024; 15:1352311. [PMID: 38495102 PMCID: PMC10940384 DOI: 10.3389/fphar.2024.1352311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Friedreich's ataxia (FRDA), the most common recessive inherited ataxia, results from homozygous guanine-adenine-adenine (GAA) repeat expansions in intron 1 of the FXN gene, which leads to the deficiency of frataxin, a mitochondrial protein essential for iron-sulphur cluster synthesis. The study of frataxin protein regulation might yield new approaches for FRDA treatment. Here, we report tumorous imaginal disc 1 (TID1), a mitochondrial J-protein cochaperone, as a binding partner of frataxin that negatively controls frataxin protein levels. TID1 interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Acute and subacute depletion of frataxin using RNA interference markedly increases TID1 protein levels in multiple cell types. In addition, TID1 overexpression significantly increases frataxin precursor but decreases intermediate and mature frataxin levels in HEK293 cells. In primary cultured human skin fibroblasts, overexpression of TID1S results in decreased levels of mature frataxin and increased fragmentation of mitochondria. This effect is mediated by the last 6 amino acids of TID1S as a peptide made from this sequence rescues frataxin deficiency and mitochondrial defects in FRDA patient-derived cells. Our findings show that TID1 negatively modulates frataxin levels, and thereby suggests a novel therapeutic target for treating FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lucie Vanessa Ngaba
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jacob An
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Miniat W. Adeshina
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nathan Warren
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Johnathan Wong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - David R. Lynch
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Dai L, Wilson LG, Nakagawa M, Qin Z. Coinfections with additional oncoviruses in HPV+ individuals: Status, function and potential clinical implications. J Med Virol 2024; 96:e29363. [PMID: 38178584 PMCID: PMC10783544 DOI: 10.1002/jmv.29363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Oncovirus infections account for an estimated 12%-20% of human cancers worldwide. High-risk human papillomavirus (HPV) infection is the etiological agent of some malignancies such as cervical, oropharyngeal, anal, penile, vaginal, and vulvar cancers. However, HPV infection is not the only cause of these cancers or may not be sufficient to initiate cancer development. Actually, certain other risk factors including additional oncoviruses coinfections have been reported to increase the risk of patients exposed to HPV for developing different HPV-related cancers. In the current review, we summarize recent findings about coinfections with different oncoviruses in HPV+ patients from both clinical and mechanistic studies. We believe such efforts may lead to an interesting direction for improving our understanding and developing new treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Lillie G. Wilson
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Mayumi Nakagawa
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Chand K, Barman MK, Ghosh P, Mitra D. DNAJB8 facilitates autophagic-lysosomal degradation of viral Vif protein and restricts HIV-1 virion infectivity by rescuing APOBEC3G expression in host cells. FASEB J 2023; 37:e22793. [PMID: 36723955 DOI: 10.1096/fj.202201738r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
HSP40/DNAJ family of proteins is the most diverse chaperone family, comprising about 49 isoforms in humans. Several reports have demonstrated the functional role of a few of these isoforms in the pathogenesis of various viruses, including HIV-1. Our earlier study has shown that several isoforms of HSP40 get significantly modulated at the mRNA level during HIV-1 infection in T cells. To explore the biological role of these significantly modulated isoforms, we analyzed their effect on HIV-1 gene expression and virus production using knockdown and overexpression studies. Among these isoforms, DNAJA3, DNAJB1, DNAJB7, DNAJC4, DNAJC5B, DNAJC5G, DNAJC6, DNAJC22, and DNAJC30 seem to positively regulate virus replication, whereas DNAJB3, DNAJB6, DNAJB8, and DNAJC5 negatively regulate virus replication. Further investigation on the infectivity of the progeny virion demonstrated that only DNAJB8 negatively regulates the progeny virion infectivity. It was further identified that DNAJB8 protein is involved in the downregulation of Vif protein, required for the infectivity of HIV-1 virions. DNAJB8 seems to direct Vif protein for autophagic-lysosomal degradation, leading to rescue of the cellular restriction factor APOBEC3G from Vif-mediated proteasomal degradation, resulting in enhanced packaging of APOBEC3G in budding virions and release of less infective progeny virion particles. Finally, our results also indicate that during the early stage of HIV-1 infection, enhanced expression of DNAJB8 promotes the production of less infective progeny virions, but at the later stage or at the peak of infection, reduced expression of DNJAB8 protein allows the HIV-1 to replicate and produce more infective progeny virion particles.
Collapse
Affiliation(s)
- Kailash Chand
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | | | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Debashis Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
5
|
DNAJA3 Interacts with PEDV S1 Protein and Inhibits Virus Replication by Affecting Virus Adsorption to Host Cells. Viruses 2022; 14:v14112413. [PMID: 36366511 PMCID: PMC9696540 DOI: 10.3390/v14112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells.
Collapse
|
6
|
Hsp70 Inhibits the Replication of Fowl Adenovirus Serotype 4 by Suppressing Viral Hexon with the Assistance of DnaJC7. J Virol 2022; 96:e0080722. [PMID: 35852354 PMCID: PMC9364783 DOI: 10.1128/jvi.00807-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) infection results in serious hepatitis-hydropericardium syndrome (HHS) in broilers, which has caused great economic losses to the poultry industry; however, the specific host responses to FAdV-4 remain unknown. In this study, we identified 141 high-confidence protein-protein interactions (PPIs) between the main viral proteins (Hexon, Fiber 1, Fiber 2, and Penton bases) and host proteins via a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. We found that heat shock protein 70 (Hsp70), the protein with the highest score, and its cofactor DnaJ heat shock protein 40 family member C7 (DnaJC7) could negatively regulate the replication of FAdV-4. Furthermore, the nucleotide binding domain (NBD) of Hsp70 and the J domain of DnaJC7 were necessary for inhibiting FAdV-4 replication. We verified that DnaJC7 as a bridge could bind to Hsp70 and Hexon, assisting the indirect interaction between Hsp70 and Hexon. In addition, we found that FAdV-4 infection strongly induced the expression of autophagy proteins and cellular Hsp70 in a dose-dependent manner. Blockage of Hexon by Hsp70 overexpression was significantly reduced when the autophagy pathway was blocked by the specific inhibitor chloroquine (CQ). Our results showed that Hsp70 was co-opted by DnaJC7 to interact with viral Hexon and inhibited Hexon through the autophagy pathway, leading to a considerable restriction of FAdV-4 replication. IMPORTANCE FAdV-4, as the main cause of HHS, has quickly spread all over the world in recent years, seriously threatening the poultry industry. The aim of this study was to identify the important host proteins that have the potential to regulate the life cycle of FAdV-4. We found that Hsp70 and DnaJC7 played crucial roles in regulating the amount of viral Hexon and extracellular viral titers. Moreover, we demonstrated that Hsp70 interacted with viral Hexon with the assistance of DnaJC7, followed by suppressing Hexon protein through the autophagy pathway. These results provide new insight into the role of the molecular chaperone complex Hsp70-DnaJC7 in FAdV-4 infection and suggest a novel strategy for anti-FAdV-4 drug development by targeting the specific interactions among Hsp70, DnaJC7 and Hexon.
Collapse
|
7
|
Banerjee S, Chaturvedi R, Singh A, Kushwaha HR. Putting human Tid-1 in context: an insight into its role in the cell and in different disease states. Cell Commun Signal 2022; 20:109. [PMID: 35854300 PMCID: PMC9297570 DOI: 10.1186/s12964-022-00912-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumorous imaginal disc 1 (hTid-1) or DnaJ homolog subfamily A member 3 (DNAJA3), is a part of the heat shock protein (Hsp) 40 family and is predominantly found to reside in the mitochondria. hTid-1 has two mRNA splicing variants, hTid-1S and hTid-1L of 40 and 43 kDa respectively in the cytosol which are later processed upon import into the mitochondrial matrix. hTid-1 protein is a part of the DnaJ family of proteins which are co-chaperones and specificity factors for DnaK proteins of the Hsp70 family, and bind to Hsp70, thereby activating its ATPase activity. hTid-1 has been found to be critical for a lot of important cellular processes such as proliferation, differentiation, growth, survival, senescence, apoptosis, and movement and plays key roles in the embryo and skeletal muscle development.
Main body hTid-1 participates in several protein–protein interactions in the cell, which mediate different processes such as proteasomal degradation and autophagy of the interacting protein partners. hTid-1 also functions as a co-chaperone and participates in interactions with several different viral oncoproteins. hTid-1 also plays a critical role in different human diseases such as different cancers, cardiomyopathies, and neurodegenerative disorders. Conclusion This review article is the first of its kind presenting consolidated information on the research findings of hTid-1 to date. This review suggests that the current knowledge of the role of hTid-1 in disorders like cancers, cardiomyopathies, and neurodegenerative diseases can be correlated with the findings of its protein–protein interactions that can provide a deep insight into the pathways by which hTid-1 affects disease pathogenesis and it can be stated that hTid-1 may serve as an important therapeutic target for these disorders. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00912-5.
Collapse
Affiliation(s)
- Sagarika Banerjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India. .,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
10
|
Loss of Tid1/DNAJA3 Co-Chaperone Promotes Progression and Recurrence of Hepatocellular Carcinoma after Surgical Resection: A Novel Model to Stratify Risk of Recurrence. Cancers (Basel) 2021; 13:cancers13010138. [PMID: 33406664 PMCID: PMC7795123 DOI: 10.3390/cancers13010138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tid1 acts as a tumor suppressor in various cancer types, however, its role in hepatocellular carcinoma (HCC) remains unclear. Here, we observed a low protein level of Tid1 in poorly differentiated HCC cell lines. The expression of Tid1 affected the malignancy in human HCC cell lines; meanwhile the protein level of Nrf2 was negatively regulated by Tid1. In multivariate analysis, using immunohistochemical (IHC) assay in 210 HCC cases, we found the tumor size > 5 cm, multiple tumors, presence of vascular invasion, low Tid1 expression in the non-tumor part, and high Nrf2 expression in the non-tumor part, were independently associated with worse recurrence-free survival (RFS). A scoring system by integrating the five clinical and pathological factors predicts the RFS among HCC patients after surgical resection. In summary, Tid1 plays a prognostic role for surgically resected HCC. Abstract Tid1, a mitochondrial co-chaperone protein, acts as a tumor suppressor in various cancer types. However, the role of Tid1 in hepatocellular carcinoma (HCC) remains unclear. First, we found that a low endogenous Tid1 protein level was observed in poorly differentiated HCC cell lines. Further, upregulation/downregulation of Tid1 abrogated/promoted the malignancy of human HCC cell lines, respectively. Interestingly, Tid1 negatively modulated the protein level of Nrf2. Tissue assays from 210 surgically resected HCC patients were examined by immunohistochemistry (IHC) analyses. The protein levels of Tid1 in the normal and tumor part of liver tissues were correlated with the clinical outcome of the 210 HCC cases. In multivariate analysis, we discovered that tumor size > 5 cm, multiple tumors, presence of vascular invasion, low Tid1 expression in the non-tumor part, and high Nrf2 expression in the non-tumor part were significant factors associated with worse recurrence-free survival (RFS). A scoring system by integrating the five clinical and pathological factors predicts the RFS among HCC patients after surgical resection. Together, Tid1, serving as a tumor suppressor, has a prognostic role for surgically resected HCC to predict RFS.
Collapse
|
11
|
Evaluation of the Role of Human DNAJAs in the Response to Cytotoxic Chemotherapeutic Agents in a Yeast Model System. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9097638. [PMID: 32149145 PMCID: PMC7042521 DOI: 10.1155/2020/9097638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
Heat-shock proteins (HSPs) play a crucial role in maintaining protein stability for cell survival during stress-induced insults. Overexpression of HSPs in cancer cells results in antiapoptotic activity contributing to cancer cell survival and restricting the efficacy of cytotoxic chemotherapy, which continues to play an important role in the treatment of many cancers, including triple-negative breast cancer (TNBC). First-line therapy for TNBC includes anthracycline antibiotics, which are associated with serious dose-dependent side effects and the development of resistance. We previously identified YDJ1, which encodes a heat-shock protein 40 (HSP40), as an important factor in the cellular response to anthracyclines in yeast, with mutants displaying over 100-fold increased sensitivity to doxorubicin. In humans, the DNAJA HSP40s are homologues of YDJ1. To determine the role of DNAJAs in the cellular response to cytotoxic drugs, we investigated their ability to rescue ydj1Δ mutants from exposure to chemotherapeutic agents. Our results indicate that DNAJA1 and DNAJA2 provide effective protection, while DNAJA3 and DNAJA4 did not. The level of complementation was also dependent on the agent used, with DNAJA1 and DNAJA2 rescuing the ydj1Δ strain from doxorubicin, cisplatin, and heat shock. DNAJA3 and DNAJA4 did not rescue the ydj1Δ strain and interfered with the cellular response to stress when expressed in wild type background. DNAJA1 and DNAJA2 protect the cell from proteotoxic damage caused by reactive oxygen species (ROS) and are not required for repair of DNA double-strand breaks. These data indicate that the DNAJAs play a role in the protection of cells from ROS-induced cytotoxic stress.
Collapse
|
12
|
Aviner R, Frydman J. Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034090. [PMID: 30858229 DOI: 10.1101/cshperspect.a034090] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are obligate intracellular parasites that rely on their hosts for protein synthesis, genome replication, and viral particle production. As such, they have evolved mechanisms to divert host resources, including molecular chaperones, facilitate folding and assembly of viral proteins, stabilize complex structures under constant mutational pressure, and modulate signaling pathways to dampen antiviral responses and prevent premature host death. Biogenesis of viral proteins often presents unique challenges to the proteostasis network, as it requires the rapid and orchestrated production of high levels of a limited number of multifunctional, multidomain, and aggregation-prone proteins. To overcome such challenges, viruses interact with the folding machinery not only as clients but also as regulators of chaperone expression, function, and subcellular localization. In this review, we summarize the main types of interactions between viral proteins and chaperones during infection, examine evolutionary aspects of this relationship, and discuss the potential of using chaperone inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Biology, Stanford University, Stanford, California 94305
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305.,Department of Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
13
|
Transcriptional activation of long terminal repeat of bovine leukemia virus by bovine heat shock factor 1. Virus Res 2019; 269:197641. [PMID: 31228509 DOI: 10.1016/j.virusres.2019.197641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL). The BLV genome encodes Tax protein, a transcriptional activator of viral gene expression that binds to the BLV long terminal repeat (LTR). Heat shock factor 1 (HSF1) is a known regulator of the heat shock response proteins, including heat shock proteins. In the present study, the BLV LTR was investigated for interaction of heat shock element (HSE) with HSF1 and the viral Tax protein. It could be confirmed that a functional HSE is well conserved in different BLV strains. The LTR transcriptional activity, as measured by luciferase reporter assay, was upregulated by bovine HSF1 - without Tax expression - in feline CC81 cells. The HSF1 activated LTR transcription by binding to the HSE. LTR-activation was lost upon HSE removal from the LTR and upon expression of a mutant HSF1 lacking the DNA-binding domain. We conclude that BLV LTR is activated to a basal level by host transcriptional factor HSF1, but without Tax protein involvement.
Collapse
|
14
|
Feng CC, Liao PH, Tsai HI, Cheng SM, Yang LY, PadmaViswanadha V, Pan LF, Chen RJ, Lo JF, Huang CY. Tumorous imaginal disc 1 (TID1) inhibits isoproterenol-induced cardiac hypertrophy and apoptosis by regulating c-terminus of hsc70-interacting protein (CHIP) mediated degradation of Gαs. Int J Med Sci 2018; 15:1537-1546. [PMID: 30443176 PMCID: PMC6216068 DOI: 10.7150/ijms.24296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of non-ischemic cardiomyopathy. It is characterized by ventricular chamber dilation, and myocyte hypertrophy. Human tumorous imaginal disc 1 (Tid1), a chaperone protein and response to regulate number of signaling molecules in the mitochondria or cytosol. Tid1 also plays a major role in preventing DCM; however, the role of Tid1 in isoproterenol (ISO)-induced cardiac apoptosis and hypertrophy remains unclear. H9c2 cells were pretreated Tid1 before ISO-induced hypertrophy and apoptosis and then evaluated by IHC, TUNEL assay, IFC, Co-IP, and Western blot. From the IHC experiment, we found that Tid1 proteins were increased in tissues from different stages of human myocardial infarction. Using H9c2 cardiomyoblast cells we found that Tid1 was decreased by ISO treatment. However, over-expression of Tid1S suppressed NFATc3, BNP and calcineurin protein expression and inhibited NFATc3 nuclear translocation in ISO induced cardiomyoblast cells. On the other hand, Tid1S over-expression activated survival proteins p-AKTser473 and decreased caspase-3 and cytochrome c expression. We also found that overexpression of Tid1 enhanced CHIP expression, and induced CHIP to ubiquitinate Gαs, resulting in increased Gαs degradation. Our study showed that Gαs is a novel substrate of CHIP, and we also found that the Tid1-CHIP complex plays an essential role in inhibiting ISO induced cardiomyoblast hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Chih-Chung Feng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Po-Hsiang Liao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Medical Research Center For Exosomes and Mitochondria Related Diseases, China Medical University Hospital, Taichung, Taiwan
| | - Hsiang-I Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shiu-Min Cheng
- Department of Psychology, Asia University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | | | - Lung-Fa Pan
- Cardiology Department of Taichung Armed Forced General Hospital, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences of Central Taiwan University of Science and Technology
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Medical Research Center For Exosomes and Mitochondria Related Diseases, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biological Science, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Chen CY, Jan CI, Pi WC, Wang WL, Yang PC, Wang TH, Karni R, Wang TCV. Heterogeneous nuclear ribonucleoproteins A1 and A2 modulate expression of Tid1 isoforms and EGFR signaling in non-small cell lung cancer. Oncotarget 2017; 7:16760-72. [PMID: 26919236 PMCID: PMC4941349 DOI: 10.18632/oncotarget.7606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/10/2016] [Indexed: 11/25/2022] Open
Abstract
The Tid1 protein is a DnaJ co-chaperone that has two alternative splicing isoforms: Tid1 long form (Tid1-L) and Tid1 short form (Tid1-S). Recent studies have shown that Tid1-L functions as a tumor suppressor by decreasing EGFR signaling in various cancers, including head and neck cancer and non-small cell lung cancer (NSCLC). However, the molecular mechanism responsible for regulating the alternative splicing of Tid1 is not yet known. Two splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and A2, participate in alternative splicing and are known to be overexpressed in lung cancers. In this work, we examined if hnRNP A1 and A2 could regulate the alternative splicing of Tid1 to modulate tumorigenesis in NSCLC. We report that RNAi-mediated depletion of both hnRNP A1/A2 (but not single depletion of either) increased Tid1-L expression, inhibited cell proliferation and attenuated EGFR signaling. Analyses of the expression levels of hnRNP A1, hnRNP A2, EGFR and Tid1-L in NSCLC tissues revealed that hnRNP A1 and A2 are positively correlated with EGFR, but negatively correlated with Tid1-L. NSCLC patients with high-level expression of hnRNP A1, hnRNP A2 and EGFR combined with low-level expression of Tid1-L were associated with poor overall survival. Taken together, our results suggest that hnRNP A1 or A2 are both capable of facilitating the alternative splicing of exon 11 in the Tid1 pre-mRNA, thereby suppressing the expression of Tid1-L and allowing EGFR-related signaling to facilitate NSCLC tumorigenesis.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Tao-Yuan 333, Taiwan
| | - Chia-Ing Jan
- Department of Pathology, China Medical University and Hospital, Taichung, Taiwan 404, Taiwan.,Department of Pathology, China Medical University and Beigang Hospital, Yunlin, Taiwan 651, Taiwan
| | - Wen-Chieh Pi
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| | - Wen-Lung Wang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 833, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Tao-Yuan 333, Taiwan.,Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Rotem Karni
- The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Ein Karem, 91120, Jerusalem, Israel
| | - Tzu-Chien V Wang
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| |
Collapse
|
16
|
Zhang LL, Wei JY, Wang L, Huang SL, Chen JL. Human T-cell lymphotropic virus type 1 and its oncogenesis. Acta Pharmacol Sin 2017; 38:1093-1103. [PMID: 28392570 PMCID: PMC5547553 DOI: 10.1038/aps.2017.17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL), a rapidly progressing clonal malignancy of CD4+ T lymphocytes. Exploring the host-HTLV-1 interactions and the molecular mechanisms underlying HTLV-1-mediated tumorigenesis is critical for developing efficient therapies against the viral infection and associated leukemia/lymphoma. It has been demonstrated to date that several HTLV-1 proteins play key roles in the cellular transformation and immortalization of infected T lymphocytes. Of note, the HTLV-1 oncoprotein Tax inhibits the innate IFN response through interaction with MAVS, STING and RIP1, causing the suppression of TBK1-mediated phosphorylation of IRF3/IRF7. The HTLV-1 protein HBZ disrupts genomic integrity and inhibits apoptosis and autophagy of the target cells. Furthermore, it is revealed that HBZ enhances the proliferation of ATL cells and facilitates evasion of the infected cells from immunosurveillance. These studies provide insights into the molecular mechanisms by which HTLV-1 mediates the formation of cancer as well as useful strategies for the development of new therapeutic interventions against ATL. In this article, we review the recent advances in the understanding of the pathogenesis, the underlying mechanisms, clinical diagnosis and treatment of the disease caused by HTLV-1 infection. In addition, we discuss the future direction for targeting HTLV-1-associated cancers and strategies against HTLV-1.
Collapse
Affiliation(s)
- Lan-lan Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing-yun Wei
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-le Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Mazzei L, Cuello-Carrión FD, Docherty N, Manucha W. Heat shock protein 70/nitric oxide effect on stretched tubular epithelial cells linked to WT-1 cytoprotection during neonatal obstructive nephropathy. Int Urol Nephrol 2017; 49:1875-1892. [PMID: 28711961 DOI: 10.1007/s11255-017-1658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stress is a key pathogenic driver of apoptosis in the tubular epithelium in obstructive nephropathy. Heat shock protein 70 (Hsp70) and Wilms' tumor (WT-1) have been proposed to represent linked downstream effectors of the cytoprotective properties of NO. In the present study, we sought to evaluate whether the cytoprotective effects of L-arginine in neonatal obstructive nephropathy may be associated with NO-dependent increases in WT-1 and Hsp70 expression. METHODS Neonatal Wistar-Kyoto rats were submitted to complete unilateral ureteral obstruction (UUO) and treated thereafter with vehicle, L-NAME or L-arginine by daily gavage for 14 days to block or augment NO levels, respectively. Normal rat kidney epithelial cells by NRK-52E were exposed to mechanical stress in vitro in the presence or absence of L-NAME, L-arginine, sodium nitroprusside (SNP), L-arginine + SNP or L-arginine/L-NAME. Induction of apoptosis and the mRNA expression of WT-1 and Hsp70 genes were assessed. RESULTS WT-1 and Hsp70 genes expression decreased in the presence of L-NAME and following UUO coincident with increased tubular apoptosis. L-arginine treatment increased NO levels, reduced apoptosis and restored expression levels of WT-1 and Hsp70 to control levels. L-arginine treatment in vitro reduced basal apoptotic rates and prevented apoptosis in response to mechanical strain, an effect enhanced by SNP co-incubation. L-NAME increased apoptosis and prevented the anti-apoptotic action of L-arginine. CONCLUSIONS L-arginine treatment in experimental neonatal UUO reduces apoptosis coincident with restoration of WT-1 and Hsp70 expression levels and directly inhibits mechanical strain-induced apoptosis in an NO-dependent manner in vitro. This potentially implicates an NO-Hsp70-WT-1 axis in the cytoprotective effects of L-arginine.
Collapse
Affiliation(s)
- Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| | - Neil Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina. .,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina. .,Pharmacology Area, Pathology Department, Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina.
| |
Collapse
|
18
|
Heat Shock Enhances the Expression of the Human T Cell Leukemia Virus Type-I (HTLV-I) Trans-Activator (Tax) Antigen in Human HTLV-I Infected Primary and Cultured T Cells. Viruses 2016; 8:v8070191. [PMID: 27409630 PMCID: PMC4974526 DOI: 10.3390/v8070191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022] Open
Abstract
The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo.
Collapse
|
19
|
Andreini C, Banci L, Rosato A. Exploiting Bacterial Operons To Illuminate Human Iron–Sulfur Proteins. J Proteome Res 2016; 15:1308-22. [DOI: 10.1021/acs.jproteome.6b00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones 2015; 20:893-906. [PMID: 26228633 PMCID: PMC4595437 DOI: 10.1007/s12192-015-0622-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.
Collapse
Affiliation(s)
- Luciana Mazzei
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.
| | - Neil G Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| |
Collapse
|
21
|
Niu G, Zhang H, Liu D, Chen L, Belani C, Wang HG, Cheng H. Tid1, the Mammalian Homologue of Drosophila Tumor Suppressor Tid56, Mediates Macroautophagy by Interacting with Beclin1-containing Autophagy Protein Complex. J Biol Chem 2015; 290:18102-18110. [PMID: 26055714 DOI: 10.1074/jbc.m115.665950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy.
Collapse
Affiliation(s)
- Ge Niu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Huan Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dan Liu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Li Chen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Chandra Belani
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
22
|
Essential role of TID1 in maintaining mitochondrial membrane potential homogeneity and mitochondrial DNA integrity. Mol Cell Biol 2014; 34:1427-37. [PMID: 24492964 DOI: 10.1128/mcb.01021-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tumorous imaginal disc 1 (TID1) protein localizes mainly to the mitochondrial compartment, wherein its function remains largely unknown. Here we report that TID1 regulates the steady-state homogeneity of the mitochondrial membrane potential (Δψ) and maintains the integrity of mitochondrial DNA (mtDNA). Silencing of TID1 with RNA interference leads to changes in the distribution of Δψ along the mitochondrial network, characterized by an increase in Δψ in focal regions. This effect can be rescued by ectopic expression of a TID1 construct with an intact J domain. Chronic treatment with a low dose of oligomycin, an inhibitor of F1Fo ATP synthase, decreases the cellular ATP content and phenocopies TID1 loss of function, indicating a connection between the disruption of mitochondrial bioenergetics and hyperpolarization. Prolonged silencing of TID1 or low-dose oligomycin treatment leads to the loss of mtDNA and the consequent inhibition of oxygen consumption. Biochemical and colocalization data indicate that complex I aggregation underlies the focal accumulation of Δψ in TID1-silenced cells. Given that TID1 is proposed to function as a cochaperone, these data show that TID1 prevents complex I aggregation and support the existence of a TID1-mediated stress response to ATP synthase inhibition.
Collapse
|
23
|
Forlani G, Accolla RS, Tosi G. Investigating human T cell lymphotropic retrovirus (HTLV) Tax function with molecular and immunophenotypic techniques. Methods Mol Biol 2014; 1087:299-313. [PMID: 24158832 DOI: 10.1007/978-1-62703-670-2_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human T cell Lymphotropic Viruses 1 and 2 (HTLV-1 and HTLV-2) are the first described human retroviruses. HTLV-1 is the causative agent of an aggressive malignancy of CD4+ T lymphocytes named adult T-cell leukemia/lymphoma (ATLL) and of a chronic neurological disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 shares many similarities with HTLV-1, but displays lower or absent association to diseases. Among the proteins encoded by HTLVs, the viral transactivator Tax exerts an essential role in viral transcription as well as in cell transformation. Different experimental methods to study Tax activity on HTLV-LTR promoter and Tax subcellular distribution are described. Emphasis is given to the functional and physical interaction between Tax-1/Tax-2 and cellular cofactors which may have an impact on the infectivity process of the HTLVs and on the capacity of cell transformation.
Collapse
Affiliation(s)
- Greta Forlani
- Department of Experimental Medicine, School of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | |
Collapse
|
24
|
Ma Q, Tan J, Cui X, Luo D, Yu M, Liang C, Qiao W. Residues R(199)H(200) of prototype foamy virus transactivator Bel1 contribute to its binding with LTR and IP promoters but not its nuclear localization. Virology 2013; 449:215-23. [PMID: 24418555 DOI: 10.1016/j.virol.2013.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
Prototype foamy virus encodes a transactivator called Bel1 that enhances viral gene transcription and is essential for PFV replication. Nuclear localization of Bel1 has been reported to rely on two proximal basic motifs R(199)H(200) and R(221)R(222)R(223) that likely function together as a bipartite nuclear localization signal. In this study, we report that mutating R(221)R(222)R(223), but not R(199)H(200), relocates Bel1 from the nucleus to the cytoplasm, suggesting an essential role for R(221)R(222)R(223) in the nuclear localization of Bel1. Although not affecting the nuclear localization of Bel1, mutating R(199)H(200) disables Bel1 from transactivating PFV promoters. Results of EMSA reveal that the R(199)H(200) residues are vital for the binding of Bel1 to viral promoter DNA. Moreover, mutating R(199)H(200) in Bel1 impairs PFV replication to a much greater extent than mutating R(221)R(222)R(223). Collectively, our findings suggest that R(199)H(200) directly participate in Bel1 binding to viral promoter DNA and are indispensible for Bel1 transactivation activity.
Collapse
Affiliation(s)
- Qinglin Ma
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoxu Cui
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China; Centre Laboratory, TianJin 4th Centre Hospital, Tianjin 300140, China
| | - Di Luo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Yu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2; Departments of Medicine McGill University, Montreal, QC, Canada; Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Abstract
OBJECTIVES DNAJ/HSP40 is an evolutionarily conserved family of proteins bearing various functions. Historically, it has been emphasized that HSP40/DNAJ family proteins play a positive role in infection of various viruses. We identified DNAJ/HSP40B6 as a potential negative regulator of HIV-1 replication in our genetic screens. In this study, we investigated the functional interactions between HIV-1 and HSP40 family members. DESIGN We took genetic and comparative virology approaches to expand the primary observation. METHODS Multiple HSP40/DNAJ proteins were tested for their ability to inhibit replication of adenovirus, herpes simplex virus type 1, HIV-1, and vaccinia virus. The mechanism of inhibition was investigated by using HSP40/DNAJ mutants and measuring the efficiencies of each viral replication steps. RESULTS HSP40A1, B1, B6, and C5, but not C3, were found to be able to limit HIV-1 production. This effect was specific to HIV-1 for such effects were not detected in adenovirus, herpes simplex virus type 1, and vaccinia virus. Genetic analyses suggested that the conserved DNAJ domain was responsible for the inhibition of HIV-1 production through which HSP40 regulates HSP70 ATPase activity. Interestingly, HSP40s lowered the levels of steady-state viral messenger RNA. This was not attributed to the inhibition of Tat/long terminal repeat-driven transcription but the downregulation of Rev expression. CONCLUSIONS This is the first report providing evidence that HSP70-HSP40 complex confers an innate resistance specific to HIV-1. For their interferon-inducible nature, HSP40 family members should account for the anti-HIV-1 function of interferon.
Collapse
|
26
|
Wt-1 Expression Linked to Nitric Oxide Availability during Neonatal Obstructive Nephropathy. Adv Urol 2013; 2013:401750. [PMID: 24288526 PMCID: PMC3833023 DOI: 10.1155/2013/401750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022] Open
Abstract
The wt-1 gene encodes a zinc finger DNA-binding protein that acts as a transcriptional activator or repressor depending on the cellular or chromosomal context. The wt-1 regulates the expression of a large number of genes that have a critical role in kidney development. Congenital obstructive nephropathy disrupts normal renal development and causes chronic progressive interstitial fibrosis, which contributes to renal growth arrest, ultimately leading to chronic renal failure. Wt-1 is downregulated during congenital obstructive nephropathy, leading to apoptosis. Of great interest, nitric oxide bioavailability associated with heat shock protein 70 (Hsp70) interaction may modulate wt-1 mRNA expression, preventing obstruction-induced cell death during neonatal unilateral ureteral obstruction. Moreover, recent genetic researches have allowed characterization of many of the complex interactions among the individual components cited, but the realization of new biochemical, molecular, and functional experiments as proposed in our and other research labs allows us to establish a deeper level of commitment among proteins involved and the potential pathogenic consequences of their imbalance.
Collapse
|
27
|
Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol 2013; 4:231. [PMID: 23966989 PMCID: PMC3744011 DOI: 10.3389/fmicb.2013.00231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro.
Collapse
Affiliation(s)
- Margret Shirinian
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | |
Collapse
|
28
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
29
|
Bertazzoni U, Turci M, Avesani F, Di Gennaro G, Bidoia C, Romanelli MG. Intracellular localization and cellular factors interaction of HTLV-1 and HTLV-2 Tax proteins: similarities and functional differences. Viruses 2011; 3:541-560. [PMID: 21994745 PMCID: PMC3185761 DOI: 10.3390/v3050541] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 04/26/2011] [Indexed: 12/24/2022] Open
Abstract
Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity.
Collapse
Affiliation(s)
- Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
- Authors to whom correspondence should be addressed; E-Mails: (U.B.); (M.G.R); Tel.: +39-0458027182; Fax: +390458027180
| | - Marco Turci
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Francesca Avesani
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Gianfranco Di Gennaro
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Carlo Bidoia
- Centre for Research in Infectious Diseases, University College Dublin, Belfield, Dublin 4, Ireland; E-Mail: (C.B.)
| | - Maria Grazia Romanelli
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
- Authors to whom correspondence should be addressed; E-Mails: (U.B.); (M.G.R); Tel.: +39-0458027182; Fax: +390458027180
| |
Collapse
|
30
|
Lee E, Kim K, Park T. Genome-wide search for genetic modulators in gene regulatory pathways: weighted window-based peak identification algorithm. Genomics 2011; 97:386-93. [PMID: 21419843 DOI: 10.1016/j.ygeno.2011.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/01/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
Genome-wide gene expression and genotype data have been integratively analyzed in expression quantitative trait loci (eQTL) studies to elucidate the genetics of gene transcription. Most eQTL analyses have focused on identifying polymorphic genetic variants that influence the expression levels of individual genes, and such analyses may have limitations in explaining gene regulatory pathways that are likely to involve multiple genes and their genetic and/or non-genetic modulators. We have developed a novel two-step method for identifying potential genetic modulators of transcription processes for multiple genes in a biological pathway. We proposed a new weighted window-based peak identification algorithm to improve the detection of genetic modulators for individual genes and employed a Poisson-based test to search for master genetic modulators of multiple genes. Here, we have illustrated this two-step approach by analyzing the gene expression data in the Centre d'Etude du Polymorphisme Humain (CEPH) lymphoblast cells and single nucleotide polymorphism chip data.
Collapse
Affiliation(s)
- Eunjee Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Republic of Korea.
| | | | | |
Collapse
|
31
|
Dhennin-Duthille I, Nyga R, Yahiaoui S, Gouilleux-Gruart V, Régnier A, Lassoued K, Gouilleux F. The tumor suppressor hTid1 inhibits STAT5b activity via functional interaction. J Biol Chem 2010; 286:5034-42. [PMID: 21106534 DOI: 10.1074/jbc.m110.155903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT5a and -5b (signal transducers and activators of transcription 5a and 5b) proteins play an essential role in hematopoietic cell proliferation and survival and are frequently constitutively active in hematologic neoplasms and solid tumors. Because STAT5a and STAT5b differ mainly in the carboxyl-terminal transactivation domain, we sought to identify new proteins that bind specifically to this domain by using a bacterial two-hybrid screening. We isolated hTid1, a human DnaJ protein that acts as a tumor suppressor in various solid tumors. hTid1 interacts specifically with STAT5b but not with STAT5a in hematopoietic cell lines. This interaction involves the cysteine-rich region of the hTid1 DnaJ domain. We also demonstrated that hTid1 negatively regulates the expression and transcriptional activity of STAT5b and suppresses the growth of hematopoietic cells transformed by an oncogenic form of STAT5b. Our findings define hTid1 as a novel partner and negative regulator of STAT5b.
Collapse
Affiliation(s)
- Isabelle Dhennin-Duthille
- INSERM, U925, Université de Picardie Jules Verne, UFR de Médecine, 3 Rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Yamamoto K, Ishida T, Nakano K, Yamagishi M, Yamochi T, Tanaka Y, Furukawa Y, Nakamura Y, Watanabe T. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax. Cancer Sci 2010; 102:260-6. [PMID: 21054678 DOI: 10.1111/j.1349-7006.2010.01752.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus.
Collapse
Affiliation(s)
- Keiyu Yamamoto
- Department of Medical Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kurzik-Dumke U, Hörner M, Nicotra MR, Koslowski M, Natali PG. In vivo evidence of htid suppressive activity on ErbB-2 in breast cancers over expressing the receptor. J Transl Med 2010; 8:58. [PMID: 20565727 PMCID: PMC2909173 DOI: 10.1186/1479-5876-8-58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/17/2010] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Htid encoded proteins are physiological partners of a wide spectrum of molecules relevant to neoplastic transformation. One of the molecular ligands of the cytosolic hTid-L and hTid-I forms is the ErbB-2 receptor variably over expressed in diverse solid tumors. Altered ErbB-2 signalling is associated with an unfavourable prognosis in about 30% of human breast malignancies. METHODS We evaluated htid and HER-2 expression by quantitative real time PCR in tumors of different TNMG status and by immunohistochemistry in a cohort of breast tumors of the Luminal A, B, HER-2 and triple negative subtype. RESULTS The RT-PCR analysis revealed that aberrant expression of all three htid forms correlates with malignant transformation. Furthermore, elevated hTid-L expression can be associated with less aggressive tumors. The immunohistochemical testing revealed that tumors of the luminal A subtype are characterized by a high level of htid (81%). In contrast htid expression is significantly lower in tumors of the Luminal B (20%) and HER-2 (18%) subtype over expressing the receptor and in the triple negative (40%) more aggressive malignancies. A statistically significant inverse correlation between htid and ErbB-2 expression was found in human breast (p < 0,0001) and non-mammary tumors (p < 0,007), and in transgenic mice carrying the rat HER-2/neu oncogene. CONCLUSIONS Our findings provide in vivo evidence that htid is a tissue independent and evolutionarily conserved suppressor of ErbB-2.
Collapse
Affiliation(s)
- Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Comparative Tumor Biology Group, University Medical Center, Johannes Gutenberg University, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| | - Manuela Hörner
- Institute of Medical Microbiology and Hygiene, Comparative Tumor Biology Group, University Medical Center, Johannes Gutenberg University, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| | | | - Michael Koslowski
- Experimental and Translational Oncology III, University Medical Center, Johannes Gutenberg University, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| | - Pier G Natali
- Immunology Laboratory, "Regina Elena" National Cancer Institute, Via delle Messi d'Oro 156, 0158 Rome and CIMBO Laboratories, "G.d'Annunzio" University, Chieti, Italy
| |
Collapse
|
34
|
Qian J, Perchiniak EM, Sun K, Groden J. The mitochondrial protein hTID-1 partners with the caspase-cleaved adenomatous polyposis cell tumor suppressor to facilitate apoptosis. Gastroenterology 2010; 138:1418-28. [PMID: 19900451 PMCID: PMC3547615 DOI: 10.1053/j.gastro.2009.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 10/23/2009] [Accepted: 10/29/2009] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS The adenomatous polyposis cell (APC) tumor suppressor is a multifunctional protein involved in cell migration, proliferation, differentiation, and apoptosis. Cleavage of APC and the subsequent release of an amino-terminal segment are necessary for a transcription-independent mechanism of APC-mediated apoptosis. The aim of the current study is to elucidate the mechanism by which the amino-terminus of APC contributes to the enhancement of apoptosis. METHODS Previous yeast 2-hybrid screens, using the armadillo repeat domain of APC as bait, identified hTID-1 as a potential binding partner. Coimmunoprecipitations, coimmunofluorescence, and binding assays confirm a direct interaction between caspase-cleaved APC and hTID-1 in vivo at the mitochondria. Overexpression and small interfering RNA (siRNA) knockdown studies were designed to determine the significance of this interaction. RESULTS These experiments have identified hTID-1 as a directly interacting protein partner of caspase-cleaved APC. hTID-1 is an apoptosis modulator: 2 of its known mitochondrial protein isoforms, 43-kilodaltons and 40-kilodaltons, have opposing effects in apoptosis. We demonstrate that the amino-terminal segment of APC interacts with both hTID-1 isoforms directly, although there is a stronger association with the apoptotic suppressor 40-kilodalton isoform in vitro. This interaction localizes to amino acids 202-512 of APC, a region including 2 of the 7 armadillo repeats. Overexpression of the 40-kilodalton hTID-1 isoform partially rescues cells from apoptosis mediated by APC 1-777, whereas siRNA knockdown of this hTID-1 isoform enhances apoptosis. CONCLUSIONS These data suggest that the amino-terminal segment of APC promotes cell sensitivity to apoptosis modulated through its binding to 40- and 43-kilodalton hTID-1 isoforms.
Collapse
Affiliation(s)
| | | | | | - Joanna Groden
- Corresponding author: Joanna Groden, Ph.D., Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Street, Columbus, OH 43210-2207, , Phone: 614-688-4301
| |
Collapse
|
35
|
Chen CY, Chiou SH, Huang CY, Jan CI, Lin SC, Hu WY, Chou SH, Liu CJ, Lo JF. Tid1 functions as a tumour suppressor in head and neck squamous cell carcinoma. J Pathol 2010; 219:347-55. [PMID: 19681071 DOI: 10.1002/path.2604] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human tumourous imaginal disc (Tid1), a human homologue of the Drosophila tumour suppressor protein Tid56, is involved in multiple intracellular signalling pathways such as apoptosis, cell proliferation, and cell survival. Here, we investigated the anti-tumourigenic activity of Tid1 in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. Firstly, the clinical association between Tid1 expression and progression of HNSCC was explored. It was found that expression of Tid1 was negatively associated with tumour status, recurrence, and survival prognosis using immunohistochemical analysis of primary HNSCC patient tumour tissue. Secondly, ectopic expression of Tid1 in HNSCC cells was shown to significantly inhibit cell proliferation, migration, invasion, anchorage-independent growth, and xenotransplantation tumourigenicity. Thirdly, we showed that overexpression of Tid1 attenuated EGFR activity and blocked the activation of AKT in HNSCC cells, which are known to be involved in the regulation of survival in HNSCC cells. On the other hand, ectopic expression of constitutively active AKT greatly reduced apoptosis induced by Tid1 overexpression. Together, these findings suggest that Tid1 functions as a tumour suppressor in HNSCC tumourigenesis.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao Y, Kurian D, Xu H, Petherbridge L, Smith LP, Hunt L, Nair V. Interaction of Marek's disease virus oncoprotein Meq with heat-shock protein 70 in lymphoid tumour cells. J Gen Virol 2009; 90:2201-8. [DOI: 10.1099/vir.0.012062-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
37
|
Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology 2008; 5:76. [PMID: 18702816 PMCID: PMC2533353 DOI: 10.1186/1742-4690-5-76] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 12/22/2022] Open
Abstract
The Tax1 oncoprotein encoded by Human T-lymphotropic virus type I is a major determinant of viral persistence and pathogenesis. Tax1 affects a wide variety of cellular signalling pathways leading to transcriptional activation, proliferation and ultimately transformation. To carry out these functions, Tax1 interacts with and modulates activity of a number of cellular proteins. In this review, we summarize the present knowledge of the Tax1 interactome and propose a rationale for the broad range of cellular proteins identified so far.
Collapse
Affiliation(s)
- Mathieu Boxus
- University Academia Wallonie-Europe, Molecular and Cellular Biology at FUSAGx, Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Yan G, Huang J, Jarbadan NR, Jiang Y, Cheng H. Sequestration of NF-κB Signaling Complexes in Lipid Rafts Contributes to Repression of NF-κB in T Lymphocytes under Hyperthermia Stress. J Biol Chem 2008; 283:12489-500. [DOI: 10.1074/jbc.m707988200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Kurzik-Dumke U, Czaja J. Htid-1, the human homolog of the Drosophila melanogaster l(2)tid tumor suppressor, defines a novel physiological role of APC. Cell Signal 2007; 19:1973-85. [PMID: 17588722 DOI: 10.1016/j.cellsig.2007.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/17/2007] [Accepted: 05/18/2007] [Indexed: 12/21/2022]
Abstract
Htid-1, the human counterpart of the Drosophila tumor suppressor gene lethal(2)tumorous imaginal discs (l(2)tid) encodes three splice forms translated into three cytosolic - Tid50, Tid48 and Tid46 - and three mitochondrial - Tid43, Tid40 and Tid38 - proteins. Here we provide evidence for the association of the endogenous Tid50/Tid48 proteins with the adenomatous polyposis coli (APC) tumor suppressor in normal colon epithelium, colorectal cancer cells and mouse NIH3T3 fibroblasts. Using the Glutathione S-transferase binding assay we show that the N-terminal region including the Armadillo domain (ARM) of APC is sufficient to bind the Tid molecules. Using immunoprecipitation and confocal microscopy we show that the two molecular partners complex at defined areas of the cells with further proteins such as Hsp70, Hsc70, Actin, Dvl and Axin. Our data implicate that the formation of the complex is not associated with APC's involvement in beta-Catenin degradation. Furthermore, though it is linked to Actin it is neither associated with regulation of Actin cytoskeleton due to APC's binding to Asef nor to Tid's binding to Ras-GAP. We suggest that the novel complex acts in maintaining APC's availability for its distinct roles in the Wnt signaling important for the cell to take the right decision, either to switch the cascade OFF or ON, thus, to regulate the onset of proliferation of the cells.
Collapse
Affiliation(s)
- Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumor Biology, Johannes Gutenberg University, Obere Zahlbacher Strasse 63, 55131 Mainz, Germany.
| | | |
Collapse
|
40
|
Traicoff JL, Chung JY, Braunschweig T, Mazo I, Shu Y, Ramesh A, D'Amico MW, Galperin MM, Knezevic V, Hewitt SM. Expression of EIF3-p48/INT6, TID1 and Patched in cancer, a profiling of multiple tumor types and correlation of expression. J Biomed Sci 2007; 14:395-405. [PMID: 17385060 DOI: 10.1007/s11373-007-9149-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022] Open
Abstract
Alterations in eIF3-p48/INT6 gene expression have been implicated in murine and human mammary carcinogenesis. We examined levels of INT6 protein in human tumors and determined that breast and colon tumors clustered into distinct groups based on levels of INT6 expression and clinicopathological variables. We performed multiplex tissue immunoblotting of breast, colon, lung, and ovarian tumor tissues and found that INT6 protein levels positively correlated with those of TID1, Patched, p53, c-Jun, and phosphorylated-c-Jun proteins in a tissue-specific manner. INT6 and TID1 showed significant positive correlation in all tissue types tested. These findings were confirmed by immunohistochemical staining of INT6 and TID1. Further evidence supporting a cooperative role for INT6 and TID1 is the presence of endogenous INT6 and TID1 proteins as complexes. We detected co-immunoprecipitation between INT6 and TID1, as well as between INT6 and Patched. These findings suggest potential integrated roles for INT6, TID1, and Patched proteins in cell growth, development, and tumorigenesis. Additionally, these data suggest that the combination of INT6, TID1, and Patched protein levels may be useful biomarkers for the development of diagnostic assays.
Collapse
|
41
|
Tsuji T, Sheehy N, Gautier VW, Hayakawa H, Sawa H, Hall WW. The nuclear import of the human T lymphotropic virus type I (HTLV-1) tax protein is carrier- and energy-independent. J Biol Chem 2007; 282:13875-83. [PMID: 17344183 DOI: 10.1074/jbc.m611629200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HTLV-1 is the etiologic agent of the adult T cell leukemialymphoma (ATLL). The viral regulatory protein Tax plays a central role in leukemogenesis as a transcriptional transactivator of both viral and cellular gene expression, and this requires Tax activity in both the cytoplasm and the nucleus. In the present study, we have investigated the mechanisms involved in the nuclear localization of Tax. Employing a GFP fusion expression system and a range of Tax mutants, we could confirm that the N-terminal 60 amino acids, and specifically residues within the zinc finger motif in this region, are important for nuclear localization. Using an in vitro nuclear import assay, it could be demonstrated that the transportation of Tax to the nucleus required neither energy nor carrier proteins. Specific and direct binding between Tax and p62, a nucleoporin with which the importin beta family of proteins have been known to interact was also observed. The nuclear import activity of wild type Tax and its mutants and their binding affinity for p62 were also clearly correlated, suggesting that the entry of Tax into the nucleus involves a direct interaction with nucleoporins within the nuclear pore complex (NPC). The nuclear export of Tax was also shown to be carrier independent. It could be also demonstrated that Tax it self may have a carrier function and that the NF-kappaB subunit p65 could be imported into the nucleus by Tax. These studies suggest that Tax could alter the nucleocytoplasmic distribution of cellular proteins, and this could contribute to the deregulation of cellular processes observed in HTLV-1 infection.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Centre for Research in Infectious Disease, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
42
|
Sohn SY, Kim SB, Kim J, Ahn BY. Negative regulation of hepatitis B virus replication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. J Gen Virol 2006; 87:1883-1891. [PMID: 16760390 DOI: 10.1099/vir.0.81684-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The hepatitis B virus core protein consists of an amino-terminal capsid-assembly domain and a carboxyl-terminal RNA-binding domain. By using the yeast two-hybrid system, two Hsp40/DnaJ chaperone-family proteins, Hdj1 and hTid1, that interact with the carboxyl-terminal region (aa 94-185) of the core protein were identified. Hdj1 is the prototype member of the family and hTid1 is the human homologue of the Drosophila tumour-suppressor protein Tid56. Binding of the viral core protein with the Hsp40 proteins was confirmed by affinity chromatography and immunoprecipitation of transiently expressed proteins. Moreover, in a sucrose gradient, the precursor form of hTid1 co-sedimented with capsid-like particles composed of the full-length core protein. Unlike the general perception of the role of the cellular chaperone proteins in assisting viral protein folding and thus enhancing virus replication, ectopic expression of Hdj1 and hTid1 suppressed replication of HBV in transfected human hepatoma cells. Conversely, RNA interference-mediated knock-down of hTid1 resulted in increased HBV replication. It was found that both Hsp40 proteins specifically accelerated degradation of the viral core and HBx proteins. Our results suggest that the cellular chaperones, through destabilization of viral proteins, exert inhibitory functions on virus replication and hence may play suppressive roles in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sook-Young Sohn
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| | - Sun-Bum Kim
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| | - Joon Kim
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| | - Byung-Yoon Ahn
- School of Life Sciences and Biotechnology, Korea University, Anamdong 5-1, Sungbuk, Seoul 136-701, Korea
| |
Collapse
|
43
|
Lu B, Garrido N, Spelbrink JN, Suzuki CK. Tid1 Isoforms Are Mitochondrial DnaJ-like Chaperones with Unique Carboxyl Termini That Determine Cytosolic Fate. J Biol Chem 2006; 281:13150-13158. [PMID: 16531398 DOI: 10.1074/jbc.m509179200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tid1 is a human homolog of bacterial DnaJ and the Drosophila tumor suppressor Tid56 that has two alternatively spliced isoforms, Tid1-long and -short (Tid1-L and -S), which differ only at their carboxyl termini. Although Tid1 proteins localize overwhelmingly to mitochondria, published data demonstrate principally nonmitochondrial protein interactions and activities. This study was undertaken to determine whether Tid1 proteins function as mitochondrial DnaJ-like chaperones and to resolve the paradox of how proteins targeted primarily to mitochondria function in nonmitochondrial pathways. Here we demonstrate that Tid1 isoforms exhibit a conserved mitochondrial DnaJ-like function substituting for the yeast mitochondrial DnaJ-like protein Mdj1p. Like Mdj1p, Tid1 localizes to human mitochondrial nucleoids, which are large protein complexes bound to mitochondrial DNA. Unlike other DnaJs, Tid1-L and -S form heterocomplexes; both unassembled and complexed Tid1 are observed in human cells. Results demonstrate that Tid1-L has a longer residency time in the cytosol prior to mitochondrial import as compared with Tid1-S; Tid1-L is also significantly more stable in the cytosol than Tid1-S, which is rapidly degraded. The longer cytosolic residency time and the half-life of Tid1-L are explained by its interaction with cytosolic Hsc70 and potential protein substrates such as the STAT1 and STAT3 transcription factors. We show that the unique carboxyl terminus of Tid1-L is required for interaction with Hsc70 and STAT1 and -3. We propose that the association of Tid1 with chaperones and/or protein substrates in the cytosol provides a mechanism for the alternate fates and functions of Tid1 in mitochondrial and nonmitochondrial pathways.
Collapse
Affiliation(s)
- Bin Lu
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, New Jersey 07103
| | - Nuria Garrido
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, FIN-33014 Tampere, Finland
| | - Johannes N Spelbrink
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, FIN-33014 Tampere, Finland
| | - Carolyn K Suzuki
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, New Jersey 07103.
| |
Collapse
|
44
|
Wang L, Tam JP, Liu DX. Biochemical and functional characterization of Epstein-Barr virus-encoded BARF1 protein: interaction with human hTid1 protein facilitates its maturation and secretion. Oncogene 2006; 25:4320-31. [PMID: 16518412 DOI: 10.1038/sj.onc.1209458] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
EBV BARF1 gene encodes a secretory protein with transforming and mitogenic activities. In this report, the post-translational modification, folding, maturation and secretion of BARF1 are systematically studied by site-directed mutagenesis and overexpression of the protein in mammalian cells using the vaccinia/T7 system. The protein was shown to be post-translationally modified by N-linked glycosylation on the asparagine 95 residue. This modification was confirmed to be essential for the maturation and secretion of the protein. Analysis of the four cysteine residues by site-directed mutagenesis demonstrated that cysteine 146 and 201 were essential for proper folding and secretion of the protein. To search for human proteins involved in the maturation process of the protein, a yeast two-hybrid screening was carried out using the BARF1 sequence from amino acids 21-221 (BARF1Delta) as bait, leading to the identification of human hTid1 protein as a potential interacting protein. This interaction was subsequently confirmed by coimmunoprecipitation and dual immunofluorescent labeling of cells coexpressing BARF1 and hTid1, and the interaction domain in hTid1 was mapped to amino acids 149-320. Interestingly, coexpression of BARF1 with hTid1 demonstrated that hTid1 could promote secretion of BARF1, suggesting that hTid1 may act as a chaperone to facilitate the folding, processing and maturation of BARF1.
Collapse
Affiliation(s)
- L Wang
- School of Biological Sciences, Nanyang Technological University, Proteos, Singapore
| | | | | |
Collapse
|
45
|
Turci M, Romanelli MG, Lorenzi P, Righi P, Bertazzoni U. Localization of human T-cell lymphotropic virus type II Tax protein is dependent upon a nuclear localization determinant in the N-terminal region. Gene 2005; 365:119-24. [PMID: 16337343 DOI: 10.1016/j.gene.2005.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 09/05/2005] [Accepted: 09/27/2005] [Indexed: 11/17/2022]
Abstract
Human T-cell lymphotropic viruses (HTLV) types I and II are closely related oncogenic retroviruses that have been associated with lymphoproliferative and neurological disorders. The proviral genome encodes a trans-regulatory Tax protein that activates viral genes and upregulates various cellular genes involved in both cell growth and transformation. Tax proteins of HTLV-I (Tax-I) and HTLV-II (Tax-II) exhibit more than 77% aa homology and expression of either Tax-I or Tax-II is sufficient for immortalization of cultured T lymphocytes. Tax-I shuttles from the nucleus to the cytoplasm and accumulates within the nucleus, whereas Tax-II is found mainly in the cytoplasm. In the present study we have used recombinant vectors to analyze the size and structure of the nuclear localization domain within the Tax-II protein sequence. The Tax-II protein was expressed in HeLa cells either as the complete protein, or regions thereof, that were individually fused to the green fluorescent protein (GFP). Immunoblot analysis of the fused Tax-II products confirmed their expression and size. Fluorescence microscopy studies indicated that the complete Tax-II as well as N-truncated forms presented a punctuate cytoplasmic distribution and that a nuclear localization determinant is confined to within the first 60 aa of Tax-II. Accordingly, site directed mutagenesis and deletion of specific sequences within the first 60 aa showed that the nuclear determinant lies within the first 41 residues of Tax-II. These results point to a direct involvement of the amino-terminal residues of Tax-II protein in determining its nuclear functionality.
Collapse
Affiliation(s)
- Marco Turci
- Department of Mother and Child, Biology and Genetics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
46
|
Hayashi M, Imanaka-Yoshida K, Yoshida T, Wood M, Fearns C, Tatake RJ, Lee JD. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 2005; 12:128-32. [PMID: 16327803 DOI: 10.1038/nm1327] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 10/14/2005] [Indexed: 11/08/2022]
Abstract
Many heat-shock proteins (Hsp) are members of evolutionarily conserved families of chaperone proteins that inhibit the aggregation of unfolded polypeptides and refold denatured proteins, thereby remedying phenotypic effects that may result from protein aggregation or protein instability. Here we report that the mitochondrial chaperone Hsp40, also known as Dnaja3 or Tid1, is differentially expressed during cardiac development and pathological hypertrophy. Mice deficient in Dnaja3 developed dilated cardiomyopathy (DCM) and died before 10 weeks of age. Progressive respiratory chain deficiency and decreased copy number of mitochondrial DNA were evident in cardiomyocytes lacking Dnaja3. Profiling of Dnaja3-interacting proteins identified the alpha-subunit of DNA polymerase gamma (Polga) as a client protein. These findings suggest that Dnaja3 is crucial for mitochondrial biogenesis, at least in part, through its chaperone activity on Polga and provide genetic evidence of the necessity for mitochondrial Hsp40 in preventing DCM.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Cell Line
- DNA/metabolism
- DNA Polymerase gamma
- DNA, Mitochondrial/metabolism
- DNA-Directed DNA Polymerase/metabolism
- Electron Transport
- Electron Transport Complex IV/metabolism
- Evolution, Molecular
- Green Fluorescent Proteins/metabolism
- HSP40 Heat-Shock Proteins/chemistry
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- HSP40 Heat-Shock Proteins/physiology
- Humans
- Immunoblotting
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Myocytes, Cardiac/metabolism
- Protein Binding
- Protein Denaturation
- Protein Folding
- Protein Renaturation
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Masaaki Hayashi
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037-1000, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Alefantis T, Jain P, Ahuja J, Mostoller K, Wigdahl B. HTLV-1 Tax nucleocytoplasmic shuttling, interaction with the secretory pathway, extracellular signaling, and implications for neurologic disease. J Biomed Sci 2005; 12:961-74. [PMID: 16228291 DOI: 10.1007/s11373-005-9026-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) oncoprotein Tax interacts with numerous cellular pathways promoting both the survival and pathogenesis of the virus in the human population. Tax has been studied extensively with respect to its role in transcriptional transactivation and its involvement in the up-regulation of a number of cellular genes during the process of oncogenic transformation. These processes are dependent on Tax localization to the nucleus where it interacts with a number of cellular transcription factors during its course of nuclear action. However, there is mounting evidence suggesting that Tax may shuttle between the nucleus and cytoplasm, localize to several cytoplasmic organelles with subsequent secretion from both Tax-transfected cells as well as HTLV-1-infected cells. In addition, the presence of cell-free Tax in cerebral spinal fluid (CSF) was recently demonstrated to occur during all stages of HAM/TSP. This has brought about an increased interest in the cytoplasmic localization of Tax and the implications this localization may have with respect to the progression of HTLV-1-associated disease processes. This review addresses the functional implications relevant to the localization and accumulation of Tax in the cytoplasm including the Tax amino acid signals and cellular protein interactions that may regulate this process. Specifically, we have discussed three important processes associated with the cytoplasmic localization of Tax. First, the process of Tax shuttling between the nucleus and cytoplasm will be described and how this process may be involved in regulating different transcriptional activation pathways. Second, cytoplasmic localization of Tax will be discussed with relevance to Tax secretion and the interaction of Tax with proteins in the cellular secretory pathway. Finally, the secretion of Tax and the effects of extracellular Tax on HTLV-1 pathogenesis will be addressed.
Collapse
|
48
|
Kim SW, Hayashi M, Lo JF, Fearns C, Xiang R, Lazennec G, Yang Y, Lee JD. Tid1 Negatively Regulates the Migratory Potential of Cancer Cells by Inhibiting the Production of Interleukin-8. Cancer Res 2005; 65:8784-91. [PMID: 16204048 DOI: 10.1158/0008-5472.can-04-4422] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tid1 is the human homologue of the Drosophila tumor suppressor, Tid56. Reducing the expression of Tid1 in MDA-MB231 breast cancer cells enhanced their migration without affecting their survival or growth rate. From microarray screening, we discovered that after Tid1 depletion, the mRNA level of interleukin-8 (IL-8) was significantly increased in these cancer cells, which consequently increased secretion of IL-8 protein by 3.5-fold. The enhanced migration of these Tid1-knockdown cells was blocked by reducing the IL-8 expression or by adding an IL-8 neutralizing antibody to the culture medium, suggesting that enhancement of cell motility in these Tid1-deficient cells is dependent on the de novo synthesis of IL-8. Subsequently, we found that abrogating the nuclear factor kappaB binding site in the IL-8 promoter completely blocked the Tid1 depletion-induced IL-8 expression in the breast cancer cells. As increased IL-8 levels are known to promote tumor metastasis, we tested the effect of Tid1 knockdown on tumor metastasis and found that Tid1 depletion enhanced the metastasis of breast cancer cells in animals. Together, these results indicate that Tid1 negatively regulates the motility and metastasis of breast cancer cells, most likely through attenuation of nuclear factor kappaB activity on the promoter of the IL8 gene.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu HY, MacDonald JIS, Hryciw T, Li C, Meakin SO. Human Tumorous Imaginal Disc 1 (TID1) Associates with Trk Receptor Tyrosine Kinases and Regulates Neurite Outgrowth in nnr5-TrkA Cells. J Biol Chem 2005; 280:19461-71. [PMID: 15753086 DOI: 10.1074/jbc.m500313200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human tumorous imaginal disc 1 (TID1) proteins including TID1(L) and TID1(S), members of the DnaJ domain protein family, are involved in multiple intracellular signaling pathways such as apoptosis induction, cell proliferation, and survival. Here we report that TID1 associates with the Trk receptor tyrosine kinases and regulates nerve growth factor (NGF)-induced neurite outgrowth in PC12-derived nnr5 cells. Binding assays and transfection studies showed that the carboxyl-terminal end of TID1 (residues 224-429) bound to Trk at the activation loop (Tyr(P)(683)-Tyr(684)(P)(684) in rat TrkA) and that TID1 was tyrosine phosphorylated by Trk both in yeast and in transfected cells. Moreover endogenous TID1 was also tyrosine phosphorylated by and co-immunoprecipitated with Trk in neurotrophin-stimulated primary rat hippocampal neurons. Overexpression studies showed that both TID1(L) and TID1(S) significantly facilitated NGF-induced neurite outgrowth in TrkA-expressing nnr5 cells possibly through a mechanism involving increased activation of mitogen-activated protein kinase. Consistently knockdown of endogenous TID1, mediated with specific short hairpin RNA, significantly reduced NGF-induced neurite growth in nnr5-TrkA cells. These data provide the first evidence that TID1 is a novel intracellular adaptor that interacts with the Trk receptor tyrosine kinases in an activity-dependent manner to facilitate Trk-dependent intracellular signaling.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Cell Biology Group, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Alefantis T, Mostoller K, Jain P, Harhaj E, Grant C, Wigdahl B. Secretion of the Human T Cell Leukemia Virus Type I Transactivator Protein Tax. J Biol Chem 2005; 280:17353-62. [PMID: 15659397 DOI: 10.1074/jbc.m409851200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I protein Tax is well known as a transcriptional transactivator and inducer of cellular transformation. However, it is also known that extracellular Tax induces the production and release of cytokines, such as tumor necrosis factor-alpha and interleukin-6, which have adverse effects on cells of the central nervous system. The cellular process by which Tax exits the cell into the extracellular environment is currently unknown. In most cell types, Tax has been shown to localize primarily to the nucleus. However, Tax has also been found to accumulate in the cytoplasm. The results contained herein begin to characterize the process of Tax secretion from the cell. Specifically, cytoplasmic Tax was demonstrated to localize to organelles associated with the cellular secretory process including the endoplasmic reticulum and Golgi complex. Additionally, it was demonstrated that full-length Tax was secreted from both baby hamster kidney cells and a human kidney tumor cell line, suggesting that Tax enters the secretory pathway in a leaderless manner. Tax secretion was partially inhibited by brefeldin A, suggesting that Tax migrated from the endoplasmic reticulum to the Golgi complex. In addition, combined treatment of Tax-transfected BHK-21 cells with phorbol myristate acetate and ionomycin resulted in a small increase in the amount of Tax secreted, suggesting that a fraction of cytoplasmic Tax was present in the regulated secretory pathway. These studies begin to provide a link between Tax localization to the cytoplasm, the detection of Tax in the extracellular environment, its possible role as an extracellular effector molecule, and a potential role in neurodegenerative disease associated with HTLV-I infection.
Collapse
Affiliation(s)
- Timothy Alefantis
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|