1
|
de la Cova CC. The Highs and Lows of FBXW7: New Insights into Substrate Affinity in Disease and Development. Cells 2023; 12:2141. [PMID: 37681873 PMCID: PMC10486803 DOI: 10.3390/cells12172141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
FBXW7 is a critical regulator of cell cycle, cell signaling, and development. A highly conserved F-box protein and component of the SKP1-Cullin-F-box (SCF) complex, FBXW7 functions as a recognition subunit within a Cullin-RING E3 ubiquitin ligase responsible for ubiquitinating substrate proteins and targeting them for proteasome-mediated degradation. In human cells, FBXW7 promotes degradation of a large number of substrate proteins, including many that impact disease, such as NOTCH1, Cyclin E, MYC, and BRAF. A central focus for investigation has been to understand the molecular mechanisms that allow the exquisite substrate specificity exhibited by FBXW7. Recent work has produced a clearer understanding of how FBXW7 physically interacts with both high-affinity and low-affinity substrates. We review new findings that provide insights into the consequences of "hotspot" missense mutations of FBXW7 that are found in human cancers. Finally, we discuss how the FBXW7-substrate interaction, and the kinases responsible for substrate phosphorylation, contribute to patterned protein degradation in C. elegans development.
Collapse
Affiliation(s)
- Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
2
|
Kumasaruge I, Wen R, Wang L, Gao P, Peng G, Xiao W. Systematic characterization of Brassica napus UBC13 genes involved in DNA-damage response and K63-linked polyubiquitination. BMC PLANT BIOLOGY 2023; 23:24. [PMID: 36631796 PMCID: PMC9835285 DOI: 10.1186/s12870-023-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ubc13 is the only known ubiquitin conjugating enzyme (Ubc/E2) dedicated to promoting Lys (K)63-linked polyubiquitination, and this process requires a Ubc/E2 variant (UEV). Unlike conventional K48-linked polyubiquitination that targets proteins for degradation, K63-linked polyubiquitination, which is involved in several cellular processes, does not target proteins for degradation but alter their activities. RESULTS In this study we report the identification and functional characterization of 12 Brassica napus UBC13 genes. All the cloned UBC13 gene products were able to physically interact with AtUev1D, an Arabidopsis UEV, to form stable complexes that are capable of catalyzing K63-linked polyubiquitination in vitro. Furthermore, BnUBC13 genes functionally complemented the yeast ubc13 null mutant defects in spontaneous mutagenesis and DNA-damage responses, suggesting that BnUBC13s can replace yeast UBC13 in mediating K63-linked polyubiquitination and error-free DNA-damage tolerance. CONCLUSION Collectively, this study provides convincing data to support notions that B. napus Ubc13s promote K63-linked polyubiquitination and are probably required for abiotic stress response. Since plant Ubc13-UEV are also implicated in other developmental and stress responses, this systematic study sets a milestone in exploring roles of K63-linked polyubiquitination in this agriculturally important crop.
Collapse
Affiliation(s)
- Ivanthi Kumasaruge
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Lipu Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Peng Gao
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
3
|
Ferbeyre G. Aberrant signaling and senescence associated protein degradation. Exp Gerontol 2018; 107:50-54. [DOI: 10.1016/j.exger.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/17/2022]
|
4
|
Abstract
Protein ubiquitination is an important post-translational modification that regulates almost every aspect of cellular function and many cell signaling pathways in eukaryotes. Alterations of protein ubiquitination have been linked to many diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, immunological disorders and inflammatory diseases. To understand the roles of protein ubiquitination in these diseases and in cell signaling pathways, it is necessary to identify ubiquitinated proteins and their modification sites. However, owing to the nature of protein ubiquitination, it is challenging to identify the exact modification sites under physiological conditions. Recently, ubiquitin-remnant profiling, an immunoprecipitation approach, which uses monoclonal antibodies specifically to enrich for peptides derived from the ubiquitinated portion of proteins and mass spectrometry for their identification, was developed to determine ubiquitination events from cell lysates. This approach has now been widely applied to profile protein ubiquitination in several cellular contexts. In this review, we discuss mass-spectrometry-based methods for the identification of protein ubiquitination sites, analyze their advantages and disadvantages, and discuss their application for proteomic analysis of ubiquitination.
Collapse
Affiliation(s)
- Guoqiang Xu
- a Laboratory of Chemical Biology, Department of Pharmacology , College of Pharmaceutical Sciences, Soochow University , Suzhou , China
| | | |
Collapse
|
5
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
6
|
Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol 2013; 3:130031. [PMID: 23615029 PMCID: PMC3718334 DOI: 10.1098/rsob.130031] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm.
Collapse
Affiliation(s)
- Qiang Zhang
- Center for Dose Response Modeling, Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
7
|
Barberis M. Sic1 as a timer of Clb cyclin waves in the yeast cell cycle--design principle of not just an inhibitor. FEBS J 2012; 279:3386-410. [PMID: 22356687 DOI: 10.1111/j.1742-4658.2012.08542.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cellular systems biology aims to uncover design principles that describe the properties of biological networks through interaction of their components in space and time. The cell cycle is a complex system regulated by molecules that are integrated into functional modules to ensure genome integrity and faithful cell division. In budding yeast, cyclin-dependent kinases (Cdk1/Clb) drive cell cycle progression, being activated and inactivated in a precise temporal sequence. In this module, which we refer to as the 'Clb module', different Cdk1/Clb complexes are regulated to generate waves of Clb activity, a functional property of cell cycle control. The inhibitor Sic1 plays a critical role in the Clb module by binding to and blocking Cdk1/Clb activity, ultimately setting the timing of DNA replication and mitosis. Fifteen years of research subsequent to the identification of Sic1 have lead to the development of an integrative approach that addresses its role in regulating the Clb module. Sic1 is an intrinsically disordered protein and achieves its inhibitory function by cooperative binding, where different structural regions stretch on the Cdk1/Clb surface. Moreover, Sic1 promotes S phase entry, facilitating Cdk1/Clb5 nuclear transport, and therefore revealing a double function of inhibitor/activator that rationalizes a mechanism to prevent precocious DNA replication. Interestingly, the investigation of Clb temporal dynamics by mathematical modelling and experimental validation provides evidence that Sic1 acts as a timer to coordinate oscillations of Clb cyclin waves. Here we review these findings, focusing on the design principle underlying the Clb module, which highlights the role of Sic1 in regulating phase-specific Cdk1/Clb activities.
Collapse
Affiliation(s)
- Matteo Barberis
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Germany.
| |
Collapse
|
8
|
Awasthi A, Paul P, Kumar S, Verma SK, Prasad R, Dhaliwal HS. Abnormal endosperm development causes female sterility in rice insertional mutant OsAPC6. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:167-174. [PMID: 22195590 DOI: 10.1016/j.plantsci.2011.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 05/28/2023]
Abstract
A T-DNA insertional mutant OsAPC6 of rice, with gibberellic acid insensitivity and reduced height, had up to 45% reduced seed set. The insertion occurred on chromosome 3 of rice in the gene encoding one of the subunits of anaphase promoting complex/Cyclosome APC6. The primary mother cells of the mutant plants had normal meiosis, male gametophyte development and pollen viability. Confocal laser scanning microscopic (CLSM) studies of megagametophyte development showed abnormal mitotic divisions with reduced number or total absence of polar nuclei in about 30-35% megagametophytes of OsAPC6 mutant leading to failure of endosperm and hence embryo and seed development. Abnormal female gametophyte development, high sterility and segregation of tall and gibberellic acid sensitive plants without selectable marker Hpt in the selfed progeny of OsAPC6 mutant plants indicate that the mutant could be maintained in heterozygous condition. The abnormal mitotic divisions during megagametogenesis could be attributed to the inactivation of the APC6/CDC16 of anaphase promoting complex of rice responsible for cell cycle progression during megagametogenesis. Functional validation of the candidate gene through transcriptome profiling and RNAi is in progress.
Collapse
Affiliation(s)
- Anjali Awasthi
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667 India
| | | | | | | | | | | |
Collapse
|
9
|
Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv 2012; 30:108-30. [DOI: 10.1016/j.biotechadv.2011.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 12/23/2022]
|
10
|
Wen R, Li J, Xu X, Cui Z, Xiao W. Zebrafish Mms2 promotes K63-linked polyubiquitination and is involved in p53-mediated DNA-damage response. DNA Repair (Amst) 2011; 11:157-66. [PMID: 22055568 DOI: 10.1016/j.dnarep.2011.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The ubiquitin-conjugating enzyme Ubc13 together with a Ubc/E2 variant (Uev) form a stable complex and mediate K63-linked polyubiquitination, which is implicated in DNA damage tolerance in yeast and mammalian cells. The zebrafish Danio rerio is a lower vertebrate model organism widely used in the studies of vertebrate development and environmental stress responses. Here we report the identification and functional characterization of two zebrafish UEV genes, Drmms2 and Druev1. Their deduced amino acid sequences indicate that the two UEV genes evolved separately prior to the appearance of vertebrates. Both zebrafish Uevs form a stable complex with DrUbc13 as well as Ubc13s from yeast and human, and are able to promote Ubc13-mediated K63 polyubiquitination in vitro, suggesting that their biochemical activities are conserved. Despite the fact that both zebrafish UEV genes can functionally replace the yeast MMS2 DNA-damage tolerance function, they exhibited differences in DNA-damage response in zebrafish embryos: ablation of DrMms2, but not DrUev1, enhances both spontaneous and DNA-damage induced expression of p53 effectors p21 and mdm2. In addition, DrUbc13 specifically binds Drp53 in an in vitro assay. These observations collectively indicate that zebrafish Mms2 and Ubc13 form a stable complex, which is required for p53-mediated DNA-damage response.
Collapse
Affiliation(s)
- Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 2011; 108:14103-8. [PMID: 21825151 DOI: 10.1073/pnas.1108799108] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin mediated protein degradation is crucial for regulation of cell signaling and protein quality control. Poly(ADP-ribose) (PAR) is a cell-signaling molecule that mediates changes in protein function through binding at PAR binding sites. Here we characterize the PAR binding protein, Iduna, and show that it is a PAR-dependent ubiquitin E3 ligase. Iduna's E3 ligase activity requires PAR binding because point mutations at Y156A and R157A eliminate Iduna's PAR binding and Iduna's E3 ligase activity. Iduna's E3 ligase activity also requires an intact really interesting new gene (RING) domain because Iduna possessing point mutations at either H54A or C60A is devoid of ubiquitination activity. Tandem affinity purification reveals that Iduna binds to a number of proteins that are either PARsylated or bind PAR including PAR polymerase-1, 2 (PARP1, 2), nucleolin, DNA ligase III, KU70, KU86, XRCC1, and histones. PAR binding to Iduna activates its E3 ligase function, and PAR binding is required for Iduna ubiquitination of PARP1, XRCC1, DNA ligase III, and KU70. Iduna's PAR-dependent ubiquitination of PARP1 targets it for proteasomal degradation. Via PAR binding and ubiquitin E3 ligase activity, Iduna protects against cell death induced by the DNA damaging agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and rescues cells from G1 arrest and promotes cell survival after γ-irradiation. Moreover, Iduna facilitates DNA repair by reducing apurinic/apyrimidinic (AP) sites after MNNG exposure and facilitates DNA repair following γ-irradiation as assessed by the comet assay. These results define Iduna as a PAR-dependent E3 ligase that regulates cell survival and DNA repair.
Collapse
|
12
|
Mora-Santos M, Limón-Mortés MC, Giráldez S, Herrero-Ruiz J, Sáez C, Japón MÁ, Tortolero M, Romero F. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors. J Biol Chem 2011; 286:30047-56. [PMID: 21757741 DOI: 10.1074/jbc.m111.232330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.
Collapse
Affiliation(s)
- Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Jim Xiao ZX, Kaelin WG, Harper JW, Wei W. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 2010; 18:147-59. [PMID: 20708156 PMCID: PMC2923652 DOI: 10.1016/j.ccr.2010.06.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 01/20/2010] [Accepted: 06/28/2010] [Indexed: 01/10/2023]
Abstract
Mdm2 is the major negative regulator of the p53 pathway. Here, we report that Mdm2 is rapidly degraded after DNA damage and that phosphorylation of Mdm2 by casein kinase I (CKI) at multiple sites triggers its interaction with, and subsequent ubiquitination and destruction, by SCF(beta-TRCP). Inactivation of either beta-TRCP or CKI results in accumulation of Mdm2 and decreased p53 activity, and resistance to apoptosis induced by DNA damaging agents. Moreover, SCF(beta-TRCP)-dependent Mdm2 turnover also contributes to the control of repeated p53 pulses in response to persistent DNA damage. Our results provide insight into the signaling pathways controlling Mdm2 destruction and further suggest that compromised regulation of Mdm2 results in attenuated p53 activity, thereby facilitating tumor progression.
Collapse
Affiliation(s)
- Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Alan Tseng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Qing Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Xiaolu L. Ang
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Caroline Mock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Haoqiang Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Biochemistry, Boston University Medical Center, Boston, MA 02118
| | - Jayne M. Stommel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - John Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Zhi-Xiong Jim Xiao
- Department of Biochemistry, Boston University Medical Center, Boston, MA 02118
| | - William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
14
|
Humpal SE, Robinson DA, Krebs JE. Marks to stop the clock: histone modifications and checkpoint regulation in the DNA damage response. Biochem Cell Biol 2009; 87:243-53. [PMID: 19234538 DOI: 10.1139/o08-109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA damage from endogenous and exogenous sources occurs throughout the cell cycle. In response to this damage, cells have developed a series of biochemical responses that allow them to recover from DNA damage and prevent mutations from being passed on to daughter cells. An important part of the DNA damage response is the ability to halt the progression of the cell cycle, allowing damaged DNA to be repaired. The cell cycle can be halted at semi-discrete times, called checkpoints, which occur at critical stages during the cell cycle. Recent work in our laboratory and by others has shown the importance of post-translational histone modifications in the DNA damage response. While many histone modifications have been identified that appear to facilitate repair per se, there have been surprisingly few links between these modifications and DNA damage checkpoints. Here, we review how modifications to histone H2A serine 129 (HSA129) and histone H3 lysine 79 (H3K79) contribute to the stimulation of the G1/S checkpoint. We also discuss recent findings that conflict with the current model of the way methylated H3K79 interacts with the checkpoint adaptor protein Rad9.
Collapse
Affiliation(s)
- Stephen E Humpal
- Department of Biological Sciences, University of Alaska-Anchorage, 3211 Providence Drive, Anchorage, AK99508, USA
| | | | | |
Collapse
|
15
|
Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Engelhard VH, Willcox BE. Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat Immunol 2008; 9:1236-43. [PMID: 18836451 PMCID: PMC2596764 DOI: 10.1038/ni.1660] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 08/29/2008] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphopeptides on cancer cells provides an immunological signature of 'transformed self'. Here we demonstrate that phosphorylation can considerably increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide-HLA-A2 complexes. These identified a novel peptide-binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting binding to major histocompatibility complex molecules or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Fiyaz Mohammed
- Cancer Research UK Institute for Cancer Studies, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu G, Bernaudo S, Fu G, Lee DY, Yang BB, Peng C. Cyclin G2 is degraded through the ubiquitin-proteasome pathway and mediates the antiproliferative effect of activin receptor-like kinase 7. Mol Biol Cell 2008; 19:4968-79. [PMID: 18784254 DOI: 10.1091/mbc.e08-03-0259] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously reported that Nodal, a member of the TGF-beta superfamily, acts through activin receptor-like kinase 7 (ALK7) to inhibit ovarian cancer cell proliferation. To determine the mechanism underlying their effects, a cell cycle gene array was performed and cyclin G2 mRNA was found to be strongly up-regulated by Nodal and ALK7. To study the function and regulation of cyclin G2 in ovarian cancer cells, expression constructs were generated. We found that cyclin G2 protein level decreased rapidly after transfection, and this decrease was prevented by 26S proteasome inhibitors. Immunoprecipitation and pull-down studies showed that ubiquitin, Skp1, and Skp2 formed complexes with cyclin G2. Knockdown of Skp2 by siRNA increased, whereas overexpression of Skp2 decreased cyclin G2 levels. Nodal and ALK7 decreased the expression of Skp1 and Skp2 and increased cyclin G2 levels. Overexpression of cyclin G2 inhibited cell proliferation whereas cyclin G2-siRNA reduced the antiproliferative effect of Nodal and ALK7. Taken together, these findings provide strong evidence that cyclin G2 is degraded by the ubiquitin-proteasome pathway and that Skp2 plays a role in regulating cyclin G2 levels. Furthermore, our results also demonstrate that the antiproliferative effect of Nodal/ALK7 on ovarian cancer cells is in part mediated by cyclin G2.
Collapse
Affiliation(s)
- Guoxiong Xu
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|
17
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
18
|
Nishi Y, Rogers E, Robertson SM, Lin R. Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 2008; 135:687-97. [PMID: 18199581 DOI: 10.1242/dev.013425] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Polo kinases are known key regulators of cell divisions. Here we report a novel, non-cell division function for polo kinases in embryonic polarity of newly fertilized Caenorhabditis elegans embryos. We show that polo kinases, via their polo box domains, bind to and regulate the activity of two key polarity proteins, MEX-5 and MEX-6. These polo kinases are asymmetrically localized along the anteroposterior axis of newly fertilized C. elegans embryos in a pattern identical to that of MEX-5 and MEX-6. This asymmetric localization of polo kinases depends on MEX-5 and MEX-6, as well as genes regulating MEX-5 and MEX-6 asymmetry. We identify an amino acid of MEX-5, T(186), essential for polo binding and show that T(186) is important for MEX-5 function in vivo. We also show that MBK-2, a developmentally regulated DYRK2 kinase activated at meiosis II, primes T(186) for subsequent polo kinase-dependent phosphorylation. Prior phosphorylation of MEX-5 at T(186) greatly enhances phosphorylation of MEX-5 by polo kinases in vitro. Our results provide a mechanism by which MEX-5 and MEX-6 function is temporally regulated during the crucial oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
19
|
Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1–S transition. Oncogene 2007; 27:3176-85. [DOI: 10.1038/sj.onc.1210971] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Kass EM, Ahn J, Tanaka T, Freed-Pastor WA, Keezer S, Prives C. Stability of checkpoint kinase 2 is regulated via phosphorylation at serine 456. J Biol Chem 2007; 282:30311-21. [PMID: 17715138 DOI: 10.1074/jbc.m704642200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Checkpoint kinase 2 (Chk2), a DNA damage-activated protein kinase, is phosphorylated at Thr-68 by ataxia telangiectasia mutated leading to its activation by phosphorylation at several additional sites. Using mass spectrometry we identified a new Chk2 phosphorylation site at Ser-456. We show that phosphorylation of Ser-456 plays a role in the regulation of Chk2 stability particularly after DNA damage. Mutation of Ser-456 to alanine results in hyperubiquitination of Chk2 and dramatically reduced Chk2 stability. Furthermore, cells expressing S456A Chk2 show a reduction in the apoptotic response to DNA damage. These findings suggest a mechanism for stabilization of Chk2 in response to DNA damage via phosphorylation at Ser-456 and proteasome-dependent turnover of Chk2 protein via dephosphorylation of the same residue.
Collapse
Affiliation(s)
- Elizabeth M Kass
- Department of Biological Sciences, Columbia University, New York, New York, 10027 and Cell Signaling Technology, Inc., Danvers, Massachusetts 01923
| | | | | | | | | | | |
Collapse
|
21
|
Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T, Fujii-Kuriyama Y, Kato S. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 2007; 446:562-6. [PMID: 17392787 DOI: 10.1038/nature05683] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 02/16/2007] [Indexed: 12/12/2022]
Abstract
Fat-soluble ligands, including sex steroid hormones and environmental toxins, activate ligand-dependent DNA-sequence-specific transcriptional factors that transduce signals through target-gene-selective transcriptional regulation. However, the mechanisms of cellular perception of fat-soluble ligand signals through other target-selective systems remain unclear. The ubiquitin-proteasome system regulates selective protein degradation, in which the E3 ubiquitin ligases determine target specificity. Here we characterize a fat-soluble ligand-dependent ubiquitin ligase complex in human cell lines, in which dioxin receptor (AhR) is integrated as a component of a novel cullin 4B ubiquitin ligase complex, CUL4B(AhR). Complex assembly and ubiquitin ligase activity of CUL4B(AhR) in vitro and in vivo are dependent on the AhR ligand. In the CUL4B(AhR) complex, ligand-activated AhR acts as a substrate-specific adaptor component that targets sex steroid receptors for degradation. Thus, our findings uncover a function for AhR as an atypical component of the ubiquitin ligase complex and demonstrate a non-genomic signalling pathway in which fat-soluble ligands regulate target-protein-selective degradation through a ubiquitin ligase complex.
Collapse
Affiliation(s)
- Fumiaki Ohtake
- ERATO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu C, Mains PE. The C. elegans anaphase promoting complex and MBK-2/DYRK kinase act redundantly with CUL-3/MEL-26 ubiquitin ligase to degrade MEI-1 microtubule-severing activity after meiosis. Dev Biol 2007; 302:438-47. [PMID: 17069791 DOI: 10.1016/j.ydbio.2006.09.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/27/2006] [Accepted: 09/30/2006] [Indexed: 02/04/2023]
Abstract
The C. elegans embryo supports both meiotic and mitotic spindles, requiring careful regulation of components specific to each spindle type. The MEI-1/katanin microtubule-severing complex is required for meiosis but must be inactivated prior to mitosis. Downregulation of MEI-1 depends on MEL-26, which binds MEI-1, targeting it for degradation by the CUL-3 E3 ubiquitin ligase complex. Here we report that other protein degradation pathways, involving the anaphase promoting complex (APC) and the MBK-2/DYRK kinase, act in parallel to MEL-26 to inactivate MEI-1. At 25 degrees all mel-26(null) embryos die due to persistence of MEI-1 into mitosis, but at 15 degrees a significant portion of embryos hatch due to lower levels of ectopic MEI-1, suggesting that a redundant pathway also regulates MEI-1 degradation at 15 degrees. Previously the MBK-2/DYRK kinase was suggested to trigger MEL-26 mediated MEI-1 degradation. However, mbk-2 enhances the incomplete lethality of mel-26(null) at 15 degrees, arguing that MEL-26 acts in parallel to MBK-2. APC mutants behave similarly. In mel-26 embryos, ectopic MEI-1 remains until the onset of gastrulation, but in mbk-2; apc embryos, MEI-1 only persists through the first mitosis. We propose that mbk-2 and apc couple the initial phase of MEI-1 degradation to meiotic exit, after which MEL-26 completes MEI-1 degradation.
Collapse
Affiliation(s)
- Chenggang Lu
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
23
|
Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST, Engelhard VH, Hunt DF. Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci U S A 2006; 103:14889-94. [PMID: 17001009 PMCID: PMC1595446 DOI: 10.1073/pnas.0604045103] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alterations in phosphorylation of cellular proteins are a hallmark of malignant transformation. Degradation of these phosphoproteins could generate cancer-specific class I MHC-associated phosphopeptides recognizable by CD8+ T lymphocytes. In a comparative analysis of phosphopeptides presented on the surface of melanoma, ovarian carcinoma, and B lymphoblastoid cells, we find 5 of 36 that are restricted to the solid tumors and common to both cancers. Differential presentation of these peptides can result from differential phosphorylation of the source proteins. Recognition of the peptides on cancer cells by phosphopeptide-specific CD8+ T lymphocytes validates the potential of these phosphopeptides as immunotherapeutic targets.
Collapse
Affiliation(s)
- Angela L. Zarling
- Beirne B. Carter Immunology Center and Department of Microbiology and
| | - Joy M. Polefrone
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | - Anne M. Evans
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | - Leann M. Mikesh
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | | | - Sarah T. Lewis
- Beirne B. Carter Immunology Center and Department of Microbiology and
| | | | - Donald F. Hunt
- Department of Pathology, University of Virginia, Charlottesville, VA 22908; and
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Wysocki R, Javaheri A, Kristjansdottir K, Sha F, Kron SJ. CDK Pho85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage. Nat Struct Mol Biol 2006; 13:908-14. [PMID: 16964260 DOI: 10.1038/nsmb1139] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 08/03/2006] [Indexed: 11/08/2022]
Abstract
In budding yeast, DNA damage in G1 activates a Rad9-dependent checkpoint that targets the cyclin-dependent kinase (CDK) Cdc28 to delay G1 exit. After a transient arrest, cells may enter S phase before completing DNA repair. We used genetic analysis to identify the stress-responsive CDK Pho85, the cyclin Pho80 and the targeted transcription factors Pho4 and Swi5 as determinants of G1 checkpoint adaptation. Consistent with opposing roles for the Cdc28 inhibitor Sic1 in blocking G1 exit and Pho85 in targeting Sic1 for proteolysis, mutation of Sic1 curtails G1 checkpoint delay, whereas Pho85 inhibition after DNA damage promotes Sic1 stability. G1 checkpoint delay in mutants lacking both Sic1 and Pho4 is independent of Pho85 activity. These data establish a G1 checkpoint adaptation pathway where Pho85 mediates Pho4 downregulation and Sic1 degradation to release Cdc28 activity and promote onset of S phase.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, Wroclaw University, 51-148 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
25
|
Hernandez-Hernandez A, Ray P, Litos G, Ciro M, Ottolenghi S, Beug H, Boyes J. Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 2006; 25:3264-74. [PMID: 16858405 PMCID: PMC1523174 DOI: 10.1038/sj.emboj.7601228] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/14/2006] [Indexed: 11/09/2022] Open
Abstract
Regulation of transcription requires mechanisms to both activate and terminate transcription factor activity. GATA-1 is a key haemopoietic transcription factor whose activity is increased by acetylation. We show here that acetylated GATA-1 is targeted for degradation via the ubiquitin/proteasome pathway. Acetylation positively signals ubiquitination, suggesting that activation by acetylation simultaneously marks GATA-1 for degradation. Promoter-specific MAPK phosphorylation then cooperates with acetylation to execute protein loss. The requirement for both modifications is novel and suggests a way by which degradation of the active protein can be specifically regulated in response to external phosphorylation-mediated signalling. As many transcription factors are activated by acetylation, we suggest that this might be a general mechanism to control transcription factor activity.
Collapse
Affiliation(s)
| | - Pampa Ray
- Section of Gene Function and Regulation, Institute of Cancer Research, London, UK
| | - Gabi Litos
- Institute of Molecular Pathology, Vienna, Austria
| | - Marco Ciro
- Section of Gene Function and Regulation, Institute of Cancer Research, London, UK
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Hartmut Beug
- Institute of Molecular Pathology, Vienna, Austria
| | - Joan Boyes
- Section of Gene Function and Regulation, Institute of Cancer Research, London, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
26
|
Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 2006; 59:1-14. [PMID: 16600619 DOI: 10.1016/j.critrevonc.2006.02.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 12/31/2022] Open
Abstract
Most tumours arise through clonal selection and waves of expansion of a somatic cell that has acquired genetic alterations in essential genes either controlling cell death or cell proliferation. Furthermore, stability of the genome in cancer cells becomes precarious and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the integrity and number of chromosomes during cell division. Consequently, the archetypical transformation in tumour cells results in aneuploidy. Indeed, almost all tumour cells display a host of karyotype alterations, showing translocations, gains or losses of entire or large parts of chromosomes. Cancers do not necessarily have a higher mutation rate than normal tissue at the nucleotide level, unless they have gained a mutator phenotype through exposure to environmental stress, but rather exhibit gross chromosomal changes. Therefore, it appears that the main mechanism of tumour progression stems from chromosome instability. Chromosomal instability prevailing in tumour cells arises through several different pathways and is probably controlled by hundreds of genes. Therefore, this review describes the main factors that control chromosome stability through telomere maintenance, mechanisms of cell division, and the mitotic checkpoints that govern centrosome duplication and correct chromosome segregation.
Collapse
Affiliation(s)
- Charles Edward Jefford
- Biology of Aging Laboratory, Department of Geriatrics, University Hospitals Geneva HUG, Switzerland.
| | | |
Collapse
|
27
|
Gil-Bernabé AM, Romero F, Limón-Mortés MC, Tortolero M. Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol Cell Biol 2006; 26:4017-27. [PMID: 16705156 PMCID: PMC1489102 DOI: 10.1128/mcb.01904-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sister chromatid segregation is triggered at the metaphase-to-anaphase transition by the activation of the protease separase. For most of the cell cycle, separase activity is kept in check by its association with the inhibitory chaperone securin. Activation of separase occurs at anaphase onset, when securin is targeted for destruction by the anaphase-promoting complex or cyclosome E3 ubiquitin protein ligase. This results in the release of the cohesins from chromosomes, which in turn allows the segregation of sister chromatids to opposite spindle poles. Here we show that human securin (hSecurin) forms a complex with enzymatically active protein phosphatase 2A (PP2A) and that it is a substrate of the phosphatase, both in vitro and in vivo. Treatment of cells with okadaic acid, a potent inhibitor of PP2A, results in various hyperphosphorylated forms of hSecurin which are extremely unstable, due to the action of the Skp1/Cul1/F-box protein complex ubiquitin ligase. We propose that PP2A regulates hSecurin levels by counteracting its phosphorylation, which promotes its degradation. Misregulation of this process may lead to the formation of tumors, in which overproduction of hSecurin is often observed.
Collapse
Affiliation(s)
- Ana M Gil-Bernabé
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain
| | | | | | | |
Collapse
|
28
|
Abstract
The regulatory step in ubiquitin (Ub)-mediated protein degradation involves recognition and selection of the target substrate by an E3 Ub-ligase. E3 Ub-ligases evoke sophisticated mechanisms to regulate their activity temporally and spatially, including multiple post-translational modifications, combinatorial E3 Ub-ligase pathways, and subcellular localization. The phosphodegrons of many substrates incorporate the activities of multiple kinases, and ubiquitination only occurs when all necessary phosphorylation signals have been incorporated. In this manner, the precise timing of degradation can be controlled. Another way that the Ub pathway tightly controls the timing of proteolysis is with multiple E3 Ub-ligases acting upon a single target. Lastly, subcellular localization can either promote or prevent degradation by regulating the accessibility of kinases and E3 Ub-ligases. This review highlights recent findings that exemplify these emerging themes in the regulation of E3 Ub-ligase substrate recognition.
Collapse
Affiliation(s)
- Xiaolu L Ang
- Program in Biological and Biomedical Sciences, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Wilson DK, Cerna D, Chew E. The 1.1-Å Structure of the Spindle Checkpoint Protein Bub3p Reveals Functional Regions. J Biol Chem 2005; 280:13944-51. [PMID: 15644329 DOI: 10.1074/jbc.m412919200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bub3p is a protein that mediates the spindle checkpoint, a signaling pathway that ensures correct chromosome segregation in organisms ranging from yeast to mammals. It is known to function by co-localizing at least two other proteins, Mad3p and the protein kinase Bub1p, to the kinetochore of chromosomes that are not properly attached to mitotic spindles, ultimately resulting in cell cycle arrest. Prior sequence analysis suggested that Bub3p was composed of three or four WD repeats (also known as WD40 and beta-transducin repeats), short sequence motifs appearing in clusters of 4-16 found in many hundreds of eukaryotic proteins that fold into four-stranded blade-like sheets. We have determined the crystal structure of Bub3p from Saccharomyces cerevisiae at 1.1 angstrom and a crystallographic R-factor of 15.3%, revealing seven authentic repeats. In light of this, it appears that many of these repeats therefore remain hidden in sequences of other proteins. Analysis of random and site-directed mutants identifies the surface of Bub3p involved in checkpoint function through binding of Bub1p and Mad3p. Sequence alignments indicate that these surfaces are mostly conserved across Bub3 proteins from diverse species. A structural comparison with other proteins containing WD repeats suggests that these folds may bind partner proteins using similar surface areas on the top and sides of the propeller. The sequences composing these regions are the most divergent within the repeat across all WD repeat proteins and could potentially be modulated to provide specificity in partner protein binding without perturbation of the core structure.
Collapse
Affiliation(s)
- David K Wilson
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
30
|
Ye X, Nalepa G, Welcker M, Kessler BM, Spooner E, Qin J, Elledge SJ, Clurman BE, Harper JW. Recognition of Phosphodegron Motifs in Human Cyclin E by the SCFFbw7 Ubiquitin Ligase. J Biol Chem 2004; 279:50110-9. [PMID: 15364936 DOI: 10.1074/jbc.m409226200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Turnover of cyclin E is controlled by SCF(Fbw7). Three isoforms of Fbw7 are produced by alternative splicing. Whereas Fbw7alpha and -gamma are nuclear and the beta-isoform is cytoplasmic in 293T cells, all three isoforms induce cyclin E destruction in an in vivo degradation assay. Cyclin E is phosphorylated on Thr(62), Ser(88), Ser(372), Thr(380), and Ser(384) in vivo. To examine the roles of phosphorylation in cyclin E turnover, a series of alanine point mutations in each of these sites were analyzed for Fbw7-driven degradation. As expected, mutation of the previously characterized residue Thr(380) to alanine led to profound defects of cyclin E turnover, and largely abolished association with Fbw7. Mutation of Thr(62) to alanine led to a dramatic reduction in the extent of Thr(380) phosphorylation, suggesting an indirect effect of this mutation on cyclin E turnover. Nevertheless, phosphopeptides centered at Thr(62) associated with Fbw7, and residual binding of cyclin E(T380A) to Fbw7 was abolished upon mutation of Thr(62), suggesting a minor role for this residue in direct association with Fbw7. Mutation of Ser(384) to alanine also rendered cyclin E resistant to degradation by Fbw7, with the largest effects being observed with Fbw7beta. Cyclin E(S384A) associated more weakly with Fbw7alpha and -beta isoforms but was not defective in Thr(380) phosphorylation. Analysis of the localization of cyclin E mutant proteins indicated selective accumulation of cyclin E(S384A) in the nucleus, which may contribute to the inability of cytoplasmic Fbw7beta to promote turnover of this cyclin E mutant protein.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang B, Liu K, Lin FT, Lin WC. A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J Biol Chem 2004; 279:54140-52. [PMID: 15494392 PMCID: PMC3904440 DOI: 10.1074/jbc.m410493200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genotoxic stress triggers apoptosis through multiple signaling pathways. Recent studies have demonstrated a specific induction of E2F1 accumulation and a role for E2F1 in apoptosis upon DNA damage. Induction of E2F1 is mediated by phosphorylation events that are dependent on DNA damage-responsive protein kinases, such as ATM. How ATM phosphorylation leads to E2F1 stabilization is unknown. We now show that 14-3-3 tau, a phosphoserine-binding protein, mediates E2F1 stabilization. 14-3-3 tau interacts with ATM-phosphorylated E2F1 during DNA damage and inhibits E2F1 ubiquitination. Depletion of 14-3-3 tau or E2F1, but not E2F2 or E2F3, blocks adriamycin-induced apoptosis. 14-3-3 tau is also required for expression and induction of E2F1 apoptotic targets, such as p73, Apaf-1, and caspases, during DNA damage. Together, these data demonstrate a novel function for 14-3-3 tau in the regulation of E2F1 protein stability and apoptosis during DNA damage.
Collapse
Affiliation(s)
- Bing Wang
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300
| | - Kang Liu
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300
| | - Fang-Tsyr Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300
| | - Weei-Chin Lin
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300
- To whom correspondence should be addressed: 520A Wallace Tumor Institute, 1530 3rd Ave. S., Birmingham, AL 35294-3300. Tel.: 205-934-3979; Fax: 205-975-6911;
| |
Collapse
|
32
|
Liang M, Liang YY, Wrighton K, Ungermannova D, Wang XP, Brunicardi FC, Liu X, Feng XH, Lin X. Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2. Mol Cell Biol 2004; 24:7524-37. [PMID: 15314162 PMCID: PMC506984 DOI: 10.1128/mcb.24.17.7524-7537.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Smad4/DPC4, a common signal transducer in transforming growth factor beta (TGF-beta) signaling, is frequently inactivated in human cancer. Although the ubiquitin-proteasome pathway has been established as one mechanism of inactivating Smad4 in cancer, the specific ubiquitin E3 ligase for ubiquitination-mediated proteolysis of Smad4 cancer mutants remains unclear. In this report, we identified the SCFSkp2 complex as candidate Smad4-interacting proteins in an antibody array-based screen and further elucidated the functions of SCFSkp2 in mediating the metabolic instability of cancer-derived Smad4 mutants. We found that Skp2, the F-box component of SCFSkp2, physically interacted with Smad4 at the physiological levels. Several cancer-derived unstable mutants exhibited significantly increased binding to Skp2, which led to their increased ubiquitination and accelerated proteolysis. These results suggest an important role for the SCFSkp2 complex in switching cancer mutants of Smad4 to undergo polyubiquitination-dependent degradation.
Collapse
Affiliation(s)
- Min Liang
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Room 137D, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Listovsky T, Oren YS, Yudkovsky Y, Mahbubani HM, Weiss AM, Lebendiker M, Brandeis M. Mammalian Cdh1/Fzr mediates its own degradation. EMBO J 2004; 23:1619-26. [PMID: 15029244 PMCID: PMC391060 DOI: 10.1038/sj.emboj.7600149] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 02/09/2004] [Indexed: 11/08/2022] Open
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase mediates degradation of cell cycle proteins during mitosis and G1. Cdc20/Fzy and Cdh1/Fzr are substrate-specific APC/C activators. The level of mammalian Cdh1 is high in mitosis, but it is inactive and does not bind the APC/C. We show that when Cdh1 is active in G1 and G0, its levels are considerably lower and almost all of it is APC/C associated. We demonstrate that Cdh1 is subject to APC/C-specific degradation in G1 and G0, and that this degradation depends upon two RXXL-type destruction boxes. We further demonstrate that addition of Cdh1 to Xenopus interphase extracts, which have an inactive APC/C, activates it to degrade Cdh1. These observations indicate that Cdh1 mediates its own degradation by activating the APC/C to degrade itself. Elevated levels of Cdh1 are deleterious for cell cycle progression in various organisms. This auto-regulation of Cdh1 could thus play a role in ensuring that the level of Cdh1 is reduced during G1 and G0, allowing it to be switched off at the correct time.
Collapse
Affiliation(s)
- Tamar Listovsky
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yifat S Oren
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yana Yudkovsky
- Unit of Biochemistry, The Rappaport Institute of Medical Research, The Technion-Israel Institute for Technology, Haifa, Israel
| | - Hiro M Mahbubani
- Cancer Research-UK, Clare Hall Laboratories, South Mimms, Herts, UK
| | - Aryeh M Weiss
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Mario Lebendiker
- Protein Purification Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Brandeis
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Cancer Research-UK, Clare Hall Laboratories, South Mimms, Herts, UK
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Tel: +972 2 6585123; Fax: +972 2 6586975; E-mail:
| |
Collapse
|
34
|
Ke PY, Chang ZF. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Mol Cell Biol 2004; 24:514-26. [PMID: 14701726 PMCID: PMC343798 DOI: 10.1128/mcb.24.2.514-526.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of human thymidine kinase 1 (hTK1) is highly dependent on the growth states and cell cycle stages in mammalian cells. The amount of hTK1 is significantly increased in the cells during progression to the S and M phases, and becomes barely detectable in the early G(1) phase by a proteolytic control during mitotic exit. This tight regulation is important for providing the correct pool of dTTP for DNA synthesis at the right time in the cell cycle. Here, we investigated the mechanism responsible for mitotic degradation of hTK1. We show that hTK1 is degraded via a ubiquitin-proteasome pathway in mammalian cells and that anaphase-promoting complex/cyclosome (APC/C) activator Cdh1 is not only a necessary but also a rate-limiting factor for mitotic degradation of hTK1. Furthermore, a KEN box sequence located in the C-terminal region of hTK1 is required for its mitotic degradation and interaction capability with Cdh1. By in vitro ubiquitinylation assays, we demonstrated that hTK1 is targeted for degradation by the APC/C-Cdh1 ubiquitin ligase dependent on this KEN box motif. Taken together, we concluded that activation of the APC/C-Cdh1 complex during mitotic exit controls timing of hTK1 destruction, thus effectively minimizing dTTP formation from the salvage pathway in the early G(1) phase of the cell cycle in mammalian cells.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, No. 1, Section 1 Jen-Ai Road, Taipei 100, Taiwan, Republic of China
| | | |
Collapse
|
35
|
Arnaud L, Ballif BA, Cooper JA. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol Cell Biol 2004; 23:9293-302. [PMID: 14645539 PMCID: PMC309695 DOI: 10.1128/mcb.23.24.9293-9302.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.
Collapse
Affiliation(s)
- Lionel Arnaud
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
36
|
Abstract
Treatment of malignant non-Hodgkin lymphomas (NHL) in the 21st century has been revolutionized by novel biological agents offering targeted approaches in addition to radio-chemotherapy. Monoclonal antibodies (MoAbs) against lymphatic surface antigens have been effective as monotherapeutic agents, and have already shown their superiority to conventional strategies when combined with chemotherapy. Radioimmunoconjugates are more effective than unlabelled antibodies. Specific inhibitors of neoangiogenesis as well as intracellular signal transduction pathways and antiapoptotic mechanisms have shown their efficacy in phase II studies. Long-term improvement in the setting of minimal residual disease has been observed after vaccination against surface antigens and non-myeloablative allogeneic stem cell transplantation is effective in controlling lymphoma growth. Novel specific antigens are currently identified using expression profiling of lymphomas. In the near future, combinations of biological agents will challenge conventional therapy. These exciting new strategies will improve the success rate in aggressive NHLs and may even challenge the paradigm of incurability of indolent lymphomas.
Collapse
MESH Headings
- Alemtuzumab
- Angiogenesis Inhibitors/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Monoclonal, Murine-Derived
- Antibodies, Neoplasm/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Boronic Acids/therapeutic use
- Bortezomib
- Cancer Vaccines/administration & dosage
- Clinical Trials as Topic
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Cyclophosphamide/therapeutic use
- Disease-Free Survival
- Doxorubicin/therapeutic use
- Forecasting
- Genetic Therapy
- Humans
- Immunoconjugates
- Immunotherapy
- Lymphoma, B-Cell/drug therapy
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/mortality
- Lymphoma, Non-Hodgkin/radiotherapy
- Lymphoma, Non-Hodgkin/therapy
- Prednisone/therapeutic use
- Protease Inhibitors/therapeutic use
- Proteomics
- Pyrazines/therapeutic use
- Radioimmunotherapy
- Randomized Controlled Trials as Topic
- Rituximab
- Signal Transduction/drug effects
- Survival Analysis
- Thalidomide/therapeutic use
- Time Factors
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- Ulrich Jäger
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Tang GQ, Hardin SC, Dewey R, Huber SC. A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:77-93. [PMID: 12662311 DOI: 10.1046/j.1365-313x.2003.01711.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cytosolic pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) is an important glycolytic enzyme, but the post-translational regulation of this enzyme is poorly understood. Sequence analysis of the soybean seed enzyme suggested the potential for two phosphorylation sites: site-1 (FVRKGS220DLVN) and site-2 (VLTRGGS407TAKL). Sequence- and phosphorylation state-specific antipeptide antibodies established that cytosolic pyruvate kinase (PyrKinc) is phosphorylated at both sites in vivo. However, by SDS-PAGE, the phosphorylated polypeptides were found to be smaller (20-51 kDa) than the full length (55 kDa). Biochemical separations of seed proteins by size exclusion chromatography and sucrose-density gradient centrifugation revealed that the phosphorylated polypeptides were associated with 26S proteasomes. The 26S proteasome particle in developing seeds was determined to be of approximately 1900 kDa. In vitro, the 26S proteasome degraded associated PyrKinc polypeptides, and this was blocked by proteasome-specific inhibitors such as MG132 and NLVS. By immunoprecipitation, we found that some part of the phosphorylated PyrKinc was conjugated to ubiquitin and shifted to high molecular mass forms in vivo. Moreover, recombinant wild-type PyrKinc was ubiquitinated in vitro to a much greater extent than the S220A and S407A mutant proteins, suggesting a link between phosphorylation and ubiquitination. In addition, during seed development, a progressive accumulation of a C-terminally truncated polypeptide of approximately 51 kDa was observed that was in parallel with a loss of the full-length 55 kDa polypeptide. Interestingly, the C-terminal 51 kDa truncation showed not only pyruvate kinase activity but also activation by aspartate. Collectively, the results suggest that there are two pathways for PyrKinc modification at the post-translational level. One involves partial C-terminal truncation to generate a 51 kDa pyruvate kinase subunit which might have altered regulatory properties and the other involves phosphorylation and ubiquitin conjugation that targets the protein to the 26S proteasome for complete degradation.
Collapse
Affiliation(s)
- Guo-Qing Tang
- US Department of Agriculture, Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7631, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Advances in molecular biology now permit complex biological systems to be tracked at an exquisite level of detail. The information flow is so great, however, that using intuition alone to draw connections is unrealistic. Thus, the need to integrate mathematical biology with experimental biology is greater than ever. To achieve this integration, obstacles that have traditionally prevented effective communication between theoreticians and experimentalists must be overcome, so that experimentalists learn the language of mathematics and dynamical modeling and theorists learn the language of biology. Fifty years ago Alan Hodgkin and Andrew Huxley published their quantitative model of the nerve action potential; in the same year, Alan Turing published his work on pattern formation in activator-inhibitor systems. These classic studies illustrate two ends of the spectrum in mathematical biology: the detailed model approach and the minimal model approach. When combined, they are highly synergistic in analyzing the mechanisms underlying the behavior of complex biological systems. Their effective integration will be essential for unraveling the physical basis of the mysteries of life.
Collapse
Affiliation(s)
- James N Weiss
- The UCLA Cardiovascular Research Laboratory, and Department of Medicine (Cardiology), UCLA School of Medicine, Los Angeles, California 90095-1760, USA.
| | | | | |
Collapse
|
39
|
Oughtred R, Bedard N, Adegoke OAJ, Morales CR, Trasler J, Rajapurohitam V, Wing SS. Characterization of rat100, a 300-kilodalton ubiquitin-protein ligase induced in germ cells of the rat testis and similar to the Drosophila hyperplastic discs gene. Endocrinology 2002; 143:3740-7. [PMID: 12239083 DOI: 10.1210/en.2002-220262] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conjugation of ubiquitin to proteins is activated during spermatogenesis. Ubiquitination is mediated by ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (UBCs or E2s), and ubiquitin protein ligases (E3s). Since we previously showed that the activated ubiquitination is UBC4 dependent, we characterized Rat100, a UBC4-dependent E3 expressed in the testis. Analysis of expressed sequence tag sequences and immunoblotting showed that Rat100 is actually a 300-kDa protein expressed mainly in the brain and testis and is similar to the human E3 identified by differential display (EDD) protein and the Drosophila hyperplastic discs gene, mutants of which cause a defect in spermatogenesis. Rat100 is induced during postnatal development of the rat testis, peaking at d 25. It is localized only in germ cells and is highly expressed in spermatocytes, moderately in round and slightly in elongating spermatids. In contrast to UBC4 whose removal from a testis extract abrogates much of the conjugation activity, immmunodepletion of Rat100 from the extracts had little effect. Rat100 therefore has a limited subset of substrates, some of which appear associated with the E3 as the immunoprecipitate containing Rat100 supported incorporation of (125)I-ubiquitin into high molecular weight proteins. Thus, Rat100 is the homolog of human EDD and likely of Drosophila hyperplastic discs. This homology, together with our results, suggests that induction of this E3 results in ubiquitination of specific substrates, some of which are important in male germ cell development.
Collapse
Affiliation(s)
- Rose Oughtred
- Department of Medicine, McGill University, Montréal, Québec, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|
40
|
Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF. Dual mode of degradation of Cdc25 A phosphatase. EMBO J 2002; 21:4875-84. [PMID: 12234927 PMCID: PMC126287 DOI: 10.1093/emboj/cdf491] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Cdc25 dual-specificity phosphatases control progression through the eukaryotic cell division cycle by activating cyclin-dependent kinases. Cdc25 A regulates entry into S-phase by dephosphorylating Cdk2, it cooperates with activated oncogenes in inducing transformation and is overexpressed in several human tumors. DNA damage or DNA replication blocks induce phosphorylation of Cdc25 A and its subsequent degradation via the ubiquitin-proteasome pathway. Here we have investigated the regulation of Cdc25 A in the cell cycle. We found that Cdc25 A degradation during mitotic exit and in early G(1) is mediated by the anaphase-promoting complex or cyclosome (APC/C)(Cdh1) ligase, and that a KEN-box motif in the N-terminus of the protein is required for its targeted degradation. Interestingly, the KEN-box mutated protein remains unstable in interphase and upon ionizing radiation exposure. Moreover, SCF (Skp1/Cullin/F-box) inactivation using an interfering Cul1 mutant accumulates and stabilizes Cdc25 A. The presence of Cul1 and Skp1 in Cdc25 A immunocomplexes suggests a direct involvement of SCF in Cdc25 A degradation during interphase. We propose that a dual mechanism of regulated degradation allows for fine tuning of Cdc25 A abundance in response to cell environment.
Collapse
Affiliation(s)
- Maddalena Donzelli
- European Institute of Oncology, 435 Via Ripamonti, I-20141 Milan, Italy,
Unit of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel and Department of Pathology, MSB 599, New York University School of Medicine and NYU Cancer Institute, 550 First Avenue, New York, NY 10016, USA Corresponding author e-mail:
| | | | - Dvora Ganoth
- European Institute of Oncology, 435 Via Ripamonti, I-20141 Milan, Italy,
Unit of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel and Department of Pathology, MSB 599, New York University School of Medicine and NYU Cancer Institute, 550 First Avenue, New York, NY 10016, USA Corresponding author e-mail:
| | - Avram Hershko
- European Institute of Oncology, 435 Via Ripamonti, I-20141 Milan, Italy,
Unit of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel and Department of Pathology, MSB 599, New York University School of Medicine and NYU Cancer Institute, 550 First Avenue, New York, NY 10016, USA Corresponding author e-mail:
| | - Michele Pagano
- European Institute of Oncology, 435 Via Ripamonti, I-20141 Milan, Italy,
Unit of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel and Department of Pathology, MSB 599, New York University School of Medicine and NYU Cancer Institute, 550 First Avenue, New York, NY 10016, USA Corresponding author e-mail:
| | | |
Collapse
|
41
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|