1
|
Guo H, Li Z, Wang Y. BCL3, GBP1, IFI16, and CCR1 as potential brain-derived biomarkers for parietal grey matter lesions in multiple sclerosis. Sci Rep 2024; 14:28543. [PMID: 39557900 PMCID: PMC11574279 DOI: 10.1038/s41598-024-76949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, progressing from Relapsing-Remitting MS (RRMS) to Secondary Progressive MS (SPMS) in many cases. The transition involves complex biological changes. Our study aims to identify potential biomarkers for distinguishing SPMS by analyzing gene expression differences between normal-appearing and lesioned parietal grey matter, which may also contribute to understand the pathogenesis of SPMS. We utilized public datasets from the Gene Expression Omnibus (GEO), applying bioinformatics and machine learning techniques including Weighted Gene Co-expression Network Analysis (WGCNA), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) enrichment analysis, protein-protein interaction (PPI) networks, the Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF) for predictive model construction. Our study also included analyses of immune cell infiltration. The study identified 359 DEGs, with 105 up-regulated and 254 down-regulated. WGCNA identified 264 common genes, which were subjected to KEGG and GO enrichment analyses, highlighting their role in immune response and viral infection pathways. Four genes (BCL3, GBP1, IFI16, and CCR1) were identified as key biomarkers for SPMS, supported by LASSO regression and RF analyses. These genes were further validated through receiver operating characteristic (ROC) curves, demonstrating significant predictive potential for SPMS. Our study provides a novel set of biomarkers for SPMS from lesioned grey matter of SPMS cases, offering potential for diagnosis and targeted therapeutic strategies. The identified biomarkers link closely with SPMS pathology, especially regarding immune system modulation.
Collapse
Affiliation(s)
- Hua Guo
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaocheng Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
2
|
Kowalik A, Majerek M, Mrowiec K, Solich J, Faron-Górecka A, Woźnicka O, Dziedzicka-Wasylewska M, Łukasiewicz S. Dopamine D 2 and Serotonin 5-HT 1A Dimeric Receptor-Binding Monomeric Antibody scFv as a Potential Ligand for Carrying Drugs Targeting Selected Areas of the Brain. Biomolecules 2022; 12:749. [PMID: 35740874 PMCID: PMC9221303 DOI: 10.3390/biom12060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format). We studied scFv, which specifically recognizes the dopamine D2 and serotonin 5-HT1A receptor heteromers. The scFvD2-5-HT1A protein was analyzed biochemically and biologically, and the obtained results indicated that the antibody is properly folded and non-toxic and can be described as low-immunogenic. It is not only able to bind to the D2-5-HT1A receptor heteromer, but it also influences the cAMP signaling pathway and-when surfaced on nanogold particles-it can cross the blood-brain barrier in in vitro models. When administered to mice, it decreased locomotor activity, matching the effect induced by clozapine. Thus, we are strongly convinced that scFvD2-5-HT1A, which was a subject of the present investigation, is a promising targeting ligand with the potential for the functionalization of nanocarriers targeting selected areas of the brain.
Collapse
Affiliation(s)
- Agata Kowalik
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Mateusz Majerek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Krzysztof Mrowiec
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland;
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| |
Collapse
|
3
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
5
|
Kim J, Lee G, Kang H, Yoo JS, Lee Y, Lee HS, Choi CY. Stauntonia hexaphylla leaf extract (YRA-1909) suppresses inflammation by modulating Akt/NF-κB signaling in lipopolysaccharide-activated peritoneal macrophages and rodent models of inflammation. Food Nutr Res 2021; 65:7666. [PMID: 34776829 PMCID: PMC8559446 DOI: 10.29219/fnr.v65.7666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background Inflammation is emerging as a key contributor to many vascular diseases and furthermore plays a major role in autoimmune diseases, arthritis, allergic reactions, and cancer. Lipopolysaccharide (LPS), which is a component constituting the outer membrane of Gram-negative bacteria, is commonly used for an inflammatory stimuli to mimic inflammatory diseases. Nuclear factor-kappa B (NF-κB) is a transcription factor and regulates gene expression particularly related to the inflammatory process. Stauntonia hexaphylla (Lardizabalaceae) is widely used as a traditional herbal medicine for rheumatism and osteoporosis and as an analgesic, sedative, and diuretic in Korea, Japan, and China. Objective The purpose of this study was to investigate the anti-inflammatory activity of YRA-1909, the leaf aqueous extract of Stauntonia hexaphylla using LPS-activated rat peritoneal macrophages and rodent inflammation models. Results YRA-1909 inhibited the LPS-induced nitric oxide (NO) and proinflammatory cytokine production in rat peritoneal macrophages without causing cytotoxicity and reduced inducible NO synthase and prostaglandin E2 levels without affecting the cyclooxygenase-2 expression. YRA-1909 also prevented the LPS-stimulated Akt and NF-κB phosphorylation and reduced the carrageenan-induced hind paw edema, xylene-induced ear edema, acetic acid-induced vascular permeation, and cotton pellet-induced granuloma formation in a dose-dependent manner in mice and rats. Conclusions S. hexaphylla leaf extract YRA-1909 had anti-inflammatory activity in vitro and in vivo that involves modulation of Akt/NF-κB signaling. Thus, YRA-1909 is safe and effective for the treatment of inflammation.
Collapse
Affiliation(s)
- Jaeyong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Gyuok Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Huwon Kang
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Ji-Seok Yoo
- Rexpharmtech. Co., Ltd., Yongin, Seoul, Republic of Korea
| | - Yongnam Lee
- Rexpharmtech. Co., Ltd., Yongin, Seoul, Republic of Korea
| | - Hak-Sung Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Chul-Yung Choi
- Department of Biomedical Science College of Natural Science, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Nur77 attenuates inflammatory responses and oxidative stress by inhibiting phosphorylated IκB-α in Parkinson's disease cell model. Aging (Albany NY) 2020; 12:8107-8119. [PMID: 32401747 PMCID: PMC7244064 DOI: 10.18632/aging.103128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation and oxidative stress play key roles in the pathological development of Parkinson’s disease (PD). Nerve growth factor-induced gene B (Nur77) is closely related to dopamine neurotransmission, and its pathogenesis is unclear. This study aims to investigate the role and mechanism of Nur77 in a cell model of Parkinson’s disease. Silencing Nur77 with siRNA can aggravate intracellular LDH release, increase the expression of pro-inflammatory genes (such as tumor necrosis factor α, nuclear factor κB (p65), monocyte chemotactic protein 1, interleukin-6), and decrease cell survival, decrease expression of nuclear factor E2-related factor(Nrf2), heme oxygenase 1, NADPH quinineoxidoreductase-1. Cytosporone B (Nur77 agonist) has the opposite effect to Nur77 silencing. PDTC (NF-κB inhibitor / antioxidant) can also inhibit pro-inflammatory genes to a similar degree as Cytosporone B. Phosphorylated IκB-α can be inhibited by Cytosporone B, while silencing Nur77 can increase the protein expression level of phosphorylated IκB-α. After silencing IκB-α, both Cytosporone B and siNur77 did not affect pro-inflammatory genes and antioxidant stress. These findings reveal the first evidence that Nur77 exerts anti-inflammatory and antioxidant stress effects by inhibiting IκB-α phosphorylation expression in a Parkinson cell model. Nur77 may be a potential therapeutic target for Parkinson’s disease.
Collapse
|
7
|
Hou H, Peng Q, Wang S, Zhang Y, Cao J, Deng Y, Wang Y, Sun WC, Wang HB. Anemonin Attenuates RANKL-Induced Osteoclastogenesis and Ameliorates LPS-Induced Inflammatory Bone Loss in Mice via Modulation of NFATc1. Front Pharmacol 2020; 10:1696. [PMID: 32116686 PMCID: PMC7025528 DOI: 10.3389/fphar.2019.01696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by insufficient osteoblastic function and/or excessive osteoclastic activity. One promising strategy for treating osteoporosis is inhibiting excessive osteoclast resorbing activity. Previous studies have revealed that anemonin (ANE), isolated from various types of Chinese natural herbs, has anti-inflammatory and anti-oxidative properties. However, whether ANE regulates osteoclastogenesis is unknown. This study aimed to investigate the potential effect of ANE on osteoclastogenesis and inflammatory bone loss in mice. In in vitro studies, ANE suppressed RANKL-stimulated osteoclast differentiation and function by downregulating the expression of osteoclast master transcriptor NFATc1, as well as its upstream transcriptor c-Fos, by decreasing NF-κB and ERK1/2 signaling. Interestingly, ANE did not change the phosphorylation and degradation of IκB-α and activation of JNK and p38 MAPKs. However, ANE repressed the phosphorylation of MSK-1 which is the downstream target of ERK1/2 and p38 MAPK and can phosphorylate NF-κB p65 subunit. These results implicated that ANE might suppress NF-κB activity via modulation of ERK1/2 mediated NF-κB phosphorylation. In addition, ANE directly suppressed NFATc1 transcription by inhibiting Blimp-1 expression, and the subsequent enhancement of the expression of NFATc1 negative regulators, Bcl-6 and IRF-8. Moreover, in vivo studies were conducted using an LPS-induced inflammatory bone loss mice model. Micro-CT and histology analysis showed that ANE treatment significantly improved trabecular bone parameters and bone destruction. These data indicate that ANE can attenuate RANKL-induced osteoclastogenesis and ameliorate LPS-induced inflammatory bone loss in mice through modulation of NFATc1 via ERK1/2-mediated NF-κB phosphorylation and Blimp1 signal pathways. ANE may provide new treatment options for osteoclast-related diseases.
Collapse
Affiliation(s)
- Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Shaoming Wang
- Department of Endocrinology, Changchun People's Hospital, Changchun, China
| | - Yuxin Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinjin Cao
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingjian Wang
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Wan-Chun Sun
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hong-Bing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Wang Y, Wang L, Wen X, Hao D, Zhang N, He G, Jiang X. NF-κB signaling in skin aging. Mech Ageing Dev 2019; 184:111160. [PMID: 31634486 DOI: 10.1016/j.mad.2019.111160] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023]
Abstract
Skin is the largest organ of the body, and is prone to be affected by external environmental factors. Skin aging is caused by both genetic and environmental factors. Furthermore, aging skin tissue is known to create a permissive tissue microenvironment that promotes the initiation, progression and resistance of cancer cells by promoting the senescence-associated secretory phenotype (SASP). Therefore, more attention should be paid to skin aging. In this review, we highlight the common Rel proteins and two activation pathways: the canonical activation pathway and the non-canonical activation pathway. Furthermore, we summarize the role of NF-κB in skin aging. The effects of UV on the skin results from the production of ROS. Excessive free radicals activate the NF-κB signaling pathway and MAPK signaling pathway, contributing to the activation of AP-1 and NF-κB. Then it increased the level of TNF-α and the expression of MMPs, which induce the degradation of ECM and accelerated skin aging. We also summarize some reported natural antioxidants and synthetic antioxidants which are related to NF-κB signals. On the other hand, NF-κB plays a key role in SASP. Upon senescence-inducing signals, ATM and ATR block p62-dependent autophagic degradation of GATA4, contributing to NF-κB activation and SASP induction.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nan Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Lee E, Lee TA, Yoo HJ, Lee S, Park B. CNBP controls tumor cell biology by regulating tumor-promoting gene expression. Mol Carcinog 2019; 58:1492-1501. [PMID: 31087358 DOI: 10.1002/mc.23030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/23/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Cellular nucleic acid-binding protein (CNBP) is associated with cell proliferation, and its expression is elevated in human tumors, but the molecular mechanisms of CNBP in tumor cell biology have not been fully elucidated. In this study, we report that CNBP is a transcription factor essential for regulating matrix metalloproteinases mmp-2, mmp-14, and transcription factor e2f2 gene expression by binding to their promoter regions via a sequence-specific manner. Importantly, epidermal growth factor stimulation is required to induce CNBP phosphorylation and nuclear transport, thereby promoting the expression of mmp-2, mmp-14, and e2f2 genes. As a consequence, loss of cnbp attenuates the ability of tumor cell growth, invasion, and migration. Conversely, overexpression of cnbp is associated with tumor cell biology. Collectively, our findings reveal CNBP as a key transcriptional regulator of tumor-promoting target genes to control tumor cell biology.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Taeyun A Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hye Jin Yoo
- Division of Tumor Immunology, National Cancer Center, Goyang, South Korea
| | - Sungwook Lee
- Division of Tumor Immunology, National Cancer Center, Goyang, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
10
|
Zeng Z, Li D, Liu F, Zhou C, Shao Q, Ding C, Qing C, Wang X, Hu Z, Qian K. Mitochondrial DNA plays an important role in lung injury induced by sepsis. J Cell Biochem 2019; 120:8547-8560. [PMID: 30520103 DOI: 10.1002/jcb.28142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
The effects and mechanisms of mitochondrial DNA (mtDNA) in the development of sepsis-induced lung injury is not well understood. In our present study, we studied the mtDNA effects in sepsis-induced lung injury model, in vitro and in vivo. Compared with the Normal group, the lung histopathological score, the number of positive apoptosis cell, wet/dry (W/D) ratio and TNF-α, IL-1β, and IL-6 concentrations of lipopolysaccharides (LPSs) and mtDNA groups were significantly increased (P < 0.001, respectively). Meanwhile, the lung histopathological score, positive W/D ratio, number of apoptosis cell and tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 concentrations of LPS + mtDNA and small interfering RNA (siRNA)-NC + LPS + mtDNA groups were significantly upregulated compared with those of LPS group (P < 0.05, respectively). However, the lung histopathological score, the number of positive apoptosis cell, W/D ratio and TNF-α, IL-1β, and IL-6 concentrations were significantly improved within the toll-like receptor (TLR9)siRNA + LPS + mtDNA group compared with the LPS group (P < 0.01, respectively). The TLR9, MyD88, and NF-κB proteins or gene expressions of the LPS group and mtDNA group were significantly upregulated compared with those of Normal group by Western blot analysis or immunohistochemistry assay (P < 0.01, respectively), and the TLR9, MyD88, and NF-κB proteins or gene expressions of LPS + mtDNA and siRNA-NC + LPS + mtDNA groups were significantly enhanced compared with those of LPS group (P < 0.05, respectively). However, the TLR9, MyD88, and NF-κB proteins or gene expressions of TLR9siRNA + LPS + mtDNA group were significantly suppressed compared with those of the LPS group (P < 0.01, respectively). In conclusion, mtDNA could provoke lung injury induced by sepsis via regulation of TLR9/MyD88/NF-κB pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chaoqi Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chengzhi Ding
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Qing
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuzhen Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiguo Hu
- Department of Critical Care Medicine, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Kejian Qian
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Martín-Hernández D, Caso JR, Javier Meana J, Callado LF, Madrigal JLM, García-Bueno B, Leza JC. Intracellular inflammatory and antioxidant pathways in postmortem frontal cortex of subjects with major depression: effect of antidepressants. J Neuroinflammation 2018; 15:251. [PMID: 30180869 PMCID: PMC6122627 DOI: 10.1186/s12974-018-1294-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies show that Toll-like receptors (TLRs), members of the innate immune system, might participate in the pathogenesis of the major depressive disorder (MDD). However, evidence of this participation in the brain of patients with MDD has been elusive. METHODS This work explores whether the protein expression by immunodetection assays (Western blot) of elements of TLR-4 pathways controlling inflammation and the oxidative/nitrosative stress are altered in postmortem dorsolateral prefrontal cortex of subjects with MDD. The potential modulation induced by the antidepressant treatment on these parameters was also assessed. Thirty MDD subjects (15 antidepressant-free and 15 under antidepressant treatment) were matched for gender and age to 30 controls in a paired design. RESULTS No significant changes in TLR-4 expression were detected. An increased expression of the TLR-4 endogenous ligand Hsp70 (+ 33%), but not of Hsp60, and the activated forms of mitogen-activated protein kinases (MAPKs) p38 (+ 47%) and JNK (+ 56%) was observed in MDD. Concomitantly, MDD subjects present a 45% decreased expression of DUSP2 (a regulator of MAPKs) and reduced (- 21%) expression of the antioxidant nuclear factor Nrf2. Antidepressant treatment did not modify the changes detected in the group with MDD and actually increased (+ 25%) the expression of p11, a protein linked with the transport of neurotransmitters and depression. CONCLUSION Data indicate an altered TLR-4 immune response in the brain of subjects with MDD. Additional research focused on the mechanisms contributing to the antidepressant-induced TLR-4 pathway modulation is warranted and could help to develop new treatment strategies for MDD.
Collapse
Affiliation(s)
- David Martín-Hernández
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| | - Javier R Caso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain. .,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain.
| | - J Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología, Universidad del País Vasco, UPV/EHU, B. Sarriena s/n, 48940, Leioa, Bizkaia, Spain.,Instituto de Investigación Sanitaria Biocruces, Plaza de Cruces s/n, 48903, Barakaldo, Bizkaia, Spain
| | - Luis F Callado
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología, Universidad del País Vasco, UPV/EHU, B. Sarriena s/n, 48940, Leioa, Bizkaia, Spain.,Instituto de Investigación Sanitaria Biocruces, Plaza de Cruces s/n, 48903, Barakaldo, Bizkaia, Spain
| | - José L M Madrigal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Avda. de Córdoba, s/n, 28041, Madrid, Spain
| |
Collapse
|
12
|
Li P, Chen D, Huang Y. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo. Int J Mol Med 2018; 42:237-247. [PMID: 29568876 PMCID: PMC5979934 DOI: 10.3892/ijmm.2018.3585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.
Collapse
Affiliation(s)
- Peng Li
- Department of Otorhinolaryngology, The Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dan Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yang Huang
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, Xishan, Kunming 650032, P.R. China
| |
Collapse
|
13
|
Zhang HJ, Wang XZ, Cao Q, Gong GH, Quan ZS. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg Med Chem Lett 2017; 27:4409-4414. [DOI: 10.1016/j.bmcl.2017.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
|
14
|
Jongstra-Bilen J, Zhang CX, Wisnicki T, Li MK, White-Alfred S, Ilaalagan R, Ferri DM, Deonarain A, Wan MH, Hyduk SJ, Cummins CL, Cybulsky MI. Oxidized Low-Density Lipoprotein Loading of Macrophages Downregulates TLR-Induced Proinflammatory Responses in a Gene-Specific and Temporal Manner through Transcriptional Control. THE JOURNAL OF IMMUNOLOGY 2017; 199:2149-2157. [PMID: 28784845 DOI: 10.4049/jimmunol.1601363] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 07/16/2017] [Indexed: 01/08/2023]
Abstract
Hypercholesterolemia is a key risk factor for atherosclerosis and leads to the uptake of native and oxidized low-density lipoprotein (oxLDL) by macrophages (Mϕs) and foam cell formation. Inflammatory processes accompany Mϕ foam cell formation in the artery wall, yet the relationship between Mϕ lipid loading and their response to inflammatory stimuli remains elusive. We investigated proinflammatory gene expression in thioglycollate-elicited peritoneal Mϕs, bone marrow-derived Mϕs and dendritic cells, and RAW264.7 cells. Loading with oxLDL did not induce peritoneal Mϕ apoptosis or modulate basal-level expression of proinflammatory genes. Upon stimulation of TLR4, the rapid induction of IFN-β was inhibited in cells loaded with oxLDL, whereas the induction of other proinflammatory genes by TLR4 (LPS), TLR3 (polyriboinosinic-polyribocytidylic acid), TLR2 (Pam3CSK4), and TLR9 (CpG) remained comparable within the first 2 h. Subsequently, the expression of a subset of proinflammatory genes (e.g., IL-1β, IL-6, CCL5) was reduced in oxLDL-loaded cells at the level of transcription. This phenomenon was partially dependent on NF erythroid 2-related factor 2 (NRF2) but not on nuclear liver X receptors α and β (LXRα,β), peroxisome proliferator-activated receptor-γ (PPARγ), and activating transcription factor 3 (ATF3). LPS-induced NF-κB reporter activity and intracellular signaling by NF-κB and MAPK pathways were comparable in oxLDL-loaded Mϕs, yet the binding of p65/RelA (the prototypic NF-κB family member) was reduced at IL-6 and CCL5 promoters. This study revealed that oxLDL loading of Mϕs negatively regulates transcription at late stages of TLR-induced proinflammatory gene expression and implicates epigenetic mechanisms such as histone deacetylase activity.
Collapse
Affiliation(s)
- Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Cindy X Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Timothy Wisnicki
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mengyi K Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Samantha White-Alfred
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ragave Ilaalagan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dario M Ferri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ashley Deonarain
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mark H Wan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Carolyn L Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
15
|
Sheehy S, Annabi B. A Transcriptional Regulatory Role for the Membrane Type-1 Matrix Metalloproteinase in Carcinogen-Induced Inflammasome Gene Expression. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017713996. [PMID: 28634425 PMCID: PMC5467917 DOI: 10.1177/1177625017713996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP's role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal-regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.
Collapse
Affiliation(s)
- Samuel Sheehy
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
16
|
Yin K, Zhu R, Wang S, Zhao RC. Low level laser (LLL) attenuate LPS-induced inflammatory responses in mesenchymal stem cells via the suppression of NF-κB signaling pathway in vitro. PLoS One 2017; 12:e0179175. [PMID: 28594941 PMCID: PMC5464618 DOI: 10.1371/journal.pone.0179175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background Considering promising results in animal models and patients, therapeutic use of MSCs for immune disease is likely to undergo continued evaluation. Low-lever laser (LLL) has been widely applied to retard the inflammatory reaction. LLL treatment can potentially be applied in anti-inflammatory therapy followed by stem cell therapy. Aim of the study The purpose of this study was to investigate the effect of LLL (660 nm) on the inflammatory reaction induced by LPS in human adipose derived mesenchymal stem cells (hADSCs) and pertinent mechanism. Materials and methods Anti-inflammatory activity of LLL was investigated by LPS-induced mesenchymal stem cells. The production and expression of pro-inflammatory cytokines were evaluated by ELISA kits and RT-qPCR. Nuclear translocation of NF-κB was indicated by immunofluorescent staining. Phosphorylation status of NF-κB p65 and IκBα were illustrated by western blot assay. ROS generation was measured with CM-H2DCFDA, and NO secretion was determined by DAF-FM. We studied surface expression of lymphocyte activation markers when Purified peripheral blood mononuclear cell (PBMC) were activated by phytohaemagglutinin (PHA) in the presence of 3 types of treated MSCs. Results LLL reduced the secretion of IL-1β, IL-6, IL8, ROS and NO in LPS treated MSCs. Immunofluorescent assay demonstrated the nuclear translocation decrease of NF-κB in LLL treated LPS induced MSCs. Western blot analysis also suggested that LLL suppressed NF-κB activation via regulating the phosphorylation of p65 and IκBα. MSC significantly reduced the expression of activation markers CD25 and CD69 on PHA-stimulated lymphocytes. Conclusion The results indicate that LLL suppressed the activation of NF-κB signaling pathway in LPS treated MSCs through inhibiting phosphorylation of p65 and IκBα, which results in good anti-inflammatory effect. In addition, LLL attenuated activation-associated markers CD25 and CD69 in co-cultures of PBMC and 3 types of treated MSCs.
Collapse
Affiliation(s)
- Kan Yin
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rongjia Zhu
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shihua Wang
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
17
|
Zhai XT, Chen JQ, Jiang CH, Song J, Li DY, Zhang H, Jia XB, Tan W, Wang SX, Yang Y, Zhu FX. Corydalis bungeana Turcz. attenuates LPS-induced inflammatory responses via the suppression of NF-κB signaling pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:153-161. [PMID: 27616027 DOI: 10.1016/j.jep.2016.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 08/26/2016] [Accepted: 09/07/2016] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis bungeana Turcz. (C. bungeana) is one of traditionally used medicines in China and possesses various biological effects, such as anti-inflammatory, antibacterial activity and inhibition of the immune function of the host. AIM OF THE STUDY we studied the anti-inflammatory effect and molecular mechanism involved of C. bungeana both in vitro and in vivo model system in which the inflammatory response was induced by LPS treatment. MATERIALS AND METHODS Anti-inflammatory activity of C. bungeana was investigated by LPS-induced RAW 264.7 macrophages and BALB/c mice. The production and expression of pro-inflammatory cytokines were evaluated by Griess reagent, ELISA kits and RT-qPCR, respectively. Phosphorylation status of IκBα and p65 was illustrated by western blot assay. RESULTS C. bungeana reduced the secretion of NO, TNF-α, IL-6 and IL-1β through inhibiting the protein expression of iNOS, TNF-α, IL-6 and IL-1β in vitro and in vivo. Western blot analysis suggested that C. bungeana supressed NF-κB activation via regulating the phosphorylation of IκBα and p65. Immunohistochemical assay also demostrated the histological inflammatory change in liver tissue. CONCLUSIONS The results indicate that C. bungeana supresses the activation of NF-κB signaling pathway through inhibiting phosphorylation of IκBα and p65, which results in good anti-inflammatory effect. In addition, C. bungeana attenuates inflammatory reaction by supressing the expression of various inflammatory cytokines both in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao-Ting Zhai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China; Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jia-Quan Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, PR China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Dong-Yu Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Hao Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Xiao-Bin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Wei Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Shu-Xia Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Clinical Laboratory, Jiangsu Province Hospital on Integration Medicine, Nanjing 210028, PR China
| | - Yi Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Fen-Xia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
18
|
Huante-Mendoza A, Silva-García O, Oviedo-Boyso J, Hancock REW, Baizabal-Aguirre VM. Peptide IDR-1002 Inhibits NF-κB Nuclear Translocation by Inhibition of IκBα Degradation and Activates p38/ERK1/2-MSK1-Dependent CREB Phosphorylation in Macrophages Stimulated with Lipopolysaccharide. Front Immunol 2016; 7:533. [PMID: 27933067 PMCID: PMC5122595 DOI: 10.3389/fimmu.2016.00533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023] Open
Abstract
The inflammatory response is a critical molecular defense mechanism of the innate immune system that mediates the elimination of disease-causing bacteria. Repair of the damaged tissue, and the reestablishment of homeostasis, must be accomplished after elimination of the pathogen. The innate defense regulators (IDRs) are short cationic peptides that mimic natural host defense peptides and are effective in eliminating pathogens by enhancing the activity of the immune system while controlling the inflammatory response. Although the role of different IDRs as modulators of inflammation has been reported, there have been only limited studies of the signaling molecules regulated by this type of peptide. The present study investigated the effect of IDR-1002 on nuclear factor κB (NF-κB) and cAMP-response element-binding protein (CREB) transcription factors that are responsible for triggering and controlling inflammation, respectively, in macrophages. We found that TNF-α and COX-2 expression, IκBα phosphorylation, and NF-κB nuclear translocation were strongly inhibited in macrophages pre-incubated with IDR-1002 and then stimulated with lipopolysaccharide (LPS). IDR-1002 also increased CREB phosphorylation at Ser133 via activation of the p38/ERK1/2–MSK1 signaling pathways without detectable expression of the cytokines IL-4, IL-10, and IL-13 involved is suppressing inflammation or alternative activation. Transcriptional activation of NF-κB and CREB is known to require interaction with the transcriptional coactivator CREB-binding protein (CBP). To test for CBP–NF-κB and CBP–CREB complex formation, we performed co-immunoprecipitation assays. These assays showed that IDR-1002 inhibited the interaction between CBP and NF-κB in macrophages stimulated with LPS, which might explain the inhibition of TNF-α and COX-2 expression. Furthermore, the complex between CBP and CREB in macrophages stimulated with IDR-1002 was also inhibited, which might explain why IDR-1002 did not lead to expression of IL-4, IL-10, and IL-13, even though it induced an increase in phospho-CREB relative abundance. In conclusion, our results indicated that IDR-1002 has a dual effect. On one hand, it inhibited NF-κB nuclear translocation through a mechanism that involved inhibition of IκBα phosphorylation, and on the other, it activated a protein kinase signaling cascade that phosphorylated CREB to selectively influence cytokine gene expression. Based on these results, we think IDR-1002 could be a potential good biopharmaceutical candidate to control inflammation.
Collapse
Affiliation(s)
- Alejandro Huante-Mendoza
- Laboratory of Molecular Immunology and Signal Transduction, Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia, Michoacán , México
| | - Octavio Silva-García
- Laboratory of Molecular Immunology and Signal Transduction, Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia, Michoacán , México
| | - Javier Oviedo-Boyso
- Laboratory of Molecular Immunology and Signal Transduction, Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia, Michoacán , México
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia , Vancouver, BC , Canada
| | - Víctor M Baizabal-Aguirre
- Laboratory of Molecular Immunology and Signal Transduction, Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia, Michoacán , México
| |
Collapse
|
19
|
Cnidilide, an alkylphthalide isolated from the roots of Cnidium officinale , suppresses LPS-induced NO, PGE 2 , IL-1β, IL-6 and TNF-α production by AP-1 and NF-κB inactivation in RAW 264.7 macrophages. Int Immunopharmacol 2016; 40:146-155. [DOI: 10.1016/j.intimp.2016.08.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 01/03/2023]
|
20
|
Song SM, Ham YM, Ko YJ, Ko EY, Oh DJ, Kim CS, Kim D, Kim KN, Yoon WJ. Anti-inflammatory activities of the products of supercritical fluid extraction from Litsea japonica fruit in RAW 264.7 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Induction of cytokines via NF-κB and p38 MAP kinase signalling pathways associated with the immunomodulation by Lactobacillus plantarum NDC 75017 in vitro and in vivo. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
22
|
With-No-Lysine Kinase 4 Mediates Alveolar Fluid Regulation in Hyperoxia-Induced Lung Injury. Crit Care Med 2015; 43:e412-9. [PMID: 26035408 DOI: 10.1097/ccm.0000000000001144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate mechanisms involved in the regulation of epithelial ion channels and alveolar fluid clearance in hyperoxia-induced lung injury. DESIGN Laboratory animal experiments. SETTING Animal care facility procedure room in a medical center. SUBJECTS Wild-type, STE20/SPS1-related proline/alanine-rich kinase knockout (SPAK(-/-)), and with-no-lysine kinase 4 knockin (WNK4(D561A/+)) mice. INTERVENTIONS Mice were exposed to room air or 95% hyperoxia for 60 hours. MEASUREMENTS AND MAIN RESULTS Exposure to hyperoxia for 60 hours increased the lung expression of with-no-lysine kinase 4 and led to STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation, which resulted in the suppression of alveolar fluid clearance and increase of lung edema. WNK4(D561A/+) mice at the baseline presented an abundance of epithelium sodium channel and high levels of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. Compared with the wild-type group, hyperoxia caused greater epithelium sodium channel expression in WNK4(D561A/+) mice, but no significant difference in STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. The functional inactivation of sodium-potassium-chloride cotransporter by gene knockout in SPAK(-/-) mice yielded a lower severity of lung injury and longer animal survival, whereas constitutive expression of with-no-lysine kinase 4 exacerbated the hyperoxia-induced lung injury. Pharmacologic inhibition of sodium-potassium-chloride cotransporter by inhaled furosemide improved animal survival in WNK4(D561A/+) mice. By contrast, inhibition of epithelium sodium channel exacerbated the hyperoxia-induced lung injury and animal death. CONCLUSIONS With-no-lysine kinase 4 plays a crucial role in the regulation of epithelial ion channels and alveolar fluid clearance, mainly via phosphorylation and activation of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter.
Collapse
|
23
|
Martín-Hernández D, Caso JR, Bris ÁG, Maus SR, Madrigal JLM, García-Bueno B, MacDowell KS, Alou L, Gómez-Lus ML, Leza JC. Bacterial translocation affects intracellular neuroinflammatory pathways in a depression-like model in rats. Neuropharmacology 2015; 103:122-33. [PMID: 26686392 DOI: 10.1016/j.neuropharm.2015.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/20/2022]
Abstract
Recent studies have suggested that depression is accompanied by an increased intestinal permeability which would be related to the inflammatory pathophysiology of the disease. This study aimed to evaluate whether experimental depression presents with bacterial translocation that in turn can lead to the TLR-4 in the brain affecting the mitogen-activated protein kinases (MAPK) and antioxidant pathways. Male Wistar rats were exposed to chronic mild stress (CMS) and the intestinal integrity, presence of bacteria in tissues and plasma lipopolysaccharide levels were analyzed. We also studied the expression in the prefrontal cortex of activated forms of MAPK and some of their activation controllers and the effects of CMS on the antioxidant Nrf2 pathway. Our results indicate that after exposure to a CMS protocol there is increased intestinal permeability and bacterial translocation. CMS also increases the expression of the activated form of the MAPK p38 while decreasing the expression of the antioxidant transcription factor Nrf2. The actions of antibiotic administration to prevent bacterial translocation on elements of the MAPK and Nrf2 pathways indicate that the translocated bacteria are playing a role in these effects. In effect, our results propose a role of the translocated bacteria in the pathophysiology of depression through the p38 MAPK pathway which could aggravate the neuroinflammation and the oxidative/nitrosative damage present in this pathology. Moreover, our results reveal that the antioxidant factor Nrf2 and its activators may be involved in the consequences of the CMS on the brain.
Collapse
Affiliation(s)
- David Martín-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain; Department of Psychiatry, School of Medicine, Universidad Complutense de Madrid, Avda. Complutense, 28040 Madrid, Spain.
| | - Álvaro G Bris
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Sandra R Maus
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - José L M Madrigal
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Karina S MacDowell
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Luis Alou
- Department of Medicine - Microbiology, School of Medicine, Universidad Complutense de Madrid, Avda. Complutense, 28040 Madrid, Spain
| | - Maria Luisa Gómez-Lus
- Department of Medicine - Microbiology, School of Medicine, Universidad Complutense de Madrid, Avda. Complutense, 28040 Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain.
| |
Collapse
|
24
|
Nepali S, Son JS, Poudel B, Lee JH, Lee YM, Kim DK. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway. Pharmacogn Mag 2015; 11:627-35. [PMID: 26246742 PMCID: PMC4522853 DOI: 10.4103/0973-1296.160470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/27/2014] [Accepted: 07/10/2015] [Indexed: 01/13/2023] Open
Abstract
Background: Inflammation of adipocytes has been a therapeutic target for treatment of obesity and metabolic disorders which cause insulin resistance and hence lead to type II diabetes. Luteolin is a bioflavonoid with many beneficial properties such as antioxidant, antiproliferative, and anti-cancer. Objectives: To elucidate the potential anti-inflammatory response and the underlying mechanism of luteolin in 3T3-L1 adipocytes. Materials and Methods: We stimulated 3T3-L1 adipocytes with the mixture of tumor necrosis factor-α, lipopolysaccharide, and interferon-γ (TLI) in the presence or absence of luteolin. We performed Griess’ method for nitric oxide (NO) production and measure mRNA and protein expressions by real-time polymerase chain reaction and western blotting, respectively. Results: Luteolin opposed the stimulation of inducible nitric oxide synthase and NO production by simultaneous treatment of adipocytes with TLI. Furthermore, it reduced the pro-inflammatory genes such as cyclooxygenase-2, interleukin-6, resistin, and monocyte chemoattractant protein-1. Furthermore, luteolin improved the insulin sensitivity by enhancing the expression of insulin receptor substrates (IRS1/2) and glucose transporter-4 via phosphatidylinositol-3K signaling pathway. This inhibition was associated with suppression of Iκ-B-α degradation and subsequent inhibition of nuclear factor-κB (NF-κB) p65 translocation to the nucleus. In addition, luteolin blocked the phosphorylation of ERK1/2, c-Jun N-terminal Kinases and also p38 mitogen-activated protein kinases (MAPKs). Conclusions: These results illustrate that luteolin attenuates inflammatory responses in the adipocytes through suppression of NF-κB and MAPKs activation, and also improves insulin sensitivity in 3T3-L1 cells, suggesting that luteolin may represent a therapeutic agent to prevent obesity-associated inflammation and insulin resistance.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Ji-Seon Son
- Department of Anesthesiology and Pain Medicine, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Barun Poudel
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 570-749, Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| |
Collapse
|
25
|
Kim SH, MacIntyre DA, Firmino Da Silva M, Blanks AM, Lee YS, Thornton S, Bennett PR, Terzidou V. Oxytocin activates NF-κB-mediated inflammatory pathways in human gestational tissues. Mol Cell Endocrinol 2015; 403:64-77. [PMID: 25451977 DOI: 10.1016/j.mce.2014.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022]
Abstract
Human labour, both at term and preterm, is preceded by NF-κB-mediated inflammatory activation within the uterus, leading to myometrial activation, fetal membrane remodelling and cervical ripening. The stimuli triggering inflammatory activation in normal human parturition are not fully understood. We show that the neurohypophyseal peptide, oxytocin (OT), activates NF-κB and stimulates downstream inflammatory pathways in human gestational tissues. OT stimulation (1 pM-100 nM) specifically via its receptor (OTR) in human myometrial and amnion primary cells led to MAPK and NF-κB activation within 15 min and maximal p65-subunit nuclear translocation within 30 min. Both in human myometrium and amnion, OT-induced activation of the canonical NF-κB pathway upregulated key inflammatory labour-associated genes including IL-8, CCL5, IL-6 and COX-2. IKKβ inhibition (TPCA1; 10 µM) suppressed OT-induced NF-κB-p65 phosphorylation, whereas p65-siRNA knockdown reduced basal and OT-induced COX-2 levels in myometrium and amnion. In both gestational tissues, MEK1/2 (U0126; 10 µM) or p38 inhibition (SB203580; 10 µM) suppressed OT-induced COX-2 expression, but OT-induced p65-phosphorylation was only inhibited in amnion, suggesting OT activation of NF-κB in amnion is MAPK-dependent. Our data provide new insight into the OT/OTR system in human parturition and suggest that its therapeutic modulation could be a strategy for regulating both contractile and inflammatory pathways in the clinical context of term/preterm labour.
Collapse
Affiliation(s)
- Sung Hye Kim
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - David A MacIntyre
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Maria Firmino Da Silva
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Andrew M Blanks
- University of Warwick, Clinical Sciences Research Institute, Warwick Medical School, UHCW, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
| | - Yun S Lee
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Steven Thornton
- University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| | - Phillip R Bennett
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Vasso Terzidou
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom; Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| |
Collapse
|
26
|
The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS One 2015; 10:e0117120. [PMID: 25706552 PMCID: PMC4338227 DOI: 10.1371/journal.pone.0117120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/18/2014] [Indexed: 01/17/2023] Open
Abstract
Preventing pathologic tissue inflammation is key to treating obesity-induced insulin resistance and type 2 diabetes. Previously, we synthesized a series of methylhonokiol analogs and reported that compounds with a carbamate structure had inhibitory function against cyclooxygenase-2 in a cell-free enzyme assay. However, whether these compounds could inhibit the expression of inflammatory genes in macrophages has not been investigated. Here, we found that a new 4-O-methylhonokiol analog, 3′,5-diallyl-4′-methoxy-[1,1′-biphenyl]-2-yl morpholine-4-carboxylate (GS12021) inhibited LPS- or TNFα-stimulated inflammation in macrophages and adipocytes, respectively. LPS-induced phosphorylation of nuclear factor-kappa B (NF-κB)/p65 was significantly decreased, whereas NF-κB luciferase activities were slightly inhibited, by GS12021 treatment in RAW 264.7 cells. Either mitogen-activated protein kinase phosphorylation or AP-1 luciferase activity was not altered by GS12021. GS12021 increased the phosphorylation of AMP-activated protein kinase (AMPK) α and the expression of sirtuin (SIRT) 1. Inhibition of mRNA expression of inflammatory genes by GS12021 was abolished in AMPKα1-knockdown cells, but not in SIRT1 knockout cells, demonstrating that GS12021 exerts anti-inflammatory effects through AMPKα activation. The transwell migration assay results showed that GS12021 treatment of macrophages prevented the cell migration promoted by incubation with conditioned medium obtained from adipocytes. GS12021 suppression of p65 phosphorylation and macrophage chemotaxis were preserved in AMPKα1-knockdown cells, indicating AMPK is not required for these functions of GS12021. Identification of this novel methylhonokiol analog could enable studies of the structure-activity relationship of this class of compounds and further evaluation of its in vivo potential for the treatment of insulin-resistant states and other chronic inflammatory diseases.
Collapse
|
27
|
Bandarra D, Biddlestone J, Mudie S, Müller HAJ, Rocha S. HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals. Dis Model Mech 2014; 8:169-81. [PMID: 25510503 PMCID: PMC4314782 DOI: 10.1242/dmm.017285] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia and inflammation are intimately linked. It is known that nuclear factor κB (NF-κB) regulates the hypoxia-inducible factor (HIF) system, but little is known about how HIF regulates NF-κB. Here, we show that HIF-1α represses NF-κB-dependent gene expression. HIF-1α depletion results in increased NF-κB transcriptional activity both in mammalian cells and in the model organism Drosophila melanogaster. HIF-1α depletion enhances the NF-κB response, and this required not only the TAK-IKK complex, but also CDK6. Loss of HIF-1α results in an increased angiogenic response in mammalian cancer cells and increased mortality in Drosophila following infection. These results indicate that HIF-1α is required to restrain the NF-κB response, and thus prevents excessive and damaging pro-inflammatory responses.
Collapse
Affiliation(s)
- Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - John Biddlestone
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - H-Arno J Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK.
| |
Collapse
|
28
|
Zuo D, Tang Q, Fan H, Shou Z, Liu X, Cao D, Zou Z. Modulation of nuclear factor-κB-mediated pro-inflammatory response is associated with exogenous administration of bone marrow-derived mesenchymal stem cells for treatment of experimental colitis. Mol Med Rep 2014; 11:2741-8. [PMID: 25483993 DOI: 10.3892/mmr.2014.3038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) inhibit the immune response in vitro and prevent the induction of disease in certain experimental models. As a result, MSC‑mediated therapy is a rapidly growing field of research. However, the efficacy of MSCs in the treatment of inflammatory bowel disease (IBD) has remained to be determined. In the present study, rats with 2,4,6‑trinitrobenzene sulfonic acid (TNBS)‑induced colitis were injected with prepared MSCs (1x106) into the tail vein. Two weeks following intravenous MSC administration, the concentration of tumor necrosis factor‑α (TNF‑α) in the serum was measured by an ELISA. The protein expression of nuclear factor‑κB (NF‑κBp65) in the colonic mucosa was assessed by western blot analysis. mRNA expression of TNF‑α and NF‑κBp65 was determined by reverse‑transcription quantitative polymerase chain reaction. MSCs were shown to exert an immunomodulatory effect on TNBS‑induced colitis and may be of use in the treatment of IBD. In addition, modulation of the NF‑κB‑mediated pro‑inflammatory response may contribute to the underlying mechanism by which MSCs ameliorate the clinical and histological changes associated with IBD.
Collapse
Affiliation(s)
- Dongmei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qing Tang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhou Zou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
29
|
Chung MH, Kim DH, Na HK, Kim JH, Kim HN, Haegeman G, Surh YJ. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat Res 2014; 768:74-83. [PMID: 24742714 DOI: 10.1016/j.mrfmmm.2014.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.
Collapse
Affiliation(s)
- Myung-Hoon Chung
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Jung-Hwan Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ha-Na Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Young-Joon Surh
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
30
|
Song FN, Duan M, Liu LZ, Wang ZC, Shi JY, Yang LX, Zhou J, Fan J, Gao Q, Wang XY. RANKL promotes migration and invasion of hepatocellular carcinoma cells via NF-κB-mediated epithelial-mesenchymal transition. PLoS One 2014; 9:e108507. [PMID: 25268581 PMCID: PMC4182493 DOI: 10.1371/journal.pone.0108507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022] Open
Abstract
Background Metastasis accounts for the most deaths in patients with hepatocellular carcinoma (HCC). Receptor activator of nuclear factor kappa B ligand (RANKL) is associated with cancer metastasis, while its role in HCC remains largely unknown. Methods Immunohistochemistry was performed to determine the expression of RANK in HCC tissue (n = 398). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to examine the expression of RANK, E-cadherin, N-cadherin, vimentin, Snail, Slug, Twist and MMPs in HCC cells. Wound healing and Transwell assays were used to evaluate cell migration and invasion ability. Results We found that expression of RANK, the receptor of RANKL, was significantly higher in HCC tumor tissues than in peritumor liver tissues (p<0.001). Constitutive expression of RANK was detected in HCC cell lines, which can be up-regulated when HCC cells were stimulated with RANKL. Notably, in vitro experiments showed that activation of RANKL-RANK axis significantly promoted migration and invasion ability of HCC cells. In addition, RANKL stimulation increased the expression levels of N-cadherin, Snail, and Twist, while decreased the expression of E-cadherin, with concomitant activation of NF-κB signaling pathway. Moreover, administration of the NF-κB inhibitor attenuated RANKL-induced migration, invasion and epithelial-mesenchymal transition of HCC cells. Conclusions RANKL could potentiate migration and invasion ability of RANK-positive HCC cells through NF-κB pathway-mediated epithelial-mesenchymal transition, which means that RANKL-RANK axis could be a potential target for HCC therapy.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Cadherins/agonists
- Cadherins/antagonists & inhibitors
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cell Line, Tumor
- Cell Movement/drug effects
- Collagenases/genetics
- Collagenases/metabolism
- Diffusion Chambers, Culture
- Epithelial-Mesenchymal Transition/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- NF-kappa B/agonists
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Neoplasm Invasiveness
- Nuclear Proteins/agonists
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RANK Ligand/genetics
- RANK Ligand/metabolism
- RANK Ligand/pharmacology
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Sesquiterpenes/pharmacology
- Sesquiterpenes, Guaiane
- Signal Transduction
- Snail Family Transcription Factors
- Transcription Factors/agonists
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Twist-Related Protein 1/agonists
- Twist-Related Protein 1/genetics
- Twist-Related Protein 1/metabolism
- Vimentin/genetics
- Vimentin/metabolism
Collapse
Affiliation(s)
- Fang-Nan Song
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
| | - Meng Duan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
| | - Long-Zi Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
| | - Zhi-Chao Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
| | - Jie-Yi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
| | - Liu-Xiao Yang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
- * E-mail: (QG); (XYW)
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P. R. China
- * E-mail: (QG); (XYW)
| |
Collapse
|
31
|
Wang Z, Lee Y, Eun JS, Bae EJ. Inhibition of adipocyte inflammation and macrophage chemotaxis by butein. Eur J Pharmacol 2014; 738:40-8. [DOI: 10.1016/j.ejphar.2014.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/01/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
|
32
|
Zhu XC, Jiang T, Zhang QQ, Cao L, Tan MS, Wang HF, Ding ZZ, Tan L, Yu JT. Chronic Metformin Preconditioning Provides Neuroprotection via Suppression of NF-κB-Mediated Inflammatory Pathway in Rats with Permanent Cerebral Ischemia. Mol Neurobiol 2014; 52:375-85. [DOI: 10.1007/s12035-014-8866-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
|
33
|
Fan X, Zhang Y, Dong H, Wang B, Ji H, Liu X. Trilobatin attenuates the LPS-mediated inflammatory response by suppressing the NF-κB signaling pathway. Food Chem 2014; 166:609-615. [PMID: 25053100 DOI: 10.1016/j.foodchem.2014.06.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/29/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
We investigated the anti-inflammatory effect of trilobatin, the flavonoid isolated from the leaves of Lithocarpus polystachyus Rehd, as well as the underlying molecular mechanisms. Treatment with trilobatin (0.005-5 μM) dose-dependently inhibited the lipopolysaccharide (LPS)-induced mRNA expression and secretion of pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and interleukin-6 (IL-6), in RAW 264.7 macrophages. However, no further inhibition was detected when the concentration of trilobatin was increased to 50 μM. Western blot analysis confirmed that the mechanism of the anti-inflammatory effect was correlated with the inhibition of LPS-induced inhibitor of nuclear factor-kappa B α (IκBα) degradation and nuclear factor-kappa B (NF-κB) p65 phosphorylation. In addition, trilobatin also showed a significant inhibition of LPS-induced TNFα and IL-6 at both the mRNA and protein levels in a mouse model. Our results suggest that trilobatin potentially inhibits the LPS-induced inflammatory response by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaolong Fan
- Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinghui Zhang
- Department of Food Safety, College of Food and Horticultural Sciences, Foshan University (Northern Campus), Foshan 528231, China.
| | - Huaqiang Dong
- Department of Food Safety, College of Food and Horticultural Sciences, Foshan University (Northern Campus), Foshan 528231, China
| | - Bingyun Wang
- Department of Veterinary Medicine, College of Life Science, Foshan University (Northern Campus), Foshan 528231, China
| | - Huiqin Ji
- Department of Veterinary Medicine, College of Life Science, Foshan University (Northern Campus), Foshan 528231, China
| | - Xin Liu
- Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
34
|
Anti-inflammatory effects of IKK inhibitor XII, thymulin, and fat-soluble antioxidants in LPS-treated mice. Mediators Inflamm 2014; 2014:724838. [PMID: 25045213 PMCID: PMC4089567 DOI: 10.1155/2014/724838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/15/2014] [Accepted: 05/31/2014] [Indexed: 12/05/2022] Open
Abstract
The present study was designed to compare the anti-inflammatory effects of several agents applied in vivo, namely, a synthetic inhibitor of the NF-κB cascade, fat-soluble antioxidants, and the thymic peptide thymulin. Cytokine response in LPS-treated mice was analysed in tandem with the following parameters: the synthesis of inducible forms of the heat shock proteins HSP72 and HSP90α; activity of the NF-κB and SAPK/JNK signalling pathways; and TLR4 expression. Inflammation-bearing Balb/c male mice were pretreated with an inhibitor of IKK-α/β kinases (IKK Inhibitor XII); with thymulin; with dietary coenzyme Q9, α-tocopherol, and β-carotene; or with combinations of the inhibitor and peptide or antioxidants. Comparable anti-inflammatory effects were observed in inflammation-bearing mice treated separately with thymulin or with dietary antioxidants administered daily for two weeks before LPS treatment. When LPS-injected mice were treated with the inhibitor and antioxidants together, neither plasma cytokines, signal proteins, nor heat shock proteins recovered more efficiently than when mice were treated with these agents separately. In contrast to antioxidant diet, the thymulin was shown to increase the effect of IKK Inhibitor XII in preventing IKK activation in LPS-treated mice.
Collapse
|
35
|
Yang JJ, Li WH, Liu BJ, Tang RH, Zhang YH. Influence of pentylenetetrazol and NF-κB decoy oligodeoxynucleotides on p38 expression in neuron-like cells. Exp Ther Med 2014; 8:395-400. [PMID: 25009589 PMCID: PMC4079441 DOI: 10.3892/etm.2014.1770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/23/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects of pentylenetetrazol (PTZ) and nuclear factor κ B (NF-κB) decoy oligodeoxynucleotides (ODNs) on p38 expression in neuron-like PC12 cells. In addition, the role of NF-κB activation in the pathogenesis of epilepsy was explored. p38 expression levels in control and PTZ-treated neuron-like PC12 cells were examined using western blotting. NF-κB decoy ODNs were transfected into the neuron-like PC12 cells using Lipofectamine 2000. NF-κB activation was investigated by confocal laser scanning microscopy (CLSM), and p38 expression levels were assessed using western blotting prior to and following transfection of decoy ODNs. Western blot analysis revealed that p38 levels in PTZ-treated neuron-like PC12 cells were significantly higher than those in control cells. CLSM demonstrated that the decoy ODNs inhibited NF-κB activation in neuron-like PC12 cells, and western blotting indicated that the decoy ODNs did not reduce p38 levels. The results of this study indicate that PTZ enhances p38 expression levels and activates NF-κB in PC12 cells. However, NF-κB does not modulate p38 expression levels.
Collapse
Affiliation(s)
- Jia-Jun Yang
- Department of Neurology, Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Wei-Hua Li
- Department of Neurology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Bang-Jian Liu
- Department of Neurology, Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Rong-Hua Tang
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Hong Zhang
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
36
|
Mercau ME, Astort F, Giordanino EF, Martinez Calejman C, Sanchez R, Caldareri L, Repetto EM, Coso OA, Cymeryng CB. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells. Mol Cell Endocrinol 2014; 384:43-51. [PMID: 24424443 DOI: 10.1016/j.mce.2014.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 11/23/2022]
Abstract
Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity.
Collapse
Affiliation(s)
- M E Mercau
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina
| | - F Astort
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina
| | - E F Giordanino
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina
| | - C Martinez Calejman
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina
| | - R Sanchez
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina
| | - L Caldareri
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina
| | - E M Repetto
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina
| | - O A Coso
- Department of Physiology, Molecular and Cellular Biology, School of Sciences, University of Buenos Aires, IFIBYNE/CONICET, Argentina
| | - C B Cymeryng
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, CEFYBO/CONICET, Argentina.
| |
Collapse
|
37
|
Corsini E, Luebke RW, Germolec DR, DeWitt JC. Perfluorinated compounds: emerging POPs with potential immunotoxicity. Toxicol Lett 2014; 230:263-70. [PMID: 24503008 DOI: 10.1016/j.toxlet.2014.01.038] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/06/2013] [Accepted: 01/27/2014] [Indexed: 01/09/2023]
Abstract
Perfluorinated compounds (PFCs) have been recognized as an important class of environmental contaminants commonly detected in blood samples of both wildlife and humans. These compounds have been in use for more than 60 years as surface treatment chemicals, polymerization aids, and surfactants. They possess a strong carbon-fluorine bond, which leads to their environmental persistence. There is evidence from both epidemiology and laboratory studies that PFCs may be immunotoxic, affecting both cell-mediated and humoral immunity. Reported effects of PFCs include decreased spleen and thymus weights and cellularity, reduced specific antibody production, reduced survival after influenza infection, and altered cytokine production. Immunosuppression is a critical effect associated with exposure to PFCs, as it has been reported to reduce antibody responses to vaccination in children. Mounting evidence suggests that immunotoxicity in experimental animals can occur at serum concentrations below, within, or just above the reported range for highly exposed humans and wildlife. Considering bioaccumulation and exposure to multiple PFCs, the risk of immunotoxicity for humans and wildlife cannot be discounted. This review will discuss current and recently published work exploring the immunomodulatory effects of PFCs in experimental animals and humans.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - Robert W Luebke
- U.S. Environmental Protection Agency/Office of Research and Development/National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Dori R Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, NIH, RTP, NC, USA
| | - Jamie C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
38
|
Stellari FF, Lavrentiadou S, Ruscitti F, Jacca S, Franceschi V, Civelli M, Carnini C, Villetti G, Donofrio G. Enlightened Mannhemia haemolytica lung inflammation in bovinized mice. Vet Res 2014; 45:8. [PMID: 24460618 PMCID: PMC3906860 DOI: 10.1186/1297-9716-45-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/17/2014] [Indexed: 11/10/2022] Open
Abstract
Polymorphonuclear cells diapedesis has an important contribution to the induced Mannhemia haemolytica (M. haemolytica) infection lung inflammation and IL-8 is the primary polymorphonuclear chemoattractant. Using a bovine IL-8/luciferase transiently transgenized mouse model, the orchestration among M. haemolytica, IL-8 promoter activation and neutrophilia was followed in real time by in vivo image analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, via del Taglio 10, 43126 Parma, Italy.
| |
Collapse
|
39
|
Biphasic activation of nuclear factor kappa B and expression of p65 and c-Rel after traumatic brain injury in rats. Inflamm Res 2013; 63:109-15. [DOI: 10.1007/s00011-013-0677-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022] Open
|
40
|
Frazão JB, Errante PR, Condino-Neto A. Toll-like receptors' pathway disturbances are associated with increased susceptibility to infections in humans. Arch Immunol Ther Exp (Warsz) 2013; 61:427-43. [PMID: 24057516 DOI: 10.1007/s00005-013-0243-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Toll-like receptors (TLRs) sense microbial products and play an important role in innate immunity. Currently, 11 members of TLRs have been identified in humans, with important function in host defense in early steps of the inflammatory response. TLRs are present in the plasma membrane (TLR1, TLR2, TLR4, TLR5, TLR6) and endosome (TLR3, TLR7, TLR8, TLR9) of leukocytes. TLRs and IL-1R are a family of receptors related to the innate immune response that contain an intracellular domain known as the Toll-IL-1R (TIR) domain that recruits the TIR-containing cytosolic adapters MyD88, TRIF, TIRAP and TRAM. The classical pathway results in the activation of both nuclear factor κB and MAPKs via the IRAK complex, with two active kinases (IRAK-1 and IRAK-4) and two non-catalytic subunits (IRAK-2 and IRAK-3/M). The classical pro-inflammatory TLR signaling pathway leads to the synthesis of inflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-8, IL-12 and TNF-α. In humans, genetic defects have been identified that impair signaling of the TLR pathway and this may result in recurrent pyogenic infections, as well as virus and fungi infections. In this review, we discuss the main mechanisms of microbial recognition and the defects involving TLRs.
Collapse
Affiliation(s)
- Josias Brito Frazão
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil,
| | | | | |
Collapse
|
41
|
AGGF1 is a novel anti-inflammatory factor associated with TNF-α-induced endothelial activation. Cell Signal 2013; 25:1645-53. [DOI: 10.1016/j.cellsig.2013.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/14/2013] [Accepted: 04/14/2013] [Indexed: 12/21/2022]
|
42
|
Liu YY, Li LF, Yang CT, Lu KH, Huang CC, Kao KC, Chiou SH. Suppressing NF-κB and NKRF Pathways by Induced Pluripotent Stem Cell Therapy in Mice with Ventilator-Induced Lung Injury. PLoS One 2013; 8:e66760. [PMID: 23840526 PMCID: PMC3694116 DOI: 10.1371/journal.pone.0066760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/12/2013] [Indexed: 01/14/2023] Open
Abstract
Background High-tidal-volume mechanical ventilation used in patients with acute lung injury (ALI) can induce the release of inflammatory cytokines, as macrophage inflammatory protein-2 (MIP-2), recruitment of neutrophils, and disruption of alveolar epithelial and endothelial barriers. Induced pluripotent stem cells (iPSCs) have been shown to improve ALI in mice, but the mechanisms regulating the interactions between mechanical ventilation and iPSCs are not fully elucidated. Nuclear factor kappa B (NF-κB) and NF-κB repressing factor (NKRF) have been proposed to modulate the neutrophil activation involved in ALI. Thus, we hypothesized intravenous injection of iPSCs or iPSC-derived conditioned medium (iPSC-CM) would decrease high-tidal-volume ventilation-induced neutrophil infiltration, oxidative stress, and MIP-2 production through NF-κB/NKRF pathways. Methods Male C57BL/6 mice, aged between 6 and 8 weeks, weighing between 20 and 25 g, were exposed to high-tidal-volume (30 ml/kg) mechanical ventilation with room air for 1 to 4 h after 5×107 cells/kg mouse iPSCs or iPSC-CM administration. Nonventilated mice were used as control groups. Results High-tidal-volume mechanical ventilation induced the increases of integration of iPSCs into the injured lungs of mice, microvascular permeability, neutrophil infiltration, malondialdehyde, MIP-2 production, and NF-κB and NKRF activation. Lung injury indices including inflammation, lung edema, ultrastructure pathologic changes and functional gas exchange impairment induced by mechanical ventilation were attenuated with administration of iPSCs or iPSC-CM, which was mimicked by pharmacological inhibition of NF-κB activity with SN50 or NKRF expression with NKRF short interfering RNA. Conclusions Our data suggest that iPSC-based therapy attenuates high-tidal-volume mechanical ventilation-induced lung injury, at least partly, through inhibition of NF-κB/NKRF pathways. Notably, the conditioned medium of iPSCs revealed beneficial effects equal to those of iPSCs.
Collapse
Affiliation(s)
- Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Fu Li
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail: (L-FL); (S-HC)
| | - Cheng-Ta Yang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai-Hsi Lu
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Chung-Chi Huang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chin Kao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (L-FL); (S-HC)
| |
Collapse
|
43
|
Ahmed KM, Zhang H, Park CC. NF-κB regulates radioresistance mediated by β1-integrin in three-dimensional culture of breast cancer cells. Cancer Res 2013; 73:3737-48. [PMID: 23576567 DOI: 10.1158/0008-5472.can-12-3537] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
β1-integrin induction enhances breast cancer cell survival after exposure to ionizing radiation (IR), but the mechanisms of this effect remain unclear. Although NF-κB initiates prosurvival signaling pathways post-IR, the molecular function of NF-κB with other key elements in radioresistance, particularly with respect to extracellular matrix-induced signaling, is not known. We discovered a typical NF-κB-binding site in the β1-integrin promoter region, indicating a possible regulatory role for NF-κB. Using three-dimensional laminin-rich extracellular matrix (3D lrECM) culture, we show that NF-κB is required for β1-integrin transactivation in T4-2 breast cancer cells post-IR. Inhibition of NF-κB reduced clonogenic survival and induced apoptosis and cytostasis in formed tumor colonies. In addition, T4-2 tumors with inhibition of NF-κB activity exhibit decreased growth in athymic mice, which was further reduced by IR with downregulated β1-integrin expression. Direct interactions between β1-integrin and NF-κB p65 were induced in nonmalignant breast epithelial cells, but not in malignant cells, indicating context-specific regulation. As β1-integrin also activates NF-κB, our findings reveal a novel forward feedback pathway that could be targeted to enhance therapy.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley
| | | | | |
Collapse
|
44
|
Taylor CA, Liu Z, Tang TC, Zheng Q, Francis S, Wang TW, Ye B, Lust JA, Dondero R, Thompson JE. Modulation of eIF5A expression using SNS01 nanoparticles inhibits NF-κB activity and tumor growth in murine models of multiple myeloma. Mol Ther 2012; 20:1305-14. [PMID: 22588272 PMCID: PMC3392975 DOI: 10.1038/mt.2012.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/11/2012] [Indexed: 12/31/2022] Open
Abstract
Despite recent advances in the first-line treatment of multiple myeloma, almost all patients eventually experience relapse with drug-resistant disease. New therapeutic modalities are needed, and to this end, SNS01, a therapeutic nanoparticle, is being investigated for treatment of multiple myeloma. The antitumoral activity of SNS01 is based upon modulation of eukaryotic translation initiation factor 5A (eIF5A), a highly conserved protein that is involved in many cellular processes including proliferation, apoptosis, differentiation and inflammation. eIF5A is regulated by post-translational hypusine modification, and overexpression of hypusination-resistant mutants of eIF5A induces apoptosis in many types of cancer cells. SNS01 is a polyethylenimine (PEI)-based nanoparticle that contains both a B-cell-specific expression plasmid expressing a non-hypusinable mutant of eIF5A and a small interfering RNA (siRNA) which depletes endogenous hypusinated eIF5A. Reducing hypusine-modified eIF5A levels was found to inhibit phosphorylation and activity of ERK MAPK and nuclear factor-κB (NF-κB), and thus sensitize myeloma cells to apoptosis resulting from transfection of a plasmid expressing eIF5A(K50R). SNS01 exhibited significant antitumoral activity in both KAS-6/1 (95% inhibition; P < 0.05) and RPMI 8226 (59% inhibition; P < 0.05) multiple myeloma xenograft models following systemic administration. These results highlight the potential of using this approach as a new therapeutic strategy for multiple myeloma.
Collapse
Affiliation(s)
- Catherine A Taylor
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhongda Liu
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Terence C Tang
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Qifa Zheng
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Sarah Francis
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Tzann-Wei Wang
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Bin Ye
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John A Lust
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John E Thompson
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Senesco Technologies, Bridgewater, New Jersey, USA
| |
Collapse
|
45
|
Stellari FF, Franceschi V, Capocefalo A, Ronchei M, Facchinetti F, Villetti G, Donofrio G. In vivo imaging of transiently transgenized mice with a bovine interleukin 8 (CXCL8) promoter/luciferase reporter construct. PLoS One 2012; 7:e39716. [PMID: 22761878 PMCID: PMC3386280 DOI: 10.1371/journal.pone.0039716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/25/2012] [Indexed: 01/21/2023] Open
Abstract
One of the most remarkable properties of interleukin 8 (CXCL8/IL-8), a chemokine with known additional functions also in angiogenesis and tissue remodeling, is the variation of its expression levels. In healthy tissues, IL-8 is barely detectable, but it is rapidly induced by several folds in response to proinflammatory cytokines, bacterial or viral products, and cellular stress. Although mouse cells do not bear a clear homologous IL-8 gene, the murine transcriptional apparatus may well be capable of activating or repressing a heterologous IL-8 gene promoter driving a reporter gene. In order to induce a transient transgenic expression, mice were systemically injected with a bovine IL-8 promoter–luciferase construct. Subsequently mice were monitored for luciferase expression in the lung by in vivo bioluminescent image analysis over an extended period of time (up to 60 days). We demonstrate that the bovine IL-8 promoter–luciferase construct is transiently and robustly activated 3–5 hours after LPS and TNF-α instillation into the lung, peaking at 35 days after construct delivery. Bovine IL-8 promoter–luciferase activation correlates with white blood cell and neutrophil infiltration into the lung. This study demonstrates that a small experimental rodent model can be utilized for non-invasively monitoring, through a reporter gene system, the activation of an IL-8 promoter region derived from a larger size animal (bovine). This proof of principle study has the potential to be utilized also for studying primate IL-8 promoter regions.
Collapse
Affiliation(s)
- Fabio Franco Stellari
- Dipartimento di Salute Animale, Sezione di Malattie Infettive degli Animali, Università di Parma, Parma, Italy
- Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Valentina Franceschi
- Dipartimento di Salute Animale, Sezione di Malattie Infettive degli Animali, Università di Parma, Parma, Italy
| | - Antonio Capocefalo
- Dipartimento di Salute Animale, Sezione di Malattie Infettive degli Animali, Università di Parma, Parma, Italy
| | - Marcello Ronchei
- Dipartimento di Salute Animale, Sezione di Malattie Infettive degli Animali, Università di Parma, Parma, Italy
| | | | | | - Gaetano Donofrio
- Dipartimento di Salute Animale, Sezione di Malattie Infettive degli Animali, Università di Parma, Parma, Italy
- * E-mail:
| |
Collapse
|
46
|
Neagoe PE, Dumas E, Hajjar F, Sirois MG. Angiopoietin-1 but not angiopoietin-2 induces IL-8 synthesis and release by human neutrophils. J Cell Physiol 2012; 227:3099-110. [DOI: 10.1002/jcp.23061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Schmukle AC, Walczak H. No one can whistle a symphony alone – how different ubiquitin linkages cooperate to orchestrate NF-κB activity. J Cell Sci 2012; 125:549-59. [DOI: 10.1242/jcs.091793] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although it has been known for a long time that ubiquitylation has a major role in the activation and regulation of the nuclear factor kappa B (NF-κB) pathway, recent studies have revealed that the picture is a lot more complex than originally thought. NF-κB and ubiquitylation initially became linked when it was recognised that lysine (K)48-linked ubiquitin chains are involved in the processing of NF-κB precursors and the degradation of inhibitor of kappa B (IκB) proteins. Soon thereafter, it was reported that K63-linked chains were involved in the assembly of IκB kinase (IKK)-activating complexes and required for activation of the NF-κB signalling pathway. Recently, the discovery that atypical ubiquitin linkages, including linear and K11 linkages, are also involved in the activation of NF-κB has led to the need to re-evaluate existing models of how activation of this transcription factor is initiated and regulated. It is now becoming apparent that not only the canonical types of ubiquitin chains but possibly all linkage types have to be investigated in order to fully comprehend NF-κB activation. This can be considered a turning point in our view of the regulation of one of the most important pathways of gene induction. Hence, in this Commentary, we summarise the information that is currently available and incorporate it into a new model of NF-κB activation, thereby highlighting the emerging new challenges in understanding the role of ubiquitylation in NF-κB activation.
Collapse
Affiliation(s)
- Anna C. Schmukle
- Tumour Immunology Unit, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, 10th floor, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Henning Walczak
- Tumour Immunology Unit, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, 10th floor, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
48
|
Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P. Bindarit: an anti-inflammatory small molecule that modulates the NFκB pathway. Cell Cycle 2012; 11:159-69. [PMID: 22189654 DOI: 10.4161/cc.11.1.18559] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases (including lupus nephritis, arthritis and pancreatitis). The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the "early inflammatory response," although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.
Collapse
Affiliation(s)
- Eugenio Mora
- Center for Epigenetics and Metabolism, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
49
|
In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicol Appl Pharmacol 2011; 258:248-55. [PMID: 22119708 DOI: 10.1016/j.taap.2011.11.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 12/25/2022]
Abstract
We have previously shown that PFOA and PFOS directly suppress cytokine secretion in immune cells, with different mechanisms of action. In particular, we have demonstrated a role for PPAR-α in PFOA-induced immunotoxicity, and that PFOS has an inhibitory effect on LPS-induced I-κB degradation. These studies investigate the immunomodulatory effects of four other PFCs, namely PFBS, PFOSA, PFDA, and fluorotelomer using in vitro assays. The release of the pro-inflammatory cytokines IL-6 and TNF-α was evaluated in lipolysaccharide (LPS)-stimulated human peripheral blood leukocytes (hPBL) and in the human promyelocytic cell line THP-1, while the release of IL-10 and IFN-γ was evaluated in phytohemagglutinin (PHA)-stimulated hPBL. All PFCs suppressed LPS-induced TNF-α production in hPBL and THP-1 cells, while IL-6 production was suppressed by PFOSA, PFOS, PFDA and fluorotelomer. PFBS, PFOSA, PFOS, PFDA and fluorotelomer inhibited PHA-induced IL-10 release, while IFN-γ secretion was affected by PFOSA, PFOS, PFDA and fluorotelomer. Leukocytes obtained from female donors appear to be more sensitive to the in vitro immunotoxic effects of PFCs when their responses are compared to the results obtained using leukocytes from male donors. Mechanistic investigations demonstrated that inhibition of TNF-α release in THP-1 cells occurred at the transcriptional level. All PFCs, including PFOA and PFOS, decreased LPS-induced NF-κB activation. With the exception of PFOA, none of the PFCs tested was able to activate PPARα driven transcription in transiently transfected THP-1 cells, excluding a role for PPARα in the immunomodulation observed. PFBS and PFDA prevented LPS-induced I-κB degradation. Overall, these studies suggest that PFCs affect NF-κB activation, which directly suppresses cytokine secretion by immune cells. Our results indicate that PFOA is the least active of the PFCs examined followed by PFBS, PFDA, PFOS, PFOSA and fluorotelomer.
Collapse
|
50
|
The characteristic long-term upregulation of hippocampal NF-κB complex in PTSD-like behavioral stress response is normalized by high-dose corticosterone and pyrrolidine dithiocarbamate administered immediately after exposure. Neuropsychopharmacology 2011; 36:2286-302. [PMID: 21734649 PMCID: PMC3176566 DOI: 10.1038/npp.2011.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nuclear factor-κB (NF-κB) is a ubiquitously expressed transcription factor for genes involved in cell survival, differentiation, inflammation, and growth. This study examined the role of NF-κB pathway in stress-induced PTSD-like behavioral response patterns in rats. Immunohistochemical technique was used to detect the expression of the NF-κB p50 and p65 subunits, I-κBα, p38, and phospho-p38 in the hippocampal subregions at 7 days after exposure to predator scent stress. Expression of p65 nuclear translocation was quantified by western blot as the level of NF-κB activation. The effects of intraperitoneally administered corticosterone or a selective NF-κB inhibitor (pyrrolidine dithiocarbamate (PDTC)) at 1 h post exposure on behavioral tests (elevated plus-maze and acoustic startle response) were evaluated 7 days later. Hippocampal expressions of those genes were subsequently evaluated. All data were analyzed in relation to individual behavior patterns. Extreme behavioral responder animals displayed significant upregulation of p50 and p65 with concomitant downregulation of I-κBα, p38, and phospho-p38 levels in hippocampal structures compared with minimal behavioral responders and controls. Immediate post-exposure treatment with high-dose corticosterone and PDTC significantly reduced prevalence rates of extreme responders and normalized the expression of those genes. Stress-induced upregulation of NF-κB complex in the hippocampus may contribute to the imbalance between what are normally precisely orchestrated and highly coordinated physiological and behavioral processes, thus associating it with stress-related disorders.
Collapse
|