1
|
Benetollo A, Parrasia S, Scano M, Biasutto L, Rossa A, Nogara L, Blaauw B, Dalla Barba F, Caccin P, Carotti M, Parolin A, Akyürek EE, Sacchetto R, Sandonà D. The novel use of the CFTR corrector C17 in muscular dystrophy: pharmacological profile and in vivo efficacy. Biochem Pharmacol 2025; 233:116779. [PMID: 39864467 DOI: 10.1016/j.bcp.2025.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Sarcoglycanopathies are rare forms of severe muscular dystrophies currently without a therapy. Mutations in sarcoglycan (SG) genes cause the reduction or absence of the SG-complex, a tetramer located in the sarcolemma that plays a protective role during muscle contraction. Missense mutations in SGCA, which cause α-sarcoglycanopathy, otherwise known as LGMD2D/R3, lead to folding defective forms of α-SG that are discarded by the cell quality control. Recently, we demonstrated how a small molecule called C17, initially identified as a CFTR corrector, can be re-used to ameliorate the dystrophic phenotype of a mouse model of α-sarcoglycanopathy. Here, we have examined the pharmacological profile of C17 by performing ADME (absorption, distribution, metabolism, and elimination) studies. Our data show that C17 is well-distributed to relevant organs like heart and skeletal muscle, and likely metabolized in the small intestine into hydrophilic and hydrophobic derivatives. Elimination occurs through faeces (unmodified and modified C17) and urine (modified forms). Interestingly, we detected a quantifiable amount of C17 in treated muscles 48 h after an acute parenteral administration. This led to design a regimen of chronic treatment with a reduced dosing frequency. The result was the recovery of muscle strength, thanks to the rescue of the SG-complex, despite containing a mutated subunit, at the level of the sarcolemma. Thus, we can conclude that CFTR corrector C17 has a reasonable pharmacological profile and great potential to become a valuable therapeutic option for LGMD2D/R3 and other forms of muscular dystrophy caused by folding defective but potentially functional proteins.
Collapse
Affiliation(s)
- Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Sofia Parrasia
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Martina Scano
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Lucia Biasutto
- Neuroscience Institute - Italian National Research Council (CNR), Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine, University of Padova, Padova 35129, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy,; Venetian Institute of Molecular Medicine, University of Padova, Padova 35129, Italy
| | | | - Paola Caccin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Alessandro Parolin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy,.
| |
Collapse
|
2
|
Trang VTD, Mikkelsen MD, Vuillemin M, Meier S, Cao HTT, Muschiol J, Perna V, Nguyen TT, Tran VHN, Holck J, Van TTT, Khanh HHN, Meyer AS. The Endo-α(1,4) Specific Fucoidanase Fhf2 From Formosa haliotis Releases Highly Sulfated Fucoidan Oligosaccharides. FRONTIERS IN PLANT SCIENCE 2022; 13:823668. [PMID: 35185990 PMCID: PMC8847386 DOI: 10.3389/fpls.2022.823668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fucoidanases are endo-fucoidanases (also known as endo-fucanases) that catalyze hydrolysis of α-glycosidic linkages in fucoidans, a family of sulfated fucose-rich polysaccharides primarily found in the cell walls of brown seaweeds. Fucoidanases are promising tools for producing bioactive fucoidan oligosaccharides for a range of biomedical applications. High sulfation degree has been linked to high bioactivity of fucoidans. In this study, a novel fucoidanase, Fhf2, was identified in the genome of the aerobic, Gram-negative marine bacterium Formosa haliotis. Fhf2 was found to share sequence similarity to known endo-α(1,4)-fucoidanases (EC 3.2.1.212) from glycoside hydrolase family 107. A C-terminal deletion mutant Fhf2∆484, devoid of 484 amino acids at the C-terminus, with a molecular weight of approximately 46 kDa, was constructed and found to be more stable than the full-length Fhf2 protein. Fhf2∆484 showed endo-fucoidanase activity on fucoidans from different seaweed species including Fucus evanescens, Fucus vesiculosus, Sargassum mcclurei, and Sargassum polycystum. The highest activity was observed on fucoidan from F. evanescens. The Fhf2∆484 enzyme was active at 20-45°C and at pH 6-9 and had optimal activity at 37°C and pH 8. Additionally, Fhf2∆484 was found to be calcium-dependent. NMR analysis showed that Fhf2∆484 catalyzed hydrolysis of α(1,4) linkages between L-fucosyl moieties sulfated on C2 (similar to Fhf1 from Formosa haliotis), but Fhf2∆484 in addition released oligosaccharides containing a substantial amount of 2,4-disulfated fucose residues. The data thus suggest that the Fhf2∆484 enzyme could be a valuable candidate for producing highly sulfated oligosaccharides applicable for fucoidan bioactivity investigations.
Collapse
Affiliation(s)
- Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marlene Vuillemin
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hang Thi Thuy Cao
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Valentina Perna
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Huynh Hoang Nhu Khanh
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Huang R, Feng H, Xu Z, Zhang N, Liu Y, Shao J, Shen Q, Zhang R. Identification of Adhesins in Plant Beneficial Rhizobacteria Bacillus velezensis SQR9 and Their Effect on Root Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:64-72. [PMID: 34698535 DOI: 10.1094/mpmi-09-21-0234-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Probiotic Bacillus colonization of plant root surfaces has been reported to improve its beneficial effect. Chemotaxis, adhesion, aggregation, and biofilm formation are the four steps of root colonization by plant growth-promoting rhizobacteria (PGPRs). Compared with the other three well-studied processes, adhesion of PGPRs is less known. In this study, using mutant strains deleted for potential adhesin genes in PGPR strain Bacillus velezensis SQR9, adherence to both cucumber root surface and abiotic surface by those strains was evaluated. Results showed that deletion mutations ΔlytB, ΔV529_10500, ΔfliD, ΔyhaN, and ΔsacB reduced the adhesion to root surfaces, while, among them, only ΔfliD had significant defects in adhesion to abiotic surfaces (glass and polystyrene). In addition, B. velevzensis SQR9 mutants defective in adhesion to root surfaces showed a deficiency in rhizosphere colonization. Among the encoded proteins, FliD and YhaN played vital roles in root adhesion. This research systematically explored the potential adhesins in a well-studied PGPR strain and also indicated that adhesion progress was required for root colonization, which will help to enhance rhizosphere colonization and beneficial function of PGPRs in agricultural production.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rong Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
4
|
Vuillemin M, Silchenko AS, Cao HTT, Kokoulin MS, Trang VTD, Holck J, Ermakova SP, Meyer AS, Mikkelsen MD. Functional Characterization of a New GH107 Endo-α-(1,4)-Fucoidanase from the Marine Bacterium Formosa haliotis. Mar Drugs 2020; 18:E562. [PMID: 33213084 PMCID: PMC7698502 DOI: 10.3390/md18110562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Fucoidans from brown macroalgae are sulfated fucose-rich polysaccharides, that have several beneficial biological activities, including anti-inflammatory and anti-tumor effects. Controlled enzymatic depolymerization of the fucoidan backbone can help produce homogeneous, defined fucoidan products for structure-function research and pharmaceutical uses. However, only a few endo-fucoidanases have been described. This article reports the genome-based discovery, recombinant expression in Escherichia coli, stabilization, and functional characterization of a new bacterial endo-α-(1,4)-fucoidanase, Fhf1, from Formosa haliotis. Fhf1 catalyzes the cleavage of α-(1,4)-glycosidic linkages in fucoidans built of alternating α-(1,3)-/α-(1,4)-linked l-fucopyranosyl sulfated at C2. The native Fhf1 is 1120 amino acids long and belongs to glycoside hydrolase (GH) family 107. Deletion of the signal peptide and a 470 amino acid long C-terminal stretch led to the recombinant expression of a robust, minimized enzyme, Fhf1Δ470 (71 kDa). Fhf1Δ470 has optimal activity at pH 8, 37-40 °C, can tolerate up to 500 mM NaCl, and requires the presence of divalent cations, either Ca2+, Mn2+, Zn2+ or Ni2+, for maximal activity. This new enzyme has the potential to serve the need for controlled enzymatic fucoidan depolymerization to produce bioactive sulfated fucoidan oligomers.
Collapse
Affiliation(s)
- Marlene Vuillemin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Artem S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam;
| | - Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam;
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| |
Collapse
|
5
|
Combined Use of CFTR Correctors in LGMD2D Myotubes Improves Sarcoglycan Complex Recovery. Int J Mol Sci 2020; 21:ijms21051813. [PMID: 32155735 PMCID: PMC7084537 DOI: 10.3390/ijms21051813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Sarcoglycanopathies are rare limb girdle muscular dystrophies, still incurable, even though symptomatic treatments may slow down the disease progression. Most of the disease-causing defects are missense mutations leading to a folding defective protein, promptly removed by the cell’s quality control, even if possibly functional. Recently, we repurposed small molecules screened for cystic fibrosis as potential therapeutics in sarcoglycanopathy. Indeed, cystic fibrosis transmembrane regulator (CFTR) correctors successfully recovered the defective sarcoglycan-complex in vitro. Our aim was to test the combined administration of some CFTR correctors with C17, the most effective on sarcoglycans identified so far, and evaluate the stability of the rescued sarcoglycan-complex. We treated differentiated myogenic cells from both sarcoglycanopathy and healthy donors, evaluating the global rescue and the sarcolemma localization of the mutated protein, by biotinylation assays and western blot analyses. We observed the additive/synergistic action of some compounds, gathering the first ideas on possible mechanism/s of action. Our data also suggest that a defective α-sarcoglycan is competent for assembly into the complex that, if helped in cell traffic, can successfully reach the sarcolemma. In conclusion, our results strengthen the idea that CFTR correctors, acting probably as proteostasis modulators, have the potential to progress as therapeutics for sarcoglycanopathies caused by missense mutations.
Collapse
|
6
|
Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc Natl Acad Sci U S A 2019; 116:7409-7418. [PMID: 30902897 DOI: 10.1073/pnas.1817822116] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.
Collapse
|
7
|
Carotti M, Marsolier J, Soardi M, Bianchini E, Gomiero C, Fecchio C, Henriques SF, Betto R, Sacchetto R, Richard I, Sandonà D. Repairing folding-defective α-sarcoglycan mutants by CFTR correctors, a potential therapy for limb-girdle muscular dystrophy 2D. Hum Mol Genet 2019; 27:969-984. [PMID: 29351619 PMCID: PMC5886177 DOI: 10.1093/hmg/ddy013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/30/2017] [Indexed: 11/22/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2D (LGMD2D) is a rare autosomal-recessive disease, affecting striated muscle, due to mutation of SGCA, the gene coding for α-sarcoglycan. Nowadays, more than 50 different SGCA missense mutations have been reported. They are supposed to impact folding and trafficking of α-sarcoglycan because the defective polypeptide, although potentially functional, is recognized and disposed of by the quality control of the cell. The secondary reduction of α-sarcoglycan partners, β-, γ- and δ-sarcoglycan, disrupts a key membrane complex that, associated to dystrophin, contributes to assure sarcolemma stability during muscle contraction. The complex deficiency is responsible for muscle wasting and the development of a severe form of dystrophy. Here, we show that the application of small molecules developed to rescue ΔF508-CFTR trafficking, and known as CFTR correctors, also improved the maturation of several α-sarcoglycan mutants that were consequently rescued at the plasma membrane. Remarkably, in myotubes from a patient with LGMD2D, treatment with CFTR correctors induced the proper re-localization of the whole sarcoglycan complex, with a consequent reduction of sarcolemma fragility. Although the mechanism of action of CFTR correctors on defective α-sarcoglycan needs further investigation, this is the first report showing a quantitative and functional recovery of the sarcoglycan-complex in human pathologic samples, upon small molecule treatment. It represents the proof of principle of a pharmacological strategy that acts on the sarcoglycan maturation process and we believe it has a great potential to develop as a cure for most of the patients with LGMD2D.
Collapse
Affiliation(s)
- Marcello Carotti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Justine Marsolier
- Genethon, Evry F-91002, France.,INSERM, U951, INTEGRARE Research Unit, Evry F-91002, France
| | - Michela Soardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Elisa Bianchini
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.,Aptuit, 37135 Verona, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, 35020 Legnaro, Padova, Italy
| | - Chiara Fecchio
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Sara F Henriques
- Genethon, Evry F-91002, France.,INSERM, U951, INTEGRARE Research Unit, Evry F-91002, France
| | - Romeo Betto
- Neuroscience Institute (CNR Padova), 35131 Padova, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, 35020 Legnaro, Padova, Italy
| | - Isabelle Richard
- Genethon, Evry F-91002, France.,INSERM, U951, INTEGRARE Research Unit, Evry F-91002, France
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
8
|
Younus M, Ahmad F, Malik E, Bilal M, Kausar M, Abbas S, Shaheen S, Kakar MU, Alfadhel M, Umair M. SGCD Homozygous Nonsense Mutation (p.Arg97 ∗) Causing Limb-Girdle Muscular Dystrophy Type 2F (LGMD2F) in a Consanguineous Family, a Case Report. Front Genet 2019; 9:727. [PMID: 30733730 PMCID: PMC6354032 DOI: 10.3389/fgene.2018.00727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Limb-girdle muscular dystrophy (LGMD) is an increasingly heterogeneous category of inherited muscle diseases, mainly affecting the muscles of shoulder areas and the hip, segregating in both autosomal recessive and dominant manner. To-date, thirty-one loci have been identified for LGMD including seven autosomal dominant (LGMD type 1) and twenty four autosomal recessive (LGMD type 2) inherited loci. Methodology/Laboratory Examination: The present report describes a consanguineous family segregating LGMD2F in an autosomal recessive pattern. The affected individual is an 11-year-old boy having two brothers and a sister. Direct targeted next generation sequencing was performed for the single affected individual (VI-1) followed by Sanger sequencing. Results: Targeted next generation sequencing revealed a novel homozygous nonsense mutation (c.289C>T; p.Arg97∗) in the exon 3 of the delta-sarcoglycan (SGCD) gene, that introduces a premature stop codon (TCA), resulting in a nonsense mediated decay or a truncated protein product. Discussion and Conclusion: This is the first report of LGMD2F caused by an SGCD variant in a Pakistani population. The mutation identified in the present investigation extends the body of evidence implicating the gene SGCD in causing LGMD2F and might help in genetic counseling, which is more important to deliver the risk of carrier or affected in the future pregnancies.
Collapse
Affiliation(s)
- Muhammad Younus
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farooq Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Erum Malik
- Department of Biochemistry, Shah Abdul Latif University Khairpur, Khairpur, Pakistan
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mehran Kausar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,DMLS Department, The University of Lahore, Islamabad Campus, Islamabad, Pakistan
| | - Safdar Abbas
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College Serai Naurang (Lakki Marwat), Peshawar, Pakistan
| | - Mohib Ullah Kakar
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad Umair
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Bulakh MV, Ryzhkova OP, Polyakov AV. Sarcoglycanopathies: Clinical, Molecular and Genetic Characteristics, Epidemiology, Diagnostics and Treatment Options. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Gul IS, Hulpiau P, Saeys Y, van Roy F. Evolution and diversity of cadherins and catenins. Exp Cell Res 2017; 358:3-9. [PMID: 28268172 DOI: 10.1016/j.yexcr.2017.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/07/2023]
Abstract
Cadherin genes encode a superfamily of conserved transmembrane proteins that share an adhesive ectodomain composed of tandem cadherin repeats. More than 100 human cadherin superfamily members have been identified, which can be classified into three families: major cadherins, protocadherins and cadherin-related proteins. These superfamily members are involved in diverse fundamental cellular processes including cell-cell adhesion, morphogenesis, cell recognition and signaling. Epithelial cadherin (E-cadherin) is the founding cadherin family member. Its cytoplasmic tail interacts with the armadillo catenins, p120 and β-catenin. Further, α-catenin links the cadherin/armadillo catenin complex to the actin filament network. Even genomes of ancestral metazoan species such as cnidarians and placozoans encode a limited number of distinct cadherins and catenins, emphasizing the conservation and functional importance of these gene families. Moreover, a large expansion of the cadherin and catenin families coincides with the emergence of vertebrates and reflects a major functional diversification in higher metazoans. Here, we revisit and review the functions, phylogenetic classifications and co-evolution of the cadherin and catenin protein families.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Pei J, Grishin NV. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54. Protein Sci 2017; 26:617-630. [PMID: 27977898 DOI: 10.1002/pro.3096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans.
Collapse
Affiliation(s)
| | - Nick V Grishin
- Howard Hughes Medical Institute.,Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| |
Collapse
|
12
|
Mojbafan M, Nilipour Y, Tonekaboni SH, Tavakkoly-Bazzaz J, Zeinali S. A novel mutation in alpha sarcoglycan gene in an Iranian family with limb girdle muscular dystrophy 2D. Neurol Res 2016; 38:220-3. [PMID: 27093116 DOI: 10.1080/01616412.2015.1105625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE AND IMPORTANCE The sarcoglycanopathies (SGPs) are a subgroup of autosomal recessive limb girdle muscular dystrophies. They are caused by mutations in gamma, alpha, beta, and delta sarcoglycans (SGs) genes. Alpha-SGPs are the most frequent form of SGPs. Muscle biopsy studies in patients with SGPs have indicated that loss of one SG subunit leads to instability of whole SG complex. Autozygosity mapping is a powerful gene mapping approach for rare recessive inherited disorders in consanguineous families. CLINICAL PRESENTATION In the present study, proband was a 9 year old girl from consanguineous parents. She was diagnosed at the age of 5 when she had problems climbing stairs. Her creatine kinase level was 16428 U/L. Proximal weakness and ankle contracture were also observed in the patient. TECHNIQUES Autozygosity mapping, using short tandem repeat (STR) markers linked to the SG genes, showed co-segregation of the phenotype with STR markers linked to the SGCA (Alpha-sarcoglycan) gene. Her muscle biopsy also suggested alpha sarcoglycanopathy. Mutation analyses revealed a novel homozygous deletion of 11 base pairs in exon 4 of this gene. This deletion introduces a premature termination codon after the 4th amino acid. This will eliminate the expression of the downstream part of the extracellular domain of the protein. This domain has a critical role by associating with other molecules of dystrophin-glycoprotein complexes. CONCLUSION IHC (Immunohistochemistry) studies combined with autozygosity mapping and mutation screening is an efficient diagnostic method in the SGPs.
Collapse
Affiliation(s)
- Marzieh Mojbafan
- a Department of Molecular Medicine , Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran.,b Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Yalda Nilipour
- c Pediatric Pathology Research Center , Mofid Children's Hospital, ShahidBeheshti Medical University [SBMU] , Tehran , Iran
| | - Seyed Hasan Tonekaboni
- d Pediatric Neurology Research Center , ShahidBeheshti University of Medical Sciences , Tehran , Iran.,e Pediatric Neurology Center of Excellence, Department of Pediatric Neurology, Mofid Children Hospital, Faculty of Medicine , ShahidBeheshti Medical University , Tehran , Iran
| | - Javad Tavakkoly-Bazzaz
- b Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Sirous Zeinali
- a Department of Molecular Medicine , Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran.,f Kawsar Human Genetics Research Center , Tehran , Iran
| |
Collapse
|
13
|
|
14
|
SGCZ mutations are unlikely to be associated with myoclonus dystonia. Neuroscience 2014; 272:88-91. [PMID: 24792710 DOI: 10.1016/j.neuroscience.2014.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Myoclonus dystonia syndrome (MDS) is a hyperkinetic movement disorder caused, in a proportion of cases, by mutations of the maternally imprinted epsilon-sarcoglycan gene (SGCE). SGCE mutation rates vary between cohorts, suggesting genetic heterogeneity. E- and ζ-sarcoglycan are both expressed in brain tissue. In this study we tested whether zeta-sarcoglycan gene (SGCZ) mutations also contribute to this disorder. METHODS Patients with clinically suspected MDS and no SGCE mutation were recruited and classified, according to previously published criteria, as to their likelihood of the movement disorder. All SGCZ exons and intron/exon boundaries were screened by direct sequencing. RESULTS Fifty-four SGCE mutation-negative patients were recruited from the UK and the Netherlands. Subdivided according to the likelihood of the movement disorder resulted in 17 'definite', 16 'probable' and 21 'possible' cases. No pathogenic SGCZ mutations were identified. CONCLUSIONS SGCZ mutations are unlikely to contribute to the genetic heterogeneity in MDS.
Collapse
|
15
|
Cutroneo G, Bramanti P, Favaloro A, Anastasi G, Trimarchi F, Di Mauro D, Rinaldi C, Speciale F, Inferrera A, Santoro G, Arena S, Patricolo M, Magno C. Sarcoglycan complex in human normal and pathological prostatic tissue: an immunohistochemical and RT-PCR study. Anat Rec (Hoboken) 2013; 297:327-36. [PMID: 24347395 DOI: 10.1002/ar.22846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 11/03/2013] [Indexed: 11/11/2022]
Abstract
The sarcoglycan complex is a trans-membrane system playing a key role in mechano-signaling the connection from the cytoskeleton to the extracellular matrix. While b-, d-, and e-sarcoglycans are widely distributed, g- and a-sarcoglycans are expressed exclusively in skeletal and cardiac muscle. Insufficient data are available on the distribution of sarcoglycans in nonmuscular tissue. In the present study, we used immunohistochemical and RT-PCR techniques to study the sarcoglycans also in normal human glandular tissue, a type of tissue never studied in relation to the sarcoglycan complex, with the aim of verifying the real wider distribution of this complex. To understand the role of sarcoglycans, we tested specimens collected from patients affected by benign prostatic hyperplasia and adenocarcinoma. For the first time, our results showed that all sarcoglycans are detectable in normal samples both in epithelial and in myoepithelial cells; in pathological prostate, sarcoglycans appeared severely reduced in number or were absent. These data demonstrated that all sarcoglycans have a wider distribution suggesting a new unknown role for these proteins. The decreased number of sarcoglycans, containing cadherin domain homologs in samples of prostate affected by hyperplasia, and the absence of proteins in prostate biopsies, in cases affected by adenocarcinoma, could be responsible for the loss of adhesion between epithelial cells, which in turn facilitates the progression of benign tumors and the invasive potential of malignant tumors.
Collapse
|
16
|
Casper C, Kalliolia E, Warner TT. Recent advances in the molecular pathogenesis of dystonia-plus syndromes and heredodegenerative dystonias. Curr Neuropharmacol 2013; 11:30-40. [PMID: 23814535 PMCID: PMC3580789 DOI: 10.2174/157015913804999432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 12/04/2022] Open
Abstract
The majority of studies investigating the molecular pathogenesis and cell biology underlying dystonia have been performed in individuals with primary dystonia. This includes monogenic forms such as DYT1and DYT6 dystonia, and primary focal dystonia which is likely to be multifactorial in origin. In recent years there has been renewed interest in non-primary forms of dystonia including the dystonia-plus syndromes and heredodegenerative disorders. These are caused by a variety of genetic mutations and their study has contributed to our understanding of the neuronal dysfunction that leads to dystonia These findings have reinforced themes identified from study of primary dystonia including abnormal dopaminergic signalling, cellular trafficking and mitochondrial function. In this review we highlight recent advances in the understanding of the dystonia-plus syndromes and heredodegenerative dystonias.
Collapse
Affiliation(s)
- Catharina Casper
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | |
Collapse
|
17
|
Hulpiau P, Gul IS, van Roy F. New insights into the evolution of metazoan cadherins and catenins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:71-94. [PMID: 23481191 DOI: 10.1016/b978-0-12-394311-8.00004-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
E-Cadherin and β-catenin are the best studied representatives of the superfamilies of transmembrane cadherins and intracellular armadillo catenins, respectively. However, in over 600 million years of multicellular animal evolution, these two superfamilies have diversified remarkably both structurally and functionally. Although their basic building blocks, respectively, the cadherin repeat domain and the armadillo repeat domain, predate metazoans, the specific and complex domain compositions of the different family members and their functional roles in cell adhesion and signaling appear to be key features for the emergence of multicellular animal life. Basal animals such as placozoans and sponges have a limited number of distinct cadherins and catenins. The origin of vertebrates, in particular, coincided with a large increase in the number of cadherins and armadillo proteins, including modern "classical" cadherins, protocadherins, and plakophilins. Also, α-catenins increased. This chapter introduces the many different family members and describes the putative evolutionary relationships between them.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
18
|
Abdian PL, Caramelo JJ, Ausmees N, Zorreguieta A. RapA2 is a calcium-binding lectin composed of two highly conserved cadherin-like domains that specifically recognize Rhizobium leguminosarum acidic exopolysaccharides. J Biol Chem 2012; 288:2893-904. [PMID: 23235153 DOI: 10.1074/jbc.m112.411769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In silico analyses have revealed a conserved protein domain (CHDL) widely present in bacteria that has significant structural similarity to eukaryotic cadherins. A CHDL domain was shown to be present in RapA, a protein that is involved in autoaggregation of Rhizobium cells, biofilm formation, and adhesion to plant roots as shown by us and others. Structural similarity to cadherins suggested calcium-dependent oligomerization of CHDL domains as a mechanistic basis for RapA action. Here we show by circular dichroism spectroscopy, light scattering, isothermal titration calorimetry, and other methods that RapA2 from Rhizobium leguminosarum indeed exhibits a cadherin-like β-sheet conformation and that its proper folding and stability are dependent on the binding of one calcium ion per protein molecule. By further in silico analysis we also reveal that RapA2 consists of two CHDL domains and expand the range of CHDL-containing proteins in bacteria and archaea. However, light scattering assays at various concentrations of added calcium revealed that RapA2 formed neither homo-oligomers nor hetero-oligomers with RapB (a distinct CHDL protein), indicating that RapA2 does not mediate cellular interactions through a cadherin-like mechanism. Instead, we demonstrate that RapA2 interacts specifically with the acidic exopolysaccharides (EPSs) produced by R. leguminosarum in a calcium-dependent manner, sustaining a role of these proteins in the development of the biofilm matrix made of EPS. Because EPS binding by RapA2 can only be attributed to its two CHDL domains, we propose that RapA2 is a calcium-dependent lectin and that CHDL domains in various bacterial and archaeal proteins confer carbohydrate binding activity to these proteins.
Collapse
Affiliation(s)
- Patricia L Abdian
- Fundación Instituto Leloir, IIBBA Consejo Nacional de Investigaciones Científicas y Tecnológicas, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | | | | | | |
Collapse
|
19
|
Johnson RP, Kramer JM. C. elegans dystroglycan coordinates responsiveness of follower axons to dorsal/ventral and anterior/posterior guidance cues. Dev Neurobiol 2012; 72:1498-515. [PMID: 22275151 DOI: 10.1002/dneu.22011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/16/2011] [Accepted: 01/20/2012] [Indexed: 11/08/2022]
Abstract
Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C. elegans, formation of the right angle-shaped lumbar commissure connecting the lumbar and preanal ganglia is an example of pioneer/follower dynamics. We find that the dystroglycan ortholog DGN-1 mediates the fidelity of follower lumbar commissure axon extension along the pioneer axon route. In dgn-1 mutants, the axon of the pioneer PVQ neuron faithfully establishes the lumbar commissure, but axons of follower lumbar neurons, such as PVC, frequently bypass the lumbar commissure and extend along an oblique trajectory directly toward the preanal ganglion. In contrast, disruption of the UNC-6/netrin guidance pathway principally perturbs PVQ ventral guidance to pioneer the lumbar commissure. Loss of DGN-1 in unc-6 mutants has a quantitatively similar effect on follower axon guidance regardless of PVQ axon route, indicating that DGN-1 does not mediate follower/pioneer adhesion. Instead, DGN-1 appears to block premature responsiveness of follower axons to a preanal ganglion-directed guidance cue, which mediates ventral-to-anterior reorientation of lumbar commissure axons. Deletion analysis shows that only the most N-terminal DGN-1 domain is required for these activities. These studies suggest that dystroglycan modulation of growth cone responsiveness to conflicting guidance cues is important for restricting follower axon extension to the tracts laid down by pioneers.
Collapse
Affiliation(s)
- Robert P Johnson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
20
|
Anastasi G, Tomasello F, Di Mauro D, Cutroneo G, Favaloro A, Conti A, Ruggeri A, Rinaldi C, Trimarchi F. Expression of sarcoglycans in the human cerebral cortex: an immunohistochemical and molecular study. Cells Tissues Organs 2012; 196:470-80. [PMID: 22738885 DOI: 10.1159/000336842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
The sarcoglycan (SG) complex (SGC) is a subcomplex within the dystrophin-glycoprotein complex (DGC) and is composed of several transmembrane proteins (α, β, δ, γ, ε and ζ). The DGC supplies a transmembranous connection between the subsarcolemmal cytoskeleton networks and the basal lamina in order to protect the lipid bilayer and to provide a scaffold for signaling molecules in all muscle cells. In addition to its role in muscle tissue, dystrophin and some DGC components are expressed in neurons and glia. Very little is known about the SG subunits in the central nervous system (CNS) and some data suggested the presence of ε and ζ subunits only. In fact, mutations in the ε-SG gene cause myoclonus-dystonia, indicating its importance for brain function. To determine the presence and localization of SGC in the human cerebral cortex, we performed an investigation using immunofluorescence, immunoblotting and reverse transcriptase polymerase chain reaction. The results showed that all SG subunits are expressed in the human cerebral cortex, particularly in large neurons but also in astrocytes. These data suggest that the SG subcomplex may be involved in the organization of CNS synapses.
Collapse
Affiliation(s)
- Giuseppe Anastasi
- Department of Biomorphology and Biotechnologies, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
22
|
Neural maintenance roles for the matrix receptor dystroglycan and the nuclear anchorage complex in Caenorhabditis elegans. Genetics 2012; 190:1365-77. [PMID: 22298703 DOI: 10.1534/genetics.111.136184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies in Caenorhabditis elegans have revealed specific neural maintenance mechanisms that protect soma and neurites against mispositioning due to displacement stresses, such as muscle contraction. We report that C. elegans dystroglycan (DG) DGN-1 functions to maintain the position of lumbar neurons during late embryonic and larval development. In the absence of DGN-1 the cell bodies of multiple lumbar neuron classes are frequently displaced anterior of their normal positions. Early but not later embryonic panneural expression of DGN-1 rescues positional maintenance, suggesting that dystroglycan is required for establishment of a critical maintenance pathway that persists throughout later developmental stages. Lumbar neural maintenance requires only a membrane-tethered N-terminal domain of DGN-1 and may involve a novel extracellular partner for dystroglycan. A genetic screen for similar lumbar maintenance mutants revealed a role for the nesprin/SYNE family protein ANC-1 as well as for the extracellular protein DIG-1, previously implicated in lumbar neuron maintenance. The involvement of ANC-1 reveals a previously unknown role for nucleus-cytoskeleton interactions in neural maintenance. Genetic analysis indicates that lumbar neuron position is maintained in late embryos by parallel DGN-1/DIG-1 and ANC-1-dependent pathways, and in larvae by separate DGN-1 and ANC-1 pathways. The effect of muscle paralysis on late embryonic- or larval-stage maintenance defects in mutants indicates that lumbar neurons are subject to both muscle contraction-dependent and contraction-independent displacement stresses, and that different maintenance pathways may protect against specific types of displacement stress.
Collapse
|
23
|
Arco A, Favaloro A, Gioffrè M, Santoro G, Speciale F, Vermiglio G, Cutroneo G. Sarcoglycans in the Normal and Pathological Breast Tissue of Humans: An Immunohistochemical and Molecular Study. Cells Tissues Organs 2012; 195:550-62. [DOI: 10.1159/000329508] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2011] [Indexed: 11/19/2022] Open
|
24
|
Soheili T, Gicquel E, Poupiot J, N'Guyen L, Le Roy F, Bartoli M, Richard I. Rescue of sarcoglycan mutations by inhibition of endoplasmic reticulum quality control is associated with minimal structural modifications. Hum Mutat 2011; 33:429-39. [DOI: 10.1002/humu.21659] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/31/2011] [Indexed: 11/08/2022]
|
25
|
Yokoi F, Dang MT, Zhou T, Li Y. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models. Hum Mol Genet 2011; 21:916-25. [PMID: 22080833 DOI: 10.1093/hmg/ddr528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | | | | | | |
Collapse
|
26
|
Axl2 integrates polarity establishment, maintenance, and environmental stress response in the filamentous fungus Ashbya gossypii. EUKARYOTIC CELL 2011; 10:1679-93. [PMID: 21984708 DOI: 10.1128/ec.05183-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In budding yeast, new sites of polarity are chosen with each cell cycle and polarization is transient. In filamentous fungi, sites of polarity persist for extended periods of growth and new polarity sites can be established while existing sites are maintained. How the polarity establishment machinery functions in these distinct growth forms found in fungi is still not well understood. We have examined the function of Axl2, a transmembrane bud site selection protein discovered in Saccharomyces cerevisiae, in the filamentous fungus Ashbya gossypii. A. gossypii does not divide by budding and instead exhibits persistent highly polarized growth, and multiple axes of polarity coexist in one cell. A. gossypii axl2Δ (Agaxl2Δ) cells have wavy hyphae, bulbous tips, and a high frequency of branch initiations that fail to elongate, indicative of a polarity maintenance defect. Mutant colonies also have significantly lower radial growth and hyphal tip elongation speeds than wild-type colonies, and Agaxl2Δ hyphae have depolarized actin patches. Consistent with a function in polarity, AgAxl2 localizes to hyphal tips, branches, and septin rings. Unlike S. cerevisiae Axl2, AgAxl2 contains a Mid2 homology domain and may function to sense or respond to environmental stress. In support of this idea, hyphae lacking AgAxl2 also display hypersensitivity to heat, osmotic, and cell wall stresses. Axl2 serves to integrate polarity establishment, polarity maintenance, and environmental stress response for optimal polarized growth in A. gossypii.
Collapse
|
27
|
Waite A, De Rosa MC, Brancaccio A, Blake DJ. A gain-of-glycosylation mutation associated with myoclonus-dystonia syndrome affects trafficking and processing of mouse ε-sarcoglycan in the late secretory pathway. Hum Mutat 2011; 32:1246-58. [PMID: 21796726 DOI: 10.1002/humu.21561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/20/2011] [Indexed: 11/07/2022]
Abstract
Missense mutations in the SGCE gene encoding ε-sarcoglycan account for approximately 15% of SGCE-positive cases of myoclonus-dystonia syndrome (MDS) in humans. In this study, we show that while the majority of MDS-associated missense mutants modeled with a murine ε-sarcoglycan cDNA are substrates for endoplasmic reticulum-associated degradation, one mutant, M68T (analogous to human c.275T>C, p.M92T), located in the Ig-like domain of ε-sarcoglycan, results in a gain-of-glycosylation mutation producing a protein that is targeted to the plasma membrane, albeit at reduced levels compared to wild-type ε-sarcoglycan. Removal of the ectopic N-linked glycan failed to restore efficient plasma membrane targeting of M68T demonstrating that the substitution rather than the glycan was responsible for the trafficking defect of this mutant. M68T also colocalized with CD63-positive vesicles in the endosomal-lysosomal system and was found to be more susceptible to lysosomal proteolysis than wild-type ε-sarcoglycan. Finally, we demonstrate impaired ectodomain shedding of M68T, a process that occurs physiologically for ε-sarcoglycan resulting in the lysosomal trafficking of the intracellular C-terminal domain of the protein. Our findings show that functional analysis of rare missense mutations can provide a mechanistic insight into the pathogenesis of MDS and the physiological role of ε-sarcoglycan.
Collapse
Affiliation(s)
- Adrian Waite
- Department of Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
28
|
A second Ig-like domain identified in dystroglycan by molecular modelling and dynamics. J Mol Graph Model 2011; 29:1015-24. [PMID: 21605994 DOI: 10.1016/j.jmgm.2011.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 11/23/2022]
Abstract
Dystroglycan (DG) is a cell surface receptor which is composed of two subunits that interact noncovalently, namely α- and β-DG. In skeletal muscle, DG is the central component of the dystrophin-glycoprotein complex (DGC) that anchors the actin cytoskeleton to the extracellular matrix. To date only the three-dimensional structure of the N-terminal region of α-DG has been solved by X-ray crystallography. To expand such a structural analysis, a theoretical molecular model of the murine α-DG C-terminal region was built based on folding recognition/threading techniques. Although there is no a significant (<30%) sequence homology with the N-terminal region of α-DG, protein fold recognition methods found a significant resemblance to the α-DG N-terminal crystallographic structure. Our in silico structural prediction identified two subdomains in this region. Amino acid residues ∼ 500-600 of α-DG were predicted to adopt an immunoglobulin-like (Ig-like) β-sandwich fold. Such modeled domain includes the β-DG binding epitope of α-DG and, confirming our previous experimental results, suggests that the linear epitope (residues 550-565) assumes a β-strand conformation. The remaining segment of the α-DG C-terminal region (residues 601-653) is organized in a coil-helix-coil motif. A 20-ns molecular dynamics simulation in explicit water solvent provided support to the predicted Ig-like model structure. The identification of a second Ig-like domain in DG represents another important step towards a full structural and functional description of the α/β DG interface. Preliminary characterization of a novel recombinant peptide (505-600) encompassing this second Ig-like domain demonstrates that it is soluble and stable, further corroborating our in silico analysis.
Collapse
|
29
|
Yokoi F, Yang G, Li J, DeAndrade MP, Zhou T, Li Y. Earlier onset of motor deficits in mice with double mutations in Dyt1 and Sgce. J Biochem 2010; 148:459-66. [PMID: 20627944 DOI: 10.1093/jb/mvq078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DYT1 early-onset generalized torsion dystonia is an inherited movement disorder caused by mutations in DYT1 coding for torsinA with ∼30% penetrance. Most of the DYT1 dystonia patients exhibit symptoms during childhood and adolescence. On the other hand, DYT1 mutation carriers without symptoms during these periods mostly do not exhibit symptoms later in their life. Little is known about what controls the timing of the onset, a critical issue for DYT1 mutation carriers. DYT11 myoclonus-dystonia is caused by mutations in SGCE coding for ε-sarcoglycan. Two dystonia patients from a single family with double mutations in DYT1 and SGCE exhibited more severe symptoms. A recent study suggested that torsinA contributes to the quality control of ε-sarcoglycan. Here, we derived mice carrying mutations in both Dyt1 and Sgce and found that these double mutant mice showed earlier onset of motor deficits in beam-walking test. A novel monoclonal antibody against mouse ε-sarcoglycan was developed by using Sgce knock-out mice to avoid the immune tolerance. Western blot analysis suggested that functional deficits of torsinA and ε-sarcoglycan may independently cause motor deficits. Examining additional mutations in other dystonia genes may be beneficial to predict the onset in DYT1 mutation carriers.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Sarcoglycanopathies are a group of autosomal recessive muscle-wasting disorders caused by genetic defects in one of four cell membrane glycoproteins, alpha-, beta-, gamma- or delta-sarcoglycan. These four sarcoglycans form a subcomplex that is closely linked to the major dystrophin-associated protein complex, which is essential for membrane integrity during muscle contraction and provides a scaffold for important signalling molecules. Proper assembly, trafficking and targeting of the sarcoglycan complex is of vital importance, and mutations that severely perturb tetramer formation and localisation result in sarcoglycanopathy. Gene defects in one sarcoglycan cause the absence or reduced concentration of the other subunits. Most genetic defects generate mutated proteins that are degraded through the cell's quality control system; however, in many cases, conformational modifications do not affect the function of the protein, yet it is recognised as misfolded and prematurely degraded. Recent evidence shows that misfolded sarcoglycans could be rescued to the cell membrane by assisting their maturation along the ER secretory pathway. This review summarises the etiopathogenesis of sarcoglycanopathies and highlights the quality control machinery as a potential pharmacological target for therapy of these genetic disorders.
Collapse
Affiliation(s)
- Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, 35121
Padova, Italy
| | - Romeo Betto
- C.N.R. Institute of Neuroscience, Neuromuscular Biology and
Physiopathology, 35121 Padova, Italy
| |
Collapse
|
31
|
Sciandra F, Bozzi M, Morlacchi S, Galtieri A, Giardina B, Brancaccio A. Mutagenesis at the alpha-beta interface impairs the cleavage of the dystroglycan precursor. FEBS J 2009; 276:4933-45. [PMID: 19694806 DOI: 10.1111/j.1742-4658.2009.07196.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The interaction between a-dystroglycan (alpha-DG) and beta-dystroglycan (beta-DG), the two constituent subunits of the adhesion complex dystroglycan, is crucial in maintaining the integrity of the dystrophin-glycoprotein complex. The importance of the alpha-beta interface can be seen in the skeletal muscle of humans affected by severe conditions, such as Duchenne muscular dystrophy, where the alpha-beta interaction can be secondarily weakened or completely lost, causing sarcolemmal instability and muscular necrosis. The reciprocal binding epitopes of the two subunits reside within the C-terminus of alpha-DG and the ectodomain of beta-DG. As no ultimate structural data are yet available on the alpha-beta interface, site-directed mutagenesis was used to identify which specific amino acids are involved in the interaction. A previous alanine-scanning analysis of the recombinant beta-DG ectodomain allowed the identification of two phenylalanines important for alpha-DG binding, namely F692 and F718. In this article, similar experiments performed on the alpha-DG C-terminal domain pinpointed two residues, G563 and P565, as possible binding counterparts of the two beta-DG phenylalanines. In 293-Ebna cells, the introduction of alanine residues instead of F692, F718, G563 and P565 prevented the cleavage of the DG precursor that liberates alpha- and beta-DG, generating a pre-DG of about 160 kDa. This uncleaved pre-DG tetramutant is properly targeted at the cell membrane, is partially glycosylated and still binds laminin in pull-down assays. These data reinforce the notion that DG processing and its membrane targeting are two independent processes, and shed new light on the molecular mechanism that drives the maturation of the DG precursor.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2008; 41:349-69. [PMID: 18848899 DOI: 10.1016/j.biocel.2008.09.027] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 02/02/2023]
Abstract
This review deals with the large and pleiotropic superfamily of cadherins and its molecular evolution. We compiled literature data and an in-depth phylogenetic analysis of more than 350 members of this superfamily from about 30 species, covering several but not all representative branches within metazoan evolution. We analyzed the sequence homology between either ectodomains or cytoplasmic domains, and we reviewed protein structural data and genomic architecture. Cadherins and cadherin-related molecules are defined by having an ectodomain in which at least two consecutive calcium-binding cadherin repeats are present. There are usually 5 or 6 domains, but in some cases as many as 34. Additional protein modules in the ectodomains point at adaptive evolution. Despite the occurrence of several conserved motifs in subsets of cytoplasmic domains, these domains are even more diverse than ectodomains and most likely have evolved separately from the ectodomains. By fine tuning molecular classifications, we reduced the number of solitary superfamily members. We propose a cadherin major branch, subdivided in two families and 8 subfamilies, and a cadherin-related major branch, subdivided in four families and 11 subfamilies. Accordingly, we propose a more appropriate nomenclature. Although still fragmentary, our insight into the molecular evolution of these remarkable proteins is steadily growing. Consequently, we can start to propose testable hypotheses for structure-function relationships with impact on our models of molecular evolution. An emerging concept is that the ever evolving diversity of cadherin structures is serving dual and important functions: specific cell adhesion and intricate cell signaling.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | |
Collapse
|
33
|
Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet 2008; 4:e1000087. [PMID: 18516288 PMCID: PMC2386152 DOI: 10.1371/journal.pgen.1000087] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 05/01/2008] [Indexed: 01/02/2023] Open
Abstract
The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment. A segment of the global marine carbon cycle that has been poorly characterized is the mineralization of complex polysaccharides to carbon dioxide, a greenhouse gas. It also remained a mystery whether prokaryotes mineralize plant/algal cell walls and woody material in the oceans via carbohydrase systems and, if so, which organisms are involved. We have analyzed the complete genome sequence of the marine bacterium Saccharophagus degradans to better ascertain the potential role of prokaryotes in marine carbon transformation. We discovered that S. degradans, which is related to a number of other newly discovered marine strains, has an unprecedented quantity and diversity of carbohydrases, including the first characterized marine cellulose system. In fact, extensive analysis of the S. degradans genome sequence and functional followup experiments identified an extensive collection of complete enzyme systems that degrade more than 10 complex polysaccharides. These include agar, alginate, and chitin, altogether representing an extraordinary range of catabolic capability. Genomic analyses further demonstrated that the carbohydrases are unusually modular; sequence comparisons revealed that many of the functional modules were acquired by lateral transfer. These results suggest that the prokaryotic contribution to marine carbon fluxes is substantial and cannot be ignored in predictions of climate change.
Collapse
Affiliation(s)
- Ronald M. Weiner
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Marine and Estuarine Environmental Sciences Program, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (RMW); (SH)
| | - Larry E. Taylor
- Marine and Estuarine Environmental Sciences Program, University of Maryland, College Park, Maryland, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, Marseille, France
| | - Loren Hauser
- Oak Ridge National Laboratory (ORNL), Life Sciences Division, Oak Ridge, Tennessee, United States of America
| | - Miriam Land
- Oak Ridge National Laboratory (ORNL), Life Sciences Division, Oak Ridge, Tennessee, United States of America
| | - Pedro M. Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, Marseille, France
| | - Corinne Rancurel
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, Marseille, France
| | - Elizabeth H. Saunders
- Joint Genome Institute, Group B-5 Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Atkinson G. Longmire
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Haitao Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Edward A. Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Harry J. Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Frank Larimer
- Oak Ridge National Laboratory (ORNL), Life Sciences Division, Oak Ridge, Tennessee, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, University of Tennessee–Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Nathan A. Ekborg
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Paul M. Richardson
- DOE Joint Genome Institute, Production Genomics Facility, Walnut Creek, California, United States of America
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Steven Hutcheson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (RMW); (SH)
| |
Collapse
|
34
|
Akhavan A, Crivelli SN, Singh M, Lingappa VR, Muschler JL. SEA domain proteolysis determines the functional composition of dystroglycan. FASEB J 2007; 22:612-21. [PMID: 17905726 DOI: 10.1096/fj.07-8354com] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Post-translational modifications of the extracellular matrix receptor dystroglycan (DG) determine its functional state, and defects in these modifications are linked to muscular dystrophies and cancers. A prominent feature of DG biosynthesis is a precursor cleavage that segregates the ligand-binding and transmembrane domains into the noncovalently attached alpha- and beta-subunits. We investigate here the structural determinants and functional significance of this cleavage. We show that cleavage of DG elicits a conspicuous change in its ligand-binding activity. Mutations that obstruct this cleavage result in increased capacity to bind laminin, in part, due to enhanced glycosylation of alpha-DG. Reconstitution of DG cleavage in a cell-free expression system demonstrates that cleavage takes place in the endoplasmic reticulum, providing a suitable regulatory point for later processing events. Sequence and mutational analyses reveal that the cleavage occurs within a full SEA (sea urchin, enterokinase, agrin) module with traits matching those ascribed to autoproteolysis. Thus, cleavage of DG constitutes a control point for the modulation of its ligand-binding properties, with therapeutic implications for muscular dystrophies. We provide a structural model for the cleavage domain that is validated by experimental analysis and discuss this cleavage in the context of mucin protein and SEA domain evolution.
Collapse
Affiliation(s)
- Armin Akhavan
- California Pacific Medical Center Research Institute, 475 Brannan St., Ste. 220, San Francisco, CA 94107, USA
| | | | | | | | | |
Collapse
|
35
|
Gao XD, Sperber LM, Kane SA, Tong Z, Tong AHY, Boone C, Bi E. Sequential and distinct roles of the cadherin domain-containing protein Axl2p in cell polarization in yeast cell cycle. Mol Biol Cell 2007; 18:2542-60. [PMID: 17460121 PMCID: PMC1924817 DOI: 10.1091/mbc.e06-09-0822] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 04/10/2007] [Accepted: 04/18/2007] [Indexed: 11/11/2022] Open
Abstract
Polarization of cell growth along a defined axis is essential for the generation of cell and tissue polarity. In the budding yeast Saccharomyces cerevisiae, Axl2p plays an essential role in polarity-axis determination, or more specifically, axial budding in MATa or alpha cells. Axl2p is a type I membrane glycoprotein containing four cadherin-like motifs in its extracellular domain. However, it is not known when and how Axl2p functions together with other components of the axial landmark, such as Bud3p and Bud4p, to direct axial budding. Here, we show that the recruitment of Axl2p to the bud neck after S/G2 phase of the cell cycle depends on Bud3p and Bud4p. This recruitment is mediated via an interaction between Bud4p and the central region of the Axl2p cytoplasmic tail. This region of Axl2p, together with its N-terminal region and its transmembrane domain, is sufficient for axial budding. In addition, our work demonstrates a previously unappreciated role for Axl2p. Axl2p interacts with Cdc42p and other polarity-establishment proteins, and it regulates septin organization in late G1 independently of its role in polarity-axis determination. Together, these results suggest that Axl2p plays sequential and distinct roles in the regulation of cellular morphogenesis in yeast cell cycle.
Collapse
Affiliation(s)
- Xiang-Dong Gao
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Lauren M. Sperber
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Steven A. Kane
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Zongtian Tong
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Amy Hin Yan Tong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Erfei Bi
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| |
Collapse
|
36
|
Esapa CT, Waite A, Locke M, Benson MA, Kraus M, McIlhinney RAJ, Sillitoe RV, Beesley PW, Blake DJ. SGCE missense mutations that cause myoclonus-dystonia syndrome impair ε-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA. Hum Mol Genet 2007; 16:327-42. [PMID: 17200151 DOI: 10.1093/hmg/ddl472] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myoclonus-dystonia syndrome (MDS) is a genetically heterogeneous disorder characterized by myoclonic jerks often seen in combination with dystonia and psychiatric co-morbidities and epilepsy. Mutations in the gene encoding epsilon-sarcoglycan (SGCE) have been found in some patients with MDS. SGCE is a maternally imprinted gene with the disease being inherited in an autosomal dominant pattern with reduced penetrance upon maternal transmission. In the central nervous system, epsilon-sarcoglycan is widely expressed in neurons of the cerebral cortex, basal ganglia, hippocampus, cerebellum and the olfactory bulb. epsilon-Sarcoglycan is located at the plasma membrane in neurons, muscle and transfected cells. To determine the effect of MDS-associated mutations on the function of epsilon-sarcoglycan we examined the biosynthesis and trafficking of wild-type and mutant proteins in cultured cells. In contrast to the wild-type protein, disease-associated epsilon-sarcoglycan missense mutations (H36P, H36R and L172R) produce proteins that are undetectable at the cell surface and are retained intracellularly. These mutant proteins become polyubiquitinated and are rapidly degraded by the proteasome. Furthermore, torsinA, that is mutated in DYT1 dystonia, a rare type of primary dystonia, binds to and promotes the degradation of epsilon-sarcoglycan mutants when both proteins are co-expressed. These data demonstrate that some MDS-associated mutations in SGCE impair trafficking of the mutant protein to the plasma membrane and suggest a role for torsinA and the ubiquitin proteasome system in the recognition and processing of misfolded epsilon-sarcoglycan.
Collapse
Affiliation(s)
- Christopher T Esapa
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Romo-Yáñez J, Ceja V, Ilarraza-Lomelí R, Coral-Vázquez R, Velázquez F, Mornet D, Rendón A, Montañez C. Dp71ab/DAPs complex composition changes during the differentiation process in PC12 cells. J Cell Biochem 2007; 102:82-97. [PMID: 17390338 DOI: 10.1002/jcb.21281] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PC12 cells express different Dp71 isoforms originated from alternative splicing; one of them, Dp71ab lacks exons 71 and 78. To gain insight into the function of Dp71 isoforms we identified dystrophin associated proteins (DAPs) that associate in vivo with Dp71ab during nerve growth factor (NGF) induced differentiation of PC12 cells. DAPs expression was analyzed by RT-PCR, Western blot and indirect immunofluorescence, showing the presence of each mRNA and protein corresponding to alpha-, beta-, gamma-, delta-, and epsilon-sarcoglycans as well as zeta-sarcoglycan mRNA. Western blot analysis also revealed the expression of beta-dystroglycan, alpha1-syntrophin, alpha1-, and beta-dystrobrevins. We have established that Dp71ab forms a complex with beta-dystroglycan, alpha1-syntrophin, beta-dystrobrevin, and alpha-, beta- and gamma-sarcoglycans in undifferentiated PC12 cells. In differentiated PC12 cells, the complex composition changes since Dp71ab associates only with beta-dystroglycan, alpha1-syntrophin, beta-dystrobrevin, and delta-sarcoglycan. Interestingly, neuronal nitric oxide synthase associates with the Dp71ab/DAPs complex during NGF treatment, raising the possibility that Dp71ab may be involved in signal transduction events during neuronal differentiation.
Collapse
Affiliation(s)
- J Romo-Yáñez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Apartado Postal 14-740, C.P. 07000, Ciudad de México, México
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bozzi M, Sciandra F, Ferri L, Torreri P, Pavoni E, Petrucci TC, Giardina B, Brancaccio A. Concerted mutation of Phe residues belonging to the ?-dystroglycan ectodomain strongly inhibits the interaction with ?-dystroglycan in�vitro. FEBS J 2006; 273:4929-43. [PMID: 17018058 DOI: 10.1111/j.1742-4658.2006.05492.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dystroglycan adhesion complex consists of two noncovalently interacting proteins: alpha-dystroglycan, a peripheral extracellular subunit that is extensively glycosylated, and the transmembrane beta-dystroglycan, whose cytosolic tail interacts with dystrophin, thus linking the F-actin cytoskeleton to the extracellular matrix. Dystroglycan is thought to play a crucial role in the stability of the plasmalemma, and forms strong contacts between the extracellular matrix and the cytoskeleton in a wide variety of tissues. Abnormal membrane targeting of dystroglycan subunits and/or their aberrant post-translational modification are often associated with several pathologic conditions, ranging from neuromuscular disorders to carcinomas. A putative functional hotspot of dystroglycan is represented by its intersubunit surface, which is contributed by two amino acid stretches: approximately 30 amino acids of beta-dystroglycan (691-719), and approximately 15 amino acids of alpha-dystroglycan (550-565). Exploiting alanine scanning, we have produced a panel of site-directed mutants of our two consolidated recombinant peptides beta-dystroglycan (654-750), corresponding to the ectodomain of beta-dystroglycan, and alpha-dystroglycan (485-630), spanning the C-terminal domain of alpha-dystroglycan. By solid-phase binding assays and surface plasmon resonance, we have determined the binding affinities of mutated peptides in comparison to those of wild-type alpha-dystroglycan and beta-dystroglycan, and shown the crucial role of two beta-dystroglycan phenylalanines, namely Phe692 and Phe718, for the alpha-beta interaction. Substitution of the alpha-dystroglycan residues Trp551, Phe554 and Asn555 by Ala does not affect the interaction between dystroglycan subunits in vitro. As a preliminary analysis of the possible effects of the aforementioned mutations in vivo, detection through immunofluorescence and western blot of the two dystroglycan subunits was pursued in dystroglycan-transfected 293-Ebna cells.
Collapse
Affiliation(s)
- Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cao L, Yan X, Borysenko CW, Blair HC, Wu C, Yu L. CHDL: A cadherin-like domain in Proteobacteria and Cyanobacteria. FEMS Microbiol Lett 2005; 251:203-9. [PMID: 16143457 DOI: 10.1016/j.femsle.2005.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022] Open
Abstract
We identified a cadherin-like domain (CHDL) using computational analysis. The CHDL domain is mostly distributed in Proteobacteria and Cyanobacteria, although it is also found in some eukaryotic proteins. Prediction of three-dimensional protein folding indicated that the CHDL domain has an immunoglobulin beta-sandwich fold and belongs to the cadherin superfamily. The CHDL domain does not have LDRE and DxNDN motifs, which are conserved in the cadherin domain, but has three other motifs: PxAxxD, DxDxD and YT-V/I-S/T-D, which might contribute to forming a calcium-binding site. The identification of this cadherin-like domain indicates that the cadherin superfamily may exhibit wider sequence and structural diversity than previously appreciated. Domain architecture analysis revealed that the CHDL domain is also associated with other adhesion domains as well as enzyme domains. Based on computational analysis and previous experimental data, we predict that the CHDL domain has calcium-binding and also carbohydrate-binding activity.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Chan P, Gonzalez-Maeso J, Ruf F, Bishop DF, Hof PR, Sealfon SC. Epsilon-sarcoglycan immunoreactivity and mRNA expression in mouse brain. J Comp Neurol 2005; 482:50-73. [PMID: 15612018 DOI: 10.1002/cne.20377] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myoclonus dystonia (M-D) is a hereditary movement disorder caused by a maternally imprinted gene that is often associated with psychiatric symptoms. Most cases of M-D are believed to result from mutations of the epsilon-sarcoglycan protein. The neuroanatomical distribution of epsilon-sarcoglycan-like immunoreactivity in mouse was investigated by using an antiserum against the epsilon-sarcoglycan protein. The expression of epsilon-sarcoglycan mRNA was studied by a sensitive fluorescence in situ hybridization (FISH) method. Immunohistochemistry and FISH revealed a wide distribution of epsilon-sarcoglycan protein and mRNA throughout the mouse brain. High expression levels of epsilon-sarcoglycan mRNA and immunoreactivity were found in the mitral cell layer of the olfactory bulb, the Purkinje cell layer in cerebellum, and the monoaminergic neurons in the mouse midbrain. Immunohistochemistry revealed a similar distribution of epsilon-sarcoglycan protein. Double-labeling FISH showed colocalization of tyrosine hydroxylase and epsilon-sarcoglycan mRNAs within all the midbrain dopaminergic (DAergic) cell groups. By combining FISH with fluorescence immunohistochemistry, coexpression of epsilon-sarcoglycan mRNA and tryptophan hydroxylase immunoreactivity was found in the serotonergic (5-HTergic) neurons within the dorsal raphe nucleus. The distribution of epsilon-sarcoglycan in the mouse brain suggests that the symptom complex of M-D may be related to the effects of decreased epsilon-sarcoglycan activity on the development or function of monoaminergic neurons.
Collapse
Affiliation(s)
- Pokman Chan
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cell adhesion is a basic property of animal cells, but is also present in many other eukaryotes. Did cell adhesion systems arise independently in different eukaryotic groups, or do they share common origins? Recent results show that cell adhesion proteins related to cadherin, IgG-like CAM and C-type lectin are present both in sponges, the most distant animal branch, and in eukaryote groups outside the metazoan lineage, indicating that these forms of adhesion arose prior to animal evolution. Furthermore, proteins containing features of animal adhesion systems, such as Fas-1 and thrombospondin domains, are distributed throughout the eukaryotes and function in cell adhesion.
Collapse
Affiliation(s)
- Adrian Harwood
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT.
| | | |
Collapse
|
42
|
Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M. Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 2005; 32:563-76. [PMID: 15937871 DOI: 10.1002/mus.20349] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The original sarcoglycan (SG) complex has four subunits and comprises a subcomplex of the dystrophin-dystrophin-associated protein complex. Each SG gene has been shown to be responsible for limb-girdle muscular dystrophy, called sarcoglycanopathy (SGP). In this review, we detail the characteristics of the SG subunits, and the mechanism of the formation of the SG complex and various molecules associated with this complex. We discuss the molecular mechanisms of SGP based on studies mostly using SGP animal models. In addition, we describe other SG molecules, epsilon- and zeta-SGs, with special reference to their expression and roles in vascular smooth muscle, which are currently in dispute. We further consider the maternally imprinted nature of the epsilon-SG gene. Finally, we stress that the SG complex cannot work by itself and works in a larger complex system, called the transverse fixation system, which forms an array of molecules responsible for various muscular dystrophies.
Collapse
Affiliation(s)
- Eijiro Ozawa
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi-cho, Kodaira, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
43
|
SANDONà D, Gastaldello S, Martinello T, Betto R. Characterization of the ATP-hydrolysing activity of alpha-sarcoglycan. Biochem J 2004; 381:105-12. [PMID: 15032752 PMCID: PMC1133767 DOI: 10.1042/bj20031644] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 03/10/2004] [Accepted: 03/19/2004] [Indexed: 11/17/2022]
Abstract
Alpha-Sarcoglycan is a glycoprotein associated with the dystrophin complex at sarcolemma of skeletal and cardiac muscles. Gene defects in alpha-sarcoglycan lead to a severe muscular dystrophy whose molecular mechanisms are not yet clear. A first insight into the function of alpha-sarcoglycan was obtained by finding that it is an ATP-binding protein and that it probably confers ability to hydrolyse ATP to the purified dystrophin complex [Betto, Senter, Ceoldo, Tarricone, Biral and Salviati (1999) J. Biol. Chem. 274, 7907-7912]. In the present study, we present definitive evidence showing that alpha-sarcoglycan is an ATP-hydrolysing enzyme. The appearance of alpha-sarcoglycan protein expression was correlated with the increase in ecto-nucleotidase activity during differentiation of C2C12 cells. Approx. 25% of ecto-nucleotidase activity displayed by the C2C12 myotubes was inhibited by preincubating cells with an antibody specific for the ATP-binding motif of alpha-sarcoglycan. This demonstrates that alpha-sarcoglycan substantially contributes to total ecto-nucleotidase activity of C2C12 myotubes. To characterize further this activity, human embryonic kidney 293 cells were transfected with expression plasmids containing alpha-sarcoglycan cDNA. Transfected cells exhibited a significant increase in the ATP-hydrolysing activity that was abolished by the anti-alpha-sarcoglycan antibody. The enzyme had a substrate specificity for ATP and ADP, did not hydrolyse other triphosphonucleosides, and the affinity for ATP was in the low mM range. The ATPase activity strictly required the presence of both Mg2+ and Ca2+ and was completely inhibited by suramin and reactive blue-2. These results show that alpha-sarcoglycan is a Ca2+, Mg2+-ecto-ATPDase. The possible consequences of the absence of alpha-sarcoglycan activity in the pathogenesis of muscular dystrophy are discussed.
Collapse
Affiliation(s)
- Dorianna SANDONà
- *Department of Biomedical Sciences, University of Padova, Viale G. Colombo, 3, 35121 Padova, Italy
| | - Stefano Gastaldello
- *Department of Biomedical Sciences, University of Padova, Viale G. Colombo, 3, 35121 Padova, Italy
| | - Tiziana Martinello
- *Department of Biomedical Sciences, University of Padova, Viale G. Colombo, 3, 35121 Padova, Italy
| | - Romeo Betto
- †Muscle Biology and Physiopathology Laboratory, Consiglio Nazionale delle Ricerche Institute of Neuroscience, Viale G. Colombo, 3, 35121 Padova, Italy
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
44
|
Rigden DJ, Mello LV, Galperin MY. The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci 2004; 29:335-9. [PMID: 15236739 DOI: 10.1016/j.tibs.2004.05.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel J Rigden
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | | | |
Collapse
|
45
|
Bozic D, Sciandra F, Lamba D, Brancaccio A. The Structure of the N-terminal Region of Murine Skeletal Muscle α-Dystroglycan Discloses a Modular Architecture. J Biol Chem 2004; 279:44812-6. [PMID: 15326183 DOI: 10.1074/jbc.c400353200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dystroglycan (DG) is a cell surface receptor consisting of two subunits: alpha-dystroglycan, extracellular and highly glycosylated, and beta-dystroglycan, spanning the cell membrane. It is a pivotal member of the dystrophin-glycoprotein complex and is involved in a wide variety of important cellular processes such as the stabilization of the muscle fiber sarcolemma or the clustering of acetylcholine receptors. We report the 2.3-A resolution crystal structure of the murine skeletal muscle N-terminal alpha-DG region, which confirms the presence of two autonomous domains; the first finally identified as an Ig-like and the second resembling ribosomal RNA-binding proteins. Solid-phase laminin binding assays show the occurrence of protein-protein type of interactions involving the Ig-like domain of alpha-DG.
Collapse
Affiliation(s)
- Damir Bozic
- Biochemisches Institut der Universität Zürich, Zürich 8044, Switzerland.
| | | | | | | |
Collapse
|
46
|
Di Stasio E, Bizzarri P, Misiti F, Pavoni E, Brancaccio A. A fast and accurate procedure to collect and analyze unfolding fluorescence signal: the case of dystroglycan domains. Biophys Chem 2004; 107:197-211. [PMID: 14962600 DOI: 10.1016/j.bpc.2003.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 09/15/2003] [Accepted: 09/15/2003] [Indexed: 11/15/2022]
Abstract
Monitoring the fluorescence signal upon unfolding often represents a very effective method to rapidly retrieve the first preliminary structural information on a protein domain. The relationship between intrinsic fluorescence signals and unfolding of proteins are discussed, including several practical considerations for properly setting fluorescence experiments and the phenomenological equations required to analyze the spectra. In particular, a fast and accurate method which allows to minimize the deleterious effect of photobleaching is provided. A number of unfolding reactions relative to immunoglobulins (IgG and IgM) and to the different domains of the adhesion molecule dystroglycan are presented. Special attention is dedicated to a alpha-dystroglycan immunoglobulin-like domain showing a "reverse" behavior of the fluorescence signal as a function of the denaturing agent concentration.
Collapse
Affiliation(s)
- Enrico Di Stasio
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito no 1, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
47
|
Bjerkan TM, Bender CL, Ertesvåg H, Drabløs F, Fakhr MK, Preston LA, Skjak-Braek G, Valla S. The Pseudomonas syringae Genome Encodes a Combined Mannuronan C-5-epimerase and O-Acetylhydrolase, Which Strongly Enhances the Predicted Gel-forming Properties of Alginates. J Biol Chem 2004; 279:28920-9. [PMID: 15123694 DOI: 10.1074/jbc.m313293200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alginates are industrially important, linear copolymers of beta-d-mannuronic acid (M) and its C-5-epimer alpha-l-guluronic acid (G). The G residues originate from a postpolymerization reaction catalyzed by mannuronan C-5-epimerases (MEs), leading to extensive variability in M/G ratios and distribution patterns. Alginates containing long continuous stretches of G residues (G blocks) can form strong gels, a polymer type not found in alginate-producing bacteria belonging to the genus Pseudomonas. Here we show that the Pseudomonas syringae genome encodes a Ca(2+)-dependent ME (PsmE) that efficiently forms such G blocks in vitro. The deduced PsmE protein consists of 1610 amino acids and is a modular enzyme related to the previously characterized family of Azotobacter vinelandii ME (AlgE1-7). A- and R-like modules with sequence similarity to those in the AlgE enzymes are found in PsmE, and the A module of PsmE (PsmEA) was found to be sufficient for epimerization. Interestingly, an R module from AlgE4 stimulated Ps-mEA activity. PsmE contains two regions designated M and RTX, both presumably involved in the binding of Ca(2+). Bacterial alginates are partly acetylated, and such modified residues cannot be epimerized. Based on a detailed computer-assisted analysis and experimental studies another PsmE region, designated N, was found to encode an acetylhydrolase. By the combined action of N and A PsmE was capable of redesigning an extensively acetylated alginate low in G from a non gel-forming to a gel-forming state. Such a property has to our knowledge not been previously reported for an enzyme acting on a polysaccharide.
Collapse
Affiliation(s)
- Tonje M Bjerkan
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Current awareness. Yeast 2002; 19:903-8. [PMID: 12112243 DOI: 10.1002/yea.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|