1
|
He Q, Yuan Q, Shan H, Wu C, Gu Y, Wu K, Hu W, Zhang Y, He X, Xu HE, Zhao LH. Mechanisms of ligand recognition and activation of melanin-concentrating hormone receptors. Cell Discov 2024; 10:48. [PMID: 38710677 DOI: 10.1038/s41421-024-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, Gi/o, and MCHR2 can only couple to Gq/11. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with Gi and MCH-activated MCHR2 with Gq at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.
Collapse
Affiliation(s)
- Qian He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Shan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yimin Gu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yumu Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Li-Hua Zhao
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Ruiz-Viroga V, de Ceglia M, Morelli L, Castaño EM, Calvo EB, Suárez J, Rodríguez de Fonseca F, Galeano P, Lagos P. Acute intrahippocampal administration of melanin-concentrating hormone impairs memory consolidation and decreases the expression of MCHR-1 and TrkB receptors. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110703. [PMID: 36565982 DOI: 10.1016/j.pnpbp.2022.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Interest in the role of melanin-concentrating hormone (MCH) in memory processes has increased in recent years, with some studies reporting memory-enhancing effects, while others report deleterious effects. Due to these discrepancies, this study seeks to provide new evidence about the role of MCH in memory consolidation and its relation with BDNF/TrkB system. To this end, in the first experiment, increased doses of MCH were acutely administered in both hippocampi to groups of male rats (25, 50, 200, and 500 ng). Microinjections were carried out immediately after finishing the sample trial of two hippocampal-dependent behavioral tasks: the Novel Object Recognition Test (NORT) and the modified Elevated Plus Maze (mEPM) test. Results indicated that a dose of 200 ng of MCH or higher impaired memory consolidation in both tasks. A second experiment was performed in which a dose of 200 ng of MCH was administered alone or co-administered with the MCHR-1 antagonist ATC-0175 at the end of the sample trial in the NORT. Results showed that MCH impaired memory consolidation, while the co-administration with ATC-0175 reverted this detrimental effect. Moreover, MCH induced a significant decrease in hippocampal MCHR-1 and TrkB expression with no modification in the expression of BDNF and NMDA receptor subunits NR1, NR2A, and NR2B. These results suggest that MCH in vivo elicits pro-amnesic effects in the rat hippocampus by decreasing the availability of its receptor and TrkB receptors, thus linking both endogenous systems to memory processes.
Collapse
Affiliation(s)
- Vicente Ruiz-Viroga
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo ZP11800, Uruguay
| | - Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Av. Carlos Haya 82, Málaga 29010, Spain.
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Eduardo M Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Eduardo Blanco Calvo
- Instituto de Investigación Biomédica de Málaga (IBIMA), Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Campus de Teatinos S/N, Málaga 29071, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Málaga 29071, Spain.
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Av. Carlos Haya 82, Málaga 29010, Spain.
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo ZP11800, Uruguay.
| |
Collapse
|
3
|
Ruiz-Viroga V, Urbanavicius J, Torterolo P, Lagos P. In vivo uptake of a fluorescent conjugate of melanin-concentrating hormone in the rat brain. J Chem Neuroanat 2021; 114:101959. [PMID: 33848617 DOI: 10.1016/j.jchemneu.2021.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide synthesized by posterior hypothalamic and incerto-hypothalamic neurons that project throughout the central nervous system. The MCHergic system modulates several important functions such as feeding behavior, mood and sleep. MCH exerts its biological functions through interaction with the MCHR-1 receptor, the only functional receptor present in rodents. The internalization process of MCHR-1 triggered by MCH binding was described in vitro in non-neuronal heterologous systems with over-expression of MCHR-1. Reports of in vivo MCHR-1 internalization dynamics are scarce, however, this is an important process to explore based on the critical functions of the MCHergic system. We had previously determined that 60 min after intracerebroventricular (i.c.v.) microinjections of MCH conjugated with fluorophore rhodamine (R-MCH), the dorsal and median raphe nucleus presented R-MCH positive labeled neurons. In the present work, we further studied the in vivo uptake process focusing on the distribution and time-dependent pattern of R-MCH positive cells 10, 20 and 60 min (T10, T20 and T60, respectively) after i.c.v. microinjection of R-MCH. We also explored this uptake process to see whether it was receptor- and clathrin-dependent and examined the phenotype of R-MCH positive cells and their proximity to MCHergic fibers. We found a great number of R-MCH positive cells with high fluorescence intensity in the lateral septum, nucleus accumbens and hippocampus at T20 and T60 (but not at T10), while a lower number with low intensity was observed in the dorsal raphe nucleus. At T20, in rats pre-treated with a MCHR-1 antagonist (ATC-0175) or with phenylarsine oxide (PAO), a clathrin endocytosis inhibitor, a robust decrease (> 50 %) of R-MCH uptake occurred in these structures. The R-MCH positive cells were identified as neurons (NeuN positive, GFAP negative) and some MCHergic fibers run in the vicinities of them. We concluded that neurons localized at structures that were close to the ventricular surfaces could uptake R-MCH in vivo through a receptor-dependent and clathrin-mediated process. Our results support volume transmission of MCH through the cerebrospinal fluid to reach distant targets. Finally, we propose that R-MCH would be an effective tool to study MCH-uptake in vivo.
Collapse
Affiliation(s)
- Vicente Ruiz-Viroga
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Kasagi S, Miura M, Okazaki T, Mizusawa K, Takahashi A. Effects of tank color brightness on the body color, somatic growth, and endocrine systems of rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 2020; 298:113581. [PMID: 32800773 DOI: 10.1016/j.ygcen.2020.113581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
We investigated the effects of tank brightness on body color, growth, and endocrine systems of rainbow trout (Oncorhynchus mykiss). Five different tank colors that produce varying levels of brightness were used, including black, dark gray [DG], light gray [LG], white, and blue. The fish were reared in these tanks for 59 days under natural photoperiod and water temperature. The body color was affected by tank brightness, such that body color brightness was correlated with tank brightness (white-housed ≥ LG-housed ≥ DG-housed ≥ blue-housed ≥ black-housed). No difference in somatic growth was observed among the fish reared in the five tanks. The mRNA levels of melanin-concentrating hormone (mch1) was higher in white-housed fish than those in the other tanks, and the mRNA levels of proopiomelanocortins (pomc-a and pomc-b) were higher in fish housed in a black tank than those in other tanks. mRNA level of somatolactin, a member of growth hormone family, was higher in black-housed fish than those in white-housed fish. The mRNA levels of mch1 and mch2 in blue-housed fish were similar to those in black-housed fish, while the mRNA levels of pomc-a and pomc-b in blue-housed fish were similar to those in white-housed fish. The current results suggest that tank color is not related to fish growth, therefore any color of conventional rearing tank can be used to grow fish. Moreover, the association between somatolactin with body color changes is suggested in addition to the role of classical MCH and melanophore stimulating hormone derived from POMC.
Collapse
Affiliation(s)
- Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Masayuki Miura
- Oshino Branch, Yamanashi Prefectural Fisheries Technology Center, Oshino, Yamanashi 401-0511, Japan
| | - Takumi Okazaki
- Oshino Branch, Yamanashi Prefectural Fisheries Technology Center, Oshino, Yamanashi 401-0511, Japan
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
5
|
Vawter MP, Schulmann A, Alhassen L, Alhassen W, Hamzeh AR, Sakr J, Pauluk L, Yoshimura R, Wang X, Dai Q, Sanathara N, Civelli O, Alachkar A. Melanin Concentrating Hormone Signaling Deficits in Schizophrenia: Association With Memory and Social Impairments and Abnormal Sensorimotor Gating. Int J Neuropsychopharmacol 2020; 23:53-65. [PMID: 31563948 PMCID: PMC7442395 DOI: 10.1093/ijnp/pyz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evidence from anatomical, pharmacological, and genetic studies supports a role for the neuropeptide melanin concentrating hormone system in modulating emotional and cognitive functions. Genome-wide association studies revealed a potential association between the melanin concentrating hormone receptor (MCHR1) gene locus and schizophrenia, and the largest genome-wide association study conducted to date shows a credible genome-wide association. METHODS We analyzed MCHR1 and pro-melanin concentrating hormone RNA-Seq expression in the prefrontal cortex in schizophrenia patients and healthy controls. Disruptions in the melanin concentrating hormone system were modeled in the mouse brain by germline deletion of MCHR1 and by conditional ablation of melanin concentrating hormone expressing neurons using a Cre-inducible diphtheria toxin system. RESULTS MCHR1 expression is decreased in the prefrontal cortex of schizophrenia samples (false discovery rate (FDR) P < .05, CommonMind and PsychEncode combined datasets, n = 901) while pro-melanin concentrating hormone is below the detection threshold. MCHR1 expression decreased with aging (P = 6.6E-57) in human dorsolateral prefrontal cortex. The deletion of MCHR1 was found to lead to behavioral abnormalities mimicking schizophrenia-like phenotypes: hyperactivity, increased stereotypic and repetitive behavior, social impairment, impaired sensorimotor gating, and disrupted cognitive functions. Conditional ablation of pro-melanin concentrating hormone neurons increased repetitive behavior and produced a deficit in sensorimotor gating. CONCLUSIONS Our study indicates that early disruption of the melanin concentrating hormone system interferes with neurodevelopmental processes, which may contribute to the pathogenesis of schizophrenia. Further neurobiological research on the developmental timing and circuits that are affected by melanin concentrating hormone may lead to a therapeutic target for early prevention of schizophrenia.
Collapse
Affiliation(s)
- Marquis P Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA
| | - Anton Schulmann
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Lamees Alhassen
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA
| | - Wedad Alhassen
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
| | - Abdul Rezzak Hamzeh
- John Curtin School of Medical Research, Australian National University, Canberra
| | - Jasmine Sakr
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
| | - Lucas Pauluk
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Ryan Yoshimura
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Xuejie Wang
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Qi Dai
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Nayna Sanathara
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Olivier Civelli
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
- Department of Developmental and Cell Biology, School of Medicine, University of California, Irvine, CA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
| |
Collapse
|
6
|
Philippe C, Haeusler D, Scherer T, Fürnsinn C, Zeilinger M, Wadsak W, Shanab K, Spreitzer H, Hacker M, Mitterhauser M. [(18)F]FE@SNAP-a specific PET tracer for melanin-concentrating hormone receptor 1 imaging? EJNMMI Res 2016; 6:31. [PMID: 27033361 PMCID: PMC4816952 DOI: 10.1186/s13550-016-0186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/20/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The melanin-concentrating hormone receptor 1 (MCHR1), which is highly expressed in the lateral hypothalamus, plays a key role in energy homeostasis, obesity and other endocrine diseases. Hence, there is a major interest in in vivo imaging of this receptor. A PET tracer would allow non-invasive in vivo visualization and quantification of the MCHR1. The aim of the study was the ex vivo evaluation of the MCHR1 ligand [(18)F]FE@SNAP as a potential PET tracer for the MCHR1. METHODS [(18)F]FE@SNAP was injected directly into the jugular vein of awake naïve rats for ex vivo brain autoradiography, biodistribution and additional blood metabolite analysis. Blocking experiments were conducted using the unlabeled MCHR1 ligand SNAP-7941. RESULTS A high uptake of [(18)F]FE@SNAP was observed in the lateral hypothalamus and the ventricular system. Both regions were significantly blocked by SNAP-7941. Biodistribution evinced the highest uptake in the kidneys, adrenals, lung and duodenum. Specific blocking with SNAP-7941 led to a significant tracer reduction in the heart and adrenals. In plasma samples, 47.73 ± 6.1 % of a hydrophilic radioactive metabolite was found 45 min after tracer injection. CONCLUSIONS Since [(18)F]FE@SNAP uptake was significantly blocked in the lateral hypothalamus, there is strong evidence that [(18)F]FE@SNAP is a highly suitable agent for specific MCHR1 imaging in the central nervous system. Additionally, this finding is supported by the specific blocking in the ventricular system, where the MCHR1 is expressed in the ependymal cells. These findings suggest that [(18)F]FE@SNAP could serve as a useful imaging and therapy monitoring tool for MCHR1-related pathologies.
Collapse
Affiliation(s)
- Cécile Philippe
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- />Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Daniela Haeusler
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Scherer
- />Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- />Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Karem Shanab
- />Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Helmut Spreitzer
- />Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Markus Mitterhauser
- />Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- />Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
- />Ludwig Boltzmann Institute for Applied Diagnostics, Vienna, Austria
| |
Collapse
|
7
|
Alachkar A, Alhassen L, Wang Z, Wang L, Onouye K, Sanathara N, Civelli O. Inactivation of the melanin concentrating hormone system impairs maternal behavior. Eur Neuropsychopharmacol 2016; 26:1826-1835. [PMID: 27617778 PMCID: PMC5929110 DOI: 10.1016/j.euroneuro.2016.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 01/22/2023]
Abstract
In order to prepare the mother for the demands of pregnancy and lactation, the maternal brain is subjected to a number of adaptations. Maternal behaviors are regulated by complex neuronal interactions. Here, we show that the melanin concentrating hormone (MCH) system is an important regulator of maternal behaviors. First, we report that melanin concentrating hormone receptor 1 knockout (MCHR1 KO) mice display a disruption of maternal behavior. Early postpartum MCHR1 KO females exhibit poor nesting, deficits in pup retrieval and maternal aggression. In addition, ablation of MCH receptors results in decreased milk production and prolactin mRNA levels. Then we show that these results are in line with those obtained in wild type mice (WT) treated with the specific MCHR1 antagonist GW803430. Furthermore, following pups retrieval, MCHR1 KO mice display a lower level of Fos expression than WT mice in the ventral tegmental area, and nucleus accumbens. With the progression of the lactation period, however, the MCHR1 KO mice improve maternal care towards their pups. This is manifested by an increase in the pups׳ survival rate and the decrease in pups׳ retrieval time beyond the second day after parturition. In conclusion, we show that the MCH system plays a significant role in the initiation of maternal behavior. In this context, MCH may play a role in integrating information from multiple sources, and connecting brain reward, homeostatic and regulatory systems.
Collapse
Affiliation(s)
- Amal Alachkar
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States.
| | - Lamees Alhassen
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Zhiwei Wang
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Lien Wang
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Kara Onouye
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Nayna Sanathara
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Olivier Civelli
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States; Pharmaceutical Sciences, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States; Developmental and Cell Biology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| |
Collapse
|
8
|
Ahmad S, Washburn WN, Hernandez AS, Bisaha S, Ngu K, Wang W, Pelleymounter MA, Longhi D, Flynn N, Azzara AV, Rohrbach K, Devenny J, Rooney S, Thomas M, Glick S, Godonis H, Harvey S, Zhang H, Gemzik B, Janovitz EB, Huang C, Zhang L, Robl JA, Murphy BJ. Synthesis and Antiobesity Properties of 6-(4-Chlorophenyl)-3-(4-((3,3-difluoro-1-hydroxycyclobutyl)methoxy)-3-methoxyphenyl)thieno[3,2-d]pyrimidin-4(3H)-one (BMS-814580): A Highly Efficacious Melanin Concentrating Hormone Receptor 1 (MCHR1) Inhibitor. J Med Chem 2016; 59:8848-8858. [DOI: 10.1021/acs.jmedchem.6b00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saleem Ahmad
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - William N. Washburn
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andres S. Hernandez
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Sharon Bisaha
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Khehyong Ngu
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Wei Wang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary Ann Pelleymounter
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Longhi
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Neil Flynn
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Anthony V. Azzara
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kenneth Rohrbach
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James Devenny
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Suzanne Rooney
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael Thomas
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Susan Glick
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Helen Godonis
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Susan Harvey
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Hongwei Zhang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Brian Gemzik
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Evan B. Janovitz
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Christine Huang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lisa Zhang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jeffrey A. Robl
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Brian J. Murphy
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
9
|
Motani AS, Luo J, Liang L, Mihalic JT, Chen X, Tang L, Li L, Jaen J, Chen JL, Dai K. Evaluation of AMG 076, a potent and selective MCHR1 antagonist, in rodent and primate obesity models. Pharmacol Res Perspect 2013; 1:e00003. [PMID: 25505557 PMCID: PMC4184568 DOI: 10.1002/prp2.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
Melanin-concentrating hormone (MCH) regulates food intake through activation of the receptor, MCHR1. We have identified AMG 076 as an orally bioavailable potent and selective small molecule antagonist of MCHR1. In mouse models of obesity, AMG 076 caused a reduction in body weight gain in wild-type (MCHR1+/+) but not in knockout (MCHR1−/−) mice. The body weight reduction was associated with decreases in food intake and increases in energy expenditure. Importantly, we show that these MCHR1-dependent effects of AMG 076 were also reflected in improved metabolic phenotypes, increased glucose tolerance and insulin sensitivity. Preliminary data on effects of AMG 076 in obese cynomolgus monkeys are also presented.
Collapse
|
10
|
Haga Y, Mizutani S, Naya A, Kishino H, Iwaasa H, Ito M, Ito J, Moriya M, Sato N, Takenaga N, Ishihara A, Tokita S, Kanatani A, Ohtake N. Discovery of novel phenylpyridone derivatives as potent and selective MCH1R antagonists. Bioorg Med Chem 2010; 19:883-93. [PMID: 21190859 DOI: 10.1016/j.bmc.2010.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022]
Abstract
The design, synthesis and structure-activity relationships of a novel class of N-phenylpyridone MCH1R antagonists are described. The core part of the N-phenylpyridone structure was newly designed and the side chain moieties that were attached to the core part were extensively explored. As a result of optimization of the N-phenylpyridone leads, we successfully developed the orally available, and brain-penetrable MCH1R selective antagonist 7c, exhibiting excellent anti-obese effect in diet-induced obese (DIO) mice.
Collapse
Affiliation(s)
- Yuji Haga
- Tsukuba Research Institute, Banyu Pharmaceutical Co. Ltd, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Eberle AN, Mild G, Zumsteg U. Cellular models for the study of the pharmacology and signaling of melanin-concentrating hormone receptors. J Recept Signal Transduct Res 2010; 30:385-402. [PMID: 21083507 DOI: 10.3109/10799893.2010.524223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R(1) is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R(1) or MCH-R(2) genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R(1) expression/signaling in IRM23 cells transfected with the G(q) protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca(2+) and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children's Hospital, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
12
|
Li J, Li S, Lei B, Liu H, Yao X, Liu M, Gramatica P. A new strategy to improve the predictive ability of the local lazy regression and its application to the QSAR study of melanin-concentrating hormone receptor 1 antagonists. J Comput Chem 2010; 31:973-85. [PMID: 19670228 DOI: 10.1002/jcc.21383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the quantitative structure-activity relationship (QSAR) study, local lazy regression (LLR) can predict the activity of a query molecule by using the information of its local neighborhood without need to produce QSAR models a priori. When a prediction is required for a query compound, a set of local models including different number of nearest neighbors are identified. The leave-one-out cross-validation (LOO-CV) procedure is usually used to assess the prediction ability of each model, and the model giving the lowest LOO-CV error or highest LOO-CV correlation coefficient is chosen as the best model. However, it has been proved that the good statistical value from LOO cross-validation appears to be the necessary, but not the sufficient condition for the model to have a high predictive power. In this work, a new strategy is proposed to improve the predictive ability of LLR models and to access the accuracy of a query prediction. The bandwidth of k neighbor value for LLR is optimized by considering the predictive ability of local models using an external validation set. This approach was applied to the QSAR study of a series of thienopyrimidinone antagonists of melanin-concentrating hormone receptor 1. The obtained results from the new strategy shows evident improvement compared with the commonly used LOO-CV LLR methods and the traditional global linear model.
Collapse
Affiliation(s)
- Jiazhong Li
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Adamantidis A, de Lecea L. A role for Melanin-Concentrating Hormone in learning and memory. Peptides 2009; 30:2066-70. [PMID: 19576257 PMCID: PMC4287368 DOI: 10.1016/j.peptides.2009.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/26/2022]
Abstract
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304-5742, USA.
| | | |
Collapse
|
14
|
Kishino H, Moriya M, Sakuraba S, Sakamoto T, Takahashi H, Suzuki T, Moriya R, Ito M, Iwaasa H, Takenaga N, Ishihara A, Kanatani A, Sato N, Fukami T. Discovery of imidazo[1,2-a]pyridines as potent MCH1R antagonists. Bioorg Med Chem Lett 2009; 19:4589-93. [DOI: 10.1016/j.bmcl.2009.06.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
|
15
|
Optimization of piperidin-4-yl-urea-containing melanin-concentrating hormone receptor 1 (MCH-R1) antagonists: Reducing hERG-associated liabilities. Bioorg Med Chem Lett 2009; 19:4274-9. [PMID: 19500982 DOI: 10.1016/j.bmcl.2009.05.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/20/2022]
Abstract
The discovery and optimization of piperidin-4-yl-urea derivatives as MCH-R1 antagonists is herein described. Previous work around the piperidin-4-yl-amides led to the discovery of potent MCH-R1 antagonists. However, high affinity towards the hERG potassium channel proved to be an issue. Different strategies to increase hERG selectivity were implemented and resulted in the identification of piperidin-4-yl-urea compounds as potent MCH-R1 antagonists with minimized hERG inhibition.
Collapse
|
16
|
Gehlert DR, Rasmussen K, Shaw J, Li X, Ardayfio P, Craft L, Coskun T, Zhang HY, Chen Y, Witkin JM. Preclinical evaluation of melanin-concentrating hormone receptor 1 antagonism for the treatment of obesity and depression. J Pharmacol Exp Ther 2009; 329:429-38. [PMID: 19182070 DOI: 10.1124/jpet.108.143362] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The mammalian neuropeptide, melanin-concentrating hormone, interacts with two G protein-coupled receptors, melanin-concentrating hormone receptor (MCHR) 1 and MCHR2; however, only MCHR1 is expressed in rats and mice. In the present study, we evaluated MCHR1 antagonism in preclinical models believed to be predictive of antiobesity and antidepressant activity. Central activity of the selective MCHR1 antagonist, GW803430 [6-(4-chloro-phenyl)-3-[3-methoxy-4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-3H-thieno[3,2-d]pyrimidin-4-one], was evaluated using ex vivo binding with autoradiography. Effective doses of GW803430 (1 and 3 mg/kg p.o.) were correlated with antiobesity activity in a 14-day study of diet-induced obese rats. GW803430 was evaluated subsequently for antidepressant-like effects in mice and rats. Acute and subchronic administration reduced immobility time in the mouse forced-swim test at doses of 3 (acute) and 3 and 10 (chronic) mg/kg p.o., an effect that was absent in MCHR1(-/-) mice. Combined subeffective doses of GW803430 (0.3 and 1 mg/kg p.o.) and imipramine (5 mg/kg) produced a robust antidepressant-like response. The compound was also active in the tail suspension test at a dose of 10 mg/kg p.o. GW803430 (30 mg/kg p.o.) significantly reduced submissive behaviors at weeks 2 and 3, a model of submissive behavior that may predict antidepressant onset. GW803430 decreased marble burying in mice at doses of 3, 10, and 30 mg/kg p.o., an assay that detects anxiolytic-like effects. Thus, GW803430 produces robust antiobesity and antidepressant-like effects in rats and mice at doses that compete for central MCHR1 in vivo. As such, MCHR1 should be considered as a promising target for future drug discovery efforts.
Collapse
Affiliation(s)
- Donald R Gehlert
- Neuroscience and Endocrine Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nagasaki H, Chung S, Dooley CT, Wang Z, Li C, Saito Y, Clark SD, Houghten RA, Civelli O. The pharmacological properties of a novel MCH1 receptor antagonist isolated from combinatorial libraries. Eur J Pharmacol 2008; 602:194-202. [PMID: 19041642 DOI: 10.1016/j.ejphar.2008.10.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/09/2008] [Accepted: 10/31/2008] [Indexed: 01/16/2023]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide that exhibits potent orexigenic activity. In rodents, it exerts its actions by interacting with one receptor, MCH(1) receptor which is expressed in many parts of the central nervous system (CNS). To study the physiological implications of the MCH system, we need to be able to block it locally and acutely. This necessitates the use of MCH(1) receptor antagonists. While MCH(1) receptor antagonists have been previously reported, they are mainly not accessible to academic research. We apply here a strategy that leads to the isolation of a high affinity and selective MCH(1) receptor antagonist amenable to in vivo analyses without further chemical modifications. This antagonist, TPI 1361-17, was identified through the screening of multiple non-peptide positional scanning synthetic combinatorial libraries (PS-SCL) totaling more than eight hundred thousand compounds in conditions that allow for the identification of only high-affinity compounds. TPI 1361-17 exhibited an IC(50) value of 6.1 nM for inhibition of 1 nM MCH-induced Ca(2+) mobilization and completely displaced the binding of [(125)I] MCH to rat MCH(1) receptor. TPI 1361-17 was found specific, having no affinity for a variety of other G-protein coupled receptors and channels. TPI 1361-17 was found active in vivo since it blocked MCH-induced food intake by 75%. Our results indicate that TPI 1361-17 is a novel and selective MCH(1) receptor antagonist and is an effective tool to study the physiological functions of the MCH system. These results also illustrate the successful application of combinatorial library screening to identify specific surrogate antagonists in an academic setting.
Collapse
Affiliation(s)
- Hiroshi Nagasaki
- Dept. of Metabolic Medicine, School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent conceptualizations of food intake have divided ingestive behavior into multiple distinct phases. Here, we present a temporally and operationally defined classification of ingestive behaviors. Importantly, various physiological signals including hypothalamic peptides are thought to impact these distinct behavioral phases of ingestion differently. In this review, we summarize a number of behavioral assays designed to delineate the effects of hormone and peptide signals that influence food intake on these ingestive mechanisms. Finally, we discuss two issues that we have encountered in our laboratory which may obstruct the interpretation of results from these types of studies. First, the influence of previous experience with foods used in these behavioral tests and second, the importance of the nutrient composition of the selected test foods. The important conclusion discussed here is that the behavioral analysis of ingestion is accompanied by theoretical constructs and artificial divisions of biological realities and the appreciation of this fact can only increase the opportunities of contemporary behavioral scientists to make significant and novel observations of ingestive behaviors.
Collapse
|
19
|
Cavasotto CN, Orry AJW, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, O'Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA, Bayne ML, Monsma FJ. Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem 2008; 51:581-8. [PMID: 18198821 DOI: 10.1021/jm070759m] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanin-concentrating hormone receptor 1 (MCH-R1) is a G-protein-coupled receptor (GPCR) and a target for the development of therapeutics for obesity. The structure-based development of MCH-R1 and other GPCR antagonists is hampered by the lack of an available experimentally determined atomic structure. A ligand-steered homology modeling approach has been developed (where information about existing ligands is used explicitly to shape and optimize the binding site) followed by docking-based virtual screening. Top scoring compounds identified virtually were tested experimentally in an MCH-R1 competitive binding assay, and six novel chemotypes as low micromolar affinity antagonist "hits" were identified. This success rate is more than a 10-fold improvement over random high-throughput screening, which supports our ligand-steered method. Clearly, the ligand-steered homology modeling method reduces the uncertainty of structure modeling for difficult targets like GPCRs.
Collapse
|
20
|
Brown SN, Chitravanshi VC, Kawabe K, Sapru HN. Microinjections of melanin concentrating hormone into the nucleus tractus solitarius of the rat elicit depressor and bradycardic responses. Neuroscience 2007; 150:796-806. [PMID: 17988799 DOI: 10.1016/j.neuroscience.2007.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/28/2007] [Accepted: 10/04/2007] [Indexed: 02/07/2023]
Abstract
The presence of melanin-concentrating hormone (MCH) containing processes, projecting from the lateral hypothalamus to the medial nucleus tractus solitarius (mNTS), has been reported in the rat. It was hypothesized that MCH acting within the mNTS may modulate the central regulation of cardiovascular function. This hypothesis was tested in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (100 nl) of MCH (0.25, 0.5, 0.75, and 1 mM) into the mNTS of anesthetized rats elicited decreases in mean arterial pressure (20.4+/-1.6, 50.7+/-3.3, 35.7+/-2.8 and 30.0+/-2.6 mm Hg, respectively). The decreases in heart rate in response to these concentrations of MCH were 40.0+/-8.7, 90.0+/-13.0, 48.0+/-7.3 and 48.0+/-8.0 beats/min, respectively. Maximum cardiovascular responses were elicited by a 0.5 mM concentration of MCH. Cardiovascular responses to MCH were similar in unanesthetized mid-collicular decerebrate rats. Control microinjections of normal saline (100 nl) did not elicit any cardiovascular response. Ipsilateral or bilateral vagotomy significantly attenuated MCH-induced bradycardia. Prior microinjections of PMC-3881-PI (2 mM; MCH-1 receptor antagonist) into the mNTS blocked the cardiovascular responses to microinjections of MCH. Microinjection of MCH (0.5 mM) into the mNTS decreased efferent greater splanchnic nerve activity. Direct application of MCH (0.5 mM; 4 nl) to barosensitive nucleus tractus solitarius (NTS) neurons increased their firing rate. These results indicate that: 1) MCH microinjections into the mNTS activate MCH-1 receptors and excite barosensitive NTS neurons, causing a decrease in efferent sympathetic activity and blood pressure, and 2) MCH-induced bradycardia is mediated via the activation of the vagus nerves.
Collapse
Affiliation(s)
- S N Brown
- Department of Neurological Surgery, MSB H-586, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
21
|
Giordanetto F, Karlsson O, Lindberg J, Larsson LO, Linusson A, Evertsson E, Morgan DGA, Inghardt T. Discovery of cyclopentane- and cyclohexane-trans-1,3-diamines as potent melanin-concentrating hormone receptor 1 antagonists. Bioorg Med Chem Lett 2007; 17:4232-41. [PMID: 17532215 DOI: 10.1016/j.bmcl.2007.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/06/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
We herein report the optimization of cyclopentane- and cyclohexane-1,3-diamine derivatives as novel and potent MCH-R1 antagonists. Structural modifications of the 2-amino-quinoline and thiophene moieties found in the initial lead compound served to improve its metabolic stability profile and MCH-R1 affinity, and revealed unprecedented SAR when compared to other 2-amino-quinoline-containing MCH-R1 antagonists.
Collapse
Affiliation(s)
- Fabrizio Giordanetto
- Lead Generation, Computational Chemistry, AstraZeneca R&D Mölndal, SE-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Judd AS, Souers AJ, Wodka D, Zhao G, Mulhern MM, Iyengar RR, Gao J, Lynch JK, Freeman JC, Falls HD, Brodjian S, Dayton BD, Reilly RM, Gintant G, Limberis JT, Mikhail A, Leitza ST, Houseman KA, Diaz G, Bush EN, Shapiro R, Knourek-Segel V, Hernandez LE, Marsh KC, Sham HL, Collins CA, Kym PR. Identification of diamino chromone-2-carboxamides as MCHr1 antagonists with minimal hERG channel activity. Bioorg Med Chem Lett 2007; 17:2365-71. [PMID: 17350253 DOI: 10.1016/j.bmcl.2006.11.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 11/22/2022]
Abstract
A series of potent 2-carboxychromone-based melanin-concentrating hormone receptor 1 (MCHr1) antagonists were synthesized and evaluated for hERG (human Ether-a-go-go Related Gene) channel affinity and functional blockade. Basic dialkylamine-terminated analogs were found to weakly bind the hERG channel and provided marked improvement in a functional patch-clamp assay versus previously reported antagonists of the series.
Collapse
Affiliation(s)
- Andrew S Judd
- Metabolic Disease Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Iyengar RR, Lynch JK, Mulhern MM, Judd AS, Freeman JC, Gao J, Souers AJ, Zhao G, Wodka D, Doug Falls H, Brodjian S, Dayton BD, Reilly RM, Swanson S, Su Z, Martin RL, Leitza ST, Houseman KA, Diaz G, Collins CA, Sham HL, Kym PR. An evaluation of 3,4-methylenedioxy phenyl replacements in the aminopiperidine chromone class of MCHr1 antagonists. Bioorg Med Chem Lett 2007; 17:874-8. [PMID: 17234405 DOI: 10.1016/j.bmcl.2006.11.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/16/2006] [Accepted: 11/20/2006] [Indexed: 01/23/2023]
Abstract
The optimization of potent MCHr1 antagonist 1 with respect to improving its in vitro profile by replacement of the 3,4-methylenedioxy phenyl (piperonyl) moiety led to the discovery of 19, a compound that showed excellent MCHr1 binding and functional potencies in addition to possessing superior hERG separation, CYP3A4 profile, and receptor cross-reactivity profiles.
Collapse
Affiliation(s)
- Rajesh R Iyengar
- Metabolic Disease Research, Metabolic Disease Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Méndez-Andino JL, Colson AO, Meyers KM, Mitchell MC, Hodge K, Howard JM, Kim N, Ackley DC, Holbert JK, Mittelstadt SW, Dowty ME, Obringer CM, Suchanek P, Reizes O, Hu XE, Wos JA. The efficacy and cardiac evaluation of aminomethyl tetrahydronaphthalene ketopiperazines: a novel class of potent MCH-R1 antagonists. Bioorg Med Chem 2006; 15:2092-105. [PMID: 17236777 DOI: 10.1016/j.bmc.2006.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/18/2006] [Accepted: 12/15/2006] [Indexed: 11/28/2022]
Abstract
The design, synthesis, and biological studies of a novel class of MCH-R1 antagonists based on an aminotetrahydronaphthalene ketopiperazine scaffold is described. Compounds within this class promoted significant body weight reduction in mouse diet induced obesity studies. The potential for hERG blockage activity and QT interval studies in anesthetized dogs are discussed.
Collapse
Affiliation(s)
- José L Méndez-Andino
- Procter & Gamble Pharmaceuticals, 8700 Mason-Montgomery Road, Mason, OH 45039, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lynch JK, Freeman JC, Judd AS, Iyengar R, Mulhern M, Zhao G, Napier JJ, Wodka D, Brodjian S, Dayton BD, Falls D, Ogiela C, Reilly RM, Campbell TJ, Polakowski JS, Hernandez L, Marsh KC, Shapiro R, Knourek-Segel V, Droz B, Bush E, Brune M, Preusser LC, Fryer RM, Reinhart GA, Houseman K, Diaz G, Mikhail A, Limberis JT, Sham HL, Collins CA, Kym PR. Optimization of chromone-2-carboxamide melanin concentrating hormone receptor 1 antagonists: assessment of potency, efficacy, and cardiovascular safety. J Med Chem 2006; 49:6569-84. [PMID: 17064075 DOI: 10.1021/jm060683e] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evaluation of multiple structurally distinct series of melanin concentrating hormone receptor 1 antagonists in an anesthetized rat cardiovascualar assay led to the identification of a chromone-2-carboxamide series as having excellent safety against the chosen cardiovascular endpoints at high drug concentrations in the plasma and brain. Optimization of this series led to considerable improvements in affinity, functional potency, and pharmacokinetic profile. This led to the identification of a 7-fluorochromone-2-carboxamide (22) that was orally efficacious in a diet-induced obese mouse model, retained a favorable cardiovascular profile in rat, and demonstrated dramatic improvement in effects on mean arterial pressure in our dog cardiovascular model compared to other series reported by our group. However, this analogue also led to prolongation of the QT interval in the dog that was linked to affinity for hERG channel and unexpectedly potent functional blockade of this ion channel.
Collapse
Affiliation(s)
- John K Lynch
- Metabolic Disease Research, Integrative Pharmacology, Process Chemistry, and Exploratory Pharmacokinetics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Souers AJ, Iyengar RR, Judd AS, Beno DWA, Gao J, Zhao G, Brune ME, Napier JJ, Mulhern MM, Lynch JK, Freeman JC, Wodka D, Chen CJ, Falls HD, Brodjian S, Dayton BD, Diaz GJ, Bush EN, Shapiro R, Droz BA, Knourek-Segel V, Hernandez LE, Marsh KC, Reilly RM, Sham HL, Collins CA, Kym PR. Constrained 7-fluorocarboxychromone-4-aminopiperidine based Melanin-concentrating hormone receptor 1 antagonists: the effects of chirality on substituted indan-1-ylamines. Bioorg Med Chem Lett 2006; 17:884-9. [PMID: 17188866 DOI: 10.1016/j.bmcl.2006.11.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 11/19/2022]
Abstract
The incorporation of constrained tertiary amines into an existing class of N-benzyl-4-aminopiperidinyl chromone-based MCHr1 antagonists led to the identification of a series of chiral racemic compounds that displayed good to excellent functional potency, binding affinity, and selectivity over the hERG channel. Further separation of two distinct chiral racemic compounds into their corresponding pairs of enantiomers revealed a considerable selectivity for MCHr1 for one configuration, in addition to a striking difference in oral exposure between one pair of enantiomers in diet-induced obese mice. Oral administration of the most potent compound in this class in the same animal model led to significant reduction of fat mass in a semi-chronic model for weight loss.
Collapse
Affiliation(s)
- Andrew J Souers
- Metabolic Disease Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pissios P, Bradley RL, Maratos-Flier E. Expanding the scales: The multiple roles of MCH in regulating energy balance and other biological functions. Endocr Rev 2006; 27:606-20. [PMID: 16788162 DOI: 10.1210/er.2006-0021] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide originally identified as a 17-amino-acid circulating hormone in teleost fish, where it is secreted by the pituitary in response to stress and environmental stimuli. In fish, MCH lightens skin color by stimulating aggregation of melanosomes, pigment-containing granules in melanophores, cells of neuroectodermal origin found in fish scales. Although the peptide structure between fish and mammals is highly conserved, in mammals, MCH has no demonstrable effects on pigmentation; instead, based on a series of pharmacological and genetic experiments, MCH has emerged as a critical hypothalamic regulator of energy homeostasis, having effects on both feeding behavior and energy expenditure.
Collapse
Affiliation(s)
- Pavlos Pissios
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
28
|
Sasikumar TK, Qiang L, Burnett DA, Greenlee WJ, Hawes BE, Kowalski TJ, O'Neill K, Spar BD, Weig B. Novel aminobenzimidazoles as selective MCH-R1 antagonists for the treatment of metabolic diseases. Bioorg Med Chem Lett 2006; 16:5427-31. [PMID: 16889961 DOI: 10.1016/j.bmcl.2006.07.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 07/14/2006] [Accepted: 07/18/2006] [Indexed: 11/20/2022]
Abstract
A series of novel aminobenzimidazoles was prepared and evaluated for h-MCH-R1 antagonist properties. Most of the compounds showed excellent h-MCH-R1 binding affinity as well as mouse ex vivo binding. Compounds 9 and 18 were active in mouse DIO studies at 30mpk.
Collapse
Affiliation(s)
- T K Sasikumar
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sasikumar TK, Qiang L, Wu WL, Burnett DA, Greenlee WJ, O'Neill K, Hawes BE, van Heek M, Graziano M. Tetrahydroisoquinolines as MCH-R1 antagonists. Bioorg Med Chem Lett 2006; 16:4917-21. [PMID: 16824753 DOI: 10.1016/j.bmcl.2006.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
A series of potent and selective inhibitors of h-MCH-R1 has been developed based on the piperidine glycineamide compounds I and II. These structurally more rigid tetrahydroisoquinolines (III and IV) showed better pharmacokinetics. The highly potent compounds 12d and 12g displayed excellent rat pk.
Collapse
Affiliation(s)
- T K Sasikumar
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Francke F, Ward RJ, Jenkins L, Kellett E, Richter D, Milligan G, Bächner D. Interaction of neurochondrin with the melanin-concentrating hormone receptor 1 interferes with G protein-coupled signal transduction but not agonist-mediated internalization. J Biol Chem 2006; 281:32496-507. [PMID: 16945926 DOI: 10.1074/jbc.m602889200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Screening of a human brain cDNA library using the C-terminal tail of the melanin-concentrating hormone receptor 1 (MCHR1) as bait in a yeast two-hybrid assay resulted in the identification of the neurite-outgrowth related factor, neurochondrin. This interaction was verified in overlay, pulldown, and co-immunoprecipitation assays. Deletion mapping confined the binding to the C terminus of neurochondrin and to the proximal C terminus of MCHR1, a region known to be involved in G protein binding and signal transduction. This region of the MCHR1 is also able to interact with the actin- and intermediate filament-binding protein, periplakin. Interactions of MCHR1 with neurochondrin and periplakin were competitive, indicating that these two proteins bind to overlapping regions of MCHR1. Although neurochondrin did not interfere with melanin-concentrating hormone-mediated internalization of the receptor, it did inhibit G protein-coupled signal transduction via both Galpha(i/o) and Galpha(q/11) family G proteins as measured by each of melanin-concentrating hormone-induced G protein-activated inwardly rectifying K(+) channel activity of voltage-clamped amphibian oocytes, by calcium mobilization in transfected mammalian cells, and by reduction in the capacity of melanin-concentrating hormone to promote binding of [(35)S]guanosine 5'-3-O-(thio)triphosphate to both Galpha(o1) and Galpha(11). Immunohistochemistry revealed co-expression of neurochondrin and MCHR1 within the rodent brain, suggesting that neurochondrin may be involved in the regulation of MCHR1 signaling and play a role in modulating melanin-concentrating hormone-mediated functions in vivo.
Collapse
Affiliation(s)
- Felix Francke
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
McBriar MD, Guzik H, Shapiro S, Xu R, Paruchova J, Clader JW, O'neill K, Hawes B, Sorota S, Margulis M, Tucker K, Weston DJ, Cox K. Bicyclo[3.1.0]hexyl urea melanin concentrating hormone (MCH) receptor-1 antagonists: Impacting hERG liability via aryl modifications. Bioorg Med Chem Lett 2006; 16:4262-5. [PMID: 16753297 DOI: 10.1016/j.bmcl.2006.05.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/19/2006] [Accepted: 05/19/2006] [Indexed: 11/19/2022]
Abstract
Herein, we report the discovery of an effective strategy to modulate liabilities related to affinity of previously disclosed bicyclohexane MCHR-1 antagonists for the hERG channel. This paper describes one of several strategies incorporated to limit hERG binding via modifications of a terminal aryl group in an otherwise promising bicyclohexyl urea series.
Collapse
Affiliation(s)
- Mark D McBriar
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kym PR, Souers AJ, Campbell TJ, Lynch JK, Judd AS, Iyengar R, Vasudevan A, Gao J, Freeman JC, Wodka D, Mulhern M, Zhao G, Wagaw SH, Napier JJ, Brodjian S, Dayton BD, Reilly RM, Segreti JA, Fryer RM, Preusser LC, Reinhart GA, Hernandez L, Marsh KC, Sham HL, Collins CA, Polakowski JS. Screening for cardiovascular safety: a structure-activity approach for guiding lead selection of melanin concentrating hormone receptor 1 antagonists. J Med Chem 2006; 49:2339-52. [PMID: 16570930 DOI: 10.1021/jm0512286] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An inactin-anesthetized rat cardiovascular (CV) assay was employed in a screening mode to triage multiple classes of melanin-concentrating hormone receptor 1 (MCHr1) antagonists. Lead identification was based on a compound profile producing high drug concentration in both plasma (>40 microM) and brain (>20 microg/g) with <15% change in cardiovascular endpoints. As a result of these stringent requirements, lead optimization activities on multiple classes of MCHr1 antagonists were terminated. After providing evidence that the cardiovascular liabilities were not a function of MCHr1 antagonism, continued screening identified the chromone-substituted aminopiperidine amides as a class of MCHr1 antagonists that demonstrated a safe cardiovascular profile at high drug concentrations in both plasma and brain. The high incidence of adverse cardiovascular effects associated with an array of MCHr1 antagonists of significant chemical diversity, combined with the stringent safety requirements for antiobesity drugs, highlight the importance of incorporating cardiovascular safety assessment early in the lead selection process.
Collapse
Affiliation(s)
- Philip R Kym
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Segal-Lieberman G, Rubinfeld H, Glick M, Kronfeld-Schor N, Shimon I. Melanin-concentrating hormone stimulates human growth hormone secretion: a novel effect of MCH on the hypothalamic-pituitary axis. Am J Physiol Endocrinol Metab 2006; 290:E982-8. [PMID: 16603725 DOI: 10.1152/ajpendo.00138.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH), a 19-amino acid orexigenic (appetite-stimulating) hypothalamic peptide, is an important regulator of energy homeostasis. It is cleaved from its precursor prepro-MCH (ppMCH) along with several other neuropeptides whose roles are not fully defined. Because pituitary hormones such as growth hormone (GH), ACTH, and thyroid-stimulating hormone affect body weight and composition, appetite, insulin sensitivity, and lipoprotein metabolism, we investigated whether MCH exerts direct effects on the human pituitary to regulate energy balance using dispersed human fetal pituitaries (21-22 wk gestation) and cultured GH-secreting adenomas. We found that MCH receptor-1 (MCH-R1), but not MCH receptor-2, is expressed in both normal (fetal and adult) human pituitary tissues and in GH cell adenomas. MCH (10 nM) stimulated GH release from human fetal pituitary cultures by up to 62% during a 4-h incubation (P < 0.05). Interestingly, neuropeptide EI (10 nM), which is also cleaved from ppMCH, increased human GH secretion by up to 124% in fetal pituitaries. A milder, albeit significant, induction of GH secretion by MCH (20%) was seen in cultured GH-secreting pituitary adenomas. A comparable stimulation of GH secretion was seen when cultured mouse pituitary cells were treated with MCH. Treatment of cultured GH adenoma cells with MCH (100 nM) induced extracellular signal-regulated kinases 1 and 2 phosphorylation, suggesting activation of MCH-R1. In aggregate, these data suggest that MCH may regulate pituitary GH secretion and imply a potential cross-talk mechanism between appetite-regulating neuropeptides and pituitary hormones.
Collapse
|
34
|
Blackburn C, LaMarche MJ, Brown J, Che JL, Cullis CA, Lai S, Maguire M, Marsilje T, Geddes B, Govek E, Kadambi V, Doherty C, Dayton B, Brodjian S, Marsh KC, Collins CA, Kym PR. Identification and characterization of amino-piperidinequinolones and quinazolinones as MCHr1 antagonists. Bioorg Med Chem Lett 2006; 16:2621-7. [PMID: 16524729 DOI: 10.1016/j.bmcl.2006.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 11/25/2022]
Abstract
Several potent, functionally active MCHr1 antagonists derived from quinolin-2(1H)-ones and quinazoline-2(1H)-ones have been synthesized and evaluated. Pyridylmethyl substitution at the quinolone 1-position results in derivatives with low-nM binding potency and good selectivity with respect to hERG binding.
Collapse
|
35
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
36
|
Alexander SPH, Mathie A, Peters JA. Melanin-concentrating hormone. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
37
|
Fry D, Dayton B, Brodjian S, Ogiela C, Sidorowicz H, Frost LJ, McNally T, Reilly RM, Collins CA. Characterization of a neuronal cell line expressing native human melanin-concentrating hormone receptor 1 (MCHR1). Int J Biochem Cell Biol 2006; 38:1290-9. [PMID: 16524757 DOI: 10.1016/j.biocel.2006.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/23/2005] [Accepted: 01/16/2006] [Indexed: 11/21/2022]
Abstract
Melanin-concentrating hormone (MCH), an orexigenic neuropeptide in mammals, activates a G-protein coupled receptor, MCHR1. It is expected that antagonists of MCHR1 function will prove therapeutically useful as anti-obesity agents. Intracellular signaling by MCHR1 has been investigated primarily using non-neural cell lines expressing the recombinant receptor, in which MCHR1 has been shown to couple to G alpha(i/o) and G alpha(q) G-proteins. While these cell lines have been widely utilized to discover and optimize small molecule antagonists, it is unknown whether the intracellular signaling pathways in these cells accurately reflect those in neurons. Thus, we sought to develop a neurally derived cell line endogenously expressing MCHR1. IMR32, a human neuroblastoma cell line, has been shown to express MCHR1 mRNA; however, we were unable to detect either MCH-binding or MCH-stimulated Ca++-mobilization in these cells. Following transfection of IMR32 cells with a plasmid encoding human G alpha(16) G-protein, we isolated a cell line, I3.4.2, which responded to MCH in Ca++-mobilization assays. We found that the expression level of MCHR1 mRNA in I3.4.2 cells was 2000-fold higher than in the parent cell line. Using [125I]MCH saturation-binding to I3.4.2 cell membranes, we estimated the Bmax as 0.72 pmol/mg protein and the Kd as 0.35 nM. We report that Ca++-mobilization in I3.4.2 cells was insensitive to pertussis toxin (Ptx) treatment, indicating that signaling was via G alpha(q) G-proteins. Furthermore, negative results in cAMP accumulation assays confirmed the lack of signaling via the G alpha(i/o) G-proteins. Our results suggest that the I3.4.2 cell line may be useful for characterization of MCHR1 activity in a neural-derived cell line.
Collapse
Affiliation(s)
- Dennis Fry
- Metabolic Disease Research, Global Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saito Y, Maruyama K. Identification of melanin-concentrating hormone receptor and its impact on drug discovery. ACTA ACUST UNITED AC 2006; 305:761-8. [PMID: 16902961 DOI: 10.1002/jez.a.311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuropeptide melanin-concentrating hormone (MCH) was originally isolated from the pituitary of salmon, in which it causes skin paling. MCH is also found abundantly in mammalian neurons, and has been detected in the lateral hypothalamus and zona incerta, brain regions that are at the center of feeding behavior. Acute central administration of MCH leads to a rapid and significant increase in food intake, while MCH expression changes in states of altered energy balance, such as fasting and obesity. Furthermore, MCH knockout mice tend toward hypophagia and leanness. In 1999, we and four other groups identified an orphan G-protein-coupled receptor (GPCR) as a specific receptor for MCH (MCH-1 receptor). Although a second MCH receptor (MCH-2 receptor) was isolated in humans, it was found to be non-functional or encode a non-functional pseudogene in non-human species, including rodents. The discovery of these MCH receptors permitted the launch of a broad array of drug screening efforts and three MCH-1 receptor antagonists were identified to reduce food intake and body weight. Interestingly, some antagonists unexpectedly produced evidence that blockade of these receptors has antidepressant and anxiolytic activities. The expressions of the MCH receptors, which have been implicated in regulating emotion, stress and motivation, make MCH an excellent candidate for integrating the various homeostatic stimuli necessary for maintaining the proper conditions of energy metabolism and other physiological functions. Finally, the speed at which MCH receptor studies have been undertaken exemplifies the impact that this deorphanized GPCR will have on setting the stage for more detailed physiological studies.
Collapse
Affiliation(s)
- Yumiko Saito
- Department of Pharmacology, Saitama Medical School, Saitama 350-0492, Japan.
| | | |
Collapse
|
39
|
Francke F, Richter D, Bächner D. Immunohistochemical distribution of MIZIP and its co-expression with the Melanin-concentrating hormone receptor 1 in the adult rodent brain. ACTA ACUST UNITED AC 2005; 139:31-41. [PMID: 15950311 DOI: 10.1016/j.molbrainres.2005.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
We have recently identified a Melanin-concentrating hormone receptor 1 interacting zinc-finger protein (MIZIP) from a human brain cDNA library. Here, we report the generation of a specific antibody against MIZIP and its distribution in rodent tissues using immunoblotting and immunohistochemical techniques. MIZIP was detected as a 27 kDa protein in brain, liver, and skeletal muscle, and to a lower extend, in lung, testis, and heart. Subcellular fractionation of adult mouse brain revealed the presence of MIZIP and MCHR1 in the cytoplasmic, membrane, and synaptosomal fraction, but not in a postsynaptic density preparation. In cultured rat, embryonic hippocampal neurons MIZIP is somatodendritically localized. In the adult rodent brain, MIZIP is widely distributed. High levels of expression were detected in brain regions involved in olfaction, feeding behavior, sensorimotor integration, and learning and memory, for example, the olfactory bulb, the olfactory tubercle, the caudate putamen, the thalamus and hypothalamus, the nucleus accumbens, the cerebral cortex, the hippocampus formation, and the cerebellum. Co-expression of MIZIP and MCHR1 was observed, for example, in pyramidal neurons of the cerebral cortex and hippocampus, in neurons of the olivary nucleus, lateral hypothalamus, nucleus accumbens, caudate putamen, pontine, and mesencephalic trigeminal nucleus. However, there are also differences in the expression patterns, for example, high expression of MCHR1 was detected in the lateral habenula, but no expression of MIZIP. These data support the notion that MIZIP might interact with MCHR1 in a cell type specific manner in vivo, suggesting a role in the regulation of MCH signalling in distinct regions of the mammalian brain.
Collapse
Affiliation(s)
- Felix Francke
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
40
|
Vasudevan A, Verzal MK, Wodka D, Souers AJ, Blackburn C, Che JL, Lai S, Brodjian S, Falls DH, Dayton BD, Govek E, Daniels T, Geddes B, Marsh KC, Hernandez LE, Collins CA, Kym PR. Identification of aminopiperidine benzamides as MCHr1 antagonists. Bioorg Med Chem Lett 2005; 15:3412-6. [PMID: 15950463 DOI: 10.1016/j.bmcl.2005.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/05/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
The identification of a novel series of benzamide-containing MCHr1 antagonists is described. Compound 22 displayed moderate efficacy in a diet induced obesity mice model.
Collapse
Affiliation(s)
- Anil Vasudevan
- Metabolic Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Palani A, Shapiro S, McBriar MD, Clader JW, Greenlee WJ, O'Neill K, Hawes B. Biaryl diamides as potent melanin concentrating hormone receptor 1 antagonists. Bioorg Med Chem Lett 2005; 15:5234-6. [PMID: 16202583 DOI: 10.1016/j.bmcl.2005.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/16/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
Herein, we report the discovery of the potent and selective biaryl diamide derived MCH-R1 receptor antagonist 1, which was identified upon modification of a previously disclosed biaryl urea series. This paper describes one of the strategies incorporated to remove the highly mutagenic biarylaniline present in an otherwise promising biaryl urea series.
Collapse
Affiliation(s)
- Anandan Palani
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kym PR, Iyengar R, Souers AJ, Lynch JK, Judd AS, Gao J, Freeman J, Mulhern M, Zhao G, Vasudevan A, Wodka D, Blackburn C, Brown J, Che JL, Cullis C, Lai SJ, LaMarche MJ, Marsilje T, Roses J, Sells T, Geddes B, Govek E, Patane M, Fry D, Dayton BD, Brodjian S, Falls D, Brune M, Bush E, Shapiro R, Knourek-Segel V, Fey T, McDowell C, Reinhart GA, Preusser LC, Marsh K, Hernandez L, Sham HL, Collins CA. Discovery and characterization of aminopiperidinecoumarin melanin concentrating hormone receptor 1 antagonists. J Med Chem 2005; 48:5888-91. [PMID: 16161992 DOI: 10.1021/jm050598r] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
4-(1-Benzo[1,3]dioxol-5-ylmethylpiperidine-4-ylmethyl)-6-chlorochromen-2-one (7) is a potent, orally bioavailable melanin concentrating hormone receptor 1 (MCHr1) antagonist that causes dose-dependent weight loss in diet-induced obese mice. Further evaluation of 7 in an anesthetized dog model of cardiovascular safety revealed adverse hemodynamic effects at a plasma concentration comparable to the minimally effective therapeutic concentration. These results highlight the need for scrutiny of the cardiovascular safety profile of MCHr1 antagonists.
Collapse
Affiliation(s)
- Philip R Kym
- Metabolic Disease Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Palani A, Shapiro S, McBriar MD, Clader JW, Greenlee WJ, Spar B, Kowalski TJ, Farley C, Cook J, van Heek M, Weig B, O'neill K, Graziano M, Hawes B. Biaryl Ureas as Potent and Orally Efficacious Melanin Concentrating Hormone Receptor 1 Antagonists for the Treatment of Obesity. J Med Chem 2005; 48:4746-9. [PMID: 16033253 DOI: 10.1021/jm0503852] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a small molecule MCH-R1 antagonist which demonstrates oral efficacy in chronic rodent models. Substituted phenyl biaryl urea derivatives were synthesized and evaluated as MCH-R1 antagonists for the treatment of obesity. The structure-activity relationship studies in this series resulted in identification of urea 1 as a potent and selective MCH-R1 antagonist. Compound 1 exhibited oral efficacy in chronic (28 d) rodent models at 3-30 mpk showing significant reduction in food intake and weight gain relative to controls.
Collapse
Affiliation(s)
- Anandan Palani
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Souers AJ, Gao J, Wodka D, Judd AS, Mulhern MM, Napier JJ, Brune ME, Bush EN, Brodjian SJ, Dayton BD, Shapiro R, Hernandez LE, Marsh KC, Sham HL, Collins CA, Kym PR. Synthesis and evaluation of urea-based indazoles as melanin-concentrating hormone receptor 1 antagonists for the treatment of obesity. Bioorg Med Chem Lett 2005; 15:2752-7. [PMID: 15911251 DOI: 10.1016/j.bmcl.2005.03.114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/04/2005] [Accepted: 03/30/2005] [Indexed: 11/25/2022]
Abstract
A series of urea-based N-1-(2-aminoethyl)-indazoles was synthesized and evaluated for melanin-concentrating hormone receptor 1 (MCHr1) antagonism in both binding and functional assays. Several compounds that acted as MCHr1 antagonists were identified, and optimization afforded a compound with excellent binding affinity, good functional potency, and oral efficacy in a chronic model for weight loss in diet-induced obese mice.
Collapse
Affiliation(s)
- Andrew J Souers
- Metabolic Disease Research, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Benoit SC, Clegg DJ, Woods SC, Seeley RJ. The role of previous exposure in the appetitive and consummatory effects of orexigenic neuropeptides. Peptides 2005; 26:751-7. [PMID: 15808905 DOI: 10.1016/j.peptides.2004.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 12/15/2004] [Accepted: 12/17/2004] [Indexed: 11/30/2022]
Abstract
The ingestion of foods is comprised of two distinct phases of behavior: appetitive and consummatory. While most food intake paradigms include both phases, the intraoral intake test emphasizes the stereotyped consummatory-phase by infusing a liquid food directly into the oral cavity. Several hypothalamic peptides have been shown to increase intake of chow in standard food intake paradigms and the current experiments sought to test whether these peptides would increase food intake in the intraoral intake paradigm. NPY, melanin-concentrating hormone (MCH) and orexin-A were infused into the third ventricle (i3vt) in a counterbalanced latin-square design just prior to rats getting 0.1M sucrose solution infused via indwelling intraoral catheters and compared it to intake on bottle tests with access to the same sucrose solution. On the first day, each peptide increased intraoral intake relative to saline in the between-subjects comparison. Moreover, intake of sucrose following i3vt saline increased as a function of training. By the final day of the experiment, rats receiving saline consumed as much sucrose as rats receiving NPY, MCH, or orexin-A. This finding was conceptually replicated in the second experiment in which rats drank sucrose freely from a bottle on the home cage. A third experiment directly assessed the role of previous exposure in the sucrose intake induced by NPY. Those results confirm that repeated exposure to sucrose increases baseline intake and attenuates the hyperphagic effect of NPY. These results are consistent with two conclusions: (1) NPY, MCH, and orexin-A increase both appetitive and consummatory-phase ingestive behaviors on initial exposures; (2) repeated training interacts with the effects of these orexigenic peptides.
Collapse
Affiliation(s)
- Stephen C Benoit
- University of Cincinnati, Department of Psychiatry-North, 2170 East Galbraith Rd., Cincinnati, OH 45243, USA.
| | | | | | | |
Collapse
|
46
|
Souers AJ, Gao J, Brune M, Bush E, Wodka D, Vasudevan A, Judd AS, Mulhern M, Brodjian S, Dayton B, Shapiro R, Hernandez LE, Marsh KC, Sham HL, Collins CA, Kym PR. Identification of 2-(4-Benzyloxyphenyl)-N- [1-(2-pyrrolidin-1-yl-ethyl)-1H-indazol-6-yl]acetamide, an Orally Efficacious Melanin-Concentrating Hormone Receptor 1 Antagonist for the Treatment of Obesity. J Med Chem 2005; 48:1318-21. [PMID: 15743174 DOI: 10.1021/jm0490890] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimization of a high-throughput screening hit against melanin-concentrating hormone receptor 1 (MCHr1) led to the discovery of 2-(4-benzyloxy-phenyl)-N-[1-(2-pyrrolidin-1-yl-ethyl)-1H-indazol-6-yl]acetamide (7a). This compound was found to be a high-affinity ligand for MCHr1 and a potent inhibitor of MCH-mediated Ca(2+) release, showed good plasma and CNS exposure upon oral dosing in diet-induced obese mice, and is the first reported MCHr1 antagonist that is efficacious upon oral dosing in a chronic model of weight loss.
Collapse
Affiliation(s)
- Andrew J Souers
- Metabolic Disease Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eberle AN, Mild G, Schlumberger S, Drozdz R, Hintermann E, Zumsteg U. Expression and characterization of melanin-concentrating hormone receptors on mammalian cell lines. Peptides 2004; 25:1585-95. [PMID: 15476925 DOI: 10.1016/j.peptides.2004.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
The neuropeptide melanin-concentrating hormone (MCH) is expressed in central and peripheral tissues where it participates in the complex network regulating energy homeostasis as well as in other physiologically important functions. Two MCH receptor subtypes, MCH-R1 and MCH-R2, have been cloned which signal through activation of Gi/o/q proteins and hence regulate different intracellular signals, such as inhibition of cAMP formation, stimulation of IP3 production, increase in intracellular free Ca2+ and/or activation of MAP kinases. Most of the data were obtained with cell systems heterologously expressing either of the MCH receptors. Fewer reports exist on studies with cell lines which endogenously express MCH receptors. Here, we describe human and other mammalian cell lines with which MCH receptor activation can be studied under "natural" conditions and we summarize the characteristics and signaling pathways of the MCH receptors in the different cell systems.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Research, University Hospital Basel and University Children's Hospital Basel, Klingelbergstrasse 23, CH-4031 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
48
|
Souers AJ, Wodka D, Gao J, Lewis JC, Vasudevan A, Brodjian S, Dayton B, Ogiela CA, Fry D, Hernandez LE, Marsh KC, Collins CA, Kym PR. Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 3. Bioorg Med Chem Lett 2004; 14:4883-6. [PMID: 15341944 DOI: 10.1016/j.bmcl.2004.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 07/15/2004] [Accepted: 07/17/2004] [Indexed: 11/28/2022]
Abstract
Prior SAR studies on 2-amino-8-alkoxyquinoline MCHr1 antagonists demonstrated that compounds with acyclic amide-containing sidechains displayed exceptional binding and functional potency, but negligible CNS penetration. Related analogs with acyclic benzylamine-containing sidechains showed greatly improved CNS exposure, but suffered in functional potency. In this report, we demonstrate that cyclization of these benzylic amine sidechains affords compounds that combine the best elements of potency and CNS penetration among this class of antagonists. This is exemplified by compound 21, which has sub-nanomolar MCHr1 binding affinity, good functional potency, and excellent CNS exposure over 24h.
Collapse
Affiliation(s)
- Andrew J Souers
- Metabolic Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vasudevan A, Wodka D, Verzal MK, Souers AJ, Gao J, Brodjian S, Fry D, Dayton B, Marsh KC, Hernandez LE, Ogiela CA, Collins CA, Kym PR. Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 2. Bioorg Med Chem Lett 2004; 14:4879-82. [PMID: 15341943 DOI: 10.1016/j.bmcl.2004.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 07/15/2004] [Accepted: 07/17/2004] [Indexed: 10/26/2022]
Abstract
The continued SAR investigation of 2-amino-8-alkoxy quinolines as melanin concentrating hormone receptor-1 (MCHr1) antagonists is reported. Prior hit-to-lead efforts resulted in the identification of 1 as a robust MCHr1 antagonist. Further delineation of the structural parameters essential for MCHr1-binding affinity of this class of nontraditional GPCR ligands resulted in the identification of compounds such as 33, 34 and 37, which demonstrate single digit nanomolar antagonism of MCHr1-mediated Ca(2+) release. The synthesis and biological evaluation of these compounds are reported.
Collapse
Affiliation(s)
- Anil Vasudevan
- Metabolic Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Souers AJ, Wodka D, Gao J, Lewis JC, Vasudevan A, Gentles R, Brodjian S, Dayton B, Ogiela CA, Fry D, Hernandez LE, Marsh KC, Collins CA, Kym PR. Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 1. Bioorg Med Chem Lett 2004; 14:4873-7. [PMID: 15341942 DOI: 10.1016/j.bmcl.2004.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 07/15/2004] [Accepted: 07/17/2004] [Indexed: 11/16/2022]
Abstract
A high-throughput screen was performed in order to identify chemotypes that are bound by the melanin concentrating hormone receptor-1 (MCHr1). A novel 2-amino-8-alkoxyquinoline compound (1) was identified and subsequently optimized using a parallel and automated procedure for the rapid production of multiple analogs. The structure-activity relationships that emerged from this effort are described, along with selected pharmacokinetic parameters of compound (d)-61 when dosed orally in diet-induced obese mice.
Collapse
Affiliation(s)
- Andrew J Souers
- Metabolic Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|