1
|
Johnson HE, Umutesi HG, Heo J. The small GTPase Rap1A expedites the NOX2 oxidative burst by facilitating Rac and NOX2 autoactivations. FEBS J 2025. [PMID: 40259664 DOI: 10.1111/febs.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/21/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
Rac and Rap1A are small GTPases with the redox-sensitive GX4GK(S/T)C/ECS and NKCD motif. Of the known NADPH oxidase (NOX) isoforms, NOX1 and NOX2 function with the redox-sensitive Rac. Both exhibit an oxidative burst in which superoxide production is initially lagged but then accelerated. This burst is a reflection of NOX1 and NOX2 autoactivations occurring alongside the redox-dependent Rac autoactivation. NOX2 also contains the redox-sensitive Rap1A. However, its role in NOX2 function was unknown. In this study, we show that Rap1A is also autoactivated by its redox response, which is coupled to Rac and NOX2 autoactivations. This coupling is found to be mediated through the Rap1A-dependent recruitment of the Rac GEF P-REX1 to the NOX2 system. We further show that the initiation threshold and propagation rate of Rap1A autoactivation are lower and slower, respectively, than those of Rac and NOX2. The low-threshold Rap1A autoactivation recruits P-REX1 to the NOX2 system, resulting in the production of active Rac, thereby aiding the high-threshold initiation and propagation of Rac and NOX2 autoactivations. This results in the rapid completion of the NOX2 oxidative burst, which is specific to NOX2 because NOX1 lacks Rap1A. The redox response differences between the Rap1A NKCD motif and the Rac GX4GK(S/T)C/ECS motif appear to be the basis for the feature differences between Rap1A autoactivation and those of Rac and NOX2 autoactivations. The GX4GK(S/T)C/ECS and NKCD motifs are found in many redox-sensitive Rho/Rab and Ras family GTPases, respectively. Findings here shed light on previously unknown redox-dependent functional distinctions between these small GTPases.
Collapse
Affiliation(s)
- Hope Elizabeth Johnson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Hope Gloria Umutesi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
2
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
3
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
4
|
Gong J, Guo Z, Wang Z, Jiao C, Yao L, Shen Y. Ethyl vinyl ketone activates oxidative and calcium burst and CML8-ACA8 participates in calcium recovery in Arabidopsis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108240. [PMID: 38048704 DOI: 10.1016/j.plaphy.2023.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023]
Abstract
Plants produce ethyl vinyl ketone (evk) in response to biotic stress, but the evk's identification and downstream defense response remain unclear. In this paper, it is predicted by docking for the first time that evk can be recognized by RBOH protein and assist the electron transfer of RBOHD/RBOHF by binding to its FAD or NADPH binding site. Surface plasmon resonance (SPR) binding assay shows that evk indeed bind to RBOHD. Here, we show that evk treatment increased H2O2 and intracellular calcium concentrations in Arabidopsis thaliana mesophyll cells, as observed by confocal laser scanning microscopy and non-invasive micro-test technology, and that H2O2 signaling functioned upstream of Ca2+ signaling. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that the ACA8 (AUTOINHIBITED Ca2+-ATPASE, ISOFORM 8)-CML8 (CALMODULIN-LIKE 8) interaction promoted Ca2+ efflux to return Ca2+ levels to the resting state.
Collapse
Affiliation(s)
- Junqing Gong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, PR China.
| | - Zhujuan Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, PR China.
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, PR China.
| | - Chunyang Jiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, PR China.
| | - Lijuan Yao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, PR China.
| | - Yingbai Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Castrillón-Betancur JC, López-Agudelo VA, Sommer N, Cleeves S, Bernardes JP, Weber-Stiehl S, Rosenstiel P, Sommer F. Epithelial Dual Oxidase 2 Shapes the Mucosal Microbiome and Contributes to Inflammatory Susceptibility. Antioxidants (Basel) 2023; 12:1889. [PMID: 37891968 PMCID: PMC10603924 DOI: 10.3390/antiox12101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive molecules formed from diatomic oxygen. They act as cellular signals, exert antibiotic activity towards invading microorganisms, but can also damage host cells. Dual oxidase 2 (DUOX2) is the main ROS-producing enzyme in the intestine, regulated by cues of the commensal microbiota and functions in pathogen defense. DUOX2 plays multiple roles in different organs and cell types, complicating the functional analysis using systemic deletion models. Here, we interrogate the precise role of epithelial DUOX2 for intestinal homeostasis and host-microbiome interactions. Conditional Duox2∆IEC mice lacking DUOX2, specifically in intestinal epithelial cells, were generated, and their intestinal mucosal immune phenotype and microbiome were analyzed. Inflammatory susceptibility was evaluated by challenging Duox2∆IEC mice in the dextran sodium sulfate (DSS) colitis model. DUOX2-microbiome interactions in humans were investigated by paired analyses of mucosal DUOX2 expression and fecal microbiome data in patients with intestinal inflammation. Under unchallenged conditions, we did not observe any obvious phenotype of Duox2∆IEC mice, although intestinal epithelial ROS production was drastically decreased, and the mucosal microbiome composition was altered. When challenged with DSS, Duox2∆IEC mice were protected from colitis, possibly by inhibiting ROS-mediated damage and fostering epithelial regenerative responses. Finally, in patients with intestinal inflammation, DUOX2 expression was increased in inflamed tissue, and high DUOX2 levels were linked to a dysbiotic microbiome. Our findings demonstrate that bidirectional DUOX2-microbiome interactions contribute to mucosal homeostasis, and their dysregulation may drive disease development, thus highlighting this axis as a therapeutic target to treat intestinal inflammation.
Collapse
Affiliation(s)
| | - Víctor Alonso López-Agudelo
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Joana Pimenta Bernardes
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Saskia Weber-Stiehl
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| |
Collapse
|
6
|
Peng Z, Zhao C, Yang Z, Gong S, Du Z. D-galactose-induced mitochondrial oxidative damage and apoptosis in the cochlear stria vascularis of mice. BMC Mol Cell Biol 2023; 24:27. [PMID: 37605129 PMCID: PMC10441755 DOI: 10.1186/s12860-023-00480-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Age-related hearing loss, known as presbycusis, is the result of auditory system degeneration. Numerous studies have suggested that reactive oxygen species (ROS) and mitochondrial oxidative damage play important roles in the occurrence and progression of aging. The D-galactose (D-gal)-induced aging model is well known and widely utilized in aging research. Our previous studies demonstrate that administration of D-gal causes mitochondrial oxidative damage and causes subsequent dysfunction in the cochlear ribbon synapses, which in turn leads to hearing changes and early stage presbycusis. Stria vascularis (SV) cells are vital for hearing function. However, it is unclear to what extent D-gal induces oxidative damage and apoptosis in the cochlear SV of mice. In addition, the source of the causative ROS in the cochlear SV has not been fully investigated. METHODS In this study, we investigated ROS generation in the cochlear SV of mice treated with D-gal. Hearing function was measured using the auditory brainstem response (ABR). Immunofluorescence was used to examine apoptosis and oxidative damage. Transmission electron microscopy was also used to investigate the mitochondrial ultrastructure. DNA fragmentation was determined using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Mitochondrial membrane potential (MMP) and ATP were also measured. RESULTS We found that D-gal-treated mice exhibited a significant shift in the mean amplitude and latency of the ABR; a remarkable increase in the levels of NADPH oxidase (NOX-2), Uncoupling protein 2 (UCP2) and cleaved caspase-3 (c-Cas3) was observed, as well as an increase in the number of TUNEL-positive cells were observed in the SV of mice. Both the expression of the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) and a commonly occurring mitochondrial DNA deletion were markedly elevated in the SV of mice that had been treated with D-gal to induce aging. Conversely, the ATP level and MMP were significantly reduced in D-gal-induced aging mice. We also found alterations in the mitochondrial ultrastructure in the SV of aging mice, which include swollen and distorted mitochondrial shape, shortened and thickened microvilli, and the accumulation of lysosomes in the SV. CONCLUSION Our findings suggest that the impairment of cochlear SV during presbycusis may be caused by mitochondrial oxidative damage and subsequent apoptosis.
Collapse
Affiliation(s)
- Zhe Peng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No.95, Yong'an Road, Xicheng District, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
7
|
Bai J, Li J, Ba X, Chen Z, Yang Z, Wang Z, Yang Y. Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Fan CS, Chu YS, Hsu JW, Chan YC, Wu CL, Chang CH. Cyclosporin A Inhibits the Activation of Membrane-Bound Guanylate Cyclase GC-A of Atrial Natriuretic Factor <i>via</i> NAD(P)H Oxidase. Chem Pharm Bull (Tokyo) 2022; 70:791-795. [DOI: 10.1248/cpb.c22-00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chuan-San Fan
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital
| | - Ying-Shan Chu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital
| | - Jhih-Wen Hsu
- Renal Medicine Laboratory, Changhua Christian Hospital
| | - Ya-Chi Chan
- Renal Medicine Laboratory, Changhua Christian Hospital
| | - Chia-Lin Wu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes
| |
Collapse
|
9
|
Transcriptomic Analysis of Circulating Leukocytes Obtained during the Recovery from Clinical Mastitis Caused by Escherichia coli in Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12162146. [PMID: 36009735 PMCID: PMC9404729 DOI: 10.3390/ani12162146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Escherichia coli is a bacterium which infects cow udders causing clinical mastitis, a potentially severe disease with welfare and economic consequences. During an infection, white blood cells (leukocytes) enter the udder to provide immune defence and assist tissue repair. We sequenced RNA derived from circulating leukocytes to investigate which genes are up- or down-regulated in dairy cows with naturally occurring cases of clinical mastitis in comparison with healthy control cows from the same farm. We also looked for genetic variations between infected and healthy cows. Blood samples were taken either EARLY (around 10 days) or LATE (after 4 weeks) during the recovery phase after diagnosis. Many genes (1090) with immune and inflammatory functions were up-regulated during the EARLY phase. By the LATE phase only 29 genes were up-regulated including six haemoglobin subunits, possibly important for the production of new red blood corpuscles. Twelve genetic variations which were associated with an increased or decreased expression of some important immune genes were identified between the infected and control cows. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite the cows having received prompt veterinary treatment, but they had largely recovered within 4 weeks. Genetic differences between cows may predispose some animals to infection. Abstract The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection.
Collapse
|
10
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
11
|
Ung TT, Nguyen TT, Li S, Han JY, Jung YD. Nicotine stimulates CYP1A1 expression in human hepatocellular carcinoma cells via AP-1, NF-κB, and AhR. Toxicol Lett 2021; 349:155-164. [PMID: 34171359 DOI: 10.1016/j.toxlet.2021.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) is a member of a subfamily of enzymes involved in the metabolism of both endogenous and exogenous substrates and the chemical activation of xenobiotics to carcinogenic derivatives. Here, the effects of nicotine, a major psychoactive compound present in cigarette smoke, on CYP1A1 expression and human hepatocellular carcinoma (HepG2) cell proliferation were investigated. Nicotine stimulated CYP1A1 expression via the transcription factors, activator protein 1, nuclear factor-kappa B, and the aryl hydrocarbon receptor (AhR) signaling pathway. Pharmacological inhibition and mutagenesis studies indicated that p38 mitogen-activated protein kinase, as well as RelA (or p65), mediated the upregulation of CYP1A1 of nicotine in HepG2 cells. The antioxidant compound, N-acetyl-cysteine, abrogated nicotine-activated production of reactive oxygen species and inhibited CYP1A1 expression by nicotine. Furthermore, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was inhibited by diphenyleneiodonium (an NADPH oxidase inhibitor). Thus, these results demonstrated that AhR played an important role in nicotine-induced CYP1A1 expression. Additionally, liver hepatocellular carcinoma HepG2 cells treated with nicotine exhibited markedly enhanced proliferation via CYP1A1 expression and Akt activation.
Collapse
Affiliation(s)
- Trong Thuan Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Nanogen Biopharmaceutical Company, Lot I - 5C Saigon Hitech Park, Tang Nhon Phu A Ward, District 9, Ho Chi Minh City, Viet Nam
| | - Thi Thinh Nguyen
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Nanogen Biopharmaceutical Company, Lot I - 5C Saigon Hitech Park, Tang Nhon Phu A Ward, District 9, Ho Chi Minh City, Viet Nam
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jae-Young Han
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School and Hospital, Gwangju, 61469, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
12
|
Effects of Roasted Schisandra Chinensis (Turcz.) Baill and Lycium Chinense Mill. and Their Combinational Extracts on Antioxidant and Anti-Inflammatory Activities in RAW 264.7 Cells and in Alcohol-Induced Liver Damage Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6633886. [PMID: 34567217 PMCID: PMC8463187 DOI: 10.1155/2021/6633886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/08/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022]
Abstract
Schisandra chinensis (Turcz.) Baill (SC) and Lycium chinense Mill. (LC) are widely distributed in Asia, where the fruit has traditionally been used for medicinal herbs. We previously reported that the roasting process improved the antioxidant and their hangover relieving effects. In this study, we assessed the antioxidant and anti-inflammatory effects of water extract of SC, LC, and a mass ratio 1 : 1 mixture (SL), after roasting in RAW264.7 macrophage cells stimulated with lipopolysaccharide (LPS). Roasted SL (RSL) extracts showed greater enhancement potential than the others, based on the inhibition of NO (nitric oxide) and intracellular reactive oxygen species (ROS) production in RAW264.7 cells. RSL also significantly decreased the proinflammatory markers (e.g., iNOS, COX-2, TNF-α, and IL-1β) and NAD(P)H oxidase (NOX) signaling proteins (i.e., NOX (-1, -2, and -4), p22phox, p47phox, and p67phox). The inflammatory cytokine, tumor necrosis factor-alpha, interferon-1 beta levels, NF-kB, and mitogen-activated kinase activations were also significantly inhibited by RSL treatment. Based on the results of cellular levels, we compared the promotion effects of RSL extract on liver injury mediated by alcohol-induced inflammation and oxidative stress in mice. Mice were fed a Lieber-DeCarli regular liquid alcohol diet with or without SL and RSL extracts for six weeks. Alcohol intake caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities. Consistent with the results in cell levels, RSL treatment remarkably downregulated ROS and inflammatory factors, as well as their signaling molecules, in serum and tissues. These results suggest that the roasting of SC and LC could potentially elevate the inhibition effect on alcohol-induced inflammation and oxidative stress and consequently prevent alcoholic liver damage. Also, the combination of SC and LC may provide a more synergistic effect than either alone.
Collapse
|
13
|
Lima LF, Torres AQ, Jardim R, Mesquita RD, Schama R. Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias. BMC Genomics 2021; 22:562. [PMID: 34289811 PMCID: PMC8296651 DOI: 10.1186/s12864-021-07886-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Arthropoda, the most numerous and diverse metazoan phylum, has species in many habitats where they encounter various microorganisms and, as a result, mechanisms for pathogen recognition and elimination have evolved. The Toll pathway, involved in the innate immune system, was first described as part of the developmental pathway for dorsal-ventral differentiation in Drosophila. Its later discovery in vertebrates suggested that this system was extremely conserved. However, there is variation in presence/absence, copy number and sequence divergence in various genes along the pathway. As most studies have only focused on Diptera, for a comprehensive and accurate homology-based approach it is important to understand gene function in a number of different species and, in a group as diverse as insects, the use of species belonging to different taxonomic groups is essential. RESULTS We evaluated the diversity of Toll pathway gene families in 39 Arthropod genomes, encompassing 13 different Insect Orders. Through computational methods, we shed some light into the evolution and functional annotation of protein families involved in the Toll pathway innate immune response. Our data indicates that: 1) intracellular proteins of the Toll pathway show mostly species-specific expansions; 2) the different Toll subfamilies seem to have distinct evolutionary backgrounds; 3) patterns of gene expansion observed in the Toll phylogenetic tree indicate that homology based methods of functional inference might not be accurate for some subfamilies; 4) Spatzle subfamilies are highly divergent and also pose a problem for homology based inference; 5) Spatzle subfamilies should not be analyzed together in the same phylogenetic framework; 6) network analyses seem to be a good first step in inferring functional groups in these cases. We specifically show that understanding Drosophila's Toll functions might not indicate the same function in other species. CONCLUSIONS Our results show the importance of using species representing the different orders to better understand insect gene content, origin and evolution. More specifically, in intracellular Toll pathway gene families the presence of orthologues has important implications for homology based functional inference. Also, the different evolutionary backgrounds of Toll gene subfamilies should be taken into consideration when functional studies are performed, especially for TOLL9, TOLL, TOLL2_7, and the new TOLL10 clade. The presence of Diptera specific clades or the ones lacking Diptera species show the importance of overcoming the Diptera bias when performing functional characterization of Toll pathways.
Collapse
Affiliation(s)
- Letícia Ferreira Lima
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - André Quintanilha Torres
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael Dias Mesquita
- Laboratório de Bioinformática, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Rio de Janeiro, Brazil
| | - Renata Schama
- Laboratório de Biologia Computacional e Sistemas, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Cheng C, Seen D, Zheng C, Zeng R, Li E. Role of Small GTPase RhoA in DNA Damage Response. Biomolecules 2021; 11:212. [PMID: 33546351 PMCID: PMC7913530 DOI: 10.3390/biom11020212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has suggested a role of the small GTPase Ras homolog gene family member A (RhoA) in DNA damage response (DDR) in addition to its traditional function of regulating cell morphology. In DDR, 2 key components of DNA repair, ataxia telangiectasia-mutated (ATM) and flap structure-specific endonuclease 1 (FEN1), along with intracellular reactive oxygen species (ROS) have been shown to regulate RhoA activation. In addition, Rho-specific guanine exchange factors (GEFs), neuroepithelial transforming gene 1 (Net1) and epithelial cell transforming sequence 2 (Ect2), have specific functions in DDR, and they also participate in Ras-related C3 botulinum toxin substrate 1 (Rac1)/RhoA interaction, a process which is largely unappreciated yet possibly of significance in DDR. Downstream of RhoA, current evidence has highlighted its role in mediating cell cycle arrest, which is an important step in DNA repair. Unraveling the mechanism by which RhoA modulates DDR may provide more insight into DDR itself and may aid in the future development of cancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515031, Guangdong, China; (C.C.); (D.S.); (C.Z.); (R.Z.)
| |
Collapse
|
15
|
Puentes-Pardo JD, Moreno-SanJuan S, Carazo Á, León J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants (Basel) 2020; 9:antiox9121214. [PMID: 33276470 PMCID: PMC7760122 DOI: 10.3390/antiox9121214] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Heme oxygenase 1 (HO-1) is the rate-limiting enzyme of heme oxidative degradation, generating carbon monoxide (CO), free iron, and biliverdin. HO-1, a stress inducible enzyme, is considered as an anti-oxidative and cytoprotective agent. As many studies suggest, HO-1 is highly expressed in the gastrointestinal tract where it is involved in the response to inflammatory processes, which may lead to several diseases such as pancreatitis, diabetes, fatty liver disease, inflammatory bowel disease, and cancer. In this review, we highlight the pivotal role of HO-1 and its downstream effectors in the development of disorders and their beneficial effects on the maintenance of the gastrointestinal tract health. We also examine clinical trials involving the therapeutic targets derived from HO-1 system for the most common diseases of the digestive system.
Collapse
Affiliation(s)
- Jose D. Puentes-Pardo
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| | - Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Ángel Carazo
- Genomic Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Josefa León
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, 18016 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| |
Collapse
|
16
|
Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Dash RK. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radic Res 2020; 54:695-721. [PMID: 33059489 DOI: 10.1080/10715762.2020.1836368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in many physiological processes. However, ROS overproduction leads to oxidative stress, which plays a critical role in cell injury/death and the pathogenesis of many diseases. Members of NADPH oxidase (NOX) family, most of which are comprised of membrane and cytosolic components, are known to be the major nonmitochondrial sources of ROS in many cells. NOX2 is a widely-expressed and well-studied NOX family member, which is activated upon assembly of its membrane subunits gp91 phox and p22 phox with its cytosolic subunits p40 phox , p47 phox , p67 phox , and Rac, facilitating ROS production. NOX2 activation is also enhanced by GTP and inhibited by GDP. However, there remains a lack of a mechanistic, quantitative, and integrated understanding of the kinetics and regulation of the assembly of these subunits and their relative contributions toward NOX2 activation and ROS production. Toward this end, we have developed a mechanistic computational model, which incorporates a generalized random rapid equilibrium binding mechanism for NOX2 assembly and activation as well as regulations by GTP (activation), GDP (inhibition), and individual subunits enhancing the binding of other subunits (mutual binding enhancement). The resulting model replicates diverse published kinetic data, including subunit concentration-dependent NOX2 activation and ROS production, under different assay conditions, with appropriate estimates of the unknown model parameters. The model provides a mechanistic, quantitative, and integrated framework for investigating the critical roles of NOX2 subunits in NOX2 assembly and activation facilitating ROS production in a variety of physiological and pathophysiological conditions. However, there is also a need for better quantitative kinetic data based on current understanding of NOX2 assembly and activation in order to test and further develop this model.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WIS, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| |
Collapse
|
17
|
Liu Y, Zhang Z, Li Q, Zhang L, Cheng Y, Zhong Z. Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma. Oncol Rep 2020; 44:499-508. [PMID: 32627008 PMCID: PMC7336412 DOI: 10.3892/or.2020.7633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/22/2020] [Indexed: 01/20/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a primary nuclear-localized multifunctional protein in osteosarcoma. However, the cytoplasmic localization of APE1 was found to be functional and to increase with cisplatin resistance, yet the molecular mechanism is unknown. In the present study, we explored the cisplatin resistance mechanism in osteosarcoma from the new perspective of APE1 extranuclear biological activity. Using cisplatin-resistant and cisplatin-sensitive osteosarcoma cell lines, we found that mitochondrial APE1 (mtAPE1) was overexpressed in cisplatin-resistant cells but not in sensitive cells. Overexpression of mtAPE1 reduced cisplatin-induced apoptosis, while knockdown of APE1 reversed this phenomenon and caused oxidative DNA damage via overproduction of reactive oxygen species (ROS). We further demonstrated that high mtAPE1 expression could downregulate ROS production by decreasing the phosphorylation of Rac1 (p-Rac1), further promoting cisplatin resistance in osteosarcoma. Our findings suggest that mitochondrial APE1 promotes cisplatin resistance by decreasing ROS generation, which may provide new ideas for researching the molecular mechanism of osteosarcoma chemoresistance and strategies to overcome cisplatin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zhimin Zhang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Qing Li
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Liang Zhang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Yi Cheng
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
18
|
Du ZD, Han SG, Qu TF, Guo B, Yu SK, Wei W, Feng S, Liu K, Gong SS. Age-related insult of cochlear ribbon synapses: An early-onset contributor to D-galactose-induced aging in mice. Neurochem Int 2019; 133:104649. [PMID: 31870891 DOI: 10.1016/j.neuint.2019.104649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 11/29/2022]
Abstract
Presbycusis results from age-related degeneration of the auditory system. D-galactose (D-gal)-induced aging is an ideal and commonly used animal model in aging research. Previous studies demonstrate that administration of D-gal can activate mitochondria-dependent apoptosis in the cochlear stria vascularis. However, D-gal-induced changes to cochlear inner (IHCs) and outer (OHCs) hair cells, spiral ganglion cells (SGCs), and ribbon synapses connecting IHCs and SGCs have not been systematically reported. The current study investigated changes in the numbers of hair cells, SGCs, and ribbon synapses in the mouse model of aging. We found that in comparison to control mice, the numbers of ribbon synapses and their nerve fibers were significantly decreased in D-gal-treated mice, whereas the numbers of OHCs, IHCs, and SGCs were almost unchanged. Moreover, hair cell stereocilia were also not obviously influenced by D-gal administration. Although D-gal-induced aging did not significantly shift the auditory brainstem response (ABR) thresholds in the 8, 16, and 32 kHz frequency bands, the amplitude and latency of the ABR wave I, reflecting ribbon synapse functions, were abnormal in D-gal-treated mice compared to control mice. We also found that 8-hydroxy-2-deoxyguanosine, a marker of oxidative DNA damage, was significantly increased in mitochondria of cochleae from mice exposed to D-gal-induced aging in comparison to control mice. Moreover, D-gal administration increased the levels of H2O2 and mitochondrial 3860-bp common deletion, and decreased superoxide dismutase activity and ATP production in the cochlea. Furthermore, compared with control mice, the protein levels of NADPH oxidase 2 and uncoupling protein 2 were significantly increased in the cochlea of D-gal-treated mice. Taken together, these findings support that the cochlear ribbon synapse is the primary insult site in the early stage of presbycusis, and mitochondrial oxidative damage and subsequent dysfunctions might be responsible for this insult.
Collapse
Affiliation(s)
- Zheng-De Du
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Shu-Guang Han
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Teng-Fei Qu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Bin Guo
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Shu-Kui Yu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Shuai Feng
- Department of Otorhinolaryngology, The First Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, 110000, China
| | - Ke Liu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| | - Shu-Sheng Gong
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
19
|
Kobliakov VA. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:1117-1128. [DOI: 10.1134/s0006297919100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Kim JS, Jeong K, Murphy JM, Rodriguez YAR, Lim STS. A Quantitative Method to Measure Low Levels of ROS in Nonphagocytic Cells by Using a Chemiluminescent Imaging System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1754593. [PMID: 31285782 PMCID: PMC6594271 DOI: 10.1155/2019/1754593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022]
Abstract
Chemiluminescence (CL) is one of the most useful methods for detecting reactive oxygen species (ROS). Although fluorescence dyes or genetically encoded biosensors have been developed, CL is still used due to its high sensitivity, ease of use, and low cost. While initially established and used to measure high levels of ROS in phagocytic cells, CL assays are not ideal for measuring low levels of ROS. Here, we developed a newly modified CL assay using a chemiluminescent imaging system for measuring low concentrations of ROS in nonphagocytic cells. We found that dissolving luminol in NaOH, rather than DMSO, increased the H2O2-induced CL signal and that the addition of 4-iodophenylboronic acid (4IPBA) further increased CL intensity. Our new system also increased the rate and intensity of the CL signal in phorbol 12-myristate 13-acetate- (PMA-) treated HT-29 colon cancer cells compared to those in luminol only. We were able to quantify ROS levels from both cells and media in parallel using an H2O2 standard. A significant benefit to our system is that we can easily measure stimulus-induced ROS formation in a real-time manner and also investigate intracellular signaling pathways from a single sample simultaneously. We found that PMA induced tyrosine phosphorylation of protein tyrosine kinases (PTKs), such as focal adhesion kinase (FAK), protein tyrosine kinase 2 (Pyk2), and Src, and increased actin stress fiber formation in a ROS-dependent manner. Interestingly, treatment with either N-acetyl-L-cysteine (NAC) or diphenyleneiodonium (DPI) reduced the PMA-stimulated phosphorylation of these PTKs, implicating a potential role in cellular ROS signaling. Thus, our newly optimized CL assay using 4IPBA and a chemiluminescent imaging method provides a simple, real-time, and low-cost method for the quantification of low levels of ROS.
Collapse
Affiliation(s)
- Jun-Sub Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - James M. Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Yelitza A. R. Rodriguez
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
21
|
Tomar N, Sadri S, Cowley AW, Yang C, Quryshi N, Pannala VR, Audi SH, Dash RK. A thermodynamically-constrained mathematical model for the kinetics and regulation of NADPH oxidase 2 complex-mediated electron transfer and superoxide production. Free Radic Biol Med 2019; 134:581-597. [PMID: 30769160 PMCID: PMC6588456 DOI: 10.1016/j.freeradbiomed.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) play an important role in cell signaling, growth, and immunity. However, when produced in excess, they are toxic to the cell and lead to premature aging and a myriad of pathologies, including cardiovascular and renal diseases. A major source of ROS in many cells is the family of NADPH oxidase (NOX), comprising of membrane and cytosolic components. NOX2 is among the most widely expressed and well-studied NOX isoform. Although details on the NOX2 structure, its assembly and activation, and ROS production are well elucidated experimentally, there is a lack of a quantitative and integrative understanding of the kinetics of NOX2 complex, and the various factors such as pH, inhibitory drugs, and temperature that regulate the activity of this oxidase. To this end, we have developed here a thermodynamically-constrained mathematical model for the kinetics and regulation of NOX2 complex based on diverse published experimental data on the NOX2 complex function in cell-free and cell-based assay systems. The model incorporates (i) thermodynamics of electron transfer from NADPH to O2 through different redox centers of the NOX2 complex, (ii) dependence of the NOX2 complex activity upon pH and temperature variations, and (iii) distinct inhibitory effects of different drugs on the NOX2 complex activity. The model provides the first quantitative and integrated understanding of the kinetics and regulation of NOX2 complex, enabling simulation of diverse experimental data. The model also provides several novel insights into the NOX2 complex function, including alkaline pH-dependent inhibition of the NOX2 complex activity by its reaction product NADP+. The model provides a mechanistic framework for investigating the critical role of NOX2 complex in ROS production and its regulation of diverse cellular functions in health and disease. Specifically, the model enables examining the effects of specific targeting of various enzymatic sources of pathological ROS which could overcome the limitations of pharmacological efforts aimed at scavenging ROS which has resulted in poor outcomes of antioxidant therapies in clinical studies.
Collapse
Affiliation(s)
- Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nabeel Quryshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Venkat R Pannala
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA.
| |
Collapse
|
22
|
Umukoro S, Oghwere EE, Ben-Azu B, Owoeye O, Ajayi AM, Omorogbe O, Okubena O. Jobelyn® ameliorates neurological deficits in rats with ischemic stroke through inhibition of release of pro-inflammatory cytokines and NF-κB signaling pathway. PATHOPHYSIOLOGY 2019; 26:77-88. [DOI: 10.1016/j.pathophys.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
|
23
|
Shen J, Rastogi R, Geng X, Ding Y. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen Res 2019; 14:948-953. [PMID: 30761998 PMCID: PMC6404502 DOI: 10.4103/1673-5374.250568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
Peretti M, Raciti FM, Carlini V, Verduci I, Sertic S, Barozzi S, Garré M, Pattarozzi A, Daga A, Barbieri F, Costa A, Florio T, Mazzanti M. Mutual Influence of ROS, pH, and CLIC1 Membrane Protein in the Regulation of G 1-S Phase Progression in Human Glioblastoma Stem Cells. Mol Cancer Ther 2018; 17:2451-2461. [PMID: 30135216 DOI: 10.1158/1535-7163.mct-17-1223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GB) is the most lethal, aggressive, and diffuse brain tumor. The main challenge for successful treatment is targeting the cancer stem cell (CSC) subpopulation responsible for tumor origin, progression, and recurrence. Chloride Intracellular Channel 1 (CLIC1), highly expressed in CSCs, is constitutively present in the plasma membrane where it is associated with chloride ion permeability. In vitro, CLIC1 inhibition leads to a significant arrest of GB CSCs in G1 phase of the cell cycle. Furthermore, CLIC1 knockdown impairs tumor growth in vivo Here, we demonstrate that CLIC1 membrane localization and function is specific for GB CSCs. Mesenchymal stem cells (MSC) do not show CLIC1-associated chloride permeability, and inhibition of CLIC1 protein function has no influence on MSC cell-cycle progression. Investigation of the basic functions of GB CSCs reveals a constitutive state of oxidative stress and cytoplasmic alkalinization compared with MSCs. Both intracellular oxidation and cytoplasmic pH changes have been reported to affect CLIC1 membrane functional expression. We now report that in CSCs these three elements are temporally linked during CSC G1-S transition. Impeding CLIC1-mediated chloride current prevents both intracellular ROS accumulation and pH changes. CLIC1 membrane functional impairment results in GB CSCs resetting from an allostatic tumorigenic condition to a homeostatic steady state. In contrast, inhibiting NADPH oxidase and NHE1 proton pump results in cell death of both GB CSCs and MSCs. Our results show that CLIC1 membrane protein is crucial and specific for GB CSC proliferation, and is a promising pharmacologic target for successful brain tumor therapies. Mol Cancer Ther; 17(11); 2451-61. ©2018 AACR.
Collapse
Affiliation(s)
- Marta Peretti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Valentina Carlini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Ivan Verduci
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sara Barozzi
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy and Cogentech S.c.a.r.l., IFOM Via Adamello, Milan, Italy
| | - Massimiliano Garré
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy and Cogentech S.c.a.r.l., IFOM Via Adamello, Milan, Italy
| | - Alessandra Pattarozzi
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genova, Italy
| | - Antonio Daga
- IRCCS Policlinico San Martino and Dipartimento delle Terapie Oncologiche Integrate, Ospedale San Martino, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genova, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genova, Italy.,IRCCS Policlinico San Martino and Dipartimento delle Terapie Oncologiche Integrate, Ospedale San Martino, Genova, Italy
| | - Michele Mazzanti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol 2018; 56:373-386. [PMID: 29858825 DOI: 10.1007/s12275-018-7545-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1-5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.
Collapse
|
26
|
Furlan T, Khalid S, Nguyen AV, Günther J, Troppmair J. The oxidoreductase p66Shc acts as tumor suppressor in BRAFV600E-transformed cells. Mol Oncol 2018; 12:869-882. [PMID: 29624862 PMCID: PMC5983121 DOI: 10.1002/1878-0261.12199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/26/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
Metabolic reprogramming, as exemplified by the shift from oxidative phosphorylation to glycolysis, is a common feature of transformed cells. In many tumors, altered metabolism is also reflected in increased reactive oxygen species (ROS) levels, which contribute to proliferation and survival signaling. However, despite high ROS levels, cancer cells can be efficiently killed by further increasing ROS production. We have shown previously that both wild‐type and oncogenic CRAF and BRAF prevent excessive mitochondrial ROS production. Subsequently, it has been demonstrated that raising ROS levels in BRAFV600E‐transformed melanoma cells by inhibiting BRAF or MEK rendered them susceptible to cell death induction. To understand how oncogenic BRAF affects mitochondrial ROS production in melanoma, we studied the mitochondrial ROS‐producing oxidoreductase p66Shc, which is frequently overexpressed in tumors. Using NIH 3T3 BRAFV600E fibroblasts and the melanoma cell lines A375 and M238 carrying the same BRAF mutation, we show that under treatment with the ROS‐inducing agent phenethyl isothiocyanate (PEITC), oncogenic BRAF renders cells refractory to p66ShcS36 phosphorylation, which is essential for p66Shc activation and mitochondrial ROS production. Consistent with this, the activation of JNK1/2, which phosphorylate S36, was blunted, while other mitogen‐activated protein kinases were not affected. Inhibition of JNK1/2 efficiently prevented ROS production, while BRAF and MEK inhibitors increased ROS levels. Vemurafenib‐resistant M238R melanoma cells were impaired in S36 phosphorylation and ROS production following PEITC treatment. Moreover, they failed to increase ROS levels after MEK/BRAF inhibition. Finally, shRNA‐mediated knockdown of p66Shc led to increased growth of BRAFV600E‐transformed NIH 3T3 cells in soft agar assay. Taken together, these data suggest that phosphorylation‐activated p66Shc functions as a tumor suppressor in melanoma cells.
Collapse
Affiliation(s)
- Tobias Furlan
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Medical University of Innsbruck (MUI), Austria
| | - Sana Khalid
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Medical University of Innsbruck (MUI), Austria
| | - Anh-Vu Nguyen
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Medical University of Innsbruck (MUI), Austria
| | - Julia Günther
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Medical University of Innsbruck (MUI), Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Medical University of Innsbruck (MUI), Austria
| |
Collapse
|
27
|
Shen J, Rastogi R, Guan L, Li F, Du H, Geng X, Ding Y. Omega-3 fatty acid supplement reduces activation of NADPH oxidase in intracranial atherosclerosis stenosis. Neurol Res 2018; 40:499-507. [PMID: 29576013 DOI: 10.1080/01616412.2018.1451290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
28
|
Kim JY, Park J, Lee JE, Yenari MA. NOX Inhibitors - A Promising Avenue for Ischemic Stroke. Exp Neurobiol 2017; 26:195-205. [PMID: 28912642 PMCID: PMC5597550 DOI: 10.5607/en.2017.26.4.195] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
NADPH-oxidase (NOX) mediated superoxide originally found on leukocytes, but now recognized in several types of cells in the brain. It has been shown to play an important role in the progression of stroke and related cerebrovascular disease. NOX is a multisubunit complex consisting of 2 membrane-associated and 4 cytosolic subunits. NOX activation occurs when cytosolic subunits translocate to the membrane, leading to transport electrons to oxygen, thus producing superoxide. Superoxide produced by NOX is thought to function in long-term potentiation and intercellular signaling, but excessive production is damaging and has been implicated to play an important role in the progression of ischemic brain. Thus, inhibition of NOX activity may prove to be a promising treatment for ischemic brain as well as an adjunctive agent to prevent its secondary complications. There is mounting evidence that NOX inhibition in the ischemic brain is neuroprotective, and targeting NOX in circulating immune cells will also improve outcome. This review will focus on therapeutic effects of NOX assembly inhibitors in brain ischemia and stroke. However, the lack of specificity and toxicities of existing inhibitors are clear hurdles that will need to be overcome before this class of compounds could be translated clinically.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yensei University College of Medicine, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yensei University College of Medicine, Seoul 03722, Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yensei University College of Medicine, Seoul 03722, Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
29
|
Ju Woo H, Jun DY, Lee JY, Park HS, Woo MH, Park SJ, Kim SC, Yang CH, Kim YH. Anti-inflammatory action of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) suppresses both the MyD88-dependent and TRIF-dependent pathways of TLR4 signaling in LPS-stimulated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:103-115. [PMID: 28465253 DOI: 10.1016/j.jep.2017.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/16/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots of Rubia cordifolia L. have been widely used as a traditional herbal medicine in Northeast Asia for treating inflammatory diseases. AIM OF THE STUDY To elucidate the anti-inflammatory mechanism of 2-carbomethoxy-2,3-epoxy-3- prenyl-1,4-naphthoquinone (CMEP-NQ), purified from the roots of R. cordifolia L. as the major anti-inflammatory component, in LPS-treated RAW264.7 murine macrophage cells. MATERIALS AND METHODS Anti-inflammatory activity of CMEP-NQ was investigated in LPS-treated RAW264.7 cells by measuring the levels of NO, PGE2, and cytokines (IL1β, IL-6, TNF-α) in the culture supernatants and the TLR4-mediated intracellular events including association of MyD88 with IRAK1, activation of IRAK1, TAK1, MAPKs, NF-κB/AP-1, and IRF3, and generation of ROS. RESULTS Pretreatment of RAW264.7 cells with CMEP-NQ reduced LPS-induced production of NO and PGE2 by suppressing iNOS and COX-2 gene expression. CMEP-NQ also reduced the secretion of IL-1β, IL-6, and TNF-α by down-regulating mRNA levels. Under these conditions, TLR4-mediated MyD88-dependent events were inhibited by CMEP-NQ, including the association of MyD88 with IRAK1, phosphorylation of IRAK1, TAK1, and MAPKs (ERK, JNK and p38 MAPK), and activation of NF-κB and AP-1. As TRIF-dependent events of TLR4 signaling, phosphorylation of IRF3 and induction of iNOS protein expression were also inhibited by CMEP-NQ. However, the binding of FITC-conjugated LPS to cell surface TLR4 was not affected by CMEP-NQ. Following LPS stimulation, intracellular ROS production was first detected by DCFH-DA staining at 1h; then it continuously increased until 16h. Although CMEP-NQ failed to exhibit DPPH radical- or ABTS radical-scavenging activity in vitro, LPS-induced ROS production in RAW264.7 cells was more efficiently blocked by CMEP-NQ than by NAC. CONCLUSIONS These results demonstrate that the suppressive effect of CMEP-NQ on LPS-induced inflammatory responses in RAW264.7 cells was mainly exerted via its inhibition of TLR4-mediated proximal events, such as MyD88-dependent NF-κB/AP-1 activation and ROS production, and TRIF-dependent IRF3 activation.
Collapse
Affiliation(s)
- Hyun Ju Woo
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Do Youn Jun
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, South Korea
| | - Ji Young Lee
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Hae Sun Park
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Mi Hee Woo
- College of Pharmacology, Daegu Catholic University, Gyeongsan 712-702, South Korea
| | - Sook Jahr Park
- College of Oriental Medicine, Daegu Hanny University, Daegu 706-060, South Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Hanny University, Daegu 706-060, South Korea
| | - Chae Ha Yang
- College of Oriental Medicine, Daegu Hanny University, Daegu 706-060, South Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
30
|
Jun DY, Kim H, Jang WY, Lee JY, Fukui K, Kim YH. Ectopic overexpression of LAPTM5 results in lysosomal targeting and induces Mcl-1 down-regulation, Bak activation, and mitochondria-dependent apoptosis in human HeLa cells. PLoS One 2017; 12:e0176544. [PMID: 28464033 PMCID: PMC5413007 DOI: 10.1371/journal.pone.0176544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Human lysosomal-associated protein multispanning membrane 5 (LAPTM5) was identified by an ordered differential display-polymerase chain reaction (ODD-PCR) as an up-regulated cDNA fragment during 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced differentiation of U937 cells into monocytes/macrophages. After TPA-treatment, the levels of LAPTM5 mRNA and protein increased and reached a maximum at 18-36 h. In healthy human tissues, LAPTM5 mRNA was expressed at high levels in hematopoietic cells and tissues, at low levels in the lung and fetal liver, and was not detected in other non-hematopoietic tissues. LAPTM5 mRNA was detected in immature malignant cells of myeloid lineage, such as K562, HL-60, U937, and THP-1 cells, and in unstimulated peripheral T cells, but was absent or barely detectable in lymphoid malignant or non-hematopoietic malignant cells. The LAPTM5 level in HL-60 cells increased more significantly during TPA-induced monocyte/macrophage differentiation than during DMSO-induced granulocyte differentiation. Ectopic expression of GFP-LAPTM5 or LAPTM5 in HeLa cells exhibited the localization of LAPTM5 to the lysosome. In HeLa cells overexpressing LAPTM5, the Mcl-1 and Bid levels declined markedly and apoptosis was induced via Bak activation, Δψm loss, activation of caspase-9, -8 and -3, and PARP degradation without accompanying necrosis. However, these LAPTM5-induced apoptotic events except for the decline of Bid level were completely abrogated by concomitant overexpression of Mcl-1. The pan-caspase inhibitor (z-VAD-fmk) could suppress the LAPTM5-induced apoptotic sub-G1 peak by ~40% but failed to block the induced Δψm loss, whereas the broad-range inhibitor of cathepsins (Cathepsin Inhibitor I) could suppress the LAPTM5-induced apoptotic sub-G1 peak and Δψm loss, by ~22% and ~23%, respectively, suggesting that the LAPTM5-mediated Δψm loss was exerted at least in part in a cathepsin-dependent manner. Together, these results demonstrate that ectopic overexpression of LAPTM5 in HeLa cells induced apoptosis via cleavage of Mcl-1 and Bid by a LAPTM5-associated lysosomal pathway, and subsequent activation of the mitochondria-dependent caspase cascade.
Collapse
Affiliation(s)
- Do Youn Jun
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Hyejin Kim
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Won Young Jang
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Ji Young Lee
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Kiyoshi Fukui
- Institute for Enzyme Research, Division of Gene Regulatorics, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- * E-mail:
| |
Collapse
|
31
|
Gandara ACP, Torres A, Bahia AC, Oliveira PL, Schama R. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase. BMC Evol Biol 2017; 17:92. [PMID: 28356077 PMCID: PMC5372347 DOI: 10.1186/s12862-017-0940-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. RESULTS We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H2O2. Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H2O2 production is considerably diminished in A. aegypti cells. CONCLUSIONS Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H2O2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many species, NOX4-art was lost in a number of arthropod lineages.
Collapse
Affiliation(s)
- Ana Caroline Paiva Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - André Torres
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Cristina Bahia
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| | - Renata Schama
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Osato T, Park P, Ikeda K. Cytological analysis of the effect of reactive oxygen species on sclerotia formation in Sclerotinia minor. Fungal Biol 2017; 121:127-136. [DOI: 10.1016/j.funbio.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/24/2016] [Accepted: 11/17/2016] [Indexed: 11/27/2022]
|
33
|
Shen J, Huber M, Zhao EY, Peng C, Li F, Li X, Geng X, Ding Y. Early rehabilitation aggravates brain damage after stroke via enhanced activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX). Brain Res 2016; 1648:266-276. [PMID: 27495986 DOI: 10.1016/j.brainres.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Although physical exercise has emerged as a potential therapeutic modality for functional deficits following ischemic stroke, the extent of this effect appears to be contingent upon the time of exercise initiation. In the present study, we assessed how exercise timing affected brain damage through hyperglycolysis-associated NADPH oxidase (NOX) activation. METHODS Using an intraluminal filament, adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2h and assigned to one non-exercise and three exercise groups. Exercise on Rota-rod was initiated for 30min at 6h (considered very early), at 24h (early), and at day 3 (relatively late) after reperfusion. Lactate production was measured 30min after exercise completion, and NOX activity and protein expression of NOX subunits (p47(phox), gp91(phox), p22(phox) and p67(phox)) and glucose transporter 1 and 3 (Glut-1 and -3) were measured at 3 and 24h after exercise. Apoptotic cell death was determined at 24h after exercise. RESULTS Lactate production and Glut-1 and Glut-3 expression were increased after very early exercise (6h), but not after late exercise (3 days), suggesting hyperglycolysis. NOX activity was increased with the initiation of exercise at 6h (P<0.05), but not 24h or 3 days, following stroke. Early (6 and 24h), but not late (3 days), post-stroke exercise was associated with increased (P<0.05) expression of the NOX protein subunit p47(phox), gp91(phox)and p67(phox). This may have led to the enhanced apoptosis observed after early exercise in ischemic rats. CONCLUSION Hyperglycolysis and NOX activation was associated with an elevation in apoptotic cell death after very early exercise, and the detrimental effect of exercise on stroke recovery began to decrease when exercise was initiated 24h after reperfusion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ethan Y Zhao
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaorong Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
34
|
Shen K, Lu F, Xie J, Wu M, Cai B, Liu Y, Zhang H, Tan H, Pan Y, Xu H. Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget 2016; 7:50596-50611. [PMID: 27418140 PMCID: PMC5226606 DOI: 10.18632/oncotarget.10585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Cambogin, a bioactive polycyclic polyprenylated acylphoroglucinol (PPAP) derived from the Garcinia genus, possesses proapoptotic effect in medulloblastoma and breast cancer cells. We have previously demonstrated that the proapoptotic effect of cambogin is driven by the production of reactive oxygen species (ROS). Here we have shown that the inhibitory effect of cambogin on cell proliferation is associated with the loss of mitochondrial transmembrane potential (ΔΨm) and mitochondrial fragmentation. Cambogin also promotes the mutual complex formation of the membrane-bound subunit p22phox of NADPH oxidase 1 (NOX1), as well as the phosphorylation of the cytosolic subunit p47phox, subsequently enhancing membrane-bound NOX1 activity, which leads to increases in intracellular and mitochondrial levels of O2.- and H2O2. Pharmacological inhibition of NOX1 using apocynin (pan-NOX inhibitor), ML171 (NOX1 inhibitor) or siRNA against NOX1 prevents the increases in O2.- and H2O2 levels and the anti-proliferative effect of cambogin. Antioxidants, including SOD (superoxide dismutase), CAT (catalase) and EUK-8, are also able to restore cell viability in the presence of cambogin. Besides, cambogin increases the dissociation of thioredoxin-1 (Trx1) from ASK1, switching the inactive form of ASK1 to the active kinase, subsequently leads to the phosphorylation of JNK/SAPK, which is abolished upon ML171 treatment. The proapoptotic effect of cambogin in breast cancer cells is also aggravated upon knocking down Trx1 in MCF-7 cells. Taken in conjunction, these data indicate that the anti-proliferative and pro-apoptotic effect of cambogin is mediated via inducing NOX1-dependent ROS production and the dissociation of ASK1 and Trx1.
Collapse
Affiliation(s)
- Kaikai Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangfang Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide SA5000, Australia
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ, UK
| | - Minfeng Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yurong Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yingyi Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of T.C.M, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
35
|
Abstract
C-reactive protein (CRP) has been suggested to play a role in the pathogenesis of atherosclerosis. Neutrophil respiratory burst and levels of CRP are increased during infection. The increase in the neutrophil respiratory burst may be due to factors that are elevated in infection, such as cytokines, tumor necrosis factor, platelet-activating factor, and CRP. The direct effect of CRP on the release of oxygen radicals by neutrophils is not known. This investigation was made to determine if CRP affects the generation of oxygen radicals by neutrophils and if this effect is blocked by antioxidants. The effect of various concentrations (1 to 200 µg/mL blood) of CRP on the generation of oxygen radicals by neutrophils was measured as luminol-dependent chemiluminescence (chemiluminescent activity) on a luminometer (Auto Lumat LB953, EG & G Berthold, Gaithersburg, MD). The unit of chemiluminescent activity is the relative light unit and was expressed as relative light unit/white blood cell (RLU/WBC). Chemiluminescent activity of blood without CRP was slightly higher than that of buffer with or without CRP. CRP markedly increased the chemiluminescent activity of blood. There was no significant change in the chemiluminescent activity of WBCs with 1 µg/mL of CRP. The chemiluminescent activity increased significantly with higher concentrations of CRP. The percent increases in the chemiluminescent activity with 2, 5, 10, 25, 50, 100 and 200 µg/mL of CRP were 45%, 72%, 50%, 70%, 52%, 67%, and 68% respectively. Antioxidants (superoxide dismutase, catalase, and dimethylthiourea) blocked CRP-induced oxygen radicals by WBCs. These results suggest that CRP increases the generation of oxygen radicals from the WBCs. CRP-induced atherosclerosis may be mediated through generation of oxygen radicals by neutrophils.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
36
|
RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9348651. [PMID: 27313835 PMCID: PMC4897723 DOI: 10.1155/2016/9348651] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells.
Collapse
|
37
|
Lipina C, Hundal HS. Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biol 2016; 6:150276. [PMID: 27248801 PMCID: PMC4852457 DOI: 10.1098/rsob.150276] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions. Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types. Herein, we review and discuss evidence pertaining to ECS-induced regulation of ROS generating and scavenging mechanisms, as well as highlighting emerging work that supports redox modulation of ECS function. Functionally, the studies outlined reveal that interactions between the ECS and ROS signalling systems can be both stimulatory and inhibitory in nature, depending on cell stimulus, the source of ROS species and cell context. Importantly, such cross-talk may act to maintain cell function, whereas abnormalities in either system may propagate and undermine the stability of both systems, thereby contributing to various pathologies associated with their dysregulation.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
38
|
Zhang GY, Wu LC, Dai T, Chen SY, Wang AY, Lin K, Lin DM, Yang JQ, Cheng B, Zhang L, Gao WY, Li ZJ. NADPH oxidase-2 is a key regulator of human dermal fibroblasts: a potential therapeutic strategy for the treatment of skin fibrosis. Exp Dermatol 2016; 23:639-44. [PMID: 24981855 DOI: 10.1111/exd.12479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2014] [Indexed: 11/27/2022]
Abstract
The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor-beta1 (TGF-β1) exerts pro-oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF-β1-induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real-time Q-PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock-down analysis. Hydrogen peroxide production and 2',7'-dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non-phagocytic NADPH oxidase mRNA. TGF-β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF-β1 phosphorylated MAPKs and increased activator protein-1 (AP-1) in a redox-sensitive manner, and NOX2 suppression inhibited baseline and TGF-β1-mediated stimulation of Smad2 phosphorylation. Moreover, TGF-β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI-1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gibson AJ, Woodman S, Pennelegion C, Patterson R, Stuart E, Hosker N, Siviter P, Douglas C, Whitehouse J, Wilkinson W, Pegg SA, Villarreal-Ramos B, Werling D. Differential macrophage function in Brown Swiss and Holstein Friesian cattle. Vet Immunol Immunopathol 2016; 181:15-23. [PMID: 26961672 PMCID: PMC5145809 DOI: 10.1016/j.vetimm.2016.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
There is strong evidence that high yielding dairy cows are extremely susceptible to infectious diseases, and that this has severe economic consequences for the dairy industry and welfare implications. Here we present preliminary functional evidence showing that the innate immune response differs between cow breeds. The ability of macrophages (MØ) to kill pathogens depends in part on oxygen-dependent and independent mechanisms. The oxygen-dependent mechanisms rely on the generation of reactive oxygen and nitrogen species (ROS/RNS, respectively). ROS production has been shown to activate the inflammasome complex in MØ leading to increased production of the pro-inflammatory cytokine Interleukin-1β (IL-1β). Conversely RNS inhibits inflammasome mediated IL-1β activation, indicating a division between inflammasome activation and RNS production. In the present study MØ from Brown Swiss (BS) cattle produce significantly more RNS and less IL-1β when compared to cells from Holstein Friesian (HF) cattle in response to bacterial or fungal stimuli. Furthermore, BS MØ killed ingested Salmonella typhimurium more efficiently, supporting anecdotal evidence of increased disease resistance of the breed. Inhibition of autophagy by 3-methyladenine (3-MA) stimulated IL-1β secretion in cells from both breeds, but was more pronounced in HF MØ. Blocking RNS production by l-arginase completely abolished RNS production but increased IL-1β secretion in BS MØ. Collectively these preliminary data suggest that the dichotomy of inflammasome activation and RNS production exists in cattle and differs between these two breeds. As pattern recognition receptors and signaling pathways are involved in the assessed functional differences presented herein, our data potentially aid the identification of in vitro predictors of appropriate innate immune response. Finally, these predictors may assist in the discovery of candidate genes conferring increased disease resistance for future use in combination with known production traits.
Collapse
Affiliation(s)
- Amanda Jane Gibson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Sally Woodman
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Christopher Pennelegion
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Robert Patterson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Emma Stuart
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Naomi Hosker
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Peter Siviter
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Chloe Douglas
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Jessica Whitehouse
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Will Wilkinson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Sherri-Anne Pegg
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | | | - Dirk Werling
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK.
| |
Collapse
|
40
|
NADPH Oxidase: A Potential Target for Treatment of Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5026984. [PMID: 26941888 PMCID: PMC4752995 DOI: 10.1155/2016/5026984] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several reports have shown that knockout or deletion of NOX exerts a neuroprotective effect in three major experimental stroke models. Recent studies also confirmed that NOX inhibitors ameliorate brain injury and improve neurological outcome after stroke. However, the physiological and pathophysiological roles of NOX enzymes in the central nervous system (CNS) are not known well. In this review, we provide a comprehensive summary of our current understanding about expression and physiological function of NOX enzymes in the CNS and its pathophysiological roles in the three major types of stroke: ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage.
Collapse
|
41
|
Tian WM, Yang SG, Shi MJ, Zhang SX, Wu JL. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:95-103. [PMID: 26070085 DOI: 10.1016/j.jplph.2015.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 05/08/2023]
|
42
|
Wang P, Sun YC, Lu WH, Huang P, Hu Y. Selective killing of K-ras-transformed pancreatic cancer cells by targeting NAD(P)H oxidase. CHINESE JOURNAL OF CANCER 2015; 34:166-76. [PMID: 25963558 PMCID: PMC4593348 DOI: 10.1186/s40880-015-0012-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023]
Abstract
Introduction Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and plays a critical role in the pathogenesis of this malignancy. Increase of reactive oxygen species (ROS) has also been observed in a wide spectrum of cancers. This study aimed to investigate the mechanistic association between K-ras–induced transformation and increased ROS stress and its therapeutic implications in pancreatic cancer. Methods ROS level, NADPH oxidase (NOX) activity and expression, and cell invasion were examined in human pancreatic duct epithelial E6E7 cells transfected with K-rasG12V compared with parental E6E7 cells. The cytotoxic effect and antitumor effect of capsaicin, a NOX inhibitor, were also tested in vitro and in vivo. Results K-ras transfection caused activation of the membrane-associated redox enzyme NOX and elevated ROS generation through the phosphatidylinositol 3′-kinase (PI3K) pathway. Importantly, capsaicin preferentially inhibited the enzyme activity of NOX and induced severe ROS accumulation in K-ras–transformed cells compared with parental E6E7 cells. Furthermore, capsaicin effectively inhibited cell proliferation, prevented invasiveness of K-ras–transformed pancreatic cancer cells, and caused minimum toxicity to parental E6E7 cells. In vivo, capsaicin exhibited antitumor activity against pancreatic cancer and showed oxidative damage to the xenograft tumor cells. Conclusions K-ras oncogenic signaling causes increased ROS stress through NOX, and abnormal ROS stress can selectively kill tumor cells by using NOX inhibitors. Our study provides a basis for developing a novel therapeutic strategy to effectively kill K-ras–transformed cells through a redox-mediated mechanism.
Collapse
Affiliation(s)
- Peng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China. .,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510000, P.R. China.
| | - Yi-Chen Sun
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| | - Wen-Hua Lu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| | - Peng Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China. .,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yumin Hu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P.R. China.
| |
Collapse
|
43
|
Sommer F, Bäckhed F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol 2015; 8:372-9. [PMID: 25160818 DOI: 10.1038/mi.2014.74] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023]
Abstract
The epithelium is a first line of defense against microorganisms in the gut. Reactive oxygen species (ROS) have an important role in controlling the normal gut microbiota and pathogenic bacteria. Dual oxidase 2 (DUOX2) is an important source of hydrogen peroxide in the small and large intestine, and the gut microbiota induces Duox2 expression. Here, we investigated the microbial regulation of Duox2 expression. We found that Duox2 was expressed by intestinal epithelial cells mainly in the tip of the epithelium. Duox2 expression was strongly induced by the presence of a normal microbiota in mice, but not when germ-free mice were colonized with various commensal bacteria. Duox2 expression was more rapidly induced by the gut microbiota in the colon than in the ileum. Furthermore, we showed that regulation of Duox2 expression in the ileum involved TIR-domain-containing adaptor protein including interferon-β (TRIF) and canonical nuclear factor-κB p50/p65 signaling, whereas regulation of Duox2 expression in the colon involved MyD88 and the p38 pathway. Collectively, these data indicate that the gut microbiota uses two distinct signaling pathways to induce Duox2 expression in the ileum and colon epithelium.
Collapse
Affiliation(s)
- F Sommer
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - F Bäckhed
- 1] The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden [2] Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Abstract
Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF-VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.
Collapse
|
45
|
Anwar MS, Dillon JF, Miller MH. Association of serum bilirubin and non-alcoholic fatty liver disease: A feasible therapeutic avenue? World J Pharmacol 2014; 3:209-216. [DOI: 10.5497/wjp.v3.i4.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/14/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To the look at the current strength of evidence and the potential application of anti-oxidants in this setting.
METHODS: Two electronic databases (PubMed and Web of Knowledge) were searched to January 2013 to find studies addressing serum bilirubin levels in non-alcoholic fatty liver disease (NAFLD). The search used key word combinations in relation to NAFLD and serum bilirubin specific to human adults only. After screening selected studies were reviewed in depth by two independent reviewers. Data synthesis with further meta-analysis was planned but not possible due to the heterogeneity of the outcome measures in these studies.
RESULTS: Out of 416 studies screened only seven studies were considered suitable for inclusion. All seven studies consistently reported an inverse association of bilirubin with NAFLD despite the heterogeneous sample of studies. Only two studies were prospective. No negative studies were found.
CONCLUSION: Most studies suggest a correlation between high bilirubin levels of any type are inversely correlated with NAFLD. But to date most of these studies have been poorly designed to allow meaningful conclusions, except one cohort study. There is a need for a large prospective cohort study in multiple populations to test this hypothesis fully before mechanistic associations can be established and therapeutic options of the apparent anti-oxidant effect of bilirubin be explored in NAFLD. Furthermore these studies should include analysis of UGT1A1 gene to expound upon underlying cause of unconjugated hyperbilirubinaemia.
Collapse
|
46
|
Ramonaite R, Skieceviciene J, Juzenas S, Salteniene V, Kupcinskas J, Matusevicius P, Borutaite V, Kupcinskas L. Protective action of NADPH oxidase inhibitors and role of NADPH oxidase in pathogenesis of colon inflammation in mice. World J Gastroenterol 2014; 20:12533-12541. [PMID: 25253955 PMCID: PMC4168088 DOI: 10.3748/wjg.v20.i35.12533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/11/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in colon epithelial cells in the pathogenesis of acute and chronic colon inflammation in a mouse model of dextran sulphate sodium (DSS)-induced colitis.
METHODS: Balb/c mice were divided into three groups: 8 mice with acute DSS-induced colitis (3.5% DSS solution; 7 d), 8 mice with chronic DSS-induced colitis (3.5% DSS solution for 5 d + water for 6 d; 4 cycles; total: 44 d) and 12 mice without DSS supplementation as a control group. Primary colonic epithelial cells were isolated using chelation method. The cells were cultivated in the presence of mediators (lipopolysaccharide (LPS), apocynin or diphenyleneiodonium). Viability of cells was assessed by fluorescent microscopy. Production of reactive oxygen species (ROS) by the cells was measured fluorometrically using Amplex Red. Production of tumour necrosis factor-alpha (TNF-α) by the colonic epithelial cells was analysed by ELISA. Nox1 gene expression was assessed by real-time PCR.
RESULTS: Our study showed that TNF-α level was increased in unstimulated primary colonic cells both in the acute and chronic colitis groups, whereas decreased viability, increased ROS production, and expression of Nox1 was characteristic only for chronic DSS colitis mice when compared to the controls. The stimulation by LPS increased ROS generation via NADPH oxidase and decreased cell viability in mice with acute colitis. Treatment with NADPH oxidase inhibitors increased cell viability and decreased the levels of ROS and TNF-α in the LPS-treated cells isolated from mice of both acute and chronic colitis groups.
CONCLUSION: Our study revealed the importance of NADPH oxidase in the pathogenesis of both acute and chronic inflammation of the colon.
Collapse
|
47
|
Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants (Basel) 2014; 3:472-501. [PMID: 26785066 PMCID: PMC4665418 DOI: 10.3390/antiox3030472] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.
Collapse
|
48
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
49
|
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of "kindling radicals," which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. RECENT ADVANCES There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. CRITICAL ISSUES NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. FUTURE DIRECTIONS Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice.
Collapse
Affiliation(s)
- Anna Konior
- 1 Department of Internal Medicine, Jagiellonian University School of Medicine , Cracow, Poland
| | | | | | | |
Collapse
|
50
|
Van Thienen R, D'Hulst G, Deldicque L, Hespel P. Biochemical artifacts in experiments involving repeated biopsies in the same muscle. Physiol Rep 2014; 2:e00286. [PMID: 24819751 PMCID: PMC4098731 DOI: 10.14814/phy2.286] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Needle biopsies are being extensively used in clinical trials addressing muscular adaptation to exercise and diet. Still, the potential artifacts due to biopsy sampling are often overlooked. Healthy volunteers (n = 9) underwent two biopsies through a single skin incision in a pretest. Two days later (posttest) another biopsy was taken 3 cm proximally and 3 cm distally to the pretest incision. Muscle oxygenation status (tissue oxygenation index [TOI]) was measured by near‐infrared spectroscopy. Biopsy samples were analyzed for 40 key markers (mRNA and protein contents) of myocellular O2 sensing, inflammation, cell proliferation, mitochondrial biogenesis, protein synthesis and breakdown, oxidative stress, and energy metabolism. In the pretest, all measurements were identical between proximal and distal biopsies. However, compared with the pretest, TOI in the posttest was reduced in the proximal (−10%, P < 0.05), but not in the distal area. Conversely, most inflammatory markers were upregulated at the distal (100–500%, P < 0.05), but not at the proximal site. Overall, 29 of the 40 markers measured, equally distributed over all pathways studied, were either up‐ or downregulated by 50–500% (P < 0.05). In addition, 19 markers yielded conflicting results between the proximal and distal measurements (P < 0.05). This study clearly documents that prior muscle biopsies can cause major disturbances in myocellular signaling pathways in needle biopsies specimens sampled 48 h later. In addition, different biopsy sites within identical experimental conditions yielded conflicting results. This study clearly demonstrates that skeletal muscle biopsying per se, at least by causing local tissue inflammation and/or topical deoxygenation, can substantially alter biochemical events happening in needle biopsy specimens sampled at a later day in the same muscle belly. It is crucial to take into account these potential artifacts whenever investigating the cellular mechanisms implicated in adaptation to exercise, recovery, or hypoxia.
Collapse
Affiliation(s)
- Ruud Van Thienen
- Exercise Physiology Research Group - Department of Kinesiology, KU Leuven, Tervuursevest 101, Leuven, B-3001, Belgium
| | | | | | | |
Collapse
|