1
|
Sultan N, Mowafey B, Ata F, El-Zekrid MH, Jayash SN. Enhanced Bone Regeneration Using Demineralized Dentin Matrix: A Comparative Study in Alveolar Bone Repair. Int Dent J 2025; 75:100817. [PMID: 40319772 PMCID: PMC12124616 DOI: 10.1016/j.identj.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
OBJECTIVES Alveolar bone resorption following tooth extraction presents significant challenges for implant-supported rehabilitations. Demineralised dentin matrix (DDM) has emerged as a promising scaffold for bone tissue regeneration. This study evaluates the bone-regenerating potential of varying degrees of dentin demineralisation. MATERIALS AND METHODS Thirty-two male white New Zealand rabbits underwent extraction of the left mandibular anterior tooth and were assigned to 4 groups: undemineralised dentin matrix (UDDM), partially demineralised dentin matrix (PDDM), completely demineralised dentin matrix (CDDM), and a control group with no treatment. At 4 and 8 weeks post extraction, cone-beam computed tomography (CBCT) was used to assess alveolar bone height and width. Histological analyses using H&E and Masson trichrome stains evaluated new bone formation, and immunohistochemistry detected osteopontin expression. RESULTS CBCT imaging revealed progressive increases in alveolar bone height and width across all groups over time. Histological analysis showed new bone formation in all groups, with the PDDM group demonstrating closer integration of newly formed bone trabeculae compared with the others. IHC results showed higher osteopontin expression in the PDDM group, highlighting its superior bone-inductive potential. CONCLUSION Among the tested materials, PDDM exhibited the most effective bone induction and tissue regeneration capabilities, outperforming CDDM and UDDM in promoting alveolar bone repair. These findings position PDDM as a valuable scaffold for enhancing bone tissue regeneration in clinical applications. CLINICAL RELEVANCE The use of PDDM in tooth extraction sockets significantly promotes efficient and reliable bone regeneration, making it a valuable option for clinical applications in implant dentistry.
Collapse
Affiliation(s)
- Nessma Sultan
- Faculty of Dentistry, Mansoura University, Mansoura, Egypt; Faculty of Dentistry, Mansoura National University, Gamasa, Egypt.
| | | | - Fatma Ata
- Faculty of Dentistry, Mansoura University, Egypt
| | | | | |
Collapse
|
2
|
Tekinarslan D, Er K, Eğin M, Dinçer T, Kiliç AO. The Effect of Various Irrigants on Mixed Biofilms in Dentinal Tubules: A Confocal Laser Scanning Microscopy Study. Microsc Res Tech 2025. [PMID: 40269575 DOI: 10.1002/jemt.24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
This study evaluated the bacterial disinfection efficacy of three different irrigation solutions and their combined usage in dentin tubules contaminated with mixed biofilms. A total of 60 single-rooted mandibular premolars were prepared with ProTaper Next X4, sterilized, and then inoculated with mixed biofilm for 7 days. After biofilm formation, the teeth were randomly divided into six groups (n = 10) based on the irrigation solution used: Group 1: sodium hypochlorite (NaOCl), Group 2: chlorhexidine gluconate (CHX), Group 3: polyhexamethylene biguanide (PHMB), Group 4: NaOCl + CHX, Group 5: NaOCl + PHMB, Group 6: distilled water (control group). The teeth were sectioned at the coronal, middle, and apical thirds and stained with LIVE/DEAD BackLight and examined under a confocal laser scanning microscope (CLSM) to determine the depth of dead bacterial penetration into the dentinal tubules. Additionally, one tooth from each group was subjected to bacterial viable counting before and after irrigation. The CLSM analysis revealed that the greatest penetration of dead bacteria occurred in the coronal third, followed by the apical and middle third (p < 0.05). Combined solutions demonstrated significantly higher disinfection efficacy compared with PHMB alone (p < 0.001). Viable count analysis revealed that Group 4 and Group 5 exhibited the greatest reduction in bacterial proliferation, respectively. The combined use of solutions was found to be more effective than the sole use of solutions. Therefore, it is recommended to combine irrigation solutions during final irrigation in clinical settings.
Collapse
Affiliation(s)
- Dide Tekinarslan
- Department of Endodontics, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
- Department of Endodontics, Faculty of Dentistry, Akdeniz University, Antalya, Türkiye
| | - Kürşat Er
- Department of Endodontics, Faculty of Dentistry, Akdeniz University, Antalya, Türkiye
| | - Mine Eğin
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
3
|
Toledano M, Fernández-Romero E, Osorio E, Aguilera FS, Lynch CD, Osorio MT, Toledano R, Osorio R. Effect of the anti-Alzheimer drug GSK-3β antagonist on numerical modeling of the energy dissipation through the resin-dentin interface. Dent Mater 2024; 40:1909-1919. [PMID: 39271304 DOI: 10.1016/j.dental.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVES The aim of this study was to determine the viscoelastic performance and energy dissipation of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nano-DMA/complex-loss-storage moduli-tan delta assessment and atomic force microscopy (AFM) analysis. RESULTS Dentin infiltrated with NPs and load cycled attained the highest complex modulus at hybrid layer and bottom of hybrid layer. Intertubular dentin treated with undoped NPs showed higher complex modulus than peritubular dentin, after load cycling, provoking energy concentration and breakdown at the interface. After infiltrating with TDg-NPs, complex modulus was similar between peri-intertubular dentin and energy dissipated homogeneously. Tan delta at intertubular dentin was higher than at peritubular dentin, after using TDg-NPs and load cycling. This generated the widest bandwidth of the collagen fibrils and bridge-like mineral structures that, as sight of energy dissipation, fastened active dentin remodeling. TDg-NPs inducted scarce mineralization after thermo-cycling, but these bridging processes limited breakdown zones at the interface. SIGNIFICANCE TDg-based NPs are then proposed for effective dentin remineralization and tubular seal, from a viscoelastic approach.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain.
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Christopher D Lynch
- University Dental School & Hospital/Cork University Dental School & Hospital, Cork, Ireland
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Raquel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Toledano M, Fernández-Romero E, Aguilera FS, Osorio E, Rodríguez-Santana JA, Garrido M, Solís PA, García-Godoy F, Osorio R. Tunable polymer-peptide hybrids for dentin tissue repair. J Dent 2024; 148:105027. [PMID: 38679137 DOI: 10.1016/j.jdent.2024.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES This study targets to assess the remineralization capability of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanohardness, Masson's trichrome staining microscopy, and Raman analysis. RESULTS Dentin surfaces treated with TDg-NPs and load cycled produced higher nanohardness than the rest of the groups at the hybrid layer. At the bottom of the hybrid layer, all samples treated with TDg-NPs showed higher nanohardness than the rest of the groups. Active remineralization underneath the hybrid layer was detected in all groups after TDg application and load cycling, inducting new dentinal tubuli formation. After thermocycling, remineralization at the hybrid layer was not evidenced in the absence of NPs. Raman analysis showed increase mineralization, enriched carbonate apatite formation, and improved crosslinking and scaffolding of the collagen. CONCLUSIONS Mechanical loading on the specimens obtained after TDg-NPs dentin infiltration inducts an increase of mineralization at the resin/dentin interface, indicating remineralization of peritubular and intertubular dentin with augmented crystallographic maturity in crystals. Enriched collagen quality was produced, generating an adequate matrix organization to promote apatite nucleation, after tideglusib infiltration. CLINICAL SIGNIFICANCE At the present research, it has been proved the creation of reparative dentin, at the resin-dentin interface, after tideglusib dentin infiltration. Chemical stability, to favor integrity of the resin-dentin interface, is warranted in the presence of the TDg-NPs in the demineralized dentin collagen.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - José A Rodríguez-Santana
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Macarena Garrido
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Pedro A Solís
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Franklin García-Godoy
- Health Science Center, College of Dentistry, University of Tennessee, 875 Union Avenue, Memphis, TN 38103, United States
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
5
|
Doss BL, Konkol JA, Liu Y, Brinzari TV, Pan L. Correlative Atomic Force Microscopy and Raman Spectroscopy in Acid Erosion of Dentin. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1755-1763. [PMID: 37639376 DOI: 10.1093/micmic/ozad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Physical properties and chemical composition are fundamentally defining and interconnected surface characteristics. However, few techniques are able to capture both in a correlative fashion at the same sample location and orientation. This is especially important for complex materials such as dentin, which is an inner tooth structure and is a heterogeneous, composite inorganic-organic material with open channels (tubules) that extend toward the tooth pulp. Here, a combined microscope system consisting of an atomic force microscope and a confocal Raman spectrometer was used to study the correlative physical and chemical properties of human dentin. The local hardness of dentin was highly correlated with the Raman signal ratio of inorganic to organic material, and this was enhanced in the peritubular regions of dentin. When the samples were etched with citric acid, Young's modulus, hardness, and inorganic-to-organic material ratio decreased significantly, collagen fibrils on the surface were exposed, the peritubular regions were removed, and the tubule diameters increased. Thus, the combined atomic force microscopy (AFM)-Raman approach allows for comprehensive and correlative physical-chemical analysis of material surfaces and will be invaluable for evaluating oral therapeutic strategies.
Collapse
Affiliation(s)
- Bryant L Doss
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| | - Jakub A Konkol
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Yangxi Liu
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| | - Tatiana V Brinzari
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| | - Long Pan
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Cloyd AK, Boone K, Ye Q, Snead ML, Spencer P, Tamerler C. Engineered Peptides Enable Biomimetic Route for Collagen Intrafibrillar Mineralization. Int J Mol Sci 2023; 24:ijms24076355. [PMID: 37047325 PMCID: PMC10093982 DOI: 10.3390/ijms24076355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.
Collapse
Affiliation(s)
- Aya K. Cloyd
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Paulette Spencer
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
7
|
Ryou H, Tay FR, Ossa A, Arola D. Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy. J Mech Behav Biomed Mater 2023; 138:105624. [PMID: 36543081 PMCID: PMC9845140 DOI: 10.1016/j.jmbbm.2022.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Mineralized tissues like bone and dentin are materials that support the distribution of mechanical loads through the body of humans and other animals. While their organic content plays a critical role on the structural behavior of these materials, investigations that quantify the structural properties of collagen fibrils in mineralized tissues at the nanoscale are rather limited. We report a new experimental methodology to prepare samples of dentinal collagen fibrils for evaluation by atomic force microscopy and characterize their mechanical behavior. Specifically, a Dynamic Mechanical Analysis (DMA) of the collagen fibrils was performed to study their viscoelastic behavior. The capacity for viscous dampening in the fibrils was characterized in terms of measures of the energy dissipation, phase angle and loss modulus in both the peak and trough regions of the fibrils. According to the phase angle and the loss modulus, the peak regions of the fibrils exhibit significantly greater stiffness and capacity for dampening than the trough regions. This new approach will help in exploring the role of collagen fibrils in the mechanical behavior of dentin and other mineralized tissues as well as help to understand the potential effects from changes in fibril confirmation with tissue treatments, aging or that result from chronic disease.
Collapse
Affiliation(s)
- Heonjune Ryou
- U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Alex Ossa
- School of Applied Sciences and Engineering, Universidad Eafit, Medellin, Colombia
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Bafail A, Carneiro KMM, Kishen A, Prakki A. Effect of Odanacatib on the release of NTX (Amino Terminal Telopeptide) from LPS contaminated type I dentin collagen. Dent Mater 2023; 39:162-169. [PMID: 36608993 DOI: 10.1016/j.dental.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluated the Odanacatib inhibitor treatment on lipopolysaccharide (LPS) contamination effect on cathepsin-K mediated dentin degradation by analysis of type I collagen C- and N-termini telopeptides. METHODS Pulverized and disks of human dentin were demineralized and LPS contaminated, or stored in deionized water (DW) for 12 h. Samples were challenged with lactic acid (LA). Aliquots of dentin powder were treated with 1 mL Odanacatib or stored in DW for 30 min. Dentin collagen degradation was determined by sub-product release of C-terminal (ICTP and CTX) and N-terminal (NTX) telopeptides, normalized to total protein (tp) concentration (n = 3). Dentin matrix was evaluated for gravimetric (n = 8) and ultrastructural changes. Data were analyzed by Student t-test, one-way ANOVA and Tukey's test (α = 5 %). RESULTS LA incubation significantly increased telopeptide release compared with DW (p < 0.05). In untreated groups, significantly higher CTXtp, NTXtp telopeptide rates were observed for LA+LPS samples compared with DW (p < 0.01). Odanacatib significantly reduced ICTPtp, CTXtp, and NTXtp telopeptide release for LPS, LA, and LA+LPS conditions. In untreated groups, LPS and LA+LPS challenge significantly increased dentin weight loss (p = 0.02). Within each storage condition, Odanacatib treatment did not affect weight change (p > 0.05) of dentin disks. SIGNIFICANCE This study showed that LPS contamination resulted in significantly higher rates of NTX than CTX from dentin matrix. Odanacatib significantly reduced telopeptide release rates of LPS contaminated dentin matrix.
Collapse
Affiliation(s)
- Arwa Bafail
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Restorative Dental Sciences, Faculty of Dentistry, Taibah University, Medina, Saudi Arabia
| | - Karina Midori Mori Carneiro
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, ON, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Anuradha Prakki
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Shafiei F, Dehghani Z, Tavangar MS. Effect of natural antioxidants on bond strength recovery of resin-modified glass ionomers to the NaOCl-affected pulp chamber dentin. Clin Exp Dent Res 2023; 9:258-262. [PMID: 36519273 PMCID: PMC9932246 DOI: 10.1002/cre2.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This study evaluated the effect of two natural antioxidants on the compromised bond strength of a resin-modified glass ionomer (RMGI) to the sodium hypochlorite (NaOCl)-affected pulp chamber dentin. METHODS Forty-two sound third molars were split into halves. The exposed pulp chamber dentin was ground to provide the flat dentin surfaces and divided into seven groups (n = 12), according to the solutions used for immersion: (1) Control, distilled water; (2) NaOCl, 5.25% NaOCl for 20 min; (3) NaOCl/Ethylenediaminetetraacetic acid (EDTA); 5.25% NaOCl for 20 min + 17% EDTA for 1 min; (4) NaOCl/TA, 5.25% NaOCl + 10% tanic acid (TA) for 5 min; (5) NaOCl/EDTA/TA, 5.25% NaOCl + 17% EDTA + 10% TA for 5 min; (6) NaOCl/PA, 5.25% NaOCl+ 10% proanthocyanidin for 5 min; and (7) NaOCl/EDTA/PA, 5.25% NaOCl+ 17% EDTA + 10% PA for 5 min. The RMGI was bonded on the treated dentin using a Tygon tube. After 24 h of storage, microshear bond strength (µSBS) was tested. Data in MPa were submitted to one-way analysis of variance and Tamhane test. RESULTS NaOCl significantly decreased the µSBS; NaOCl/EDTA and NaOCl/TA significantly increased the µSBS, higher than the control group (p < .05); and in the NaOCl/EDTA/TA group, the increased bond strength was at the level of the control group (p > .05). NaOCl/PA and NaOCl/EDTA/PA and NaOCl groups had comparable µSBS. CONCLUSION TA could be suggested to provide effective bonding of RMGI and immediate sealing of the pulp chamber dentin after NaOCl irrigation.
Collapse
Affiliation(s)
- Fereshteh Shafiei
- Oral and Dental Disease Research Center, Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Zahra Dehghani
- Students' Research CommitteeShiraz University of Medical SciencesShirazIran
- Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Maryam S. Tavangar
- Oral and Dental Disease Research Center, Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| |
Collapse
|
10
|
Zhao GM, Zhang GY, Bai XY, Yin F, Ru A, Yu XL, Zhao LJ, Zhu CZ. Effects of NaCl-assisted regulation on the emulsifying properties of heat-induced type I collagen. Food Res Int 2022; 159:111599. [DOI: 10.1016/j.foodres.2022.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
11
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
12
|
Assessing Collagen D-Band Periodicity with Atomic Force Microscopy. MATERIALS 2022; 15:ma15041608. [PMID: 35208148 PMCID: PMC8877100 DOI: 10.3390/ma15041608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
The collagen superfamily includes more than fifty collagen and/or collagen-like proteins with fibril-forming collagen type I being the most abundant protein within the extracellular matrix. Collagen type I plays a crucial role in a variety of functions, it has been associated with many pathological conditions and it is widely used due to its unique properties. One unique nano-scale characteristic of natural occurring collagen type I fibers is the so-called D-band periodicity, which has been associated with collagen natural structure and properties, while it seems to play a crucial role in the interactions between cells and collagen and in various pathological conditions. An accurate characterization of the surface and structure of collagen fibers, including D-band periodicity, on collagen-based tissues and/or (nano-)biomaterials can be achieved by Atomic Force Microscopy (AFM). AFM is a scanning probe microscope and is among the few techniques that can assess D-band periodicity. This review covers issues related to collagen and collagen D-band periodicity and the use of AFM for studying them. Through a systematic search in databases (PubMed and Scopus) relevant articles were identified. The study of these articles demonstrated that AFM can offer novel information concerning D-band periodicity. This study highlights the importance of studying collagen D-band periodicity and proves that AFM is a powerful tool for investigating a number of different properties related to collagen D-band periodicity.
Collapse
|
13
|
Schuh CMAP, Leiva-Sabadini C, Huang S, Barrera NP, Bozec L, Aguayo S. Nanomechanical and Molecular Characterization of Aging in Dentinal Collagen. J Dent Res 2022; 101:840-847. [PMID: 35130787 DOI: 10.1177/00220345211072484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Methylglyoxal (MGO) is an important molecule derived from glucose metabolism with the capacity of attaching to collagen and generating advanced glycation end products (AGEs), which accumulate in tissues over time and are associated with aging and diseases. However, the accumulation of MGO-derived AGEs in dentin and their effect on the nanomechanical properties of dentinal collagen remain unknown. Thus, the aim of the present study was to quantify MGO-based AGEs in the organic matrix of human dentin as a function of age and associate these changes with alterations in the nanomechanical and ultrastructural properties of dentinal collagen. For this, 12 healthy teeth from <26-y-old and >50-y-old patients were collected and prepared to obtain crown and root dentin discs. Following demineralization, MGO-derived AGEs were quantified with a competitive ELISA. In addition, atomic force microscopy nanoindentation was utilized to measure changes in elastic modulus in peritubular and intertubular collagen fibrils. Finally, principal component analysis was carried out to determine aging profiles for crown and root dentin. Results showed an increased presence of MGO AGEs in the organic matrix of dentin in the >50-y-old specimens as compared with the <26-y-old specimens in crown and root. Furthermore, an increase in peritubular and intertubular collagen elasticity was observed in the >50-y-old group associated with ultrastructural changes in the organic matrix as determined by atomic force microscopy analysis. Furthermore, principal component analysis loading plots suggested different "aging profiles" in crown and root dentin, which could have important therapeutic implications in restorative and adhesive dentistry approaches. Overall, these results demonstrate that the organic matrix of human dentin undergoes aging-related changes due to MGO-derived AGEs with important changes in the nanomechanical behavior of collagen that may affect diagnostic and restorative procedures in older people.
Collapse
Affiliation(s)
- C M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - C Leiva-Sabadini
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Huang
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - N P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - S Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Mouss MEL, Merzouki T, Rekik A, Hambli R. Multiscale approach incorporating tropocollagen scale to assess the effect of molecular age-related modifications on elastic constants of cortical bone based on finite element and homogenization methods. J Mech Behav Biomed Mater 2022; 128:105130. [DOI: 10.1016/j.jmbbm.2022.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
15
|
Al Makhzoomi AK, Kirk TB, Allison GT. An AFM study of the nanostructural response of New Zealand white rabbit Achilles tendons to cyclic loading. Microsc Res Tech 2021; 85:728-737. [PMID: 34632676 DOI: 10.1002/jemt.23944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
The nanostructural response of New Zealand white rabbit Achilles tendons to a fatigue damage model was assessed quantitatively and qualitatively using the endpoint of dose assessments of each tendon from our previous study. The change in mechanical properties was assessed concurrently with nanostructural change in the same non-viable intact tendon. Atomic force microscopy was used to study the elongation of D-periodicities, and the changes were compared both within the same fibril bundle and between fibril bundles. D-periodicities increased due to both increased strain and increasing numbers of fatigue cycles. Although no significant difference in D-periodicity lengthening was found between fibril bundles, the lengthening of D-periodicity correlated strongly with the overall tendon mechanical changes. The accurate quantification of fibril elongation in response to macroscopic applied strain assisted in assessing the complex structure-function relationship in Achilles tendons.
Collapse
Affiliation(s)
- Anas K Al Makhzoomi
- School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Thomas B Kirk
- School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
| | - Garry T Allison
- Associate Deputy Vice-Chancellor, Research Excellence, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Eren ED, Nijhuis WH, van der Weel F, Dede Eren A, Ansari S, Bomans PHH, Friedrich H, Sakkers RJ, Weinans H, de With G. Multiscale characterization of pathological bone tissue. Microsc Res Tech 2021; 85:469-486. [PMID: 34490967 PMCID: PMC9290679 DOI: 10.1002/jemt.23920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Bone is a complex natural material with a complex hierarchical multiscale organization, crucial to perform its functions. Ultrastructural analysis of bone is crucial for our understanding of cell to cell communication, the healthy or pathological composition of bone tissue, and its three‐dimensional (3D) organization. A variety of techniques has been used to analyze bone tissue. This article describes a combined approach of optical, scanning electron, and transmission electron microscopy for the ultrastructural analysis of bone from the nanoscale to the macroscale, as illustrated by two pathological bone tissues. By following a top‐down approach to investigate the multiscale organization of pathological bones, quantitative estimates were made in terms of calcium content, nearest neighbor distances of osteocytes, canaliculi diameter, ordering, and D‐spacing of the collagen fibrils, and the orientation of intrafibrillar minerals which enable us to observe the fine structural details. We identify and discuss a series of two‐dimensional (2D) and 3D imaging techniques that can be used to characterize bone tissue. By doing so we demonstrate that, while 2D imaging techniques provide comparable information from pathological bone tissues, significantly different structural details are observed upon analyzing the pathological bone tissues in 3D. Finally, particular attention is paid to sample preparation for and quantitative processing of data from electron microscopic analysis.
Collapse
Affiliation(s)
- E Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter H Nijhuis
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Freek van der Weel
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.,Eindhoven University of Technology, Department of Biomedical Engineering, Biointerface Science, Eindhoven, The Netherlands
| | - Sana Ansari
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.,Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Paul H H Bomans
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ralph J Sakkers
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.,TU Delft, Department of Biomechanical Engineering, Delft, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
17
|
Wu L, Wang Q, Li Y, Yang M, Dong M, He X, Zheng S, Cao CY, Zhou Z, Zhao Y, Li QL. A Dopamine Acrylamide Molecule for Promoting Collagen Biomimetic Mineralization and Regulating Crystal Growth Direction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39142-39156. [PMID: 34433244 DOI: 10.1021/acsami.1c12412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.
Collapse
Affiliation(s)
- Leping Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qingqing Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Mengmeng Yang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Menglu Dong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Yuancong Zhao
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Quan-Li Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
18
|
Miller CA, Ashworth E, Deery C, El Sharkasi L, Moorehead RD, Martin N. Effect of demineralising agents on organic and inorganic components of dentine. Caries Res 2021; 55:521-533. [PMID: 34348278 DOI: 10.1159/000518463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Cheryl Ann Miller
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Eleanor Ashworth
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Chris Deery
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Lamis El Sharkasi
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Robert David Moorehead
- Department of Materials, Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Nicolas Martin
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Farina AP, Cecchin D, Vidal CMP, Leme-Kraus AA, Bedran-Russo AK. Removal of water binding proteins from dentin increases the adhesion strength of low-hydrophilicity dental resins. Dent Mater 2020; 36:e302-e308. [PMID: 32811665 DOI: 10.1016/j.dental.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/05/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the role of proteoglycans (PGs) on the physical properties of the dentin matrix and the bond strength of methacrylate resins with varying hydrophilicities. METHODS Dentin were obtained from crowns of human molars. Enzymatic removal of PGs followed a standard protocol using 1 mg/mL trypsin (Try) for 24 h. Controls were incubated in ammonium bicarbonate buffer. Removal of PGs was assessed by visualization of glycosaminoglycan chains (GAGs) in dentin under transmission electron microscopy (TEM). The dentin matrix swelling ratio was estimated using fully demineralized dentin. Dentin wettability was assessed on wet, dry and re-wetted dentin surfaces through water contact angle measurements. Microtensile bond strength test (TBS) was performed with experimental adhesives containing 6% HEMA (H6) and 18% HEMA (H18) and a commercial dental adhesive. Data were statistically analyzed using ANOVA and post-hoc tests (α = 0.05). RESULTS The enzymatic removal of PGs was confirmed by the absence and fragmentation of GAGs. There was statistically significant difference between the swelling ratio of Try-treated and control dentin (p < 0.001). Significantly lower contact angle was found for Try-treated on wet and dry dentin (p < 0.002). The contact angle on re-wet dentin was not recovered in Try-treated group (p = 0.9). Removal of PGs significantly improved the TBS of H6 (109% higher, p < 0.001) and H18 (29% higher, p = 0.002) when compared to control. The TBS of commercial adhesive was not affected by trypsin treatment (p = 0.9). SIGNIFICANCE Changing the surface energy of dentin by PGs removal improved resin adhesion, likely due to more efficient water displacement, aiding to improved resin infiltration and polymerization.
Collapse
Affiliation(s)
- Ana Paula Farina
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA; Department of Restorative Dentistry, Passo Fundo Dental School, University of Passo Fundo, UPF, Passo Fundo, RS, Brazil
| | - Doglas Cecchin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA; Department of Restorative Dentistry, Passo Fundo Dental School, University of Passo Fundo, UPF, Passo Fundo, RS, Brazil
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA
| | - Ariene Arcas Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA.
| |
Collapse
|
20
|
|
21
|
Mouss ME, Zellagui S, Nasraoui M, Hambli R. Parametric investigation of the effects of load level on fatigue crack growth in trabecular bone based on artificial neural network computation. Proc Inst Mech Eng H 2020; 234:784-793. [DOI: 10.1177/0954411920924509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports the development of an artificial neural network computation model to predict the accumulation of crack density and crack length in cancellous bone under a cyclic load. The model was then applied to conduct a parametric investigation into the effects of load level on fatigue crack accumulation in cancellous bone. The method was built in three steps: (1) conducting finite element simulations to predict fatigue growth of different three-dimensional micro-computed tomography cancellous bone specimens considering input combinations based on a factorial experimental design; (2) performing a training stage of an artificial neural network based on the results of step 1; and (3) applying the trained artificial neural network to rapidly predict the crack density and the crack length growth for cancellous bone under a cyclic loading for a given applied apparent strain, cycle frequency, bone volume fraction, bone density and apparent elastic modulus.
Collapse
Affiliation(s)
- Marouane El Mouss
- University of Orléans, University of Tours, INSA CVL, LaMé, Orléans, France
| | - Said Zellagui
- University of Orléans, University of Tours, INSA CVL, LaMé, Orléans, France
| | - Makrem Nasraoui
- University of Orléans, University of Tours, INSA CVL, LaMé, Orléans, France
| | - Ridha Hambli
- University of Orléans, University of Tours, INSA CVL, LaMé, Orléans, France
| |
Collapse
|
22
|
Abstract
As the hardest tissue formed by vertebrates, enamel represents nature's engineering masterpiece with complex organizations of fibrous apatite crystals at the nanometer scale. Supramolecular assemblies of enamel matrix proteins (EMPs) play a key role as the structural scaffolds for regulating mineral morphology during enamel development. However, to achieve maximum tissue hardness, most organic content in enamel is digested and removed at the maturation stage, and thus knowledge of a structural protein template that could guide enamel mineralization is limited at this date. Herein, by examining a gene-modified mouse that lacked enzymatic degradation of EMPs, we demonstrate the presence of protein nanoribbons as the structural scaffolds in developing enamel matrix. Using in vitro mineralization assays we showed that both recombinant and enamel-tissue-based amelogenin nanoribbons are capable of guiding fibrous apatite nanocrystal formation. In accordance with our understanding of the natural process of enamel formation, templated crystal growth was achieved by interaction of amelogenin scaffolds with acidic macromolecules that facilitate the formation of an amorphous calcium phosphate precursor which gradually transforms into oriented apatite fibers along the protein nanoribbons. Furthermore, this study elucidated that matrix metalloproteinase-20 is a critical regulator of the enamel mineralization as only a recombinant analog of a MMP20-cleavage product of amelogenin was capable of guiding apatite mineralization. This study highlights that supramolecular assembly of the scaffold protein, its enzymatic processing, and its ability to interact with acidic carrier proteins are critical steps for proper enamel development.
Collapse
|
23
|
Solhi L, Atai M, Nodehi A, Imani M. Poly (methacrylic acid) modified spherical and platelet hybrid nanoparticles as reinforcing fillers for dentin bonding systems: Synthesis and properties. J Mech Behav Biomed Mater 2020; 109:103840. [PMID: 32543405 DOI: 10.1016/j.jmbbm.2020.103840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In this study the mechanical and adhesion properties of an experimental methacrylate based dentin bonding system containing a combination of spherical and layered platelet nanoparticles were investigated. The nanoparticles were first modified through surface graft polymerization of methacrylic acid in order to make the particles surface compatible with the bonding matrix resin. MATERIALS AND METHODS Graft free radical polymerization in aqueous media was performed to attach Poly (methacrylic acid) (PMA) chains onto the surface of Na-MMT nanoclay (Cloisite® Na+) and silica nanoparticles (Aerosil® 200). The hybrid PMA grafted nanoparticles (PMA-g-NC-Sil) were characterized using GPC, FTIR, TGA, and X-ray diffraction (XRD). Dentin adhesives containing different amounts of the hybrid modified nanoparticles were photopolymerized and their characteristics were studied using FTIR, TEM, SEM, EDXA, and XRD techniques. The adhesives containing different amounts of PMA-g-NC-Sil were applied to the conditioned human premolar dentin to bond a dental composite to the teeth. The bond strength was then measured by microshear bond strength testing method. The results were analyzed and compared statistically. The stability of PMA-g-NC-Sil dispersion in the dentin adhesive was investigated using separation analysis (LUMi Reader) techniques. RESULTS The grafting of PMA chains onto the surface of nanoclay was confirmed by FTIR and TGA analytical techniques. The intercalated-exfoliated structure for the nanoclay platelets in the photo-cured adhesive was observed using XRD and TEM. The surface modification of the nanoparticles significantly increased the dispersion stability of the fillers in the adhesive solution. The microshear test results indicated that the incorporation of the PMA-g-NC-Sil nanoparticles significantly enhanced the bond strength to dentin with the highest shear bond strength observed at 0.5 wt%. SIGNIFICANCE The incorporation of the PMA modified hybrid nanofillers into the dentin adhesive resulted in a dentin bonding agent with enhanced shear bond strength through reinforcing the adhesive matrix and potential interactions between their carboxylic acid groups and the tooth structure. The dispersion stability of the nanoparticles was also dramatically improved by the surface modification of the nanoparticles.
Collapse
Affiliation(s)
- Laleh Solhi
- -Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran; -Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076, Aalto, Finland
| | - Mohammad Atai
- -Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran.
| | - Azizollah Nodehi
- -Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Mohammad Imani
- -Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| |
Collapse
|
24
|
Mouss ME, Rekik A, Zellagui S, Merzouki T, Hambli R. Numerical modeling of the effects hydration and number of hydrogen bonds on the mechanical properties of the tropocollagen molecule. Proc Inst Mech Eng H 2020; 234:299-306. [DOI: 10.1177/0954411919898935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone aging involves structural and molecular modifications, especially at the level of type I tropocollagen. This macromolecule shows two main age-related alterations, which are the decrease of both molecular diameter (due to the loss of hydration) and number of hydrogen bonds. In this work, it is proposed to investigate the influence of these two parameters (molecular diameter and number of hydrogen bonds) on the mechanical behavior of tropocollagen using finite element method. To this end, a novel three-dimensional finite element model of collagen molecule accounting for hydrogen bonds was developed. Then, a numerical design of experiments for the diameter of tropocollagen and variations in the number of hydrogen bonds has been established. The mechanical properties (“load–strain” curve and apparent Young’s modulus) of the collagen molecule were obtained by employing the proposed model to uniaxial tensile tests. The parametric study demonstrates that the mechanical properties of tropocollagen are slightly affected by the rate of hydration but considerably affected by variation of the number of hydrogen bonds. Finally, a fitted analytical function was deduced from the above results showing effects of the two parameters (hydration rate and hydrogen bonds) on the apparent Young’s modulus of tropocollagen. This study could be useful to understand the influence of structural age modifications of tropocollagen on the macroscopic mechanical properties of bone.
Collapse
Affiliation(s)
- Marouane El Mouss
- Université d’Orléans, Université de Tours, INSA CVL, LaMé, Orléans, France
| | - Amna Rekik
- Université d’Orléans, Université de Tours, INSA CVL, LaMé, Orléans, France
| | - Said Zellagui
- Université d’Orléans, Université de Tours, INSA CVL, LaMé, Orléans, France
| | - Tarek Merzouki
- Université Versailles Saint Quentin en Yvelines, LISV–Versailles Engineering Systems Laboratory, Vélizy, France
| | - Ridha Hambli
- Université d’Orléans, Université de Tours, INSA CVL, LaMé, Orléans, France
| |
Collapse
|
25
|
Guo X, Wang X, Li X, Jiang YC, Han S, Ma L, Guo H, Wang Z, Li Q. Endothelial Cell Migration on Poly(ε-caprolactone) Nanofibers Coated with a Nanohybrid Shish-Kebab Structure Mimicking Collagen Fibrils. Biomacromolecules 2020; 21:1202-1213. [DOI: 10.1021/acs.biomac.9b01638] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Guo
- School of Mechanics Science and Security Engineering, Zhengzhou University, Zhengzhou 45001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
| | - Xiaofeng Wang
- School of Mechanics Science and Security Engineering, Zhengzhou University, Zhengzhou 45001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
| | - Xuyan Li
- School of Mechanics Science and Security Engineering, Zhengzhou University, Zhengzhou 45001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
| | - Yong-Chao Jiang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 45001, China
| | - Shanshan Han
- School of Mechanics Science and Security Engineering, Zhengzhou University, Zhengzhou 45001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
| | - Lei Ma
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 45001, China
| | - Haiyang Guo
- School of Mechanics Science and Security Engineering, Zhengzhou University, Zhengzhou 45001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
| | - Zhenxing Wang
- School of Mechanics Science and Security Engineering, Zhengzhou University, Zhengzhou 45001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
| | - Qian Li
- School of Mechanics Science and Security Engineering, Zhengzhou University, Zhengzhou 45001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 45001, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 45001, China
| |
Collapse
|
26
|
Toledano M, Osorio E, Aguilera FS, Muñoz-Soto E, Toledano-Osorio M, López-López MT, Medina-Castillo AL, Carrasco-Carmona Á, Osorio R. Polymeric nanoparticles for endodontic therapy. J Mech Behav Biomed Mater 2019; 103:103606. [PMID: 32090933 DOI: 10.1016/j.jmbbm.2019.103606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
The effectiveness of novel polymeric nanoparticles (NPs) application in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment was evaluated. The effect of undoped NPs, zinc, calcium and doxycycline-doped NPs (Zn-NPs, Ca-NPs and D-NPs, respectively) was tested in radicular dentin. A control group without NPs was included. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning and transmission electron microscopy, energy-dispersive analysis, AFM, Young's modulus (Ei), Nano DMA, Raman, and X-Ray Diffraction analysis. Ca-NPs and Zn-NPs treated dentin exhibited the lowest microleakage with hermetically sealed dentinal tubules and a zinc-based salt generation onto dentin. Zn-NPs favored crystallinity and promoted the highest Ei and functional remineralization at the apical dentin, generating differences between the values of complex modulus among groups. Ca-NPs produced closure of tubules and porosities at the expense of a relative mineral amorphization, without creating zones of stress concentration. The highest sealing efficacy was obtained in Zn-NPs-treated samples, along with the highest values of Young's modulus and dentin mineralization. These high values of Ei were obtained by closing voids, cracks, pores and tubules, and by strengthening the root dentin. When using undoped NPs or Ca-NPs, deposition of minerals occurred, but radicular dentin was not mechanically reinforced. Therefore, application of Zn-NPs in endodontically treated teeth previous to the canal filling is encouraged.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Esther Muñoz-Soto
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain.
| | - Modesto T López-López
- University of Granada, Faculty of Science, Applied Physics Department, Fuente Nueva S/n, Granada, 18071, Spain
| | - Antonio L Medina-Castillo
- NanoMyP, Spin-Off Enterprise from University of Granada, Edificio BIC-Granada, Avda. Innovación 1, Armilla, Granada, 18016, Spain
| | - Álvaro Carrasco-Carmona
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja S/n, Granada, 18071, Spain
| |
Collapse
|
27
|
Kafantari N, Gulabivala K, Georgiou G, Knowles J, Ng YL. Effect of Heated Sodium Hypochlorite on the Viscoelastic Properties of Dentin Evaluated Using Dynamic Mechanical Analysis. J Endod 2019; 45:1155-1160. [DOI: 10.1016/j.joen.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 11/30/2022]
|
28
|
Gulabivala K, Ng YL. Value of root-filled teeth in maintaining a functional dentition for life. Br Dent J 2019; 226:769-784. [DOI: 10.1038/s41415-019-0313-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Toledano M, Muñoz-Soto E, Aguilera FS, Osorio E, Pérez-Álvarez MC, García-Menocal JAD, Toledano-Osorio M, Osorio R. The mineralizing effect of zinc oxide-modified hydroxyapatite-based sealer on radicular dentin. Clin Oral Investig 2019; 24:285-299. [DOI: 10.1007/s00784-019-02938-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/02/2019] [Indexed: 11/30/2022]
|
30
|
Nano-Structured Demineralized Human Dentin Matrix to Enhance Bone and Dental Repair and Regeneration. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Demineralized dentin matrix (DDM), derived from human teeth, is an excellent scaffold material with exciting bioactive properties to enhance bone and dental tissue engineering efficacy. In this article, first the nano-structure and bioactive components of the dentin matrix were reviewed. Then the preparation methods of DDM and the resulting properties were discussed. Next, the efficacy of DDM as a bone substitute with in vitro and in vivo properties were analyzed. In addition, the applications of DDM in tooth regeneration with promising results were described, and the drawbacks and future research needs were also discussed. With the extraction of growth factors from DDM and the nano-structural properties of DDM, previous studies also broadened the use of DDM as a bioactive carrier for growth factor delivery. In addition, due to its excellent physical and biological properties, DDM was also investigated for incorporation into other biomaterials design and fabrication, yielding great enhancements in hard tissue regeneration efficacy.
Collapse
|
31
|
Sereda G, VanLaecken A, Turner JA. Monitoring demineralization and remineralization of human dentin by characterization of its structure with resonance-enhanced AFM-IR chemical mapping, nanoindentation, and SEM. Dent Mater 2019; 35:617-626. [PMID: 30808558 DOI: 10.1016/j.dental.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This research aimed at monitoring demineralization and remineralization of dentin and its collagen matrix at the nanoscale by amorphous, microcrystalline, and in situ formed hydroxyapatite. METHODS The concurrent use of the resonance-enhanced atomic force microscopy coupled with infrared probe (AFM-IR) chemical mapping, nano-indentation, and scanning electron microscopy (SEM) provides a detailed insight into the structure of human dentin, as well as to the processes of its partial demineralization and remineralization. RESULTS The resonance-enhanced AFM-IR chemical mapping of dentin has shown to be a useful method to follow distribution of its collagen and hydroxyapatite components at the micro- and nanoscale levels, especially in conjunction with SEM imaging and nanoindentation. Dentin with a higher extent of natural dentin tubule occlusion tends to be harder and less elastic. The relative affinity of the collagen and hydroxyapatite components of dentin toward hydroxyapatite depends on its type (amorphous, microcrystalline, or formed in-situ). The gel mineralization technique allows for an even and controlled growth of hydroxyapatite guided by the completely demineralized collagen matrix of dentin. SIGNIFICANCE The observed trends of the affinity of collagen toward different forms of hydroxyapatite helps develop new remineralizing formulations. The employed methods of characterization may provide an insight to the natural processes of bone mineralization guided by its both hydroxyapatite and protein constituents.
Collapse
Affiliation(s)
- Grigoriy Sereda
- University of South Dakota, 414 E Clark St., Vermillion, SD 57069, United States.
| | - Allison VanLaecken
- University of South Dakota, 414 E Clark St., Vermillion, SD 57069, United States
| | - Joseph Alan Turner
- University of Nebraska-Lincoln, 1400 R St., Lincoln, NE 68588, United States
| |
Collapse
|
32
|
LORENZETTI CC, PEREIRA MCDS, KUGA MC, SAAD JRC, CAMPOS EAD. Influência de tratamento dentinário com EDTA sobre a resistência de união de sistemas adesivos autocondicionantes. REVISTA DE ODONTOLOGIA DA UNESP 2019. [DOI: 10.1590/1807-2577.00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Introdução Os adesivos autocondicionantes apresentam técnica adesiva simplificada e diminuição na sensibilidade pós-operatória. Quando aplicados sobre a dentina, atuam sobre a smear layer, cuja efetiva remoção ainda constitui um desafio. Uma substância utilizada como pré-tratamento dentinário na ajuda da remoção da smear layer é o etilenodiamino tetracético dissódico (EDTA). Objetivo Avaliar os efeitos do EDTA em associação com sistemas adesivos autocondicionantes na resistência de união ao microcisalhamento. Material e método Foram seccionadas as superfícies oclusais de 72 terceiros molares humanos extraídos, para expor superfície dentinária plana. Os dentes preparados foram divididos em: dentina sem pré-tratamento; dentina tratada com EDTA 0,1M; dentina tratada com EDTA 0,5M. Cada grupo recebeu tratamento de três sistemas adesivos autocondicionantes: Single Bond Universal (SBU), AdheSE (AdheSE) e Clearfil SE Bond (CSEB). Foi delimitada a área adesiva e assim posicionada uma matriz transparente, para inserção com resina composta Z250XT seguida de polimerização por 40 segundos. Após 24 horas de armazenamento, os dentes foram submetidos ao ensaio de microcisalhamento. Os dados obtidos foram analisados estatisticamente, utilizando-se os testes Two-Way ANOVA e Bonferroni, e sendo considerado nível de significância de 5%. Resultado Não houve diferença estatística significante na resistência de união entre os pré-tratamentos dentinários (p=0,8353), porém houve diferença significativa entre os adesivos (p<0,05) CSEB e AdheSE, mostrando semelhança entre CSEB e SBU, e entre SBU e AdheSE. Conclusão O pré-tratamento dentinário com solução de EDTA não afetou a resistência de união com nenhum dos sistemas adesivos autocondicionantes utilizados.
Collapse
|
33
|
Stylianou A, Kontomaris SV, Grant C, Alexandratou E. Atomic Force Microscopy on Biological Materials Related to Pathological Conditions. SCANNING 2019; 2019:8452851. [PMID: 31214274 PMCID: PMC6535871 DOI: 10.1155/2019/8452851] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 05/16/2023]
Abstract
Atomic force microscopy (AFM) is an easy-to-use, powerful, high-resolution microscope that allows the user to image any surface and under any aqueous condition. AFM has been used in the investigation of the structural and mechanical properties of a wide range of biological matters including biomolecules, biomaterials, cells, and tissues. It provides the capacity to acquire high-resolution images of biosamples at the nanoscale and allows at readily carrying out mechanical characterization. The capacity of AFM to image and interact with surfaces, under physiologically relevant conditions, is of great importance for realistic and accurate medical and pharmaceutical applications. The aim of this paper is to review recent trends of the use of AFM on biological materials related to health and sickness. First, we present AFM components and its different imaging modes and we continue with combined imaging and coupled AFM systems. Then, we discuss the use of AFM to nanocharacterize collagen, the major fibrous protein of the human body, which has been correlated with many pathological conditions. In the next section, AFM nanolevel surface characterization as a tool to detect possible pathological conditions such as osteoarthritis and cancer is presented. Finally, we demonstrate the use of AFM for studying other pathological conditions, such as Alzheimer's disease and human immunodeficiency virus (HIV), through the investigation of amyloid fibrils and viruses, respectively. Consequently, AFM stands out as the ideal research instrument for exploring the detection of pathological conditions even at very early stages, making it very attractive in the area of bio- and nanomedicine.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2238, Cyprus
| | - Stylianos-Vasileios Kontomaris
- Mobile Radio Communications Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
- Athens Metropolitan College, Sorou 74, Marousi 15125, Greece
| | - Colin Grant
- Hitachi High-Technologies Europe, Techspace One, Keckwick Lane, Warrington WA4 4AB, UK
| | - Eleni Alexandratou
- Biomedical Optics and Applied Biophysics Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
| |
Collapse
|
34
|
Saini K, Discher D, Kumar N. Static and time-dependent mechanical response of organic matrix of bone. J Mech Behav Biomed Mater 2018; 91:315-325. [PMID: 30639980 DOI: 10.1016/j.jmbbm.2018.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Bone derives its mechanical strength from the complex arrangement of collagen fibrils (type-I primarily) reinforced with hydroxy-apatite (HAp) mineral crystals in extra- and intra-fibrillar compartments. This study demonstrates a novel approach to obtain organic matrix of bone through its demineralization as well as mechanically characterize it at small length scales using static and dynamic indentation techniques. Sample surface preparation protocol used in the present work maintained the surface integrity of demineralized bone samples which resulted sample surface of roughness (RMS) magnitude of approximately 14 nm (averaged over 1 × 1 μm2 area duly verified by atomic force microscope (AFM)). Elemental composition analysis via energy dispersive X-ray spectroscopy (EDX) (for probed depth upto 2 μm) confirmed the complete removal of HAp mineral from bone samples during their demineralization using EDTA leaving collagen molecule assemblies unaffected as represented by Second Harmonic Generation (SHG) imaging. The modulus magnitudes of organic matrix obtained using from quasistatic as well as dynamic indentations (at constant frequency of 30 Hz) as ∼2.6 GPa and 4.5 GPa respectively, demonstrated the influence of loading rate on the estimated mechanical properties. For indentation depth to surface roughness ratio greater than ∼5:1, interestingly, measured material properties of organic matrix were found to depend on increasing magnitude of indentation depth of up to ∼500 nm value which probed from few collagen fibrils to next level of hierarchy i.e. collagen fibers. These findings are very useful to accurately determine the elastic and visco-elastic response of organic matrices of mineralized tissues for various applications including tissue engineering, bio-mimetics, etc.
Collapse
Affiliation(s)
- Karanvir Saini
- Chemical and Bio-molecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Dennis Discher
- Chemical and Bio-molecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
35
|
Osorio R, Osorio E, Aguilera FS, Medina-Castillo AL, Toledano M, Toledano-Osorio M. Silver improves collagen structure and stability at demineralized dentin: A dynamic-mechanical and Raman analysis. J Dent 2018; 79:61-67. [DOI: 10.1016/j.jdent.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 01/28/2023] Open
|
36
|
Zapletalová Z, Kubínek R, Vůjtek M, Novotný R. Examination of Dentin Surface Using AFM (Our Experience). ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atomic force microscopy (AFM) as one the technique of Scanning Probe Microscopy is useful for imaging of surface structure. This method can yield three-dimensional high-resolution topographic images of sample surfaces by using a scanning technique for conductors and insulators on atomic scale. It is based upon mapping of atomic-forces on a surface of an investigated sample. The method is useful not only in physics and chemistry; it can be also applied in biological fields. Special construction of AFM scanner enables to follow biological samples in liquid environments. Artifacts caused by dehydration of samples are removed this way. Dentin of human teeth is a vital hydrated tissue. It is strongly sensitive to dehydration and drying that are commonly used in preparation of samples in examinations by Scanning Electron Microscopy (SEM). We describe our experience in examination of dentin surfaces of extracted human third molars using contact method of AFM under moist conditions.
Collapse
|
37
|
Toledano M, Toledano-Osorio M, Guerado E, Caso E, Osorio E, Osorio R. Assessing bone quality through mechanical properties in postmenopausal trabecular bone. Injury 2018; 49 Suppl 2:S3-S10. [PMID: 30219145 DOI: 10.1016/j.injury.2018.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The inner structure of trabecular bone is a result of structural optimization provided by remodeling processes. Changes in hormonal status related to menopause cause bone tissue loss and micro-architectural deterioration with a consequent susceptibility to fracture. Accumulation of micro-damage in bone, as a function of the rate of production and rate of repair, underlies the development of stress fractures, increasing fragility associated to age and osteoporosis, especially in transmenopausal women. PATIENTS AND METHODS Quasi-static and nano-dynamic mechanical characterization were undertaken in trabecular bone from femoral neck biopsies of postmenopausal women. AFM (Atomic Force Microscopy) complementary studies were performed to determine nano-roughness (SRa) and the fibrils width of collagen. Nanoindentations were used to quantify transmenopausal changes in intrinsic mechanical properties of trabecular bone: hardness (Hi), modulus of Young (Ei), complex modulus (E*), tan delta (δ), storage modulus (E') and loss modulus (E"). RESULTS As result of the quasi-static measurements, 0.149 (0.036) GPa and 2.95 (0.73) GPa of Hi and Ei were obtained, respectively. As result of the nano-dynamic measurements, 17.94 (3.15), 0.62 (0.10), 13.79 (3.21 and 6.39 (1.28) GPa of E*, tan (δ), E' and E" were achieved, respectively. 101.07 SRa and 831.28 nm of fibrils width were additionally obtained. CONCLUSIONS This study poses a first approach to the measurement of bone quality in postmenopausal trabecular bone by combining quasi-static, nano-DMA analysis and tribology of dentin surface through AFM characterization.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Enrique Guerado
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Costa del Sol, University of Malaga, Autovía A-7, Km 187, 29603, Marbella, Malaga, Spain
| | - Enrique Caso
- Research Unit, Hospital Universitario Costa del Sol, University of Malaga, Autovía A-7, Km 187, 29603, Marbella. Malaga, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain.
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
38
|
Um IW, Kim YK, Jun SH, Kim MY, Cui N. Demineralized Dentin Matrix as a Carrier of Recombinant Human Bone Morphogenetic Proteins: in Vivo Study. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital
| | - Sang-Ho Jun
- Department of Dentistry, Korea University Anam Hospital
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University
| | - Nianhui Cui
- Department of Oral & Maxillofacial Surgery, Peking University School & Hospital of Stomatology
| |
Collapse
|
39
|
Lu X, Rawson SD, Withers PJ. Effect of hydration and crack orientation on crack-tip strain, crack opening displacement and crack-tip shielding in elephant dentin. Dent Mater 2018; 34:1041-1053. [DOI: 10.1016/j.dental.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/11/2018] [Accepted: 04/04/2018] [Indexed: 12/01/2022]
|
40
|
Rocha AC, Da Rosa W, Cocco AR, Da Silva AF, Piva E, Lund RG. Influence of Surface Treatment on Composite Adhesion in Noncarious Cervical Lesions: Systematic Review and Meta-analysis. Oper Dent 2018; 43:508-519. [PMID: 29570026 DOI: 10.2341/17-086-l] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to analyze the influence of dentin surface treatments on the retention rate of resin composite restorations in non-carious cervical lesions (NCCLs). Seven randomized clinical trials were included in this review. Data regarding retention rate, type of surface treatment, and the main characteristics of studies were analyzed. Two reviewers performed a literature search up to December 2016 in eight databases: PubMed (Medline), Lilacs, Ibecs, Web of Science, BBO, Scopus, Scielo and The Cochrane Library. Only clinical trials evaluating dentin surface treatments in resin composite restoration in NCCLs were included. Noncontrolled clinical trials, reviews, editorial letters, case reports, case series and studies published in a language other than English, Portuguese, or Spanish were not included. The included studies evaluated different surface treatments, such as using an adhesive system with a frictional technique, drying the dentin, and removing sclerotic dentin by using a bur and applying EDTA before primer use. The analysis considering the mechanical removal of dentin surface with a bur and the application of an adhesive system in a frictional mode showed these treatments improved retention rates of the resin composite restorations in NCCLs ( p<0.05). There is evidence in the literature suggesting that the mechanical removal of dentin surface with a bur and the application of an adhesive system in a frictional mode could improve the retention rates of resin composite restorations in NCCLs. However, the studies showed high heterogeneity, and additional clinical trials are needed to determine the best dentin treatment option in NCCLs.
Collapse
|
41
|
Oliveira LV, Maia TS, Zancopé K, Menezes MDS, Soares CJ, Moura CCG. Can intra-radicular cleaning protocols increase the retention of fiberglass posts? A systematic review. Braz Oral Res 2018; 32:e16. [PMID: 29561949 DOI: 10.1590/1807-3107bor-2018.vol32.0016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
The presence of residues within the root canal after post-space preparation can influence the bond strength between resin cement and root dentin when using fiberglass posts (FGPs). Currently, there is no consensus in the literature regarding what is the best solution for the removal of debris after post-space preparation. This systematic review involved "in vitro" studies to investigate if cleaning methods of the root canal after post-space preparation can increase the retention of FGPs evaluated by the push-out test. Searches were carried out in PubMed (MEDLINE) and Scopus databases up to July2017. English language studies published from 2007 to July 2017 were selected. 475 studies were found, and 9 were included in this review. Information from the 9 studies were collected regarding the number of samples, storage method after extraction, root canal preparation, method of post-space preparation, endodontic sealer, resin cement, cleaning methods after post-space and presence of irrigant activation. Five studies presented the best results for the association of sodium hypochlorite (NaOCl) and ethylenediamine tetra-acetic acid (EDTA), while in the other 4 studies, the solutions that showed improved retention of FGPs were photon-induced photoacoustic streaming (PIPS), Qmix, Sikko and EDTA. The results showed heterogeneity in all comparisons due to a high variety of information about cleaning methods, different concentrations, application time, type of adhesive system and resin cements used. In conclusion, this review suggests that the use of NaOCl/EDTA results in the retention of FGPs and may thus be recommended as a post-space cleaning method influencing the luting procedure.
Collapse
Affiliation(s)
- Lilian Vieira Oliveira
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Endodontics, Uberlândia, MG, Brazil
| | - Thais Souza Maia
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brazil
| | - Karla Zancopé
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Occlusion, Fixed Prostheses, and Dental Materials, Uberlândia, MG, Brazil
| | - Murilo de Souza Menezes
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brazil
| | - Carlos José Soares
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brazil
| | | |
Collapse
|
42
|
Zhang J, Sun Y, Zhao Y, Wei B, Xu C, He L, Oliveira CLP, Wang H. Centrifugation-induced fibrous orientation in fish-sourced collagen matrices. SOFT MATTER 2017; 13:9220-9228. [PMID: 29199311 DOI: 10.1039/c7sm01871a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Orientation of fibrous collagen structures plays an important role not only in the native function of various biological tissues but also in the development of next-generation tissue engineering scaffolds. However, the controlled assembly of collagen in vitro into an anisotropic structure, avoiding complex technical procedures and specialized apparatus, remains a challenge. Here, an oriented collagen matrix was fabricated at the macroscale by simple centrifugation, and the aligned topographical features of the resulting collagen matrix were revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and small angle X-ray scattering. The aligned matrix exhibited a higher ultimate tensile strength and strain than a random matrix. Centrifugation had an impact on the diameter and density of the collagen fibrils, while it had no effect on their native D-periodicity and thermal stability. Additionally, structural anisotropy of the collagen matrix facilitated the proliferation and migration of NIH/3T3 fibroblasts, compared with the random one. This simple and cost-effective method could lead to mass production of aligned collagen matrices and future possibilities for different applications in tissue engineering.
Collapse
Affiliation(s)
- Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Toledano M, Osorio R, Guerado E, Caso E, Osorio E. Nanostructure in the trabecular bone of postmenopausal women: Mechanical and chemical analysis. Injury 2017; 48 Suppl 6:S26-S33. [PMID: 29162238 DOI: 10.1016/s0020-1383(17)30791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The possibility of diagnosis and prediction of multiple disorders in trabecular bone through nano-biomechanics and chemical analysis are summarized. Improvements to the understating of the compositional contributors of bone mineral and organic components to mechanical competence are crucial. Viscoelastic properties and Raman characterization have been used to evaluate possible alterations of the trabecular bone associated with aging, disease, or injury. In this study, the trabecular bone of postmenopausal women has been analyzed throughout. (a) Nanomechanical characterization, by using nano-DMA: complex modulus, tan δ, loss modulus (E'), and storage modulus (E'); and (b) Raman analysis: relative presence of minerals, carbonate-to-phosphate ratio (both from the mineral components), the crosslinking and nature/secondary structure of collagen (both from the organic components). Complementary nano-morphological studies were done assessing roughness (SRa) and collagen fibrils width, on this trabecular bone. A general idea of the behavior of the viscoelastic performance can be obtained by the Tan δ (E″/E'), that achieved 0.98GPa of damping. 249nm and 0.898μm of SRa roughness and fibrils width were obtained, respectively. The relative presence of minerals, the carbonate-to-phosphate ratio, the crosslinking and the nature/secondary structure of collagen, between 700 and 1700cm-1, were also obtained, in order to propose a study protocol for trabecular bone characterization.
Collapse
Affiliation(s)
- Manuel Toledano
- Faculty of Dentistry, Dental Materials Section, University of Granada, Granada, Spain
| | - Raquel Osorio
- Faculty of Dentistry, Dental Materials Section, University of Granada, Granada, Spain.
| | - Enrique Guerado
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Costa del Sol, University of Malaga, Malaga, Spain
| | - Enrique Caso
- Research Unit, Hospital Universitario Costa del Sol, University of Malaga, Malaga, Spain
| | - Estrella Osorio
- Faculty of Dentistry, Dental Materials Section, University of Granada, Granada, Spain
| |
Collapse
|
44
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
45
|
Bazaid A, Neumayer SM, Sorushanova A, Guyonnet J, Zeugolis D, Rodriguez BJ. Non-destructive determination of collagen fibril width in extruded collagen fibres by piezoresponse force microscopy. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa85ec] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Bertassoni LE, Swain MV. Removal of dentin non-collagenous structures results in the unraveling of microfibril bundles in collagen type I. Connect Tissue Res 2017; 58:414-423. [PMID: 27657550 PMCID: PMC6214662 DOI: 10.1080/03008207.2016.1235566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS The structural organization of collagen from mineralized tissues, such as dentin and bone, has been a topic of debate in the recent literature. Recent reports have presented novel interpretations of the complexity of collagen type I at different hierarchical levels and in different tissues. Here, we investigate the nanostructural organization of demineralized dentin collagen following the digestion of non-collagenous components with a trypsin enzyme. MATERIALS AND METHODS Dentin specimens were obtained from healthy third-molars, cut into small cubes, and polished down to 1 µm roughness. Samples were then demineralized with 10% citric acid for 2 min. Selected specimens were further treated with a solution containing 1 mg/ml trypsin for 48 hours at 37 °C (pH 7.9-9.0). Both untreated and trypsin digested samples were analyzed using SDS-PAGE, Field Emission Scanning Electron Microscopy (FE-SEM), and nanoindentation, where surface hardness and creep properties were compared before and after treatments. RESULTS FE-SEM images of demineralized dentin showed the banded morphology of D-periodical collagen type I, which upon enzymatic digestion with trypsin appeared to dissociate longitudinally, consistently unraveling ~20 nm structures (microfibril bundles). Such nanoscale structures, to the best of our knowledge, have not been characterized in dentin previously. Mechanical characterization via nanoindentation showed that the unraveling of such microfibril bundles affected the creep displacement and creep rate of demineralized dentin. CONCLUSION In summary, our results provide novel evidence of the organization of collagen type I from dentin, which may have important implications for the interaction of dental materials with the organic dentin matrix and the mechanical properties of mineralized tissues.
Collapse
Affiliation(s)
- Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland OR, USA,Center for Regenerative Medicine, Oregon Health and Science University, Portland OR, USA,Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia
| | - Michael V. Swain
- Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia,Bioclinical Sciences Department, Faculty of Dentistry, University of Kuwait, Kuwait
| |
Collapse
|
47
|
Toledano M, Pérez-Álvarez MC, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, Osorio R. A zinc oxide-modified hydroxyapatite-based cement facilitated new crystalline-stoichiometric and amorphous apatite precipitation on dentine. Int Endod J 2017; 50 Suppl 2:e109-e119. [DOI: 10.1111/iej.12807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022]
Affiliation(s)
- M. Toledano
- Department of Stomatology; Dental Materials Section; Faculty of Dentistry; University of Granada; Granada Spain
| | | | - F. S. Aguilera
- Department of Stomatology; Dental Materials Section; Faculty of Dentistry; University of Granada; Granada Spain
| | - E. Osorio
- Department of Stomatology; Dental Materials Section; Faculty of Dentistry; University of Granada; Granada Spain
| | - I. Cabello
- Department of Stomatology; Dental Materials Section; Faculty of Dentistry; University of Granada; Granada Spain
| | - M. Toledano-Osorio
- Department of Stomatology; Dental Materials Section; Faculty of Dentistry; University of Granada; Granada Spain
| | - R. Osorio
- Department of Stomatology; Dental Materials Section; Faculty of Dentistry; University of Granada; Granada Spain
| |
Collapse
|
48
|
Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 2017; 33:637-649. [PMID: 28416222 PMCID: PMC5481168 DOI: 10.1016/j.dental.2017.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Knowledge of the structural organization and mechanical properties of dentin has expanded considerably during the past two decades, especially on a nanometer scale. In this paper, we review the recent literature on the nanostructural and nanomechanical properties of dentin, with special emphasis in its hierarchical organization. METHODS We give particular attention to the recent literature concerning the structural and mechanical influence of collagen intrafibrillar and extrafibrillar mineral in healthy and remineralized tissues. The multilevel hierarchical structure of collagen, and the participation of non-collagenous proteins and proteoglycans in healthy and diseased dentin are also discussed. Furthermore, we provide a forward-looking perspective of emerging topics in biomaterials sciences, such as bioinspired materials design and fabrication, 3D bioprinting and microfabrication, and briefly discuss recent developments on the emerging field of organs-on-a-chip. RESULTS The existing literature suggests that both the inorganic and organic nanostructural components of the dentin matrix play a critical role in various mechanisms that influence tissue properties. SIGNIFICANCE An in-depth understanding of such nanostructural and nanomechanical mechanisms can have a direct impact in our ability to evaluate and predict the efficacy of dental materials. This knowledge will pave the way for the development of improved dental materials and treatment strategies. CONCLUSIONS Development of future dental materials should take into consideration the intricate hierarchical organization of dentin, and pay particular attention to their complex interaction with the dentin matrix on a nanometer scale.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, School of Medicine, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, Portland, OR, USA.
| |
Collapse
|
49
|
Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface. J Mech Behav Biomed Mater 2017; 68:62-79. [DOI: 10.1016/j.jmbbm.2017.01.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/22/2023]
|
50
|
Carvalho MPM, Morari VHC, Susin AH, Rocha RDO, Valandro LF, Soares FZM. Endodontic Irrigation Protocols: Effects on Bonding of Adhesive Systems to Coronal Enamel and Dentin. J ESTHET RESTOR DENT 2017; 29:222-228. [DOI: 10.1111/jerd.12289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcos Paulo Marchiori Carvalho
- Post Graduate Program in Dental Science; Federal University of Santa Maria; Rua Marechal Floriano Peixoto, 1184 Santa Maria RS 97015-270 Brazil
| | - Victor Hugo Carvalho Morari
- Post Graduate Program in Dental Science; Federal University of Santa Maria; Rua Marechal Floriano Peixoto, 1184 Santa Maria RS 97015-270 Brazil
| | - Alexandre Henrique Susin
- Department of Restorative Dentistry; Federal University of Santa Maria; Rua Marechal Floriano Peixoto, 1184 Santa Maria RS 97015-270 Brazil
| | - Rachel De Oliveira Rocha
- Department of Stomatology; Federal University of Santa Maria; Rua Marechal Floriano Peixoto, 1184 Santa Maria RS 97015-270 Brazil
| | - Luiz Felipe Valandro
- Department of Restorative Dentistry; Federal University of Santa Maria; Rua Marechal Floriano Peixoto, 1184 Santa Maria RS 97015-270 Brazil
| | - Fabio Zovico Maxnuck Soares
- Department of Restorative Dentistry; Federal University of Santa Maria; Rua Marechal Floriano Peixoto, 1184 Santa Maria RS 97015-270 Brazil
| |
Collapse
|