1
|
Song H, Kim S, Han JE, Kang KH, Koh H. PDH Inhibition in Drosophila Ameliorates Sensory Dysfunction Induced by Vincristine Treatment in the Chemotherapy-Induced Peripheral Neuropathy Models. Biomedicines 2025; 13:783. [PMID: 40299339 PMCID: PMC12025153 DOI: 10.3390/biomedicines13040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Chemotherapy-induced peripheral neuropathy (CIPN) is a significant dose-limiting side effect of many effective anticancer agents, including vincristine. While CIPN adversely affects both oncological outcomes and the quality of life for cancer patients, the in vivo mechanisms behind CIPN pathology remain largely unknown, and effective treatments have yet to be developed. In this study, we established a novel Drosophila model of CIPN using vincristine to explore the molecular mechanisms underlying this condition. Methods: We assessed the impact of vincristine exposure on thermal nociception in Drosophila larvae using a programmable heat probe. Additionally, we investigated vincristine-induced mitochondrial dysfunction and dendritic abnormalities in class IV dendritic arborization (C4da) neurons with various fluorescent protein markers. Results: We found a dose-dependent increase in thermal hypersensitivity, accompanied by changes in the sensory dendrites of C4da neurons in vincristine-treated fly larvae. Moreover, vincristine significantly enhanced mitochondrial ROS production and mitophagy-a selective autophagy that targets dysfunctional mitochondria-indicating vincristine-induced mitochondrial dysfunction within C4da neurons. Surprisingly, inhibiting the pyruvate dehydrogenase complex (PDH), a key mitochondrial metabolic enzyme complex, effectively rescued the mitochondrial and sensory abnormalities caused by vincristine. Conclusions: Findings from this first Drosophila model of vincristine-induced peripheral neuropathy (VIPN) suggest that mitochondrial dysfunction plays a critical role in VIPN pathology, representing PDH as a potential target for the treatment of VIPN.
Collapse
Affiliation(s)
- Harim Song
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Sohee Kim
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Ji Eun Han
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Kyong-hwa Kang
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Hyongjong Koh
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| |
Collapse
|
2
|
Mufti K, Cordova M, Scott EN, Trueman JN, Lovnicki JM, Loucks CM, Rassekh SR, Ross CJD, Carleton BC. Genomic variations associated with risk and protection against vincristine-induced peripheral neuropathy in pediatric cancer patients. NPJ Genom Med 2024; 9:56. [PMID: 39500896 PMCID: PMC11538333 DOI: 10.1038/s41525-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common and highly debilitating toxicity from vincristine treatment that affects quality of life and often requires dose reduction, potentially affecting survival. Although previous studies demonstrated genetic factors are associated with vincristine neuropathy risk, the clinical relevance of most identified variants is limited by small sample sizes and unclear clinical phenotypes. A genome-wide association study was conducted in 1100 cases and controls matched by vincristine dose and genetic ancestry, uncovering a statistically significant (p < 5.0 × 10-8) variant in MCM3AP gene that substantially increases the risk of neuropathy and 12 variants protective against neuropathy within/near SPDYA, METTL8, PDE4D, FBN2, ZFAND3, NFIB, PAPPA, LRRTM3, NRG3, VTI1A, ARHGAP5, and ACTN1. A follow-up pathway analysis reveals the involvement of four key pathways, including nerve structure and development, myelination, neuronal transmission, and cytoskeleton/microfibril function pathways. These findings present potential actionable genomic markers of vincristine neuropathy and offer opportunities for tailored interventions to improve vincristine safety in children with cancer. This study is registered with ClinicalTrials.gov under the title National Active Surveillance Network and Pharmacogenomics of Adverse Drug Reactions in Children (ID NCT00414115, registered on December 21, 2006).
Collapse
Affiliation(s)
- Kheireddin Mufti
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Miguel Cordova
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erika N Scott
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessica N Trueman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Catrina M Loucks
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Bruce C Carleton
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Liu Z, Liu Y, Wu Z, Liu B, Zhao L, Yin T, Zhang Y, He H, Gou J, Tang X, Gao S. Research on the loading and release kinetics of the vincristine sulfate liposomes and its anti-breast cancer activity. Int J Pharm X 2024; 7:100258. [PMID: 38912324 PMCID: PMC11190724 DOI: 10.1016/j.ijpx.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Vincristine (VCR), as a cytotoxic drug, is used clinically to treat acute lymphatic leukemia and breast cancer, and commonly used clinically as vincristine sulfate (VCRS). However, its clinical use is limited by unpredictable pharmacologic characteristics, a narrow therapeutic index, and neurotoxicity. The pH gradient method was used for active drug loading of VCRS, and the process route mainly includes the preparation of blank liposomes and drug-loaded liposomes. VCRS liposomes had suitable particle size, high encapsulation efficiency and good stability. The loading and release kinetics of VCRS liposomes were explored. By calculating the changes of encapsulation efficiency with time at different temperatures, it was confirmed that the drug-loading process of liposomes exhibited a first-order kinetic feature, and the activation energy required for the reaction was determined as 20.6 kcal/mol. The release behavior at different pH was also investigated, and it was demonstrated that the release behavior conformed to the first-order model, suggesting that the release mechanism of VCRS was simple transmembrane diffusion. VCRS liposomes also enhanced in vitro and in vivo antitumor activity. Thus, VCRS liposomes showed great potential for VCRS delivery, and the loading and release kinetics were well researched to provide a reference for investigating active drug loading liposomes.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yang Liu
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Wu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Boyuan Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Song Gao
- Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, China
| |
Collapse
|
4
|
Bhushan B, Iranpour R, Eshtiaghi A, da Silva Rosa SC, Lindsey BW, Gordon JW, Ghavami S. Transforming Growth Factor Beta and Alveolar Rhabdomyosarcoma: A Challenge of Tumor Differentiation and Chemotherapy Response. Int J Mol Sci 2024; 25:2791. [PMID: 38474036 DOI: 10.3390/ijms25052791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-β). This overexpression of TGF-β1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-β also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-β in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-β1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.
Collapse
Affiliation(s)
- Bhavya Bhushan
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Rosa Iranpour
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Amirmohammad Eshtiaghi
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Benjamin W Lindsey
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
5
|
Samandari-Bahraseman MR, Ismaili A, Esmaeili-Mahani S, Ebrahimie E, Loit E. Bunium persicum Seeds Extract in Combination with Vincristine Mediates Apoptosis in MCF-7 Cells through Regulation of Involved Genes and Proteins Expression. Anticancer Agents Med Chem 2024; 24:213-223. [PMID: 38038013 DOI: 10.2174/0118715206277444231124051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Bunium persicum seeds, a member of the Apiaceae family, have historically been consumed as part of the Iranian diet. OBJECTIVE While many of this herb's biological properties have been fully investigated, there is currently no reliable information about its anticancer/cytotoxic properties. METHODS Herein, we first determined the major bioactive compounds of B. persicum seed extract (BPSE) via GC-Mass analysis. We evaluated the cytotoxicity of the extract alone as well as in combination with vincristine (VCR), a commonly used chemotherapy drug, using MTT assays on two breast cancer cell lines, MCF-7 and MDA-MB-231, as well as a normal breast cancer cell line, MCF-10A. Moreover, these compounds were evaluated in vitro for their anticancer activity using ROS assays, Real-Time PCR, Western blots, flow cytometry, and cell cycle assays. RESULTS As a result of our investigation, it was determined that the extract significantly reduced the viability of cancerous cells while remaining harmless to normal cells. The combination of BPSE and VCR also resulted in synergistic effects. BPSE and/or BPSE-VCR treatment increased the intracellular ROS of MCF-7 cells by over twofold. Moreover, the IC30 of BPSE (100 μg/ml) significantly increased the BAX/BCL-2 and P53 gene expression while reducing the expression of the MYC gene. Moreover, treated cells were arrested in the G2 phase of the cell cycle. The BPSE-VCR combination synergistically reduced the NF-κB and increased the Caspase-7 proteins' expression. The percent of apoptosis in the cells treated with the extract, VCR, and their combination was 27, 11, and 50, respectively. CONCLUSIONS The present study demonstrated the anticancer activity of the BPSE and its potential for application in combination therapy with VCR.
Collapse
Affiliation(s)
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
| | - Evelin Loit
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
6
|
López-Tofiño Y, Barragán del Caz LF, Benítez-Álvarez D, Molero-Mateo P, Nurgali K, Vera G, Bagües A, Abalo R. Contractility of isolated colonic smooth muscle strips from rats treated with cancer chemotherapy: differential effects of cisplatin and vincristine. Front Neurosci 2023; 17:1304609. [PMID: 38192512 PMCID: PMC10773793 DOI: 10.3389/fnins.2023.1304609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Certain antineoplastic drugs cause gastrointestinal disorders even after the end of treatment. Enteric neuropathy has been associated with some of these alterations. Our goal was to assess the impact of repeated treatment with cisplatin and vincristine on the contractility of circular and longitudinal muscle strips isolated from the rat colon. Methods Two cohorts of male rats were used: in cohort 1, rats received one intraperitoneal (ip) injection of saline or cisplatin (2 mg kg-1 week-1) on the first day of weeks 1-5; in cohort 2, rats received two cycles of five daily ip injections (Monday to Friday, weeks 1-2) of saline or vincristine (0.1 mg kg-1 day-1). Body weight and food and water intake were monitored throughout the study. One week after treatment, responses of colonic smooth muscle strips to acetylcholine (10-9-10-5 M) and electrical field stimulation (EFS, 0.1-20 Hz), before and after atropine (10-6 M), were evaluated in an organ bath. Results Both drugs decreased body weight gain. Compared to saline, cisplatin significantly decreased responses of both longitudinal and circular smooth muscle strips to EFS, whereas vincristine tended to increase them, although in a non-significant manner. No differences were observed in the muscle response to acetylcholine. Atropine abolished the contractile responses induced by acetylcholine, although those induced by EFS were only partially reduced in the presence of atropine. Conclusion The findings suggest that although both drugs cause the development of enteric neuropathy, this seems to have a functional impact only in cisplatin-treated animals. Understanding the effects of chemotherapy on gastrointestinal motor function is vital for enhancing the quality of life of cancer patients.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- International Doctoral School, URJC, Móstoles, Spain
| | | | - David Benítez-Álvarez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Paula Molero-Mateo
- International Doctoral School, URJC, Móstoles, Spain
- Lescer Center (Neurological Rehabilitation), Madrid, Spain
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, URJC, Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
| | - Ana Bagües
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, Madrid, Spain
| |
Collapse
|
7
|
Garg M, Gandhi K, Jadhav SM, Gurjar M, Gota V. Effect of Moderate Malnutrition on the Pharmacokinetics of Etoposide and Vincristine in Freshly Weaned Rats. Eur J Drug Metab Pharmacokinet 2023; 48:657-663. [PMID: 37700116 DOI: 10.1007/s13318-023-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Moderate malnutrition is a common problem in young children. It is observed that severe malnutrition affects the pharmacokinetics of chemotherapy drugs in pediatric cancer patients, but moderate malnutrition is not well studied in this context. OBJECTIVES In this study, we aimed to understand how moderate malnutrition affects the pharmacokinetics of two chemotherapy drugs, etoposide and vincristine, using a murine model of early age moderate malnutrition. METHODS We developed a murine model of moderate childhood malnutrition by subjecting freshly weaned Sprague-Dawley rats to 8% protein diet for 8 weeks. In two separate experiments, we administered etoposide and vincristine (N = 8 for etoposide and N = 12 for vincristine each in protein deficient and control groups) through tail vein injection for pharmacokinetics study. RESULTS We found ~ 60% increase in area under the concentration-time curve (AUC) of etoposide in malnourished animals as compared to well-nourished animals. Furthermore, clearance, volume of distribution, and half-life were decreased by ~ 37, 53, and 24%, respectively, in malnourished animals. Pharmacokinetic parameters of vincristine showed only marginal differences between well-nourished and malnourished groups. CONCLUSIONS Our results suggest that while moderate malnutrition significantly affects the pharmacokinetics of etoposide, pharmacokinetics of vincristine remain unchanged. Since chemotherapy drugs have a narrow therapeutic index, the difference in AUC observed in our study might explain the increased toxicity of etoposide in malnourished pediatric cancer patients. This brings forth a need for robust clinical studies to validate our findings and optimize dose for malnourished patients.
Collapse
Affiliation(s)
- Megha Garg
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Khushboo Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai, 410210, India
| | - Shraddha Mahesh Jadhav
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai, 410210, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai, 410210, India
- Department of Clinical Pharmacology, Mahamana Pandit Madan Mohan Malviya Cancer Centre, Banaras Hindu University Campus, Varanasi, Uttar Pradesh, 221005, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
8
|
Barnett S, Nyein AC, Galler M, Jamieson D, Davies M, Connor P, Veal GJ. Excessive vincristine exposure in a child being treated for acute lymphoblastic leukaemia with underlying Dubin-Johnson syndrome: a case report. Cancer Chemother Pharmacol 2023; 92:325-328. [PMID: 37452859 PMCID: PMC10435398 DOI: 10.1007/s00280-023-04565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Dubin-Johnson syndrome is a rare benign autosomal recessive condition that causes an isolated increase of conjugated bilirubin in the serum. Impaired biliary excretion is due to mutation in the multiple drug-resistance protein 2 gene (MRP2). CASE PRESENTATION We describe the case of a 4-year-old girl being treated for acute lymphoblastic leukaemia who had a history of conjugated hyperbilirubinaemia and persistently elevated bilirubin levels on initiation of chemotherapy. During treatment for leukaemia, she was diagnosed with Dubin-Johnson syndrome for the underlying condition. Following administration of vincristine at the recommended dose of 1.5 mg/m2, an abnormally high vincristine exposure was observed (AUC > 200 µg/L*h), approximately 3 times higher than previously reported exposures in a comparable clinical setting. Vincristine dose reductions were applied on subsequent cycles of treatment and resulted in markedly reduced drug exposures, within the normal target range. CONCLUSION This case provided a rare opportunity to assess the impact of MRP2 mutations associated with Dubin-Johnson syndrome on the pharmacokinetics of vincristine and strongly indicates that a marked dose reduction should be recommended. Clinicians should be made aware of the potential for altered drug disposition for agents such as vincristine in patients with this rare genetic condition.
Collapse
Affiliation(s)
- Shelby Barnett
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK.
| | - Aye Chan Nyein
- The Noah's Ark Children's Hospital for Wales, Cardiff, UK
| | - Martin Galler
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK
| | - David Jamieson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Philip Connor
- The Noah's Ark Children's Hospital for Wales, Cardiff, UK
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
9
|
Alwhaibi AM, Alshamrani AA, Alenazi MA, Altwalah SF, Alameel NN, Aljabali NN, Alghamdi SB, Bineid AI, Alwhaibi M, Al Arifi MN. Vincristine-Induced Neuropathy in Patients Diagnosed with Solid and Hematological Malignancies: The Role of Dose Rounding. J Clin Med 2023; 12:5662. [PMID: 37685729 PMCID: PMC10488791 DOI: 10.3390/jcm12175662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Vincristine is a vital constituent of chemotherapeutic regimens. Vincristine-induced neuropathy is a challenging adverse effect that impacts quality of life and treatment course. The dose rounding of chemotherapies is a strategy that is commonly used in clinical practice. Nevertheless, the frequency of developed neuropathy in vincristine first-time users and the potential association with dose rounding remains elusive. METHODS A retrospective analysis was conducted on patients administered vincristine for the first time between 2016 and 2022 using the King Saud University Medical City (KSUMC) database. Patients were stratified into pediatric and adult groups. Neuropathy frequency, its association with demographic and clinical parameters, and the Impact of dose rounding were assessed using SPSS software version 28. RESULTS Approximately 34.6% of patients were diagnosed with neuropathy after vincristine administration. Autonomic neuropathy was common among affected adults and pediatric patients (55.1% and 56.1%, respectively), while cranial neuropathy was more frequent in pediatric patients. Higher BSA (p = 0.038) and Scr (p = 0.044) in the pediatric group, the presence of respiratory comorbidities (p = 0.044), and the use of azole antifungals (p < 0.001) in the adult group were significantly associated with neuropathy episodes. The rounding-up of vincristine doses was significantly associated with increased neuropathy occurrence (p < 0.001), while dose rounding-down was significantly associated with a decrease in neuropathy in both groups of patients (p < 0.001). CONCLUSIONS Our findings demonstrate that autonomic neuropathy is the most common vincristine-related neuropathy, regardless of the patient's age. Dose rounding is a significant determinant of vincristine-induced neuropathy in both groups. Further studies are needed to evaluate the variables that exacerbate or prevent neuropathy associated with the first-time use of vincristine.
Collapse
Affiliation(s)
- Abdulrahman M. Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.N.A.); (N.N.A.); (S.B.A.); (A.I.B.); (M.A.); (M.N.A.A.)
| | - Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Miteb A. Alenazi
- Pharmacy Department, Medical City (KSUMC), King Saud University, Riyadh 11451, Saudi Arabia;
| | - Shroog F. Altwalah
- Pharmacy Department, Medical City (KSUMC), King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nouf N. Alameel
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.N.A.); (N.N.A.); (S.B.A.); (A.I.B.); (M.A.); (M.N.A.A.)
| | - Noura N. Aljabali
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.N.A.); (N.N.A.); (S.B.A.); (A.I.B.); (M.A.); (M.N.A.A.)
| | - Sara B. Alghamdi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.N.A.); (N.N.A.); (S.B.A.); (A.I.B.); (M.A.); (M.N.A.A.)
| | - Abdulwahab I. Bineid
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.N.A.); (N.N.A.); (S.B.A.); (A.I.B.); (M.A.); (M.N.A.A.)
| | - Monira Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.N.A.); (N.N.A.); (S.B.A.); (A.I.B.); (M.A.); (M.N.A.A.)
| | - Mohamed N. Al Arifi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.N.A.); (N.N.A.); (S.B.A.); (A.I.B.); (M.A.); (M.N.A.A.)
| |
Collapse
|
10
|
Gallego-Yerga L, Chiliquinga AJ, Peláez R. Novel Tetrazole Derivatives Targeting Tubulin Endowed with Antiproliferative Activity against Glioblastoma Cells. Int J Mol Sci 2023; 24:11093. [PMID: 37446273 DOI: 10.3390/ijms241311093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Al-Antary ET, Gupte A, Carter J, Kaafarani M, Howard M, Edwards H, Ge Y, Taub JW. Curing childhood cancer the "Natural" Way: Nature as the source of chemotherapy agents. Biochem Pharmacol 2023; 213:115630. [PMID: 37263301 DOI: 10.1016/j.bcp.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
For many centuries, products of natural origin from plants, marine, microbes and soil micro-organisms have been studied by numerous researchers across the world to yield many of the chemotherapeutic agents we use in this modern era. There has been a tremendous gain in knowledge from various screening and separating techniques which led to the discovery of biologically active small molecules from natural products. Preclinical studies testing the antitumor activities of these agents against tumor cell lines and xenograft animal models were the gateway to the clinical trials in humans leading to the approval of these agents that are in clinical use today. This review summarizes how various chemotherapeutic agents were discovered from products of natural origin, their preclinical development, and their indications in both pediatric and adult oncology. Many of these natural products have contributed to the very high cure rates of both pediatric leukemias and solid tumors.
Collapse
Affiliation(s)
- Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Discipline of Pediatrics, Central Michigan University, Mt. Pleasant, MI, USA
| | - Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Discipline of Pediatrics, Central Michigan University, Mt. Pleasant, MI, USA
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Discipline of Pediatrics, Central Michigan University, Mt. Pleasant, MI, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Banyal A, Tiwari S, Sharma A, Chanana I, Patel SKS, Kulshrestha S, Kumar P. Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 2023; 13:211. [PMID: 37251731 PMCID: PMC10209376 DOI: 10.1007/s13205-023-03636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.
Collapse
Affiliation(s)
- Aditya Banyal
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Shubham Tiwari
- IMS Engineering College, Ghaziabad, Uttar Pradesh 201009 India
| | - Aparajita Sharma
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Ishita Chanana
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701 South Korea
| | - Saurabh Kulshrestha
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Pradeep Kumar
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
13
|
Kasi PB, Mallela VR, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. Int J Mol Sci 2023; 24:ijms24097922. [PMID: 37175627 PMCID: PMC10178331 DOI: 10.3390/ijms24097922] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and metastatic CRC is a fatal disease. The CRC-affected tissues show several molecular markers that could be used as a fresh strategy to create newer methods of treating the condition. The liver and the peritoneum are where metastasis occurs most frequently. Once the tumor has metastasized to the liver, peritoneal carcinomatosis is frequently regarded as the disease's final stage. However, nearly 50% of CRC patients with peritoneal carcinomatosis do not have liver metastases. New diagnostic and therapeutic approaches must be developed due to the disease's poor response to present treatment choices in advanced stages and the necessity of an accurate diagnosis in the early stages. Many unique and amazing nanomaterials with promise for both diagnosis and treatment may be found in nanotechnology. Numerous nanomaterials and nanoformulations, including carbon nanotubes, dendrimers, liposomes, silica nanoparticles, gold nanoparticles, metal-organic frameworks, core-shell polymeric nano-formulations, and nano-emulsion systems, among others, can be used for targeted anticancer drug delivery and diagnostic purposes in CRC. Theranostic approaches combined with nanomedicine have been proposed as a revolutionary approach to improve CRC detection and treatment. This review highlights recent studies, potential, and challenges for the development of nanoplatforms for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Development of a Therapeutic Drug Monitoring Strategy for the Optimization of Vincristine Treatment in Pediatric Oncology Populations in Africa. Ther Drug Monit 2023; 45:354-363. [PMID: 36917736 DOI: 10.1097/ftd.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Recent studies have reported ethnic differences in vincristine exposure and outcomes such as toxicity. This resulted in the hypothesis of subtherapeutic dosing in African children. To optimize individual treatment, a strategy to identify subtherapeutic exposure using therapeutic drug monitoring is essential. The aim of the current study was to develop a strategy for therapeutic drug monitoring of vincristine in African children to meet the following criteria: (1) identify patients with low vincristine exposure with sufficient sensitivity (>70%), (2) determine vincristine exposure with a limited sampling strategy design of 3 samples, and (3) allow all samples to be collected within 4 hours after administration. METHODS An in silico simulation study was performed using a previously described population pharmacokinetic model and real-life demographic dataset of Kenyan and Malawian pediatric oncology patients. Two different therapeutic drug monitoring strategies were evaluated: (1) Bayesian approach and (2) pharmacometric nomogram. The sampling design was optimized using the constraints described above. Sensitivity analysis was performed to investigate the influence of missing samples, erroneous sampling times, and different boundaries on the nomogram weight bands. RESULTS With the Bayesian approach, 43.3% of the estimated individual exposure values had a prediction error of ≥20% owing to extremely high shrinkage. The Bayesian approach did not improve with alternative sampling designs within sampling constraints. However, the pharmacometric nomogram could identify patients with low vincristine exposure with a sensitivity, specificity, and accuracy of 75.1%, 76.4%, and 75.9%, respectively. The pharmacometric nomogram performed similarly for different weight bands. CONCLUSIONS The pharmacometric nomogram was able to identify patients with low vincristine exposure with high sensitivity, with 3 blood samples collected at 1, 1.5, and 4 hours after administration. Missing samples should be avoided, and the 3 scheduled samples should be collected within 15, 5, and 15 minutes of 1, 1.5, and 4 hours after administration, respectively.
Collapse
|
15
|
Filippi-Chiela EC, Vargas JE, Bueno E Silva MM, Thomé MP, Lenz G. Vincristine promotes differential levels of apoptosis, mitotic catastrophe, and senescence depending on the genetic background of glioblastoma cells. Toxicol In Vitro 2022; 85:105472. [PMID: 36116745 DOI: 10.1016/j.tiv.2022.105472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Vincristine (VCR) is a classical chemotherapeutic that has been revisited to treat refractory solid tumors producing encouraging results. VCR binds to tubulin and decreases the rate of microtubule dynamics, thus triggering many cellular responses and behaviors. However, the dynamics of these responses and fates are uncharacterized. This study combined systems biology approaches with acute and long-term in vitro experiments to predict key pathways and mechanisms associated with cell fates during and after VCR treatment. Glioblastoma (GBM) cells were treated with clinically relevant doses of VCR, and interconnected cell fates were explored. A correlation matrix based on experimental cell analysis reported strong negative correlations between cell number, nuclear irregularities, senescence, or apoptosis, depending on the cells' genetic makeup and treatment regimen. P53 would be essential in all analyzed processes according to topological network analysis. Furthermore, despite the high acute sensitivity, both cell lines re-growth in the long term after a single VCR treatment, especially in those populations with high levels of autophagy. These multiple responses may also be triggered in patients' exposed tumors, which should be considered to allow the rational design of VCR protocols, including modulators of the cell fates and pathways mentioned above.
Collapse
Affiliation(s)
- Eduardo Cremonese Filippi-Chiela
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Jose Eduardo Vargas
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Marcos Paulo Thomé
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-Lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022; 14:1722. [PMID: 36015347 PMCID: PMC9415580 DOI: 10.3390/pharmaceutics14081722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.
Collapse
Affiliation(s)
- Rodrigo dos A. Miguel
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda S. Hirata
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Paula C. Jimenez
- Institute of the Sea, Federal University of Sao Paulo, Santos 11070-100, Brazil
| | - Luciana B. Lopes
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Leticia V. Costa-Lotufo
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
17
|
van de Velde ME, Uittenboogaard A, Yang W, Bonten E, Cheng C, Pei D, van den Berg MH, van der Sluis IM, van den Bos C, Abbink FCH, van den Heuvel-Eibrink MM, Segers H, Chantrain C, van der Werff ten Bosch J, Willems L, Evans WE, Kaspers GJL. Genetic Polymorphisms Associated with Vincristine Pharmacokinetics and Vincristine-Induced Peripheral Neuropathy in Pediatric Oncology Patients. Cancers (Basel) 2022; 14:cancers14143510. [PMID: 35884569 PMCID: PMC9321338 DOI: 10.3390/cancers14143510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Vincristine is a type of chemotherapy that is often used in the treatment of children with cancer. The main side effect of vincristine is nerve damage. Patients experience symptoms such as tingling, pain or muscle weakness. Some children are more sensitive to vincristine than others, which may depend on variations in genes and in the breakdown of vincristine by the body. In this study, we investigated the effect of variations in genes on nerve damage due to vincristine and breakdown of vincristine by the body. We found that nine variations in seven genes were associated with nerve damage due to vincristine, whereas three variations in three genes were associated with the breakdown of vincristine by the body. It is important that future studies try to replicate these findings. Our findings help us towards the goal of tailoring vincristine treatment to each child, with optimal therapeutic effect while limiting nerve damage. Abstract Vincristine (VCR) is an important component of curative chemotherapy for many childhood cancers. Its main side effect is VCR-induced peripheral neuropathy (VIPN), a dose limiting toxicity. Some children are more susceptible to VIPN, which is at least partially dependent on genetic factors and pharmacokinetics (PK). In this study, we identify and replicate genetic variants associated with VCR PK and VIPN. Patient samples from a randomized clinical trial studying the effect of administration duration of VCR on VIPN in 90 patients were used. PK sampling was conducted on between one and five occasions at multiple time points. A linear two-compartment model with first-order elimination was used, and targeted next-generation DNA sequencing was performed. Genotype–trait associations were analyzed using mixed-effect models or logistic regression analysis for repeated measures, or Poisson regression analysis in which the highest VIPN score per patient was included. Nine single-nucleotide polymorphisms (SNPs) in seven genes (NDRG1, GARS, FIG4, FGD4, SEPTIN9, CEP72, and ETAA1) were associated with VIPN. Furthermore, three SNPs in three genes (MTNR1B, RAB7A and SNU13) were associated with PK of VCR. In conclusion, PK of VCR and VIPN are influenced by SNPs; upfront identification of those that lead to an altered susceptibility to VIPN or VCR exposure could help individualize VCR treatment.
Collapse
Affiliation(s)
- Mirjam E. van de Velde
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
- Correspondence:
| | - Aniek Uittenboogaard
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
| | - Erik Bonten
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.C.); (D.P.)
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.C.); (D.P.)
| | - Marleen H. van den Berg
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
| | - Inge M. van der Sluis
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
- Emma Children’s Hospital, Amsterdam UMC, Amsterdam Medical Center, Pediatric Oncology, 1105 Amsterdam, The Netherlands;
| | - Floor C. H. Abbink
- Emma Children’s Hospital, Amsterdam UMC, Amsterdam Medical Center, Pediatric Oncology, 1105 Amsterdam, The Netherlands;
| | | | - Heidi Segers
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven and Catholic University Leuven, 3000 Leuven, Belgium;
| | | | | | - Leen Willems
- Department of Paediatric Haematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.Y.); (E.B.); (W.E.E.)
| | - Gertjan J. L. Kaspers
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.U.); (M.H.v.d.B.); (G.J.L.K.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (I.M.v.d.S.); (C.v.d.B.); (M.M.v.d.H.-E.)
| |
Collapse
|
18
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
19
|
Yang QY, Hu YH, Guo HL, Xia Y, Zhang Y, Fang WR, Li YM, Xu J, Chen F, Wang YR, Wang TF. Vincristine-Induced Peripheral Neuropathy in Childhood Acute Lymphoblastic Leukemia: Genetic Variation as a Potential Risk Factor. Front Pharmacol 2021; 12:771487. [PMID: 34955843 PMCID: PMC8696478 DOI: 10.3389/fphar.2021.771487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Vincristine (VCR) is the first-line chemotherapeutic medication often co-administered with other drugs to treat childhood acute lymphoblastic leukemia. Dose-dependent neurotoxicity is the main factor restricting VCR’s clinical application. VCR-induced peripheral neuropathy (VIPN) sometimes results in dose reduction or omission, leading to clinical complications or affecting the patient’s quality of life. With regard to the genetic basis of drug responses, preemptive pharmacogenomic testing and simultaneous blood level monitoring could be helpful for the transformation of various findings into individualized therapies. In this review, we discussed the potential associations between genetic variants in genes contributing to the pharmacokinetics/pharmacodynamics of VCR and VIPN incidence and severity in patients with acute lymphoblastic leukemia. Of note, genetic variants in the CEP72 gene have great potential to be translated into clinical practice. Such a genetic biomarker may help clinicians diagnose VIPN earlier. Besides, genetic variants in other genes, such as CYP3A5, ABCB1, ABCC1, ABCC2, TTPA, ACTG1, CAPG, SYNE2, SLC5A7, COCH, and MRPL47, have been reported to be associated with the VIPN, but more evidence is needed to validate the findings in the future. In fact, a variety of complex factors jointly determine the VIPN. In implementing precision medicine, the combination of genetic, environmental, and personal variables, along with therapeutic drug monitoring, will allow for a better understanding of the mechanisms of VIPN, improving the effectiveness of VCR treatment, reducing adverse reactions, and improving patients’ quality of life.
Collapse
Affiliation(s)
- Qing-Yan Yang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xia
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Rong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Man Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Ren Wang
- Department of Hematology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Teng-Fei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
20
|
Leavey PJ, Laack NN, Krailo MD, Buxton A, Randall RL, DuBois SG, Reed DR, Grier HE, Hawkins DS, Pawel B, Nadel H, Womer RB, Letson GD, Bernstein M, Brown K, Maciej A, Chuba P, Ahmed AA, Indelicato DJ, Wang D, Marina N, Gorlick R, Janeway KA, Mascarenhas L. Phase III Trial Adding Vincristine-Topotecan-Cyclophosphamide to the Initial Treatment of Patients With Nonmetastatic Ewing Sarcoma: A Children's Oncology Group Report. J Clin Oncol 2021; 39:4029-4038. [PMID: 34652968 PMCID: PMC8677904 DOI: 10.1200/jco.21.00358] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The primary aim of this phase III randomized trial was to test whether the addition of vincristine, topotecan, and cyclophosphamide (VTC) to interval compressed chemotherapy improved survival outcomes for patients with previously untreated nonmetastatic Ewing sarcoma. METHODS Patients were randomly assigned to receive standard five-drug interval compressed chemotherapy (regimen A) for 17 cycles or experimental therapy with five cycles of VTC within the 17 cycles (regimen B). Patients were stratified by age at diagnosis (< 18 years and ≥18 years) and tumor site (pelvic bone, nonpelvic bone, and extraosseous). Tumor volume at diagnosis was categorized as < 200 mL or ≥ 200 mL. Local control occurred following six cycles. Histologic response was categorized as no viable or any viable tumor. Event-free survival (EFS) and overall survival (OS) were compared between randomized groups with stratified log-rank tests. RESULTS Of 642 enrolled patients, 309 eligible patients received standard and 320 received experimental therapy. The 5-year EFS and OS were 78% and 87%, respectively. There was no difference in survival outcomes between randomized groups (5-year EFS regimen A v regimen B, 78% v 79%; P = .192; 5-year OS 86% v 88%; P = .159). Age and primary site did not affect the risk of an EFS event. However, age ≥ 18 years was associated with an increased risk of death at 5 years (hazard ratio 1.84; 95% CI, 1.15 to 2.96; P = .009). The 5-year EFS rates for patients with pelvic, nonpelvic bone, and extraosseous primary tumors were 75%, 78%, and 85%, respectively. Tumor volume ≥ 200 mL was significantly associated with lower EFS. CONCLUSION While VTC added to five-drug interval compressed chemotherapy did not improve survival, these outcomes represent the best survival estimates to date for patients with previously untreated nonmetastatic Ewing sarcoma.
Collapse
Affiliation(s)
- Patrick J. Leavey
- UT Southwestern Medical Center Dallas and Children's Health, Children's Medical Center Dallas, Dallas, TX
| | | | | | - Allen Buxton
- Children's Oncology, Operations Office, Monrovia, CA
| | | | - Steven G. DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Damon R. Reed
- Moffitt Cancer Center Adolescent and Young Adult Program, Tampa, FL
| | - Holcombe E. Grier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | | | - Bruce Pawel
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Helen Nadel
- Lucile Packard Children's Hospital Stanford University, Palo Alto, CA
| | | | | | | | - Kenneth Brown
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Alexis Maciej
- University of Minnesota Medical Center, Minneapolis, MN
| | - Paul Chuba
- St John Hospital and Medical Center, Grosse Pointe, MI
| | | | | | - Dian Wang
- Rush University Medical Center, Chicago, IL
| | - Neyssa Marina
- Stanford University School of Medicine, Lucile Packard Children's Hospital, Stanford, CA
| | | | - Katherine A. Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Leo Mascarenhas
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
21
|
Satta G, Usala E, Solinas A, Römer M, Livesi M, Pira GM, Beccu A, Carboni S, Gaspa S, De Luca L, Pisano L, Azzena U, Carraro M. Nenitzescu Synthesis of 5‐Hydroxyindoles with Zinc, Iron and Magnesium Salts in Cyclopentyl Methyl Ether. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giuseppe Satta
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Elena Usala
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Angelo Solinas
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Melina Römer
- Department of Chemistry, Clemens-Schöpf Institute of Chemistry Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Marco Livesi
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Giovanni Michele Pira
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Andrea Beccu
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Silvia Carboni
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Silvia Gaspa
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
| | - Luisa Pisano
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Ugo Azzena
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Massimo Carraro
- Dipartimento di Chimica e Farmacia Università degli Studi di Sassari Via Vienna 2 07100 Sassari Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
22
|
Barnett S, Hellmann F, Parke E, Makin G, Tweddle DA, Osborne C, Hempel G, Veal GJ. Vincristine dosing, drug exposure and therapeutic drug monitoring in neonate and infant cancer patients. Eur J Cancer 2021; 164:127-136. [PMID: 34657763 PMCID: PMC8914346 DOI: 10.1016/j.ejca.2021.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023]
Abstract
Background The anticancer drug vincristine is associated with potentially dose-limiting side-effects, including neurotoxicity and myelosuppression. However, there currently exists a lack of published clinical pharmacology data relating to its use in neonate and infant patients. We report a study investigating vincristine dosing and drug exposure, alongside the feasibility and impact of a therapeutic drug monitoring treatment approach, in this challenging patient population. Patients and methods Vincristine pharmacokinetic data from a total of 57 childhood cancer patients, including 26 neonates and infants, were used to characterise a population pharmacokinetic model. Vincristine was administered at doses of 0.02–0.05 mg/kg or 0.75–1.5 mg/m2 in neonates and infants aged <1 year or ≤12 kg and doses of 1.5 mg/m2 in older children. Results A two-compartment model provided the best fit for the population analysis. There was no significant difference in vincristine clearance normalised for body surface area between neonates/infants and older children. Lower doses administered to neonates and infants resulted in significantly lower drug exposures (area under the curve [AUC]), compared with older children (p = 0.047). Vincristine doses of <0.05 mg/kg in neonates and infants resulted in significantly lower AUC values than observed in those receiving doses of ≥0.05 mg/kg (p ≤ 0.0001). Therapeutic drug monitoring was shown to be feasible, effective and well tolerated in neonates and infants experiencing suboptimal drug exposures. Conclusion Doses of <0.05 mg/kg should not be used in neonate and infant patients because of a high risk of patients experiencing potentially suboptimal drug exposures. Therapeutic drug monitoring approaches in neonates and infants are supported by the data generated, with a proposed target therapeutic window of 50–100 μg/l∗h. Vincristine dosing and drug exposure was investigated in neonates and infants. Vincristine concentrations were quantified in 210 plasma samples from 57 children. Lower drug exposures were observed in infants and neonates compared with older children. Therapeutic drug monitoring can be used to avoid suboptimal vincristine drug exposures. Vincristine dosing guidance is provided for treatment of neonate and infant patients.
Collapse
Affiliation(s)
- Shelby Barnett
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Farina Hellmann
- Department of Pharmaceutical and Medical Chemistry, University of Münster, Münster, Germany
| | - Elizabeth Parke
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Guy Makin
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Royal Manchester Children's Hospital, Manchester, UK
| | - Deborah A Tweddle
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle, UK
| | - Caroline Osborne
- Pharmacy Department, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry, University of Münster, Münster, Germany
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Yu N, Zhang Y, Li J, Gu W, Yue S, Li B, Meng F, Sun H, Haag R, Yuan J, Zhong Z. Daratumumab Immunopolymersome-Enabled Safe and CD38-Targeted Chemotherapy and Depletion of Multiple Myeloma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007787. [PMID: 34369013 DOI: 10.1002/adma.202007787] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a second ranking hematological malignancy. Despite the fast advancement of new treatments such as bortezormib and daratumumab, MM patients remain incurable and tend to eventually become relapsed and drug-resistant. Development of novel therapies capable of depleting MM cells is strongly needed. Here, daratumumab immunopolymersomes carrying vincristine sulfate (Dar-IPs-VCR) are reported for safe and high-efficacy CD38-targeted chemotherapy and depletion of orthotopic MM in vivo. Dar-IPs-VCR made by postmodification via strain-promoted click reaction holds tailored antibody density (2.2, 4.4 to 8.7 Dar per IPs), superb stability, small size (43-49 nm), efficacious VCR loading, and glutathione-responsive VCR release. Dar4.4 -IPs-VCR induces exceptional anti-MM activity with an IC50 of 76 × 10-12 m to CD38-positive LP-1 MM cells, 12- and 20-fold enhancement over nontargeted Ps-VCR and free VCR controls, respectively. Intriguingly, mice bearing orthotopic LP-1-Luc MM following four cycles of i.v. administration of Dar4.4 -IPs-VCR at 0.25 mg VCR equiv. kg-1 reveal complete depletion of LP-1-Luc cells, superior survival rate to all controls, and no body weight loss. The bone and histological analyses indicate bare bone and organ damage. Dar-IPs-VCR appears as a safe and targeted treatment for CD38-overexpressed hematological malignancies.
Collapse
Affiliation(s)
- Na Yu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Rainer Haag
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Co, Ltd, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
24
|
Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.699266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently occurring tumor in the human population. CRCs are usually adenocarcinomatous and originate as a polyp on the inner wall of the colon or rectum which may become malignant in the due course of time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may play an important role in preventive and therapeutic interventions to decrease the mortality rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as the novel strategy to develop newer approaches for the treatment of the disease. Nanotechnology consists of a wide array of innovative and astonishing nanomaterials with both diagnostics and therapeutic potential. Several nanomaterials and nano formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles, Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations, Nano-emulsion System, etc can be used to targeted anticancer drug delivery and diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent advancement of nanotechnology in the diagnosis and treatment of CRC.
Collapse
|
25
|
Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets. Molecules 2021; 26:molecules26175340. [PMID: 34500771 PMCID: PMC8434001 DOI: 10.3390/molecules26175340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Vincristine is a clinically used antimicrotubule drug for treating patients with lymphoma. Due to its property of increasing platelet counts, vincristine is also used to treat patients with immune thrombocytopenia. Moreover, antiplatelet agents were reported to be beneficial in thrombotic thrombocytopenic purpura (TTP). Therefore, we investigated the detailed mechanisms underlying the antiplatelet effect of vincristine. Our results revealed that vincristine inhibited platelet aggregation induced by collagen, but not by thrombin, arachidonic acid, and the thromboxane A2 analog U46619, suggesting that vincristine exerts higher inhibitory effects on collagen-mediated platelet aggregation. Vincristine also reduced collagen-mediated platelet granule release and calcium mobilization. In addition, vincristine inhibited glycoprotein VI (GPVI) signaling, including Syk, phospholipase Cγ2, protein kinase C, Akt, and mitogen-activated protein kinases. In addition, the in vitro PFA-100 assay revealed that vincristine did not prolong the closure time, and the in vivo study tail bleeding assay showed that vincristine did not prolong the tail bleeding time; both findings suggested that vincristine may not affect normal hemostasis. In conclusion, we demonstrated that vincristine exerts antiplatelet effects at least in part through the suppression of GPVI signaling. Moreover, this property of antiplatelet activity of vincristine may provide additional benefits in the treatment of TTP.
Collapse
|
26
|
Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. BIOLOGY 2021; 10:849. [PMID: 34571726 PMCID: PMC8468923 DOI: 10.3390/biology10090849] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Treatment of blood malignancies and other cancer diseases has been mostly unfeasible, so far. Therefore, novel treatment regimens should be developed and the currently used ones should be further elaborated. A stable component in various cancer treatment regimens consists of vincristine, an antimitotic compound of natural origin. Despite its strong anticancer activity, mostly, it cannot be administered as monotherapy due to its unspecific action and severe side effects. However, vincristine is suitable for combination therapy. Multidrug treatment regimens including vincristine are standardly applied in the therapy of non-Hodgkin lymphoma and other malignancies, in which it is combined with drugs of different mechanisms of action, mainly with DNA-interacting compounds (for example cyclophosphamide), or drugs interfering with DNA synthesis (for example methotrexate). Besides, co-administration of vincristine with monoclonal antibodies has also emerged, the typical example of which is the anti-CD20 antibody rituximab. Although in some combination anticancer therapies, vincristine has been replaced with other drugs exhibiting lesser side effects, though, in most cases, it is still irreplaceable. This is strongly evidenced by the number of active clinical trials evaluating vincristine in combination cancer therapy. Therefore, in this article, we have reviewed the most common cancer treatment regimens employing vincristine and bring an overview of current trends in the clinical development of this compound.
Collapse
Affiliation(s)
| | | | | | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (J.Š.); (V.S.P.); (T.R.)
| |
Collapse
|
27
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
28
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
29
|
Eikeland SA, Smeland KB, Mols F, Fagerli UM, Bersvendsen HS, Kiserud CE, Fosså A. Chemotherapy-induced peripheral neuropathy after modern treatment of Hodgkin's lymphoma; symptom burden and quality of life. Acta Oncol 2021; 60:911-920. [PMID: 33905285 DOI: 10.1080/0284186x.2021.1917776] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of Hodgkin's lymphoma (HL) treatment. We aimed to describe the prevalence of CIPN associated symptoms in long-term HL survivors compared to controls, and determine associated factors, including impact on health-related quality of life (HRQoL). MATERIAL AND METHODS A questionnaire, including EORTC QLQ-CIPN-20 for CIPN related symptoms and SF-36 for HRQoL, was completed by 303 HL survivors at a median of 16 years after diagnosis. CIPN results were compared to a normative population (n = 606). CIPN associated factors were identified by linear regression analysis. RESULTS Total CIPN score and subscores were significantly higher in HL survivors compared to controls. In multivariate analysis of HL survivors, a number of comorbidities (p < 0.001) and female gender (p = 0.05) were significantly associated with more CIPN. No association with disease or treatment factors was found. In a multivariate analysis including survivors and controls, the number of comorbidities (p < 0.001) and caseness (p < 0.001) were significantly associated with more CIPN. In HL survivors higher CIPN score was associated with reduced HRQoL (p < 0.001). CONCLUSION HL survivors more than a decade after treatment report higher neuropathy-related symptom burden than controls, with a negative impact on HRQoL. Symptoms may be related to factors other than neurotoxic chemotherapy.
Collapse
Affiliation(s)
- Siri A. Eikeland
- National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut B. Smeland
- National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Floortje Mols
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Unn-Merete Fagerli
- Department of Oncology, St. Olav’s Hospital, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | | | - Cecilie E. Kiserud
- National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexander Fosså
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Ge C, Cheng Y, Fan Y, He Y. Vincristine attenuates cardiac fibrosis through the inhibition of NLRP3 inflammasome activation. Clin Sci (Lond) 2021; 135:1409-1426. [PMID: 33977303 DOI: 10.1042/cs20210189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Vincristine (VCR) is widely used in cancer therapies, although its benefits on cardiac fibrosis remain unknown. Here, we investigated VCR's efficacy on cardiac fibrosis and elucidated the underlying mechanism of action. Network pharmacology was employed to predict the mechanism of VCR action on cardiac fibrosis. We induced cardiac fibrosis in adult male Sprague-Dawley (SD) rats via isoproterenol (ISO) injection, followed by treatment with VCR or vehicle. After 10 days of treatment, VCR-treated rats exhibited a significantly lower heart/body weight ratio relative to those treated with the vehicle. Moreover, cardiac fibrosis was alleviated in VCR-treated rats relative to vehicle-treated rats. The results revealed the down-regulation of mature caspase-1, interleukin (IL)-1β, and IL-18 in VCR-treated rats relative to vehicle-treated rats. We also observed less colocalization between the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) in VCR-treated rats compared with vehicle-treated rats. We then cultured neonatal rat cardiac fibroblasts (NRCFs) and exposed them to lipopolysaccharide (LPS) and adenosine triphosphate (ATP) in the presence or absence of VCR. The results indicated that VCR mediated the down-regulation of caspase-1, IL-1β, and IL-18 and the colocalization of NLRP3 and ASC in LPS+ATP-stimulated cardiac fibroblasts (CFs). We found evidence that VCR attenuates cardiac fibrosis by directly suppressing the activation of the NLRP3 inflammasome. These findings provide novel insights into VCR's mechanism of action in alleviating cardiac fibrosis.
Collapse
Affiliation(s)
- Chenliang Ge
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yang Cheng
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yihao Fan
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yan He
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
31
|
Boon BA, Yu YY, Boger DL. Total synthesis of (-)-4-desacetoxy-1-oxovindoline: Single atom exchange of an embedded core heteroatom in vindoline. Tetrahedron 2021; 87:132117. [PMID: 33994597 PMCID: PMC8117404 DOI: 10.1016/j.tet.2021.132117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A concise total synthesis of (-)-4-desacetoxy-1-oxovindoline is disclosed, bearing a single heteroatom exchange in the core structure of the natural product 4-desacetoxyvindoline. Central to the synthesis is powerful oxadiazole intramolecular [4+2]/[3+2] cycloaddition cascade that formed four C-C bonds, created three new rings, and established five contiguous stereocenters about the new formed central 6-membered ring.
Collapse
Affiliation(s)
- Byron A. Boon
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Yi-Yun Yu
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
32
|
Christensen SB. Natural Products That Changed Society. Biomedicines 2021; 9:biomedicines9050472. [PMID: 33925870 PMCID: PMC8146924 DOI: 10.3390/biomedicines9050472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Until the end of the 19th century all drugs were natural products or minerals. During the 19th century chemists succeeded in isolating pure natural products such as quinine, morphine, codeine and other compounds with beneficial effects. Pure compounds enabled accurate dosing to achieve serum levels within the pharmacological window and reproducible clinical effects. During the 20th and the 21st century synthetic compounds became the major source of drugs. In spite of the impressive results achieved within the art of synthetic chemistry, natural products or modified natural products still constitute almost half of drugs used for treatment of cancer and diseases like malaria, onchocerciasis and lymphatic filariasis caused by parasites. A turning point in the fight against the devastating burden of malaria was obtained in the 17th century by the discovery that bark from trees belonging to the genus Cinchona could be used for treatment with varying success. However isolation and use of the active principle, quinine, in 1820, afforded a breakthrough in the treatment. In the 20th century the synthetic drug chloroquine severely reduced the burden of malaria. However, resistance made this drug obsolete. Subsequently artemisinin isolated from traditional Chinese medicine turned out to be an efficient antimalarial drug overcoming the problem of chloroquine resistance for a while. The use of synthetic analogues such as chloroquine or semisynthetic drugs such as artemether or artesunate further improved the possibilities for healing malaria. Onchocerciasis (river blindness) made life in large parts of Africa and South America miserable. The discovery of the healing effects of the macrocyclic lactone ivermectin enabled control and partly elimination of the disease by annual mass distribution of the drug. Also in the case of ivermectin improved semisynthetic derivatives have found their way into the clinic. Ivermectin also is an efficient drug for treatment of lymphatic filariasis. The serendipitous discovery of the ability of the spindle toxins to control the growth of fast proliferating cancer cells armed physicians with a new efficient tool for treatment of some cancer diseases. These possibilities have been elaborated through preparation of semisynthetic analogues. Today vincristine and vinblastine and semisynthetic analogues are powerful weapons against cancer diseases.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
34
|
Jiang N, Wang L, Xiang X, Li Z, Chiew EKH, Koo YM, Lee HS, Lin HP, Tan AM, Quah TC, Kham SKY, Goh BC, Ariffin H, Yeoh AEJ. Intracellular vincristine levels in lymphoblasts affect treatment outcome in childhood B-lymphoblastic leukaemia: Ma-Spore ALL 2010 study. Br J Clin Pharmacol 2020; 87:1990-1999. [PMID: 33037681 DOI: 10.1111/bcp.14596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 11/27/2022] Open
Abstract
AIMS Vincristine (VCR) is a key drug in the successful multidrug chemotherapy for childhood acute lymphoblastic leukaemia (ALL). However, it remains unclear how VCR pharmacokinetics affects its antileukaemic efficacy. The objective of this study is to explore the VCR pharmacokinetic parameters and intracellular VCR levels in an up-front window of Ma-Spore ALL 2010 (MS2010) study. METHODS We randomised 429 children with newly diagnosed ALL to 15-minute vs 3-hour infusion for the first dose of VCR to study if prolonging the first dose of VCR infusion improved response. In a subgroup of 115 B-ALL and 20 T-ALL patients, we performed VCR plasma (n = 135 patients) and intracellular (n = 66 patients) pharmacokinetic studies. The correlations between pharmacokinetic parameters and intracellular VCR levels with early treatment response, final outcome and ABCB1 genotypes were analysed. RESULTS There was no significant difference between 15-minute and 3-hour infusion schedules in median Day 8 peripheral or bone marrow blast response. Plasma VCR pharmacokinetic parameters did not predict outcome. However, in B-ALL, Day 33 minimal residual disease (MRD) negative patients and patients in continuous complete remission had significantly higher median intracellular VCR24h levels (P = .03 and P = .04, respectively). The median VCR24h intracellular levels were similar among the common genetic subtypes of ALL (P = .4). Patients homozygous for wild-type ABCB1 2677GG had significantly higher median intracellular VCR24h (P = .04) than 2677TT. CONCLUSION We showed that in childhood B-ALL, the intracellular VCR24h levels in lymphoblasts affected treatment outcomes. The intracellular VCR24h level was independent of leukaemia subtype but dependent on host ABCB1 G2677T genotype.
Collapse
Affiliation(s)
- Nan Jiang
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhenhua Li
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edwynn Kean Hui Chiew
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yok Moi Koo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - How Sung Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hai Peng Lin
- Sime Darby Medical Centre, Subang Jaya, Malaysia
| | - Ah Moy Tan
- Department of Paediatrics, KK Women's & Cheildren's Hospital, Singapore, Singapore
| | - Thuan Chong Quah
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Viva-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Shirley Kow Yin Kham
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Hany Ariffin
- University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Allen Eng-Juh Yeoh
- VIVA-NUS Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Viva-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
35
|
Vincristine-Induced Peripheral Neuropathy in Pediatric Oncology: A Randomized Controlled Trial Comparing Push Injections with One-Hour Infusions (The VINCA Trial). Cancers (Basel) 2020; 12:cancers12123745. [PMID: 33322788 PMCID: PMC7764775 DOI: 10.3390/cancers12123745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Vincristine (VCR) is a frequently used chemotherapeutic agent. However, it can lead to VCR-induced peripheral neuropathy (VIPN). In this study we investigated if one-hour infusions of VCR instead of push-injections reduces VIPN in pediatric oncology patients. We conducted a multicenter randomized controlled trial in which participants received all VCR administrations through push injections or one-hour infusions. VIPN was measured at baseline and 1-5 times during treatment using Common Terminology Criteria of Adverse Events (CTCAE) and pediatric-modified Total Neuropathy Score. Moreover, data on co-medication, such as azole antifungals, were collected. Overall, results showed no effect of administration duration on total CTCAE score or ped-mTNS score. However, total CTCAE score was significantly lower in patients receiving one-hour infusions concurrently treated with azole antifungal therapy (β = -1.58; p = 0.04). In conclusion, generally VCR administration through one-hour infusions does not lead to less VIPN compared to VCR push injections in pediatric oncology patients. However, one-hour infusions lead to less severe VIPN compared to push-injections when azole therapy is administered concurrently with VCR. These results indicate that in children treated with VCR and requiring concurrent azole therapy, one-hour infusions might be beneficial over push injections, although larger trials are needed to confirm this association.
Collapse
|
36
|
Lin C, Chen G, Huang J, Cheng Y, Xu Y, Zhang A, Xue H, Chen C. Posaconazole aggravates vincristine-related hypertension in children with acute lymphoblastic leukemia: a case report. J Int Med Res 2020; 48:300060520969579. [PMID: 33213238 PMCID: PMC7686620 DOI: 10.1177/0300060520969579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vincristine-related secondary hypertension is rare. This study reports two
children who were treated with vincristine for acute lymphoblastic leukemia
(ALL) and posaconazole for fungal infections who experienced vincristine-related
secondary hypertension. Blood pressure normalized in both children after halting
the drugs and providing antihypertensive treatment. Thus, posaconazole can
interact with vincristine and induce secondary hypertension in children with
ALL. As an adverse event, this interaction is a rare occurrence.
Collapse
Affiliation(s)
- Chao Lin
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Guohua Chen
- Department of Pediatrics, First People's Hospital of Huizhou, Huizhou, China
| | - Junbin Huang
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yucai Cheng
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yahong Xu
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Airun Zhang
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
37
|
Bluette CT, Shoieb AM, Peng Q, Manickam B, Huang W, Shin E, Zhang W, Song YH, Liu CN. Behavioral, Histopathologic, and Molecular Biological Responses of Nanoparticle- and Solution-Based Formulations of Vincristine in Mice. Int J Toxicol 2020; 40:40-51. [PMID: 33148080 DOI: 10.1177/1091581820968255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinical use of the chemotherapeutic agent vincristine (VCR) is limited by chemotherapy-induced peripheral neuropathy (CiPN). A new formulation of VCR encapsulated by nanoparticles has been proposed and developed to alleviate CiPN. We hypothesized in nonclinical animals that the nanoparticle drug would be less neurotoxic due to different absorption and distribution properties to the peripheral nerve from the unencapsulated free drug. Here, we assessed whether VCR encapsulation in nanoparticles alleviates CiPN using behavioral gait analysis (CatWalk), histopathologic and molecular biological (RT-qPCR) approaches. Adult male C57BL/6 mice were assigned to 3 groups (empty nanoparticle, nano-VCR, solution-based VCR, each n = 8). After 15 days of dosing, animals were euthanized for tissue collection. It was shown that intraperitoneal administration of nano-VCR (0.15 mg/kg, every other day) and the empty nanoparticle resulted in no changes in gait parameters; whereas, injection of solution-based VCR resulted in decreased run speed and increased step cycle and stance (P < 0.05). There were no differences in incidence and severity of degeneration in the sciatic nerves between the nano-VCR-dosed and solution-based VCR-dosed animals. Likewise, decreased levels of a nervous tissue-enriched microRNA-183 in circulating blood did not show a significant difference between the nano- and solution-based VCR groups (P > 0.05). Empty nanoparticle administration did not cause any behavioral, microRNA, or structural changes. In conclusion, this study suggests that the nano-VCR formulation may alleviate behavioral changes in CiPN, but it does not improve the structural changes of CiPN in peripheral nerve. Nanoparticle properties may need to be optimized to improve biological observations.
Collapse
Affiliation(s)
- Crystal T Bluette
- Comparative Medicine, 105623Pfizer Worldwide RD&M, Cambridge, MA, USA
| | - Ahmed M Shoieb
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, Groton, CT, USA
| | - Qinghai Peng
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, San Diego, CA, USA
| | | | - Wenhu Huang
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, San Diego, CA, USA
| | - Eyoung Shin
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Wei Zhang
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Young-Ho Song
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Chang-Ning Liu
- Comparative Medicine, 105623Pfizer Worldwide RD&M, Groton, CT, USA. Peng is now with Protego Biopharma, San Diego, CA, USA
| |
Collapse
|
38
|
Duckett ME, Curran KM, Leeper HJ, Ruby CE, Bracha S. Fasting reduces the incidence of vincristine-associated adverse events in dogs. Vet Comp Oncol 2020; 19:61-68. [PMID: 33448618 PMCID: PMC7891372 DOI: 10.1111/vco.12638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Fasting has been shown to decrease chemotherapy‐associated adverse events (AEs), in part through insulin‐like growth factor (IGF‐1) reduction, and may induce a protective effect on normal cells during chemotherapy treatment in mice and people. The purpose of this study was to evaluate the effect of fasting on constitutional, bone marrow and gastrointestinal (GI) AEs, and serum glucose, IGF‐1 and insulin levels in dogs receiving vincristine. The study was a prospective, crossover clinical trial in tumour‐bearing dogs. Dogs were randomized to be fasted for 24 to 28 hours prior to and 6 hours following their first or second vincristine treatment, and fed normally for the alternate dose. A significant reduction in nausea, anorexia, lethargy and serum insulin was observed when dogs were fasted; however, no significant differences were found in other GI symptoms, neutrophil count, serum glucose or IGF‐1. Fasting prior to vincristine therapy is a safe and effective treatment modality that helped mitigate constitutional and GI AEs in tumour‐bearing dogs.
Collapse
Affiliation(s)
- Margaret E Duckett
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Haley J Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Carl E Ruby
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Shay Bracha
- Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
39
|
Borys F, Joachimiak E, Krawczyk H, Fabczak H. Intrinsic and Extrinsic Factors Affecting Microtubule Dynamics in Normal and Cancer Cells. Molecules 2020; 25:E3705. [PMID: 32823874 PMCID: PMC7464520 DOI: 10.3390/molecules25163705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubules (MTs), highly dynamic structures composed of α- and β-tubulin heterodimers, are involved in cell movement and intracellular traffic and are essential for cell division. Within the cell, MTs are not uniform as they can be composed of different tubulin isotypes that are post-translationally modified and interact with different microtubule-associated proteins (MAPs). These diverse intrinsic factors influence the dynamics of MTs. Extrinsic factors such as microtubule-targeting agents (MTAs) can also affect MT dynamics. MTAs can be divided into two main categories: microtubule-stabilizing agents (MSAs) and microtubule-destabilizing agents (MDAs). Thus, the MT skeleton is an important target for anticancer therapy. This review discusses factors that determine the microtubule dynamics in normal and cancer cells and describes microtubule-MTA interactions, highlighting the importance of tubulin isoform diversity and post-translational modifications in MTA responses and the consequences of such a phenomenon, including drug resistance development.
Collapse
Affiliation(s)
- Filip Borys
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| |
Collapse
|
40
|
Population Pharmacokinetics of Vincristine Related to Infusion Duration and Peripheral Neuropathy in Pediatric Oncology Patients. Cancers (Basel) 2020; 12:cancers12071789. [PMID: 32635465 PMCID: PMC7407622 DOI: 10.3390/cancers12071789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 11/17/2022] Open
Abstract
Vincristine (VCR) is frequently used in pediatric oncology and can be administered intravenously through push injections or 1 h infusions. The effects of administration duration on population pharmacokinetics (PK) are unknown. We described PK differences related to administration duration and the relation between PK and VCR-induced peripheral neuropathy (VIPN). PK was assessed in 1-5 occasions (1-8 samples in 24 h per occasion). Samples were analyzed using high-performance liquid chromatography/tandem mass spectrometry. Population PK of VCR and its relationship with administration duration was determined using a non-linear mixed effect. We estimated individual post-hoc parameters: area under the concentration time curve (AUC) and maximum concentration (Cmax) in the plasma and peripheral compartment. VIPN was assessed using Common Terminology Criteria for Adverse Events (CTCAE) and the pediatric-modified total neuropathy score (ped-mTNS). Overall, 70 PK assessments in 35 children were evaluated. The population estimated that the intercompartmental clearance (IC-Cl), volume of the peripheral compartment (V2), and Cmax were significantly higher in the push group. Furthermore, higher IC-Cl was significantly correlated with VIPN development. Administration of VCR by push led to increased IC-Cl, V2, and Cmax, but were similar to AUC, compared to 1 h infusions. Administration of VCR by 1 h infusions led to similar or higher exposure of VCR without increasing VIPN.
Collapse
|
41
|
Wijaya J, Gose T, Schuetz JD. Using Pharmacology to Squeeze the Life Out of Childhood Leukemia, and Potential Strategies to Achieve Breakthroughs in Medulloblastoma Treatment. Pharmacol Rev 2020; 72:668-691. [PMID: 32571983 PMCID: PMC7312347 DOI: 10.1124/pr.118.016824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eliminating cancer was once thought of as a war. This analogy is still apt today; however, we now realize that cancer is a much more formidable enemy than scientists originally perceived, and in some cases, it harbors a profound ability to thwart our best efforts to defeat it. However, before we were aware of the complexity of cancer, chemotherapy against childhood acute lymphoblastic leukemia (ALL) was successful because it applied the principles of pharmacology. Herein, we provide a historic perspective of the experience at St. Jude Children's Research Hospital. In 1962, when the hospital opened, fewer than 3% of patients experienced durable cure. Through judicious application of pharmacologic principles (e.g., combination therapy with agents using different mechanisms of action) plus appropriate drug scheduling, dosing, and pharmacodynamics, the survival of patients with ALL now exceeds 90%. We contrast this approach to treating ALL with the contemporary approach to treating medulloblastoma, in which genetics and molecular signatures are being used to guide the development of more-efficacious treatment strategies with minimal toxicity. Finally, we highlight the emerging technologies that can sustain and propel the collaborative efforts to squeeze the life out of these cancers. SIGNIFICANCE STATEMENT: Up until the early 1960s, chemotherapy for childhood acute lymphoblastic leukemia was mostly ineffective. This changed with the knowledge and implementation of rational approaches to combination therapy. Although the therapeutics of brain cancers such as medulloblastoma are not as refined (in part because of the blood-brain barrier obstacle), recent extraordinary advances in knowledge of medulloblastoma pathobiology has led to innovations in disease classification accompanied with strategies to improve therapeutic outcomes. Undoubtedly, additional novel approaches, such as immunological therapeutics, will open new avenues to further the goal of taming cancer.
Collapse
Affiliation(s)
- Juwina Wijaya
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
42
|
A Metabolomics Approach for Early Prediction of Vincristine-Induced Peripheral Neuropathy. Sci Rep 2020; 10:9659. [PMID: 32541868 PMCID: PMC7295796 DOI: 10.1038/s41598-020-66815-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/26/2020] [Indexed: 11/28/2022] Open
Abstract
Vincristine is a core chemotherapeutic drug administered to pediatric acute lymphoblastic leukemia patients. Despite its efficacy in treating leukemia, it can lead to severe peripheral neuropathy in a subgroup of the patients. Peripheral neuropathy is a debilitating and painful side-effect that can severely impact an individual’s quality of life. Currently, there are no established predictors of peripheral neuropathy incidence during the early stage of chemotherapeutic treatment. As a result, patients who are not susceptible to peripheral neuropathy may receive sub-therapeutic treatment due to an empirical upper cap on the dose, while others may experience severe neuropathy at the same dose. Contrary to previous genomics based approaches, we employed a metabolomics approach to identify small sets of metabolites that can be used to predict a patient’s susceptibility to peripheral neuropathy at different time points during the treatment. Using those identified metabolites, we developed a novel strategy to predict peripheral neuropathy and subsequently adjust the vincristine dose accordingly. In accordance with this novel strategy, we created a free user-friendly tool, VIPNp, for physicians to easily implement our prediction strategy. Our results showed that focusing on metabolites, which encompasses both genotypic and phenotypic variations, can enable early prediction of peripheral neuropathy in pediatric leukemia patients.
Collapse
|
43
|
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 2020; 40:750-776. [PMID: 32522044 DOI: 10.1080/07388551.2020.1768509] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increased Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Darwish WM, Abdoon AS, Shata MS, Elmansy M. Vincristine-loaded polymeric corona around gold nanorods for combination (chemo-photothermal) therapy of oral squamous carcinoma. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Zečkanović A, Jazbec J, Kavčič M. Centrosomal protein72 rs924607 and vincristine-induced neuropathy in pediatric acute lymphocytic leukemia: meta-analysis. Future Sci OA 2020; 6:FSO582. [PMID: 32802391 PMCID: PMC7421539 DOI: 10.2144/fsoa-2020-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: We examined the utility of the rs924607 TT genotype of the centrosomal protein 72 (CEP72) as a potential biomarker for predilection toward vincristine-induced peripheral neuropathy in children treated for acute lymphoblastic leukemia. Materials & methods: We conducted a random-effects meta-analysis of data from four studies comprising 817 patients. We tested for an association using a recessive model where a one-sided p-value < 0.05 was considered statistically significant. Results & conclusion: We were unable to confirm the association between the rs924607 TT genotype and neurotoxicity (odds ratio: 1.99; p = 0.16; 95% CI: 0.76–5.25) in our global meta-analysis. Analysis of the continuation phase (following induction) studies showed significantly higher odds for neuropathy in CEP72 rs924607 TT homozygotes (odds ratio: 2.28; p = 0.02; 95% CI: 1.16–6.87). We analyzed the findings of four previous studies to find out if a variant of a gene important for in cell division called centrosomal protein 72 is associated with more neurological toxicity in children treated with vincristine for acute lymphoblastic leukemia. We found that this variant was indeed connected with higher odds for developing peripheral neuropathy in the later stages of therapy.
Collapse
Affiliation(s)
- Aida Zečkanović
- Department for Pediatric Hematology & Oncology, University Children's Hospital of Ljubljana, University Medical Centre Ljubljana, Bohoričeva street 20, Ljubljana, Slovenia
| | - Janez Jazbec
- Department for Pediatric Hematology & Oncology, University Children's Hospital of Ljubljana, University Medical Centre Ljubljana, Bohoričeva street 20, Ljubljana, Slovenia
| | - Marko Kavčič
- Department for Pediatric Hematology & Oncology, University Children's Hospital of Ljubljana, University Medical Centre Ljubljana, Bohoričeva street 20, Ljubljana, Slovenia
| |
Collapse
|
46
|
The hepatoprotective and antioxidative effect of saffron stigma alcoholic extract against vincristine sulfate induced toxicity in rats. Interdiscip Toxicol 2020; 12:186-191. [PMID: 32461722 PMCID: PMC7247369 DOI: 10.2478/intox-2019-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Vincristine (VCR) is an important anti-cancer drug, which is highly toxic for the liver. This study aimed at evaluating the protective effect of alcoholic extract of saffron stigma against vincristine hepatotoxicity in the rat. A total number of 50 rats were randomly divided into 10 groups, including controls, rats receiving 0.25 mg/kg (A group), 0.5 mg/kg (B group), 0.75 mg/kg (C group) VCR, 0.25 mg/kg VCR + 0.5 mg/kg saffron (D group), 0.5 mg/kg VCR + 0.5 mg/kg saffron (E group), 0.75 mg/kg VCR + 0.5 mg/kg saffron (F group), 0.25 mg/kg VCR + 1mg/kg saffron (G group), 0.5 mg/kg VCR + 1 mg/kg saffron (H group), and 0.75 mg/kg VCR + 1 mg/kg saffron (I group) groups. Serum level of liver enzymes, including aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and bilirubin were measured using specific kits at the end of the experimental period. Serum total antioxidant capacity (TAC) and malondialdehyde (MDA) values were measured using ferric reducing antioxidant of power (FRAP) and thiobarbituric acid reaction (TBAR) methods, respectively. Administration of VCR, especially at the concentration of 0.75mg/kg, caused severe hepatic injury with significant increase in the levels of AST (582.0±39.45 UI), ALT (124.0±5.92 UI), ALP (939.8±89.8 UI) enzymes and bilirubin (0.17±0.008). VCR administration also significantly increased the serum MDA level (0.49±0.021 nmol/ml), while TAC value was declined significantly (241.27±18.27 μmol/l). These effects were dose-dependent. Treatment with saffron extract decreased the activity of liver enzymes and MDA values in hepatotoxic rats with a significant enhancement in serum TAC content. These effects were notable for rats that received 1mg/kg plant extract. Administration of saffron, especially at higher concentration, can reduce VCR-induced hepatotoxicity, antioxidant depletion and lipid peroxidation, presumably due to its antioxidative properties.
Collapse
|
47
|
Wang YP, Liu IJ, Chung MJ, Wu HC. Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral Oncol 2020; 106:104689. [PMID: 32330686 DOI: 10.1016/j.oraloncology.2020.104689] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Squamous cell carcinoma of head and neck (SCCHN) is the fifth most prevalent cancer worldwide. Because the anatomical complexity of this region, complete surgical resection is often not achievable and conventional chemotherapy would aid locoregional control and mitigate distant metastasis. Nonetheless, the nonspecific cytotoxicity and short in vivo half-life of conventional chemotherapeutic drugs limit their effects. Given the high frequency of overexpression of wild type epidermal growth factor receptor (EGFR), we exploit EGFR as a homing beacon for drug delivery system with cytotoxic payloads. MATERIALS AND METHODS We generated fully human anti-EGFR single chain variable fragment (scFv)-conjugated immunoliposomes (IL) containing doxorubicin and vinorelbine and tested their anti-neoplastic efficacy in vitro and in vivo. RESULT Our IL enhanced endocytosis and significantly reduced the half maximal inhibitory concentrations of the therapeutic payloads when compared to non-targeting liposomal counterparts in various cell lines of SCCHN. Furthermore, median survival time was significantly prolonged in subcutaneous and orthotopic SCCHN xenograft murine models treated with our IL formulations than those treated with non-targeting counterparts (94 days versus 60 days and 72 days versus 56 days, respectively) without evident increased systemic toxicity. CONCLUSION The therapeutic index of the chemotherapeutic payloads was augmented by our EFGR-targeting IL formulation and they are warranted for further development and preclinical trial.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Faculty of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Jhe Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
48
|
Satapathy D, Jindal A. Vincristine induced bilateral ptosis and its management. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.18.03980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Nama N, Barker MK, Kwan C, Sabarre C, Solimano V, Rankin A, Raabe J, Ross CJ, Carleton B, Zwicker JG, Rassekh SR. Vincristine-induced peripheral neurotoxicity: A prospective cohort. Pediatr Hematol Oncol 2020; 37:15-28. [PMID: 31682156 DOI: 10.1080/08880018.2019.1677832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Vincristine-induced peripheral neuropathy (VIPN) is a serious and pervasive problem, affecting 12-78% of pediatric patients, based on retrospective studies. The study objective was to prospectively collect a cohort of well-phenotyped patients receiving vincristine in order to accurately classify and grade their neurotoxicity. All children in British Columbia with leukemia or lymphoma requiring vincristine between 2013 and 2016 were approached for consent. Those recruited were assessed by occupational and physiotherapists at baseline, mid and endpoint of their treatment. Assessments included the Bruininks-Oseretsky Test of Motor Proficiency - 2nd ed. (BOT-2), strength, "Timed up and go" test and vibration sensibility. Seventy-two patients consented (age: 2.0-18.7 years). The majority were below average for age on one or more BOT-2 domains at midpoint (N = 32/45, 71%), which decreased by the endpoint (N = 19/41, 46%, p = .049). Six patients showed severe VIPN throughout treatment (N = 6/53, 11%), defined as a BOT-2 score well below average. Muscle strength for wrist extension/flexion, anterior tibialis and peronei decreased significantly between baseline (Median = 5) and midpoint (Median = 4), with no significant change noted by endpoint. Most patients had normal vibration sensibility in lower (N = 30/60, 50%) and upper limbs (N = 26/38, 68%). In conclusion, with no differences between time points. VIPN is highly prevalent among patients with pediatric cancer, causing significant morbidity and functional deficits. Identification of risk factors would allow for resource appropriation to patients at higher risk, as well as potentially permitting dose escalation in patients with low toxicity to improve survival.
Collapse
Affiliation(s)
- Nassr Nama
- Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mikaela K Barker
- Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Celia Kwan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Sabarre
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Veronica Solimano
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Anne Rankin
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada.,Department of Physical Therapy, University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | - Jennifer Raabe
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,Pharmaceutical Outcomes Program, BC Children's Hospital, Vancouver, BC, Canada
| | - Bruce Carleton
- Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada.,Pharmaceutical Outcomes Program, BC Children's Hospital, Vancouver, BC, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jill G Zwicker
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Occupational Science & Occupational Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad Rod Rassekh
- Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
50
|
Palmer AC, Chidley C, Sorger PK. A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity. eLife 2019; 8:50036. [PMID: 31742555 PMCID: PMC6897534 DOI: 10.7554/elife.50036] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Curative cancer therapies are uncommon and nearly always involve multi-drug combinations developed by experimentation in humans; unfortunately, the mechanistic basis for the success of such combinations has rarely been investigated in detail, obscuring lessons learned. Here, we use isobologram analysis to score pharmacological interaction, and clone tracing and CRISPR screening to measure cross-resistance among the five drugs comprising R-CHOP, a combination therapy that frequently cures Diffuse Large B-Cell Lymphomas. We find that drugs in R-CHOP exhibit very low cross-resistance but not synergistic interaction: together they achieve a greater fractional kill according to the null hypothesis for both the Loewe dose-additivity model and the Bliss effect-independence model. These data provide direct evidence for the 50 year old hypothesis that a curative cancer therapy can be constructed on the basis of independently effective drugs having non-overlapping mechanisms of resistance, without synergistic interaction, which has immediate significance for the design of new drug combinations.
Collapse
Affiliation(s)
- Adam C Palmer
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|