1
|
Ragunathan J, R U KN, Ashraf S, Nakkeeran S, Nallusamy S, Mahendra K, Raish M. Nonanol, an Induced Biomolecule Produced by Bacillus atrophaeus NMB01 During Interaction With Phytophthora infestans Can be Explored as a Novel Formulation for the Management of Late Blight of Potatoes. J Basic Microbiol 2025:e70033. [PMID: 40235205 DOI: 10.1002/jobm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/17/2025]
Abstract
Phytophthora infestans, the pathogen responsible for late blight, continues to pose a significant risk to worldwide potato cultivation, including its historical impact during the Irish Potato Famine. Traditional management relies heavily on synthetic fungicides, but their prolonged use has led to fungicide resistance and environmental concerns. This study examines the potential of the bacterial endophyte Bacillus atrophaeus NMB01 as a biocontrol agent against P. infestans. Six biomolecules produced by B. atrophaeus NMB01 were docked against 15 P. infestans protein targets, with 1-nonanol, glafenine hydrochloride, and mucic acid showing high binding affinity. Wet lab assays confirmed that 1-nonanol inhibited P. infestans mycelial growth by 78% at 2 ppm. Molecular dynamics simulations validated the stability of these interactions. A tri-trophic interaction study identified additional volatile and non-volatile organic compounds (VOCs/NVOCs), with minocycline and doxazosin exhibiting strong binding across all targets. Transcriptome analysis of P. infestans exposed to 1-nonanol revealed differential gene expression, with upregulated genes linked to stress responses and downregulated genes, such as TAR1, cysteine synthase, and glutathione transferase, presenting novel antifungal targets. This study highlights 1-nonanol as a promising eco-friendly alternative to conventional fungicides, offering a sustainable solution for managing late blight and advancing potato cultivation resilience.
Collapse
Affiliation(s)
- Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Krishna Nayana R U
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Suhail Ashraf
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sevugapperumal Nakkeeran
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kadiri Mahendra
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Cabral-de-Mello DC, Palacios-Gimenez OM. Repetitive DNAs: the 'invisible' regulators of insect adaptation and speciation. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101295. [PMID: 39521343 DOI: 10.1016/j.cois.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Like other eukaryotes, insect genomes contain a large portion of repetitive sequences, particularly transposable elements and satellite DNAs. This review highlights key studies on repetitive DNAs and examines their structural, functional, and evolutionary impact on insect genomes. Repetitive sequences promote genetic diversification through mutations and large-scale rearrangements, playing a crucial role in shaping genomic architecture, aiding organismal adaptation, and driving speciation. We also explore the influence of repeats in genome size variation and species incompatibilities, along with their contribution to adaptive phenotypes and gene regulation. Studying repetitive DNA in insects not only provides insights into basic genomic features but also offers valuable information for conservation strategies, pest control, and advancements in genetics, ecology, and evolutionary biology.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP - São Paulo State University, Rio Claro, São Paulo 13506-900, Brazil.
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden; Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
3
|
Li J, Kang X, Zhu G, Zhao Z, Chen S, Guo Y, Shen X, Shao J, Jiang F, Li J, Nan G, Xu H, Xia H. Association of Polymorphism in Locus of rs274503 ( ZBED5/ GALNT18) with the Risk of Idiopathic Clubfoot in Chinese Children: An 11-Center Case-Control Study. Genet Test Mol Biomarkers 2024; 28:461-466. [PMID: 39652342 DOI: 10.1089/gtmb.2023.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Background: Idiopathic clubfoot (IC) can be corrected initially using the Ponseti method, but still there is a high recurrence rate. The etiology of IC may include many undetermined genetic and environmental factors. Single nucleotide polymorphism of rs274503 in ZBED5/GALNT18 has been found to be associated with IC in Caucasian children. Therefore, we decided to investigate the association between this polymorphism and the risk of IC in the Chinese population. Methods: We conducted an 11-center case-control study of 516 patients with IC and 661 IC-free children. The rs274503 (A>G) polymorphism was genotyped using TaqMan. Odds ratios (ORs) and adjusted ORs, as well as 95% confidence intervals (CIs) and adjusted 95% CIs, were calculated to explore the association between rs274503 polymorphism and IC risk. Results: G of rs274503 was found to be associated with increased IC risk (AG vs. AA: adjusted OR = 1.40, 95% CI = 1.03-1.92, p = 0.0327; and GG/AG vs. AA: adjusted OR = 1.38, 95% CI = 1.02-1.87, p = 0.0357) after adjusting for age and sex. Furthermore, the risk effect of rs274503 GG/AG with IC was observed in patients with bilateral feet (adjusted OR = 1.68, 95% CI = 1.12-2.54, p = 0.0133), while AA in nonrelapsed groups (OR = 0.70, 95% CI = 0.53-0.92, p = 0.0095) in the stratified analysis. However, the association was not significant in the recessive model of G (GG vs. AA/AG: adjusted OR = 1.06, 95% CI = 0.44-2.58, p = 0.8906). Conclusions: The rs274503 polymorphism is associated with the risk of clubfoot occurrence. G of rs274503 appeared to be a risk factor of IC as it may increase the bilateral case rate. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Jingchun Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaopeng Kang
- Department of Pediatric Orthopedics, Kunming Children's Hospital, Kunming, China
| | - Guanghui Zhu
- Department of Pediatric Orthopedics, Hunan Children's Hospital, Changsha, China
| | - Zhanbo Zhao
- Department of the First Orthopedics, Shenzhen Children's Hospital, Shenzhen, China
| | - Shunyou Chen
- Department of Pediatric Orthopedics, Fuzhou second Hospital of Xiamen University, Fuzhou, China
| | - Yueming Guo
- Department of Pediatric Orthopedics, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Xiantao Shen
- Department of Pediatric Orthopedics, Wuhan Medical & Health Care Center for Women and Children, Wuhan, China
| | - Jingfan Shao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Jiang
- Department of Pediatric Orthopedics, Dalian Children's Hospital of Dalian Medical University, Dalian, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxin Nan
- Orthopedic Center of Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Hongwen Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhang W, Liao S, Zhang J, Sun H, Li S, Zhang H, Gong G, Shen H, Xu Y. Recurrent excision of a hAT-like transposable element in CmAPRR2 leads to the "shooting star" melon phenotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1206-1220. [PMID: 39348528 DOI: 10.1111/tpj.17048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
The external appearance of fruit commodities is an essential trait that has profound effects on consumer preferences. A natural melon variety, characterized by an uneven and patchy arrangement of dark green streaks and spots on the white-skinned rind, resembles shooting stars streaking across the sky; thus, this variety is called "Shooting Star" (SS). To investigate the mechanism underlying the SS melon rind pattern, we initially discovered that the variegated dark green color results from chlorophyll accumulation on the white skin. We then constructed a segregation population by crossing a SS inbred line with a white rind (WR) inbred line and used bulk segregant analysis (BSA) revealed that the SS phenotype is controlled by a single dominant gene, CmAPRR2, which has been previously confirmed to determine dark green coloration. Further genomic analysis revealed a hAT-like transposable element (TE) inserted in CmAPRR2. This TE in CmAPRR2 is recurrently excised from rind tissues, activating the expression of CmAPRR2. This activation promotes the accumulation of chlorophyll, leading to the variegated dark green color on the rind, and ultimately resulting in the SS rind phenotype. Therefore, we propose that the SS phenotype results from the recurrent excision of the hAT-like TE in CmAPRR2.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Shengjin Liao
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Jie Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Honghe Sun
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Shaofang Li
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Haiying Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Guoyi Gong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yong Xu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| |
Collapse
|
5
|
Wu Y, Yang M, Wu SB, Luo PQ, Zhang C, Ruan CS, Cui W, Zhao QR, Chen LX, Meng JJ, Song Q, Zhang WJ, Pei QQ, Li F, Zeng T, Du HX, Xu LX, Zhang W, Zhang XX, Luo XH. Zinc finger BED-type containing 3 promotes hepatic steatosis by interacting with polypyrimidine tract-binding protein 1. Diabetologia 2024; 67:2346-2366. [PMID: 39037604 DOI: 10.1007/s00125-024-06224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD. METHODS Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c). RESULTS In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing. CONCLUSIONS/INTERPRETATION This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD. DATA AVAILABILITY RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).
Collapse
Affiliation(s)
- Yao Wu
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Min Yang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shao-Bo Wu
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Pei-Qi Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Cheng Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chang-Shun Ruan
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiu-Rong Zhao
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lin-Xin Chen
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Juan-Juan Meng
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiang Song
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wen-Jin Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qin-Qin Pei
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Fang Li
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Ting Zeng
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hong-Xin Du
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Li-Xin Xu
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Xian-Xiang Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Xiao-He Luo
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China.
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.
| |
Collapse
|
6
|
Ma C, Tian X, Dong Z, Li H, Chen X, Liu W, Yin G, Ma S, Zhang L, Cao A, Liu C, Yan H, Sehgal SK, Zhang Z, Liu B, Wang S, Liu Q, Zhao Y, Zhao Y. An Aegilops longissima NLR protein with integrated CC-BED module mediates resistance to wheat powdery mildew. Nat Commun 2024; 15:8281. [PMID: 39333612 PMCID: PMC11436982 DOI: 10.1038/s41467-024-52670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), reduces wheat yields and grain quality, thus posing a significant threat to global food security. Wild relatives of wheat serve as valuable resources for resistance to powdery mildew. Here, the powdery mildew resistance gene Pm6Sl is cloned from the wild wheat species Aegilops longissima. It encodes a nucleotide-binding leucine-rich repeat (NLR) protein featuring a CC-BED module formed by a zinc finger BED (Znf-BED) domain integrated into the coiled-coil (CC) domain. The function of Pm6Sl is validated via mutagenesis, gene silencing, and transgenic assays. In addition, we develop a resistant germplasm harbouring Pm6Sl in a very small segment with no linkage drag along with the diagnostic gene marker pm6sl-1 to facilitate Pm6Sl deployment in wheat breeding programs. The cloning of Pm6Sl, a resistance gene with BED-NLR architecture, will increase our understanding of the molecular mechanisms underlying BED-NLR-mediated resistance to various pathogens.
Collapse
Affiliation(s)
- Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xiubin Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, P. R. China
| | - Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Guihong Yin
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Shuyang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liwei Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100083, P. R. China
| | - Aizhong Cao
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, P. R. China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, P. R. China
| | - Hongfei Yan
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, P. R. China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, P. R. China
| | - Shiwei Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100083, P. R. China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
7
|
Zhang T, Tan S, Tang N, Li Y, Zhang C, Sun J, Guo Y, Gao H, Cai Y, Sun W, Wang C, Fu L, Ma H, Wu Y, Hu X, Zhang X, Gee P, Yan W, Zhao Y, Chen Q, Guo B, Wang H, Zhang YE. Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox. Cell 2024; 187:3741-3760.e30. [PMID: 38843831 DOI: 10.1016/j.cell.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 07/14/2024]
Abstract
Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuanqing Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Gao
- Rengene Biotechnology Co., Ltd., Beijing 100036, China
| | - Yujia Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liangzheng Fu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yachao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peter Gee
- MaxCyte Inc., Rockville, MD 20850, USA
| | - Weihua Yan
- Cold Spring Biotech Corp., Beijing 100031, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baocheng Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
McKowen JK, Dassanayake M, Hart CM. The Tofu mutation restores female fertility to Drosophila with a null BEAF mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580197. [PMID: 38405992 PMCID: PMC10888741 DOI: 10.1101/2024.02.13.580197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Compensatory mutations offer clues to deciphering the role of a particular protein in cellular processes. Here we investigate an unknown compensatory mutation, present in the BEAFNP6377 fly line, that provides sufficient rescue of the defective ovary phenotype caused by null BEAF alleles to allow maintenance of fly stocks lacking the chromatin domain insulator proteins Boundary Element-Associated Factors BEAF-32A and BEAF-32B. We call this mutation Tofu. We employ both classical genetics and genomic sequencing to attempt to identify the mutation. We find evidence that points to a mutation in a predicted Polycomb response element upstream of the ribbon gene, which may lead to aberrant rib expression.
Collapse
Affiliation(s)
- J. Keller McKowen
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| | - Maheshi Dassanayake
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| | - Craig M. Hart
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| |
Collapse
|
9
|
Lannes L, Furman CM, Hickman AB, Dyda F. Zinc-finger BED domains drive the formation of the active Hermes transpososome by asymmetric DNA binding. Nat Commun 2023; 14:4470. [PMID: 37491363 PMCID: PMC10368747 DOI: 10.1038/s41467-023-40210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
The Hermes DNA transposon is a member of the eukaryotic hAT superfamily, and its transposase forms a ring-shaped tetramer of dimers. Our investigation, combining biochemical, crystallography and cryo-electron microscopy, and in-cell assays, shows that the full-length Hermes octamer extensively interacts with its transposon left-end through multiple BED domains of three Hermes protomers contributed by three dimers explaining the role of the unusual higher-order assembly. By contrast, the right-end is bound to no BED domains at all. Thus, this work supports a model in which Hermes multimerizes to gather enough BED domains to find its left-end among the abundant genomic DNA, facilitating the subsequent interaction with the right-end.
Collapse
Affiliation(s)
- Laurie Lannes
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher M Furman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Bhattacharjee S, Iyer EPR, Iyer SC, Nanda S, Rubaharan M, Ascoli GA, Cox DN. The Zinc-BED Transcription Factor Bedwarfed Promotes Proportional Dendritic Growth and Branching through Transcriptional and Translational Regulation in Drosophila. Int J Mol Sci 2023; 24:6344. [PMID: 37047316 PMCID: PMC10094446 DOI: 10.3390/ijms24076344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Dendrites are the primary points of sensory or synaptic input to a neuron and play an essential role in synaptic integration and neural function. Despite the functional importance of dendrites, relatively less is known about the underlying mechanisms regulating cell type-specific dendritic patterning. Herein, we have dissected the functional roles of a previously uncharacterized gene, CG3995, in cell type-specific dendritic development in Drosophila melanogaster. CG3995, which we have named bedwarfed (bdwf), encodes a zinc-finger BED-type protein that is required for proportional growth and branching of dendritic arbors. It also exhibits nucleocytoplasmic expression and functions in both transcriptional and translational cellular pathways. At the transcriptional level, we demonstrate a reciprocal regulatory relationship between Bdwf and the homeodomain transcription factor (TF) Cut. We show that Cut positively regulates Bdwf expression and that Bdwf acts as a downstream effector of Cut-mediated dendritic development, whereas overexpression of Bdwf negatively regulates Cut expression in multidendritic sensory neurons. Proteomic analyses revealed that Bdwf interacts with ribosomal proteins and disruption of these proteins resulted in phenotypically similar dendritic hypotrophy defects as observed in bdwf mutant neurons. We further demonstrate that Bdwf and its ribosomal protein interactors are required for normal microtubule and F-actin cytoskeletal architecture. Finally, our findings reveal that Bdwf is required to promote protein translation and ribosome trafficking along the dendritic arbor. These findings shed light on the complex, combinatorial, and multi-functional roles of transcription factors (TFs) in directing the diversification of cell type-specific dendritic development.
Collapse
Affiliation(s)
| | | | | | - Sumit Nanda
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Myurajan Rubaharan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
11
|
Bhattacharjee S, Iyer EPR, Iyer SC, Nanda S, Rubaharan M, Ascoli GA, Cox DN. The Zinc-BED transcription factor Bedwarfed promotes proportional dendritic growth and branching through transcriptional and translational regulation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528686. [PMID: 36824896 PMCID: PMC9948997 DOI: 10.1101/2023.02.15.528686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Dendrites are the primary points of sensory or synaptic inputs to a neuron and play an essential role in synaptic integration and neural function. Despite the functional importance of dendrites, relatively less is known about the underlying mechanisms regulating cell-type specific dendritic patterning. Herein, we have dissected functional roles of a previously uncharacterized gene, CG3995 , in cell-type specific dendritic development in Drosophila melanogaster . CG3995 , which we have named bedwarfed ( bdwf ), encodes a zinc-finger BED-type protein which is required for proportional growth and branching of dendritic arbors, exhibits nucleocytoplasmic expression, and functions in both transcriptional and translational cellular pathways. At the transcriptional level, we demonstrate a reciprocal regulatory relationship between Bdwf and the homeodomain transcription factor (TF) Cut. We show that Cut positively regulates Bdwf expression and that Bdwf acts as a downstream effector of Cut-mediated dendritic development, whereas overexpression of Bdwf negatively regulates Cut expression in multidendritic sensory neurons. Proteomic analyses revealed that Bdwf interacts with ribosomal proteins and disruption of these proteins produced phenotypically similar dendritic hypotrophy defects as observed in bdwf mutant neurons. We further demonstrate that Bdwf and its ribosomal protein interactors are required for normal microtubule and F-actin cytoskeletal architecture. Finally, our findings reveal that Bdwf is required to promote protein translation and ribosome trafficking along the dendritic arbor. Taken together, these results provide new insights into the complex, combinatorial and multi-functional roles of transcription factors (TFs) in directing diversification of cell-type specific dendritic development.
Collapse
Affiliation(s)
| | | | | | - Sumit Nanda
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | | | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
12
|
Genomic Structure, Protein Character, Phylogenic Implication, and Embryonic Expression Pattern of a Zebrafish New Member of Zinc Finger BED-Type Gene Family. Genes (Basel) 2023; 14:genes14010179. [PMID: 36672921 PMCID: PMC9859435 DOI: 10.3390/genes14010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
We reported a new member of the C2H2-zinc-finger BED-type (ZBED) protein family found in zebrafish (Danio rerio). It was previously assigned as an uncharacterized protein LOC569044 encoded by the Zgc:161969 gene, the transcripts of which were highly expressed in the CNS after the spinal cord injury of zebrafish. As such, this novel gene deserves a more detailed investigation. The 2.79-kb Zgc:161969 gene contains one intron located on Chromosome 6 at 16,468,776-16,475,879 in the zebrafish genome encoding a 630-aa protein LOC569044. This protein is composed of a DNA-binding BED domain, which is highly conserved among the ZBED protein family, and a catalytic domain consisting of an α-helix structure and an hAT dimerization region. Phylogenetic analysis revealed the LOC569044 protein to be clustered into the monophyletic clade of the ZBED protein family of golden fish. Specifically, the LOC569044 protein was classified as closely related to the monophyletic clades of zebrafish ZBED4-like isoforms and ZBED isoform 2. Furthermore, Zgc:161969 transcripts represented maternal inheritance, expressed in the brain and eyes at early developmental stages and in the telencephalon ventricular zone at late developmental stages. After characterizing the LOC569044 protein encoded by the Zgc:161969 gene, it was identified as a new member of the zebrafish ZBED protein family, named the ZBEDX protein.
Collapse
|
13
|
Mukherjee K, Moroz LL. Transposon-derived transcription factors across metazoans. Front Cell Dev Biol 2023; 11:1113046. [PMID: 36960413 PMCID: PMC10027918 DOI: 10.3389/fcell.2023.1113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Transposable elements (TE) could serve as sources of new transcription factors (TFs) in plants and some other model species, but such evidence is lacking for most animal lineages. Here, we discovered multiple independent co-options of TEs to generate 788 TFs across Metazoa, including all early-branching animal lineages. Six of ten superfamilies of DNA transposon-derived conserved TF families (ZBED, CENPB, FHY3, HTH-Psq, THAP, and FLYWCH) were identified across nine phyla encompassing the entire metazoan phylogeny. The most extensive convergent domestication of potentially TE-derived TFs occurred in the hydroid polyps, polychaete worms, cephalopods, oysters, and sea slugs. Phylogenetic reconstructions showed species-specific clustering and lineage-specific expansion; none of the identified TE-derived TFs revealed homologs in their closest neighbors. Together, our study established a framework for categorizing TE-derived TFs and informing the origins of novel genes across phyla.
Collapse
Affiliation(s)
- Krishanu Mukherjee
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
- *Correspondence: Leonid L. Moroz, ; Krishanu Mukherjee,
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: Leonid L. Moroz, ; Krishanu Mukherjee,
| |
Collapse
|
14
|
Macquet J, Mounichetty S, Raffaele S. Genetic co-option into plant-filamentous pathogen interactions. TRENDS IN PLANT SCIENCE 2022; 27:1144-1158. [PMID: 35909010 DOI: 10.1016/j.tplants.2022.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plants are engaged in a coevolutionary arms race with their pathogens that drives rapid diversification and specialization of genes involved in resistance and virulence. However, some major innovations in plant-pathogen interactions, such as molecular decoys, trans-kingdom RNA interference, two-speed genomes, and receptor networks, evolved through the expansion of the functional landscape of genes. This is a typical outcome of genetic co-option, the evolutionary process by which available genes are recruited into new biological functions. Co-option into plant-pathogen interactions emerges generally from (i) cis-regulatory variation, (ii) horizontal gene transfer (HGT), (iii) mutations altering molecular promiscuity, and (iv) rewiring of gene networks and protein complexes. Understanding these molecular mechanisms is key for the functional and predictive biology of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joris Macquet
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Shantala Mounichetty
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France.
| |
Collapse
|
15
|
Zhang B, Liu M, Wang Y, Yuan W, Zhang H. Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Front Microbiol 2022; 13:1018504. [PMID: 36246279 PMCID: PMC9554439 DOI: 10.3389/fmicb.2022.1018504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogens are important threats to many plants throughout their lifetimes. Plants have developed different strategies to overcome them. In the plant immunity system, nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) are the most common components. And recent studies have greatly expanded our understanding of how NLRs function in plants. In this review, we summarize the studies on the mechanism of NLRs in the processes of effector recognition, resistosome formation, and defense activation. Typical NLRs are divided into three groups according to the different domains at their N termini and function in interrelated ways in immunity. Atypical NLRs contain additional integrated domains (IDs), some of which directly interact with pathogen effectors. Plant NLRs evolve with pathogen effectors and exhibit specific recognition. Meanwhile, some NLRs have been successfully engineered to confer resistance to new pathogens based on accumulated studies. In summary, some pioneering processes have been obtained in NLR researches, though more questions arise as a result of the huge number of NLRs. However, with a broadened understanding of the mechanism, NLRs will be important components for engineering in plant resistance improvement.
Collapse
|
16
|
Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Ameen A, Zaynab M, Mukhtar MS, Pajerowska-Mukhtar KM. A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 2022; 12:12328. [PMID: 35853967 PMCID: PMC9296551 DOI: 10.1038/s41598-022-16602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs in Gossypium sp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Akif Burhan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Zunaira Nasim
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Raveena Bano
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| | | |
Collapse
|
17
|
Radchenko EA, Aksenova AY, Volkov KV, Shishkin AA, Pavlov YI, Mirkin SM. Partners in crime: Tbf1 and Vid22 promote expansions of long human telomeric repeats at an interstitial chromosome position in yeast. PNAS NEXUS 2022; 1:pgac080. [PMID: 35832866 PMCID: PMC9272169 DOI: 10.1093/pnasnexus/pgac080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
In humans, telomeric repeats (TTAGGG)n are known to be present at internal chromosomal sites. These interstitial telomeric sequences (ITSs) are an important source of genomic instability, including repeat length polymorphism, but the molecular mechanisms responsible for this instability remain to be understood. Here, we studied the mechanisms responsible for expansions of human telomeric (Htel) repeats that were artificially inserted inside a yeast chromosome. We found that Htel repeats in an interstitial chromosome position are prone to expansions. The propensity of Htel repeats to expand depends on the presence of a complex of two yeast proteins: Tbf1 and Vid22. These two proteins are physically bound to an interstitial Htel repeat, and together they slow replication fork progression through it. We propose that slow progression of the replication fork through the protein complex formed by the Tbf1 and Vid22 partners at the Htel repeat cause DNA strand slippage, ultimately resulting in repeat expansions.
Collapse
Affiliation(s)
| | | | - Kirill V Volkov
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Youri I Pavlov
- Eppley Institute for Research In Cancer and Allied Diseases, Omaha, NE 68198, USA
| | | |
Collapse
|
18
|
Guan Z, Shi S, Diaby M, Danley P, Ullah N, Puzakov M, Gao B, Song C. Horizontal transfer of Buster transposons across multiple phyla and classes of animals. Mol Phylogenet Evol 2022; 173:107506. [PMID: 35595006 DOI: 10.1016/j.ympev.2022.107506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/06/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Transposable elements (TEs) are mobile genetic elements in the genome and broadly distributed across both prokaryotes and eukaryotes, and play an important role in shaping the genome evolution of their hosts. hAT elements are thought to be the most widespread cut-and-paste DNA transposon found throughout the tree of life. Buster is a recently recognized family of hAT. However, the evolutionary profile of the Buster family, such as its taxonomic distribution, evolutionary pattern, and activities, remains largely unknown. We conducted a systematic analysis of the evolutionary landscape of the Buster family and found that most Buster transposons are 1.72-4.66 kilobases (kb) in length, encode 500-736-amino acid (aa) transposases and are flanked by short (10-18 bp) terminal inverted repeats (TIRs) and 8 bp target site duplications (TSDs). Buster family is widely distributed in 609 species, involving eight classes of invertebrates and most lineage of vertebrates (including mammals). Horizontal transfer events were detected across multiple phyla and classes of animals, which may have contributed to their wide distribution, and both parasites and invasive species may facilitate HT events of Buster in vertebrates. Our data also suggest that Buster transposons are young, highly active, and appear as intact copies in multiple lineages of animals. High percentages of intact copies (>30%) were identified in some Arthropoda, Actinopterygii, Agnatha, and reptile species, and some of these may be active. These data will help increase understanding of the evolution of the hAT superfamily and its impact on eukaryotic genome evolution.
Collapse
Affiliation(s)
- Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Patrick Danley
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Numan Ullah
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mikhail Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
19
|
Galati E, Bosio MC, Novarina D, Chiara M, Bernini GM, Mozzarelli AM, García-Rubio ML, Gómez-González B, Aguilera A, Carzaniga T, Todisco M, Bellini T, Nava GM, Frigè G, Sertic S, Horner DS, Baryshnikova A, Manzari C, D'Erchia AM, Pesole G, Brown GW, Muzi-Falconi M, Lazzaro F. VID22 counteracts G-quadruplex-induced genome instability. Nucleic Acids Res 2021; 49:12785-12804. [PMID: 34871443 PMCID: PMC8682794 DOI: 10.1093/nar/gkab1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.
Collapse
Affiliation(s)
- Elena Galati
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria C Bosio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Daniele Novarina
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Giulia M Bernini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alessandro M Mozzarelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Marco Todisco
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Giulia M Nava
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - David S Horner
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anastasia Baryshnikova
- Department of Molecular Genetics and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Caterina Manzari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anna M D'Erchia
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Ontario M5S 3E1, Toronto, Canada
| | - Marco Muzi-Falconi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Federico Lazzaro
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
20
|
Huang H, Huang S, Li J, Wang H, Zhao Y, Feng M, Dai J, Wang T, Zhu M, Tao X. Stepwise artificial evolution of an Sw-5b immune receptor extends its resistance spectrum against resistance-breaking isolates of Tomato spotted wilt virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2164-2176. [PMID: 34036713 PMCID: PMC8541788 DOI: 10.1111/pbi.13641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 05/20/2023]
Abstract
Plants use intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) to recognize pathogen-encoded effectors and initiate immune responses. Tomato spotted wilt virus (TSWV), which has been found to infect >1000 plant species, is among the most destructive plant viruses worldwide. The Sw-5b is the most effective and widely used resistance gene in tomato breeding to control TSWV. However, broad application of tomato cultivars carrying Sw-5b has resulted in an emergence of resistance-breaking (RB) TSWV. Therefore, new effective genes are urgently needed to prevent further RB TSWV outbreaks. In this study, we conducted artificial evolution to select Sw-5b mutants that could extend the resistance spectrum against TSWV RB isolates. Unlike regular NLRs, Sw-5b detects viral elicitor NSm using both the N-terminal Solanaceae-specific domain (SD) and the C-terminal LRR domain in a two-step recognition process. Our attempts to select gain-of-function mutants by random mutagenesis involving either the SD or the LRR of Sw-5b failed; therefore, we adopted a stepwise strategy, first introducing a NSmRB -responsive mutation at the R927 residue in the LRR, followed by random mutagenesis involving the Sw-5b SD domain. Using this strategy, we obtained Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q mutants, which are effective against TSWV RB carrying the NSmC118Y or NSmT120N mutation, and against other American-type tospoviruses. Thus, we were able to extend the resistance spectrum of Sw-5b; the selected Sw-5b mutants will provide new gene resources to control RB TSWV.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Huiyuan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Mingfeng Feng
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jing Dai
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
21
|
Duxbury Z, Wu CH, Ding P. A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:155-184. [PMID: 33689400 DOI: 10.1146/annurev-arplant-080620-104948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection.
Collapse
Affiliation(s)
- Zane Duxbury
- Jealott's Hill International Research Centre, Syngenta, Bracknell RG42 6EY, United Kingdom;
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
- Current affiliation: Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands;
| |
Collapse
|
22
|
Peterson SC, Samuelson KB, Hanlon SL. Multi-Scale Organization of the Drosophila melanogaster Genome. Genes (Basel) 2021; 12:817. [PMID: 34071789 PMCID: PMC8228293 DOI: 10.3390/genes12060817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.
Collapse
Affiliation(s)
| | | | - Stacey L. Hanlon
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (S.C.P.); (K.B.S.)
| |
Collapse
|
23
|
Cosby RL, Judd J, Zhang R, Zhong A, Garry N, Pritham EJ, Feschotte C. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 2021; 371:eabc6405. [PMID: 33602827 PMCID: PMC8186458 DOI: 10.1126/science.abc6405] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Genes with novel cellular functions may evolve through exon shuffling, which can assemble novel protein architectures. Here, we show that DNA transposons provide a recurrent supply of materials to assemble protein-coding genes through exon shuffling. We find that transposase domains have been captured-primarily via alternative splicing-to form fusion proteins at least 94 times independently over the course of ~350 million years of tetrapod evolution. We find an excess of transposase DNA binding domains fused to host regulatory domains, especially the Krüppel-associated box (KRAB) domain, and identify four independently evolved KRAB-transposase fusion proteins repressing gene expression in a sequence-specific fashion. The bat-specific KRABINER fusion protein binds its cognate transposons genome-wide and controls a network of genes and cis-regulatory elements. These results illustrate how a transcription factor and its binding sites can emerge.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ruiling Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Alan Zhong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nathaniel Garry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
24
|
Marchal C, 10+ Wheat Genome Project, Haberer G, Spannagl M, Uauy C. Comparative Genomics and Functional Studies of Wheat BED-NLR Loci. Genes (Basel) 2020; 11:E1406. [PMID: 33256067 PMCID: PMC7761493 DOI: 10.3390/genes11121406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 12/01/2022] Open
Abstract
Nucleotide-binding leucine-rich-repeat (LRR) receptors (NLRs) with non-canonical integrated domains (NLR-IDs) are widespread in plant genomes. Zinc-finger BED (named after the Drosophila proteins Boundary Element-Associated Factor and DNA Replication-related Element binding Factor, named BED hereafter) are among the most frequently found IDs. Five BED-NLRs conferring resistance against bacterial and fungal pathogens have been characterized. However, it is unknown whether BED-NLRs function in a manner similar to other NLR-IDs. Here, we used chromosome-level assemblies of wheat to explore the Yr7 and Yr5a genomic regions and show that, unlike known NLR-ID loci, there is no evidence for a NLR-partner in their vicinity. Using neighbor-network analyses, we observed that BED domains from BED-NLRs share more similarities with BED domains from single-BED proteins and from BED-containing proteins harboring domains that are conserved in transposases. We identified a nuclear localization signal (NLS) in Yr7, Yr5, and the other characterized BED-NLRs. We thus propose that this is a feature of BED-NLRs that confer resistance to plant pathogens. We show that the NLS was functional in truncated versions of the Yr7 protein when expressed in N. benthamiana. We did not observe cell-death upon the overexpression of Yr7 full-length, truncated, and 'MHD' variants in N. benthamiana. This suggests that either this system is not suitable to study BED-NLR signaling or that BED-NLRs require additional components to trigger cell death. These results define novel future directions to further understand the role of BED domains in BED-NLR mediated resistance.
Collapse
Affiliation(s)
| | | | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany; (G.H.); (M.S.)
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany; (G.H.); (M.S.)
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| |
Collapse
|
25
|
Jin Y, Li R, Zhang Z, Ren J, Song X, Zhang G. ZBED1/DREF: A transcription factor that regulates cell proliferation. Oncol Lett 2020; 20:137. [PMID: 32934705 PMCID: PMC7471704 DOI: 10.3892/ol.2020.11997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023] Open
Abstract
Maintenance of genomic diversity is critically dependent on gene regulation at the transcriptional level. This occurs via the interaction of regulatory DNA sequence motifs with DNA-binding transcription factors. The zinc finger, BED-type (ZBED) gene family contains major DNA-binding motifs present in human transcriptional factors. It encodes proteins that present markedly diverse regulatory functions. ZBED1 has similar structural and functional properties to its Drosophila homolog DNA replication-related element-binding factor (DREF) and plays a critical role in the regulation of transcription. ZBED1 regulates the expression of several genes associated with cell proliferation, including cell cycle regulation, chromatin remodeling and protein metabolism, and some genes associated with apoptosis and differentiation. In the present review, the origin, structure and functional role of ZBED1 were comprehensively assessed. In addition, the similarities and differences between ZBED1 and its Drosophila homolog DREF were highlighted, and future research directions, particularly in the area of clinical cancer, were discussed.
Collapse
Affiliation(s)
- Yarong Jin
- Department of Radiotherapy, People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China.,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhiwei Zhang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China.,Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Jinjin Ren
- Department of Radiotherapy, People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Gong Zhang
- Department of Radiotherapy, People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
26
|
Zuluaga AP, Bidzinski P, Chanclud E, Ducasse A, Cayrol B, Gomez Selvaraj M, Ishitani M, Jauneau A, Deslandes L, Kroj T, Michel C, Szurek B, Koebnik R, Morel JB. The Rice DNA-Binding Protein ZBED Controls Stress Regulators and Maintains Disease Resistance After a Mild Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:1265. [PMID: 33013945 PMCID: PMC7461821 DOI: 10.3389/fpls.2020.01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive. RESULTS Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress. CONCLUSIONS Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.
Collapse
Affiliation(s)
- A. Paola Zuluaga
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Emilie Chanclud
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Aurelie Ducasse
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Bastien Cayrol
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | | | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, Castanet-Tolosan, France
| | | | - Thomas Kroj
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Corinne Michel
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Boris Szurek
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Ralf Koebnik
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | | |
Collapse
|
27
|
Zhang B, Zhang H, Li F, Ouyang Y, Yuan M, Li X, Xiao J, Wang S. Multiple Alleles Encoding Atypical NLRs with Unique Central Tandem Repeats in Rice Confer Resistance to Xanthomonas oryzae pv. oryzae. PLANT COMMUNICATIONS 2020; 1:100088. [PMID: 33367251 PMCID: PMC7748011 DOI: 10.1016/j.xplc.2020.100088] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
Plants have developed various mechanisms for avoiding pathogen invasion, including resistance (R) genes. Most R genes encode nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs). Here, we report the isolation of three new bacterial blight R genes in rice, Xa1-2, Xa14, and Xa31(t), which were allelic to Xa1 and encoded atypical NLRs with unique central tandem repeats (CTRs). We also found that Xa31(t) was the same gene as Xa1-2. Although Xa1-2 and Xa14 conferred different resistance spectra, their performance could be attenuated by iTALEs, as has previously been reported for Xa1. XA1, XA1-2, XA14, and non-resistant RGAF differed mainly in the substructure of the leucine-rich repeat domain. They all contained unique CTRs and belonged to the CTR-NLRs, which existed only in Gramineae. We also found that interactions among these genes led to differing resistance performance. In conclusion, our results uncover a unique locus in rice consisting of at least three multiple alleles (Xa1, Xa1-2, and Xa14) that encode CTR-NLRs and confer resistance to Xanthomonas oryzae pv. oryzae (Xoo).
Collapse
Affiliation(s)
- Biaoming Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Fang Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Read AC, Moscou MJ, Zimin AV, Pertea G, Meyer RS, Purugganan MD, Leach JE, Triplett LR, Salzberg SL, Bogdanove AJ. Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS Genet 2020; 16:e1008571. [PMID: 31986137 PMCID: PMC7004385 DOI: 10.1371/journal.pgen.1008571] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/06/2020] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety. Plants lack adaptive immunity, and instead contain repeat-rich, disease resistance genes that evolve rapidly through duplication, recombination, and transposition. The number, variation, and often clustered arrangement of these genes make them challenging to sequence and catalog. The US heirloom rice variety Carolina Gold Select has resistance to two important bacterial diseases. Toward identifying the responsible gene(s), we combined long- and short-read sequencing technologies to assemble the whole genome and identify the resistance gene repertoire. We previously narrowed the location of the gene(s) to a region on chromosome four. The region in Carolina Gold Select is larger than in the rice reference genome (Nipponbare) and contains twice as many resistance genes. One shares unusual features with a known bacterial disease resistance gene, suggesting that it confers the resistance. Across diverse varieties and related species, we identified two widely-distributed groups of such genes. The results are an important step toward mechanistic characterization and deployment of the bacterial disease resistance. The genome assembly also identified a resistance gene for a fungal disease and predicted a marker phenotype used in breeding for resistance. Thus, the Carolina Gold Select genome assembly can be expected to aid in the identification and deployment of other valuable traits.
Collapse
Affiliation(s)
- Andrew C. Read
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Matthew J. Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksey V. Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Geo Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Rachel S. Meyer
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
| | - Michael D. Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
- Center for Genomics and Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Lindsay R. Triplett
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Adam J. Bogdanove
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
29
|
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Pimpinelli
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| |
Collapse
|
30
|
Lakdawala MF, Madhu B, Faure L, Vora M, Padgett RW, Gumienny TL. Genetic interactions between the DBL-1/BMP-like pathway and dpy body size-associated genes in Caenorhabditis elegans. Mol Biol Cell 2019; 30:3151-3160. [PMID: 31693440 PMCID: PMC6938244 DOI: 10.1091/mbc.e19-09-0500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling pathways control many developmental and homeostatic processes, including cell size and extracellular matrix remodeling. An understanding of how this pathway itself is controlled remains incomplete. To identify novel regulators of BMP signaling, we performed a forward genetic screen in Caenorhabditis elegans for genes involved in body size regulation, a trait under the control of BMP member DBL-1. We isolated mutations that suppress the long phenotype of lon-2, a gene that encodes a negative regulator that sequesters DBL-1. This screen was effective because we isolated alleles of several core components of the DBL-1 pathway, demonstrating the efficacy of the screen. We found additional alleles of previously identified but uncloned body size genes. Our screen also identified widespread involvement of extracellular matrix proteins in DBL-1 regulation of body size. We characterized interactions between the DBL-1 pathway and extracellular matrix and other genes that affect body morphology. We discovered that loss of some of these genes affects the DBL-1 pathway, and we provide evidence that DBL-1 signaling affects many molecular and cellular processes associated with body size. We propose a model in which multiple body size factors are controlled by signaling through the DBL-1 pathway and by DBL-1-independent processes.
Collapse
Affiliation(s)
| | - Bhoomi Madhu
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| | - Lionel Faure
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| | - Mehul Vora
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020
| | - Richard W. Padgett
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020
- Waksman Institute of Microbiology Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854-8020
- Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020
| | - Tina L. Gumienny
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| |
Collapse
|
31
|
Zhang YX, Chen X, Wang JP, Zhang ZQ, Wei H, Yu HY, Zheng HK, Chen Y, Zhang LS, Lin JZ, Sun L, Liu DY, Tang J, Lei Y, Li XM, Liu M. Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics 2019; 20:954. [PMID: 31818245 PMCID: PMC6902594 DOI: 10.1186/s12864-019-6281-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Predatory mites (Acari: Phytoseiidae) are the most important beneficial arthropods used in augmentative biological pest control of protected crops around the world. However, the genomes of mites are far less well understood than those of insects and the evolutionary relationships among mite and other chelicerate orders are contested, with the enigmatic origin of mites at one of the centres in discussion of the evolution of Arachnida. RESULTS We here report the 173 Mb nuclear genome (from 51.75 Gb pairs of Illumina reads) of the predatory mite, Neoseiulus cucumeris, a biocontrol agent against pests such as mites and thrips worldwide. We identified nearly 20.6 Mb (~ 11.93% of this genome) of repetitive sequences and annotated 18,735 protein-coding genes (a typical gene 2888 bp in size); the total length of protein-coding genes was about 50.55 Mb (29.2% of this assembly). About 37% (6981) of the genes are unique to N. cucumeris based on comparison with other arachnid genomes. Our phylogenomic analysis supported the monophyly of Acari, therefore rejecting the biphyletic origin of mites advocated by other studies based on limited gene fragments or few taxa in recent years. Our transcriptomic analyses of different life stages of N. cucumeris provide new insights into genes involved in its development. Putative genes involved in vitellogenesis, regulation of oviposition, sex determination, development of legs, signal perception, detoxification and stress-resistance, and innate immune systems are identified. CONCLUSIONS Our genomics and developmental transcriptomics analyses of N. cucumeris provide invaluable resources for further research on the development, reproduction, and fitness of this economically important mite in particular and Arachnida in general.
Collapse
Affiliation(s)
- Yan-Xuan Zhang
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Xia Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Jie-Ping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 People’s Republic of China
| | - Zhi-Qiang Zhang
- Landcare Research, Auckland and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Hui Wei
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Hai-Yan Yu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Hong-Kun Zheng
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yong Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Li-Sheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Jian-Zhen Lin
- Fujian Yanxuan Bio-preventing and Technology Biocontrol Corporation, Fuzhou, People’s Republic of China
| | - Li Sun
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Dong-Yuan Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yan Lei
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Xu-Ming Li
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| |
Collapse
|
32
|
Liu H, Shi X, Fan X, Zhang D, Jiang B, Zhao Y, Fan C. The function of BED finger domain of Zbed3 in regulating lung cancer cell proliferation. J Cell Biochem 2019; 120:12340-12347. [PMID: 30805970 DOI: 10.1002/jcb.28498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022]
Abstract
Zbed3, a BED finger domain-containing protein was found to promote cancer proliferation by regulating β-catenin expression through interacting with Axin. But whether and how BED finger domain function in regulating cancer proliferation is unknown. We constructed five mutants of Zbed3, which lacks the Axin-Zbed3 binding site, and the 43 to 52, 69 to 77, 87 to 92, and 97 to 104 sequences in BED finger domain, respectively and named them as Z-A, Z1, Z2, Z3, and Z4. Transfection of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05), but not Z2 (P > 0.05) significantly upregulated β-catenin expression in NCI-H1299 cells. Overexpression of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05) but not Z2 (P > 0.05) significantly promoted cancer cell proliferation and invasion. The ability of proliferation (P < 0.05) but not invasion (P < 0.05) of cancer cells transfected with Z1 and Z4 was significantly lower than that with wild-type Zbed3 and Z3. Overexpression of wild-type Zbed3 (P < 0.05) but not the mutant Z-A, which lacks the binding site with Axin and Z2 (P > 0.05) significantly upregulated the interaction of Axin and Zbed3, β-catenin expression and the activity of Wnt signaling. Both overexpression of wild-type Zbed3 and the mutant Z1 and Z4 significantly upregulated the activity of Wnt signaling and promoted cancer cell proliferation (P < 0.05) but only overexpression of wild-type Zbed3 (P < 0.05), but not the mutant Z1, and Z4 (P > 0.05), significantly upregulated the expression of proliferating cell nuclear antigen (PCNA) in NCI-H1299 cells. These results indicate that Zbed3 may promote lung cancer cell proliferation through regulating PCNA expression besides regulating β-catenin expression and BED finger domain can impact on this function.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiuying Shi
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiaoxi Fan
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Di Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Biying Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Yang Zhao
- Department of Hepatobiliary and Spleenary Surgery, The Affiliated Shengjing Hospital, China Medical University, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Li J, Huang H, Zhu M, Huang S, Zhang W, Dinesh-Kumar SP, Tao X. A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral Effector Perception. MOLECULAR PLANT 2019; 12:248-262. [PMID: 30639751 DOI: 10.1016/j.molp.2019.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recognize pathogen effectors. Here we report that the Sw-5b NLR immune receptor uses two distinct domains to detect the viral movement protein NSm encoded by tospovirus. In addition to its leucine-rich repeat (LRR) domain that has been previously reported, the N-terminal Solanaceae domain (SD) of Sw-5b also interacts with NSm and a conserved 21-amino-acid region of NSm (NSm21). The specific interaction between Sw-5b SD and NSm is required for releasing the inhibitory effect of coiled-coil domain on the NB-ARC-LRR region. Furthermore, we found that the binding of NSm affects the nucleotide binding activity of the NB-ARC-LRR in vitro, while Sw-5b NB-ARC-LRR is activated only when NSm and NSm21 levels are high. Interestingly, Sw-5b SD could significantly enhance the ability of the NB-ARC-LRR to detect low levels of NSm effector and facilitate its activation and induction of defense response. An Sw-5b SD mutant that is disrupted in NSm recognition failed to enhance the ability of the NB-ARC-LRR to sense low levels of NSm and NSm21. Taken together, our results suggest that Sw-5b SD functions as an extra sensor and the NB-ARC-LRR as an activator, and that Sw-5b NLR adopts a two-step recognition mechanism to enhance viral effector perception.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Haining Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wenhua Zhang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
34
|
Hansen SV, Traynor S, Ditzel HJ, Gjerstorff MF. Human DREF/ZBED1 is a nuclear protein widely expressed in multiple cell types derived from all three primary germ layers. PLoS One 2018; 13:e0205461. [PMID: 30304065 PMCID: PMC6179265 DOI: 10.1371/journal.pone.0205461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
Drosophila DNA replication-related element binding factor (DREF) is a transcription regulatory factor that binds the promoters of many genes involved in replication and cell proliferation and is required for normal cell cycle progression. Human DREF/zinc finger BED domain-containing protein 1 (ZBED1), an orthologue of Drosophila DREF, also has DNA binding activity, but its cellular functions remain largely uncharacterized. Herein, we show that ZBED1 is a chromatin-associated nuclear protein with a wide expression profile in human tissues from all three primary germ layers. For instance, ZBED1 was expressed in mesodermal-derived epithelial cells of the reproductive system and urinary tract, in endodermal-derived epithelial cells throughout the gastrointestinal tract, and in epidermal epithelium from the ectoderm. ZBED1 was also expressed in connective tissue and smooth muscle cells of multiple organs. To investigate whether ZBED1 is implicated in cell proliferation, similar to Drosophila DREF, we compared the tissue distribution of ZBED1 to that of the proliferation marker Ki-67. ZBED1 and Ki-67 were co-expressed in many epithelial tissues, but ZBED1 expression extended widely beyond that of Ki-67-positive cells. In other tissues, ZBED1 expression was more restricted than Ki-67 expression. These results suggest that ZBED1 is not a cell proliferation-associated factor such as Drosophila DREF, and our study adds to the cumulative understanding of the functions of ZBED1 in human cells and tissues.
Collapse
Affiliation(s)
- Simone Valentin Hansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
- * E-mail:
| |
Collapse
|
35
|
Shrestha S, Oh DH, McKowen JK, Dassanayake M, Hart CM. 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS One 2018; 13:e0203843. [PMID: 30248133 PMCID: PMC6152978 DOI: 10.1371/journal.pone.0203843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization is crucial for nuclear functions such as gene regulation, DNA replication and DNA repair. Insulator binding proteins, such as the Drosophila Boundary Element-Associated Factor (BEAF), are involved in chromatin organization. To further understand the role of BEAF, we detected cis- and trans-interaction partners of four BEAF binding regions (viewpoints) using 4C (circular chromosome conformation capture) and analyzed their association with different genomic features. Previous genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, so our viewpoints were selected to reflect this. Our 4C data show the interaction partners of our viewpoints are highly variable and generally enriched for active chromatin marks. The most consistent association was with housekeeping genes, a feature in common with our viewpoints. Fluorescence in situ hybridization indicated that the long-distance interactions occur even in the absence of BEAF. These data are most consistent with a model in which BEAF is redundant with other factors found at active promoters. Our results point to principles of long-distance interactions made by active chromatin, supporting a previously proposed model in which condensed chromatin is sticky and associates into topologically associating domains (TADs) separated by active chromatin. We propose that the highly variable long-distance interactions we detect are driven by redundant factors that open chromatin to promote transcription, combined with active chromatin filling spaces between TADs while packing of TADs relative to each other varies from cell to cell.
Collapse
Affiliation(s)
- Shraddha Shrestha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - J. Keller McKowen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
36
|
Capote T, Barbosa P, Usié A, Ramos AM, Inácio V, Ordás R, Gonçalves S, Morais-Cecílio L. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). BMC PLANT BIOLOGY 2018; 18:198. [PMID: 30223777 PMCID: PMC6142680 DOI: 10.1186/s12870-018-1403-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/30/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Gene activity is largely controlled by transcriptional regulation through the action of transcription factors and other regulators. QsMYB1 is a member of the R2R3-MYB transcription factor family related to secondary growth, and in particular, with the cork development process. In order to identify the putative gene targets of QsMYB1 across the cork oak genome we developed a ChIP-Seq strategy. RESULTS Results provide direct evidence that QsMY1B targets genes encoding for enzymes involved in the lignin and suberin pathways as well as gene encoding for ABCG transporters and LTPs implicated in the transport of monomeric suberin units across the cellular membrane. These results highlight the role of QsMYB1 as a regulator of lignin and suberin biosynthesis, transport and assembly. CONCLUSION To our knowledge, this work constitutes the first ChIP-Seq experiment performed in cork oak, a non-model plant species with a long-life cycle, and these results will contribute to deepen the knowledge about the molecular mechanisms of cork formation and differentiation.
Collapse
Affiliation(s)
- Tiago Capote
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Pedro Barbosa
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Vera Inácio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Ricardo Ordás
- Departamento BOS, Escuela Politécnica de Mieres, Oviedo University, Oviedo, Spain
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Present Address: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB101SA UK
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
37
|
Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, Boyd L, McIntosh R, Wulff BBH, Berry S, Lagudah E, Uauy C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. NATURE PLANTS 2018; 4:662-668. [PMID: 30150615 DOI: 10.1038/s41477-018-0236-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/31/2018] [Indexed: 05/13/2023]
Abstract
Crop diseases reduce wheat yields by ~25% globally and thus pose a major threat to global food security1. Genetic resistance can reduce crop losses in the field and can be selected through the use of molecular markers. However, genetic resistance often breaks down following changes in pathogen virulence, as experienced with the wheat yellow (stripe) rust fungus Puccinia striiformis f. sp. tritici (Pst)2. This highlights the need to (1) identify genes that, alone or in combination, provide broad-spectrum resistance, and (2) increase our understanding of the underlying molecular modes of action. Here we report the isolation and characterization of three major yellow rust resistance genes (Yr7, Yr5 and YrSP) from hexaploid wheat (Triticum aestivum), each having a distinct recognition specificity. We show that Yr5, which remains effective to a broad range of Pst isolates worldwide, is closely related yet distinct from Yr7, whereas YrSP is a truncated version of Yr5 with 99.8% sequence identity. All three Yr genes belong to a complex resistance gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a non-canonical N-terminal zinc-finger BED domain3 that is distinct from those found in non-NLR wheat proteins. We developed diagnostic markers to accelerate haplotype analysis and for marker-assisted selection to expedite the stacking of the non-allelic Yr genes. Our results provide evidence that the BED-NLR gene architecture can provide effective field-based resistance to important fungal diseases such as wheat yellow rust.
Collapse
Affiliation(s)
| | - Jianping Zhang
- University of Sydney, Plant Breeding Institute, Cobbitty, New South Wales, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture & Food, Canberra, Australian Capital Territory, Australia
- Henan Tianmin Seed Company Limited, Lankao County, Henan Province, China
| | - Peng Zhang
- University of Sydney, Plant Breeding Institute, Cobbitty, New South Wales, Australia
| | - Paul Fenwick
- Limagrain UK Ltd, Rothwell, Market Rasen, Lincolnshire, UK
| | | | | | - Lesley Boyd
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | - Robert McIntosh
- University of Sydney, Plant Breeding Institute, Cobbitty, New South Wales, Australia
| | | | - Simon Berry
- Limagrain UK Ltd, Rothwell, Market Rasen, Lincolnshire, UK
| | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture & Food, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
38
|
In silico Phylogenetic Analysis of hAT Transposable Elements in Plants. Genes (Basel) 2018; 9:genes9060284. [PMID: 29882803 PMCID: PMC6027215 DOI: 10.3390/genes9060284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Transposable elements of the hAT family exhibit a cross-kingdom distribution. The plant hAT transposons are proposed to play a critical role in plant adaptive evolution and DNA damage repair. The sequencing of an increasing number of plant genomes has facilitated the discovery of a plethora of hAT elements. This enabled us to perform an in-depth phylogenetic analysis of consensus hAT sequences in the fully-sequenced genomes of 11 plant species that represent diverse taxonomic divisions. Four putative nucleotide sequences were detected in cottonwood that were similar to the corresponding animal hAT elements, which are possibly sequence artifacts. Phylogenetic trees were constructed based both on the known and putative hAT sequences, by employing two different methods of phylogenetic inference. On the basis of the reconstructed phylogeny, plant hAT elements have rather evolved through kingdom-specific vertical gene transfer and gene amplifications within eudicotyledons, monocotyledons, and chlorophytes. Furthermore, the plant hAT sequences were searched for conserved DNA and amino acid sequence features. In this way, diagnostic sequence patterns were detected which allowed us to assign functional annotations to the plant hAT sequences.
Collapse
|
39
|
Tue NT, Yoshioka Y, Mizoguchi M, Yoshida H, Zurita M, Yamaguchi M. DREF plays multiple roles during Drosophila development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:705-712. [PMID: 28363744 DOI: 10.1016/j.bbagrm.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022]
Abstract
DREF was originally identified as a transcription factor that coordinately regulates the expression of DNA replication- and proliferation-related genes in Drosophila. Subsequent studies demonstrated that DREF is involved in tumor suppressor pathways including p53 and Hippo signaling. DREF also regulates the expression of genes encoding components of the JNK and EGFR pathways during Drosophila development. DREF itself is under the control of the TOR pathway during cell and tissue growth responding to nutrition. Recent studies revealed that DREF plays a role in chromatin organization including insulator function, chromatin remodeling, and telomere maintenance. DREF is also involved in the regulation of genes related to mitochondrial biogenesis, linking it to cellular proliferation. Thus, DREF is now emerging as not only a transcription factor, but also a multi-functional protein. In this review, we summarize current advances in studies on the novel functions of Drosophila DREF.
Collapse
Affiliation(s)
- Nguyen Trong Tue
- Gene-Protein Research Center, Hanoi Medical University, Hanoi, Vietnam
| | - Yasuhide Yoshioka
- Faculty of Science and Engineering, Setsunan University, Osaka, Japan
| | - Megumi Mizoguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mario Zurita
- Departamento de Genética del Desarrollo Y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62250 Cuernavaca, Mor., Mexico
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
40
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
41
|
Styles EB, Founk KJ, Zamparo LA, Sing TL, Altintas D, Ribeyre C, Ribaud V, Rougemont J, Mayhew D, Costanzo M, Usaj M, Verster AJ, Koch EN, Novarina D, Graf M, Luke B, Muzi-Falconi M, Myers CL, Mitra RD, Shore D, Brown GW, Zhang Z, Boone C, Andrews BJ. Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci. Cell Syst 2016; 3:264-277.e10. [PMID: 27617677 PMCID: PMC5689480 DOI: 10.1016/j.cels.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 01/12/2023]
Abstract
A significant challenge of functional genomics is to develop methods for genome-scale acquisition and analysis of cell biological data. Here, we present an integrated method that combines genome-wide genetic perturbation of Saccharomyces cerevisiae with high-content screening to facilitate the genetic description of sub-cellular structures and compartment morphology. As proof of principle, we used a Rad52-GFP marker to examine DNA damage foci in ∼20 million single cells from ∼5,000 different mutant backgrounds in the context of selected genetic or chemical perturbations. Phenotypes were classified using a machine learning-based automated image analysis pipeline. 345 mutants were identified that had elevated numbers of DNA damage foci, almost half of which were identified only in sensitized backgrounds. Subsequent analysis of Vid22, a protein implicated in the DNA damage response, revealed that it acts together with the Sgs1 helicase at sites of DNA damage and preferentially binds G-quadruplex regions of the genome. This approach is extensible to numerous other cell biological markers and experimental systems.
Collapse
Affiliation(s)
- Erin B Styles
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen J Founk
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Lee A Zamparo
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Sciences, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Tina L Sing
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dogus Altintas
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Cyril Ribeyre
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Virginie Ribaud
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jacques Rougemont
- Laboratory of Computational Systems Biology, Ecole Polytéchnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - David Mayhew
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Michael Costanzo
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Adrian J Verster
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniele Novarina
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, 20122 Milano, Italy
| | - Marco Graf
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz 55128, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz 55128, Germany
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, 20122 Milano, Italy
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robi David Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - David Shore
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Grant W Brown
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhaolei Zhang
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
42
|
Avva SVSP, Hart CM. Characterization of the Drosophila BEAF-32A and BEAF-32B Insulator Proteins. PLoS One 2016; 11:e0162906. [PMID: 27622635 PMCID: PMC5021357 DOI: 10.1371/journal.pone.0162906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Data implicate the Drosophila 32 kDa Boundary Element-Associated Factors BEAF-32A and BEAF-32B in both chromatin domain insulator element function and promoter function. They might also function as an epigenetic memory by remaining bound to mitotic chromosomes. Both proteins are made from the same gene. They differ in their N-terminal 80 amino acids, which contain single DNA-binding BED fingers. The remaining 200 amino acids are identical in the two proteins. The structure and function of the middle region of 120 amino acids is unknown, while the C-terminal region of 80 amino acids has a putative leucine zipper and a BESS domain and mediates BEAF-BEAF interactions. Here we report a further characterization of BEAF. We show that the BESS domain alone is sufficient to mediate BEAF-BEAF interactions, although the presence of the putative leucine zipper on at least one protein strengthens the interactions. BEAF-32B is sufficient to rescue a null BEAF mutation in flies. Using mutant BEAF-32B rescue transgenes, we show that the middle region and the BESS domain are essential. In contrast, the last 40 amino acids of the middle region, which is poorly conserved among Drosophila species, is dispensable. Deleting the putative leucine zipper results in a hypomorphic mutant BEAF-32B protein. Finally, we document the dynamics of BEAF-32A-EGFP and BEAF-32B-mRFP during mitosis in embryos. A subpopulation of both proteins appears to remain on mitotic chromosomes and also on the mitotic spindle, while much of the fluorescence is dispersed during mitosis. Differences in the dynamics of the two proteins are observed in syncytial embryos, and both proteins show differences between syncytial and later embryos. This characterization of BEAF lays a foundation for future studies into molecular mechanisms of BEAF function.
Collapse
Affiliation(s)
- S. V. Satya Prakash Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
43
|
Saucet SB, Van Ghelder C, Abad P, Duval H, Esmenjaud D. Resistance to root-knot nematodes Meloidogyne spp. in woody plants. THE NEW PHYTOLOGIST 2016; 211:41-56. [PMID: 27128375 DOI: 10.1111/nph.13933] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/12/2016] [Indexed: 05/10/2023]
Abstract
I. 42 II. 43 III. 44 IV. 47 V. 49 VI. 50 VII. 50 VIII. 50 IX. 52 52 References 52 SUMMARY: Root-knot nematodes (RKNs) Meloidogyne spp. cause major damage to cultivated woody plants. Among them, Prunus, grapevine and coffee are the crops most infested by worldwide polyphagous species and species with a more limited distribution and/or narrower host range. The identification and characterization of natural sources of resistance are important steps to develop RKN control strategies. In woody crops, resistant rootstocks genetically different from the scion of agronomical interest may be engineered. We describe herein the interactions between RKNs and different woody crops, and highlight the plant species in which resistance and corresponding resistance (R) genes have been discovered. Even though grapevine and, to a lesser extent, coffee have a history of rootstock selection for RKN resistance, few cases of resistance have been documented. By contrast, in Prunus, R genes with different spectra have been mapped in plums, peach and almond and can be pyramided for durable resistance in interspecific rootstocks. We particularly discuss here the Ma Toll/interleukin-1 receptor-like-nucleotide binding-leucine-rich repeat gene from Myrobalan plum, one of the longest plant R genes cloned to date, due to its unique biological and structural properties. RKN R genes in Prunus will enable us to carry out molecular studies aimed at improving our knowledge of plant immunity in woody plants.
Collapse
Affiliation(s)
- Simon Bernard Saucet
- RIKEN Centre for Sustainable Resource Science, Plant Immunity Research Group, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Cyril Van Ghelder
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- University of Nice-Sophia Antipolis, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- CNRS, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Pierre Abad
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- University of Nice-Sophia Antipolis, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- CNRS, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Henri Duval
- INRA, UR 1052, Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), CS 60094, 84143, Montfavet, France
| | - Daniel Esmenjaud
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- University of Nice-Sophia Antipolis, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- CNRS, UMR 7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| |
Collapse
|
44
|
Jiang XY, Hou F, Shen XD, Du XD, Xu HL, Zou SM. The N-terminal zinc finger domain of Tgf2 transposase contributes to DNA binding and to transposition activity. Sci Rep 2016; 6:27101. [PMID: 27251101 PMCID: PMC4890040 DOI: 10.1038/srep27101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/13/2016] [Indexed: 01/14/2023] Open
Abstract
Active Hobo/Activator/Tam3 (hAT) transposable elements are rarely found in vertebrates. Previously, goldfish Tgf2 was found to be an autonomously active vertebrate transposon that is efficient at gene-transfer in teleost fish. However, little is known about Tgf2 functional domains required for transposition. To explore this, we first predicted in silico a zinc finger domain in the N-terminus of full length Tgf2 transposase (L-Tgf2TPase). Two truncated recombinant Tgf2 transposases with deletions in the N-terminal zinc finger domain, S1- and S2-Tgf2TPase, were expressed in bacteria from goldfish cDNAs. Both truncated Tgf2TPases lost their DNA-binding ability in vitro, specifically at the ends of Tgf2 transposon than native L-Tgf2TPase. Consequently, S1- and S2-Tgf2TPases mediated gene transfer in the zebrafish genome in vivo at a significantly (p < 0.01) lower efficiency (21%–25%), in comparison with L-Tgf2TPase (56% efficiency). Compared to L-Tgf2TPase, truncated Tgf2TPases catalyzed imprecise excisions with partial deletion of TE ends and/or plasmid backbone insertion/deletion. The gene integration into the zebrafish genome mediated by truncated Tgf2TPases was imperfect, creating incomplete 8-bp target site duplications at the insertion sites. These results indicate that the zinc finger domain in Tgf2 transposase is involved in binding to Tgf2 terminal sequences, and loss of those domains has effects on TE transposition.
Collapse
Affiliation(s)
- Xia-Yun Jiang
- College of Food Science and Technology, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Fei Hou
- College of Food Science and Technology, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Xiao-Dan Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Xue-Di Du
- College of animal science and technology, Yangzhou University, Wenhui Road 48, Yangzhou 225009, China
| | - Hai-Li Xu
- College of Food Science and Technology, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Shu-Ming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| |
Collapse
|
45
|
Makhnovskii PA, Kuzmin IV, Nefedova LN, Kima AI. Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome. Mol Biol 2016. [DOI: 10.1134/s0026893316020151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Abstract
hAT transposons are ancient in their origin and they are widespread across eukaryote kingdoms. They can be present in large numbers in many genomes. However, only a few active forms of these elements have so far been discovered indicating that, like all transposable elements, there is selective pressure to inactivate them. Nonetheless, there have been sufficient numbers of active hAT elements and their transposases characterized that permit an analysis of their structure and function. This review analyzes these and provides a comparison with the several domesticated hAT genes discovered in eukaryote genomes. Active hAT transposons have also been developed as genetic tools and understanding how these may be optimally utilized in new hosts will depend, in part, on understanding the basis of their function in genomes.
Collapse
|
47
|
Kroj T, Chanclud E, Michel‐Romiti C, Grand X, Morel J. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. THE NEW PHYTOLOGIST 2016; 210:618-26. [PMID: 26848538 PMCID: PMC5067614 DOI: 10.1111/nph.13869] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/16/2015] [Indexed: 05/18/2023]
Abstract
Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system.
Collapse
Affiliation(s)
- Thomas Kroj
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Emilie Chanclud
- Université Montpellier2 Place Eugène Bataillon34095Montpellier Cedex 5France
| | - Corinne Michel‐Romiti
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Xavier Grand
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Jean‐Benoit Morel
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| |
Collapse
|
48
|
Biochemical Characterization of Kat1: a Domesticated hAT-Transposase that Induces DNA Hairpin Formation and MAT-Switching. Sci Rep 2016; 6:21671. [PMID: 26902909 PMCID: PMC4763223 DOI: 10.1038/srep21671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/28/2016] [Indexed: 11/08/2022] Open
Abstract
Kluyveromyces lactis hAT-transposase 1 (Kat1) generates hairpin-capped DNA double strand breaks leading to MAT-switching (MATa to MATα). Using purified Kat1, we demonstrate the importance of terminal inverted repeats and subterminal repeats for its endonuclease activity. Kat1 promoted joining of the transposon end into a target DNA molecule in vitro, a biochemical feature that ties Kat1 to transposases. Gas-phase Electrophoretic Mobility Macromolecule analysis revealed that Kat1 can form hexamers when complexed with DNA. Kat1 point mutants were generated in conserved positions to explore structure-function relationships. Mutants of predicted catalytic residues abolished both DNA cleavage and strand-transfer. Interestingly, W576A predicted to be impaired for hairpin formation, was active for DNA cleavage and supported wild type levels of mating-type switching. In contrast, the conserved CXXH motif was critical for hairpin formation because Kat1 C402A/H405A completely blocked hairpinning and switching, but still generated nicks in the DNA. Mutations in the BED zinc-finger domain (C130A/C133A) resulted in an unspecific nuclease activity, presumably due to nonspecific DNA interaction. Kat1 mutants that were defective for cleavage in vitro were also defective for mating-type switching. Collectively, this study reveals Kat1 sharing extensive biochemical similarities with cut and paste transposons despite being domesticated and evolutionary diverged from active transposons.
Collapse
|
49
|
Vidal NM, Grazziotin AL, Iyer LM, Aravind L, Venancio TM. Transcription factors, chromatin proteins and the diversification of Hemiptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:1-13. [PMID: 26226651 PMCID: PMC4732926 DOI: 10.1016/j.ibmb.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Availability of complete genomes provides a means to explore the evolution of enormous developmental, morphological, and behavioral diversity among insects. Hemipterans in particular show great diversity of both morphology and life history within a single order. To better understand the role of transcription regulators in the diversification of hemipterans, using sequence profile searches and hidden Markov models we computationally analyzed transcription factors (TFs) and chromatin proteins (CPs) in the recently available Rhodnius prolixus genome along with 13 other insect and 4 non-insect arthropod genomes. We generated a comprehensive collection of TFs and CPs across arthropods including 303 distinct types of domains in TFs and 139 in CPs. This, along with the availability of two hemipteran genomes, R. prolixus and Acyrthosiphon pisum, helped us identify possible determinants for their dramatic morphological and behavioral divergence. We identified five domain families (i.e. Pipsqueak, SAZ/MADF, THAP, FLYWCH and BED finger) as having undergone differential patterns of lineage-specific expansion in hemipterans or within hemipterans relative to other insects. These expansions appear to be at least in part driven by transposons, with the DNA-binding domains of transposases having provided the raw material for emergence of new TFs. Our analysis suggests that while R. prolixus probably retains a state closer to the ancestral hemipteran, A. pisum represents a highly derived state, with the emergence of asexual reproduction potentially favoring genome duplication and transposon expansion. Both hemipterans are predicted to possess active DNA methylation systems. However, in the course of their divergence, aphids seem to have expanded the ancestral hemipteran DNA methylation along with a distinctive linkage to the histone methylation system, as suggested by expansion of SET domain methylases, including those fused to methylated CpG recognition domains. Thus, differential use of DNA methylation and histone methylation might have played a role in emergence of polyphenism and cyclic parthenogenesis from the ancestral hemipteran.
Collapse
Affiliation(s)
- Newton M Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - Ana Laura Grazziotin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
50
|
Wang X, Xie B, Qi Y, Wallerman O, Vasylovska S, Andersson L, Kozlova EN, Welsh N. Knock-down of ZBED6 in insulin-producing cells promotes N-cadherin junctions between beta-cells and neural crest stem cells in vitro. Sci Rep 2016; 6:19006. [PMID: 26750727 PMCID: PMC4707466 DOI: 10.1038/srep19006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/02/2015] [Indexed: 11/21/2022] Open
Abstract
The role of the novel transcription factor ZBED6 for the adhesion/clustering of insulin-producing mouse MIN6 and βTC6 cells was investigated. Zbed6-silencing in the insulin producing cells resulted in increased three-dimensional cell-cell clustering and decreased adhesion to mouse laminin and human laminin 511. This was paralleled by a weaker focal adhesion kinase phosphorylation at laminin binding sites. Zbed6-silenced cells expressed less E-cadherin and more N-cadherin at cell-to-cell junctions. A strong ZBED6-binding site close to the N-cadherin gene transcription start site was observed. Three-dimensional clustering in Zbed6-silenced cells was prevented by an N-cadherin neutralizing antibody and by N-cadherin knockdown. Co-culture of neural crest stem cells (NCSCs) with Zbed6-silenced cells, but not with control cells, stimulated the outgrowth of NCSC processes. The cell-to-cell junctions between NCSCs and βTC6 cells stained more intensely for N-cadherin when Zbed6-silenced cells were co-cultured with NCSCs. We conclude that ZBED6 decreases the ratio between N- and E-cadherin. A lower N- to E-cadherin ratio may hamper the formation of three-dimensional beta-cell clusters and cell-to-cell junctions with NCSC, and instead promote efficient attachment to a laminin support and monolayer growth. Thus, by controlling beta-cell adhesion and cell-to-cell junctions, ZBED6 might play an important role in beta-cell differentiation, proliferation and survival.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Beichen Xie
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yu Qi
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|