1
|
Dalal R, Sadhu S, Batra A, Goswami S, Dandotiya J, K V V, Yadav R, Singh V, Chaturvedi K, Kannan R, Kumar S, Kumar Y, Rathore DK, Salunke DB, Ahuja V, Awasthi A. Gut commensals-derived succinate impels colonic inflammation in ulcerative colitis. NPJ Biofilms Microbiomes 2025; 11:44. [PMID: 40082467 PMCID: PMC11906746 DOI: 10.1038/s41522-025-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Gut microbiota-derived metabolites play a crucial role in modulating the inflammatory response in inflammatory bowel disease (IBD). In this study, we identify gut microbiota-derived succinate as a driver of inflammation in ulcerative colitis (UC) by activating succinate-responsive, colitogenic helper T (Th) cells that secrete interleukin (IL)-9. We demonstrate that colitis is associated with an increase in succinate-producing gut bacteria and decrease in succinate-metabolizing gut bacteria. Similarly, UC patients exhibit elevated levels of succinate-producing gut bacteria and luminal succinate. Intestinal colonization by succinate-producing gut bacteria or increased succinate availability, exacerbates colonic inflammation by activating colitogenic Th9 cells. In contrast, intestinal colonization by succinate-metabolizing gut bacteria, blocking succinate receptor signaling with an antagonist, or neutralizing IL-9 with an anti-IL-9 antibody alleviates inflammation by reducing colitogenic Th9 cells. Our findings underscore the role of gut microbiota-derived succinate in driving colitogenic Th9 cells and suggesting its potential as a therapeutic target for treating IBD.
Collapse
Affiliation(s)
- Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Delhi, India
| | - Srikanth Sadhu
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Aashima Batra
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sandeep Goswami
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Vinayakadas K V
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Yadav
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Virendra Singh
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Kannan
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Shakti Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Yashwant Kumar
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak Kumar Rathore
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
2
|
Shibao T, Hase H, Mizokami K, Usui A, Kitae K, Ueda Y, Jingushi K, Tsujikawa K. CGRPβ suppresses the pathogenesis of ulcerative colitis via the immunoproteasome. Sci Rep 2025; 15:7224. [PMID: 40021701 PMCID: PMC11871240 DOI: 10.1038/s41598-025-91933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Various factors have been implicated in the pathogenesis of ulcerative colitis (UC), with immune system failure being the most important one. Calcitonin gene-related peptide (CGRP), a neuropeptide with two isoforms, CGRPα and CGRPβ, has been reported to regulate the immune system. In this study, we investigated the role of CGRP isoforms in UC pathogenesis. We induced UC-like symptoms in CGRPα and CGRPβ knockout (KO) mice using dextran sulphate sodium. Compared to wild-type and CGRPα KO mice, CGRPβ-deficient mice exhibited severe symptoms with increased blood in the stool and diarrhoea. Proteome analysis revealed significant up-regulation of immune-related proteins and immunoproteasome components in CGRPβ-deficient mice, suggesting that an enhanced immune response contributes to the severity of this disease. Treatment with ONX-0914, an immunoproteasome inhibitor, markedly improved these symptoms, highlighting the role of the immunoproteasome in exacerbating UC. This study provides the first evidence that CGRPβ protects against UC by modulating immune responses, particularly those mediated by the immunoproteasome. Our findings suggest that functional differences in CGRP isoforms may influence the severity and management of UC. This insight into the neuro-immune mechanism of UC opens avenues for novel therapies that address both the neural and immune aspects of this disease.
Collapse
Affiliation(s)
- Tatsuya Shibao
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | - Kodai Mizokami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Atsushi Usui
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| |
Collapse
|
3
|
Elfadadny A, Samir H, Mandour AS, Ragab RF, Elshafey BG, Alanazi FE, Hetta HF, Alharbi AA, Albalawi AS, Aljameel SS, Alwaili MA, Nageeb WM, Emam MH. Oxazolone-Induced Immune Response in Atopic Dermatitis Using a Goat Model and Exploration of the Therapeutic Potential of Pomegranate Peel Extract. Animals (Basel) 2025; 15:411. [PMID: 39943182 PMCID: PMC11815913 DOI: 10.3390/ani15030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Atopic dermatitis (AD) remains a challenging condition, necessitating effective models for investigation and therapeutic exploration. In this study, we employed a goat skin model to assess the immune response triggered by topical oxazolone (OX) application. The OX simulates a Th2-driven immune reaction typified by elevated Th2 cytokine (IL-4 and IL-13) expression and the infiltration of mononuclear cells magnified by the presence of CD3+ and CD4+ T-cells in the epidermal and dermal layers. Additionally, the application of pomegranate peel extract (PPE) demonstrated a mitigating effect on OX-induced skin alterations, suggesting potential therapeutic benefits. This study underscores the value of goats as a reliable and accessible model for studying AD in humans and/or large animals. While the therapeutic potential of PPE dosage requires further exploration.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-0054, Japan
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 1221, Egypt;
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-0054, Japan
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Rokaia F. Ragab
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-0054, Japan
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Besheer G. Elshafey
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Suhailah S. Aljameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mahmoud H. Emam
- Department of Animal Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
4
|
Callejas BE, Sousa JA, Flannigan KL, Wang A, Higgins E, Herik AI, Li S, Rajeev S, Rosentreter R, Panaccione R, McKay DM. Calcitonin gene-related peptide promotes epithelial reparative and anticolitic functions of IL-4 educated human macrophages. Am J Physiol Gastrointest Liver Physiol 2025; 328:G1-G16. [PMID: 39378308 DOI: 10.1152/ajpgi.00159.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to Escherichia coli. When delivered systemically (106 cells IP) to oxazolone-treated rag1-/- mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo2 epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D2 (PGD2), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo2 cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD2 activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.NEW & NOTEWORTHY A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.
Collapse
Affiliation(s)
- Blanca E Callejas
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James A Sousa
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eve Higgins
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aydin I Herik
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shuhua Li
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Rosentreter
- Division of Gastroenterology and Hepatology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Remo Panaccione
- Division of Gastroenterology and Hepatology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Lebrusant-Fernandez M, Ap Rees T, Jimeno R, Angelis N, Ng JC, Fraternali F, Li VSW, Barral P. IFN-γ-dependent regulation of intestinal epithelial homeostasis by NKT cells. Cell Rep 2024; 43:114948. [PMID: 39580798 PMCID: PMC11876105 DOI: 10.1016/j.celrep.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Intestinal homeostasis is maintained through the combined functions of epithelial and immune cells that collaborate to preserve the integrity of the intestinal barrier. However, the mechanisms by which immune cell populations regulate intestinal epithelial cell (IEC) homeostasis remain unclear. Here, we use a multi-omics approach to study the immune-epithelial crosstalk and identify CD1d-restricted natural killer T (NKT) cells as key regulators of IEC biology. We find that NKT cells are abundant in the proximal small intestine and show hallmarks of activation at steady state. Subsequently, NKT cells regulate the survival and the transcriptional and cellular composition landscapes of IECs in intestinal organoids, through interferon-γ (IFN-γ) and interleukin-4 secretion. In vivo, lack of NKT cells results in an increase in IEC turnover, while NKT cell activation leads to IFN-γ-dependent epithelial apoptosis. Our findings propose NKT cells as potent producers of cytokines that contribute to the regulation of IEC homeostasis.
Collapse
Affiliation(s)
- Marta Lebrusant-Fernandez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Tom Ap Rees
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Rebeca Jimeno
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | | | - Joseph C Ng
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Patricia Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Del Chierico F, Masi L, Petito V, Baldelli V, Puca P, Benvenuto R, Fidaleo M, Palucci I, Lopetuso LR, Caristo ME, Carrozza C, Giustiniani MC, Nakamichi N, Kato Y, Putignani L, Gasbarrini A, Pani G, Scaldaferri F. Solute Transporter OCTN1/Slc22a4 Affects Disease Severity and Response to Infliximab in Experimental Colitis: Role of Gut Microbiota and Immune Modulation. Inflamm Bowel Dis 2024; 30:2259-2270. [PMID: 38944815 PMCID: PMC11630256 DOI: 10.1093/ibd/izae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 07/01/2024]
Abstract
BACKGROUND Inflammatory bowel diseases are chronic disabling conditions with a complex and multifactorial etiology, still incompletely understood. OCTN1, an organic cation transporter, could have a role in modulating the inflammatory response, and some genetic polymorphisms of this molecule have been associated with increased risk of inflammatory bowel diseases. Until now, limited information exists on its potential in predicting/modulating patient's response to therapies. The aim of this study was to evaluate the role of OCTN1 in modifying gut microbiota and mucosal immunity in response to infliximab therapy in murine colitis. METHODS A dextran sodium sulphate model of colitis was used to assess the clinical efficacy of infliximab administered intravenously in ocnt1 gene knockout mice and their C57BL/6 controls. Stool, colon, and mesenteric lymph node samples were collected to evaluate differences in gut microbiota composition, histology, and T cell populations, respectively. RESULTS Octn1 -/- influences the microbiota profile and is associated with a worse dysbiosis in mice with colitis. Infliximab treatment attenuates colitis-associated dysbiosis, with an increase of bacterial richness and evenness in both strains. In comparison with wild type, octn1-/- mice have milder disease and a higher baseline percentage of Treg, Tmemory, Th2 and Th17 cells. CONCLUSIONS Our data support the murine model to study OCTN1 genetic contribution to inflammatory bowel diseases. This could be the first step towards the recognition of this membrane transporter as a biomarker in inflammatory conditions and a predictor of response to therapies.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Letizia Masi
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Valentina Petito
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Valerio Baldelli
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pierluigi Puca
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Benvenuto
- Department of Pathology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies Charles Darwin, Università La Sapienza, Rome, Italy
| | - Ivana Palucci
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Loris Riccardo Lopetuso
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Cinzia Carrozza
- Department of Clinical Biochemistry, Laboratory and Infectious Science, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | | | - Noritaka Nakamichi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, 370-0033, Takasaki, Gunma, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD), Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Giovambattista Pani
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Franco Scaldaferri
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Yue N, Hu P, Tian C, Kong C, Zhao H, Zhang Y, Yao J, Wei Y, Li D, Wang L. Dissecting Innate and Adaptive Immunity in Inflammatory Bowel Disease: Immune Compartmentalization, Microbiota Crosstalk, and Emerging Therapies. J Inflamm Res 2024; 17:9987-10014. [PMID: 39634289 PMCID: PMC11615095 DOI: 10.2147/jir.s492079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
The intestinal immune system is the largest immune organ in the human body. Excessive immune response to intestinal cavity induced by harmful stimuli including pathogens, foreign substances and food antigens is an important cause of inflammatory diseases such as celiac disease and inflammatory bowel disease (IBD). Although great progress has been made in the treatment of IBD by some immune-related biotherapeutic products, yet a considerable proportion of IBD patients remain unresponsive or immune tolerant to immunotherapeutic strategy. Therefore, it is necessary to further understand the mechanism of immune cell populations involved in enteritis, including dendritic cells, macrophages and natural lymphocytes, in the steady-state immune tolerance of IBD, in order to find effective IBD therapy. In this review, we discussed the important role of innate and adaptive immunity in the development of IBD. And the relationship between intestinal immune system disorders and microflora crosstalk were also presented. We also focus on the new findings in the field of T cell immunity, which might identify novel cytokines, chemokines or anti-cytokine antibodies as new approaches for the treatment of IBD.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Peng Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Chen Kong
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Hailan Zhao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuqi Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| |
Collapse
|
8
|
Youssef A, Rehman AU, Elebasy M, Roper J, Sheikh SZ, Karhausen J, Yang W, Ulloa L. Vagal stimulation ameliorates murine colitis by regulating SUMOylation. Sci Transl Med 2024; 16:eadl2184. [PMID: 39565873 DOI: 10.1126/scitranslmed.adl2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic debilitating conditions without cure, the etiologies of which are unknown, that shorten the lifespans of 7 million patients worldwide by nearly 10%. Here, we found that decreased autonomic parasympathetic tone resulted in increased IBD susceptibility and mortality in mouse models of disease. Conversely, vagal stimulation restored neuromodulation and ameliorated colitis by inhibiting the posttranslational modification SUMOylation through a mechanism independent of the canonical interleukin-10/α7 nicotinic cholinergic vagal pathway. Colonic biopsies from patients with IBDs and mouse models showed an increase in small ubiquitin-like modifier (SUMO)2 and SUMO3 during active disease. In global genetic knockout mouse models, the deletion of Sumo3 protected against development of colitis and delayed onset of disease, whereas deletion of Sumo1 halted the progression of colitis. Bone marrow transplants from Sumo1-knockout (KO) but not Sumo3-KO mice into wild-type mice conferred protection against development of colitis. Electric stimulation of the cervical vagus nerve before the induction of colitis inhibited SUMOylation and delayed the onset of colitis in Sumo1-KO mice and resulted in milder symptoms in Sumo3-KO mice. Treatment with TAK-981, a first-in-class inhibitor of the SUMO-activating enzyme, ameliorated disease in three murine models of IBD and reduced intestinal permeability and bacterial translocation in a severe model of the disease, suggesting the potential to reduce progression to sepsis. These results reveal a pathway of vagal neuromodulation that reprograms endogenous stress-adaptive responses through inhibition of SUMOylation and suggest SUMOylation as a therapeutic target for IBD.
Collapse
Affiliation(s)
- Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ata Ur Rehman
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mohamed Elebasy
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC 27710, USA
| | - Shehzad Z Sheikh
- University of North Carolina, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jorn Karhausen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Humanitas Research Hospital, Rozzano, MI 20089, Italy
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Fan Z, Chen J, Wei J, Yang Z, Xiao H, Liu H. Improvement effect of compound Ento-PB on oxazolone-induced ulcerative colitis in rats. Acta Cir Bras 2024; 39:e395524. [PMID: 39230095 PMCID: PMC11368207 DOI: 10.1590/acb395524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE To investigate the impact of the Chinese medicine compound Ento-PB on oxazolone (OXZ)-induced ulcerative colitis (UC) in rats. METHODS UC rats induced by OXZ were treated with Ento-PB. The damage to the colon was assessed using several measures, including the disease activity index (DAI), colon length, colon weight/length ratio, colonic mucosal damage index, and histological score. The levels of interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-13 (IL-13), epidermal growth factor (EGF), inducible nitric oxide synthase, and total nitric oxide synthase (tNOS) in rat serum, as well as the levels of tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) in rat colon tissue, were determined using enzyme-linked immunosorbent assay and conventional kits. RESULTS After being treated with Ento-PB, the DAI score and macroscopic lesion score of OXZ-induced UC rats were significantly reduced. Ento-PB prevented the shortening of rat colons, reduced the ratio of colon weight to length, and improved colon tissue lesions. Meanwhile, Ento-PB could significantly inhibit the activities of proinflammatory cytokines TNF-α, IL-13, and MPO, as well as tNOS and iNOS, while upregulating the expression of anti-inflammatory cytokines IL-4 and IL-10. Moreover, a significant increase in the expression level of EGF was observed in UC rats treated with Ento-PB, indicating that Ento-PB could enhance the repair of damaged intestinal epithelial tissue. CONCLUSIONS Ento-PB demonstrates significant anti-UC activities in OXZ-induced UC rats by regulating the expression levels of inflammatory factors and promoting the repair of colon tissue. This study provides scientific evidence to support the further development of Ento-PB.
Collapse
Affiliation(s)
- Zhi Fan
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
| | - Jinhu Chen
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
| | - Jia Wei
- Dali University – National-Local Joint Engineering Research Center of Entomoceutics – Dali – China
| | - ZhiBin Yang
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| | - Huai Xiao
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| | - Heng Liu
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| |
Collapse
|
10
|
Anbazhagan AN, Ge Y, Priyamvada S, Kumar A, Jayawardena D, Palani ARV, Husain N, Kulkarni N, Kapoor S, Kaur P, Majumder A, Lin YD, Maletta L, Gill RK, Alrefai WA, Saksena S, Zadeh K, Hong S, Mohamadzadeh M, Dudeja PK. A Direct Link Implicating Loss of SLC26A6 to Gut Microbial Dysbiosis, Compromised Barrier Integrity, and Inflammation. Gastroenterology 2024; 167:704-717.e3. [PMID: 38735402 DOI: 10.1053/j.gastro.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND & AIMS Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel disease are also associated with higher risk of hyperoxaluria and nephrolithiasis. However, the potential role of PAT1 deficiency in gut-barrier integrity and susceptibility to colitis is currently elusive. METHODS Age-matched PKO and wild-type littermates were administered 3.5% dextran sulfate sodium in drinking water for 6 days. Ileum and colon of control and treated mice were harvested. Messenger RNA and protein expression of tight junction proteins were determined by reverse transcription polymerase chain reaction and western blotting. Severity of inflammation was assessed by measuring diarrheal phenotype, cytokine expression, and hematoxylin and eosin staining. Gut microbiome and associated metabolome were analyzed by 16S ribosomal RNA sequencing and mass spectrometry, respectively. RESULTS PKO mice exhibited significantly higher loss of body weight, gut permeability, colonic inflammation, and diarrhea in response to dextran sulfate sodium treatment. In addition, PKO mice showed microbial dysbiosis and significantly reduced levels of butyrate and butyrate-producing microbes compared with controls. Co-housing wild-type and PKO mice for 4 weeks resulted in PKO-like signatures on the expression of tight junction proteins in the colons of wild-type mice. CONCLUSIONS Our data demonstrate that loss of PAT1 disrupts gut microbiome and related metabolites, decreases gut-barrier integrity, and increases host susceptibility to intestinal inflammation. These findings, thus, highlight a novel role of the oxalate transporter PAT1 in promoting gut-barrier integrity, and its deficiency appears to contribute to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yong Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Dulari Jayawardena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Arvind Raj Vishnu Palani
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nazim Husain
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Neelkanth Kulkarni
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shaunik Kapoor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Prabhdeep Kaur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Apurba Majumder
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Leeany Maletta
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Kimia Zadeh
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Sungmo Hong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, Texas; South Texas Veterans Health Care System, San Antonio, Texas
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
11
|
Malacco NL, Michi AN, Siciliani E, Madrigal AG, Sternlieb T, Fontes G, King IL, Cestari I, Jardim A, Stevenson MM, Lopes F. Helminth-derived metabolites induce tolerogenic functional, metabolic, and transcriptional signatures in dendritic cells that attenuate experimental colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525718. [PMID: 39211070 PMCID: PMC11360915 DOI: 10.1101/2023.01.26.525718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases in which abdominal pain, bloody diarrhea, weight loss, and fatigue collectively result in diminished quality of patient life. The disappearance of intestinal helminth infections in Western societies is associated with an increased prevalence of IBD and other immune-mediated inflammatory diseases. Evidence indicates that helminths induce tolerogenic dendritic cells (tolDCs), which promote intestinal tolerance and attenuate intestinal inflammation characteristic of IBD, but the exact mechanism is unclear. Helminth-derived excretory-secretory (HES) products including macromolecules, proteins, and polysaccharides have been shown to modulate the antigen presenting function of DCs with down-stream effects on effector CD4 + T cells. Previous studies indicate that DCs in helminth-infected animals induce tolerance to unrelated antigens and DCs exposed to HES display phenotypic and functional features of tolDCs. Here, we identify that nonpolar metabolites (HnpM) produced by a helminth, the murine gastrointestinal nematode Heligmosomoides polygyrus bakeri (Hpb), induce tolDCs as evidenced by decreased LPS-induced TNF and increased IL-10 secretion and reduced expression of MHC-II, CD86, and CD40. Furthermore, these DCs inhibited OVA-specific CD4 + T cell proliferation and induced CD4 + Foxp3 + regulatory T cells. Adoptive transfer of HnpM-induced tolDCs attenuated DSS-induced intestinal inflammation characteristic of IBD. Mechanistically, HnpM induced metabolic and transcriptional signatures in BMDCs consistent with tolDCs. Collectively, our findings provide groundwork for further investigation into novel mechanisms regulating DC tolerance and the role of helminth secreted metabolites in attenuating intestinal inflammation associated with IBD. Summary Sentence: Metabolites produced by Heligmosomoides polygyrus induce metabolic and transcriptional changes in DCs consistent with tolDCs, and adoptive transfer of these DCs attenuated DSS-induced intestinal inflammation.
Collapse
|
12
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Ji JH, Shin SH, Park YE, Park J, Park JJ, Cheon JH, Kim TI, Kang SB, Park SH, Park SJ, IBD Research Group of the Korean Association for the Study of Intestinal Diseases (KASID). Effects of COVID-19 vaccines on patient-reported outcomes in patients with inflammatory bowel disease: a multicenter survey study in Korea. Intest Res 2024; 22:336-350. [PMID: 38523453 PMCID: PMC11309817 DOI: 10.5217/ir.2023.00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND/AIMS The impact of vaccination on inflammatory bowel disease (IBD) patients is still unknown, and no studies have assessed the changes in patient-reported outcomes (PROs) after vaccination in patients with IBD. Therefore, in this study, we investigated the impact of vaccines on the PROs of patients with IBD. METHODS We conducted a questionnaire survey of patients with IBD who visited outpatient clinics at 4 specialized IBD clinics of referral university hospitals from April 2022 to June 2022. A total of 309 IBD patients were included in the study. Patient information was collected from a questionnaire and their medical records, including laboratory findings, were reviewed retrospectively. Risk factors associated with an increase in PROs after COVID-19 vaccination were analyzed using logistic regression analyses. In addition, we assessed whether there were differences in variables by vaccine order using the linear mixed model. RESULTS In multivariate analysis, young age ( < 40 years) and ulcerative colitis (UC) were found to be independent risk factors for aggravation of PROs in patients with IBD. In all patients, platelet count significantly increased with continued vaccination in multiple pairwise comparisons. In UC patients, PROs such as the short health scale, UC-abdominal signs and symptoms, and UC-bowel signs and symptoms were aggravated significantly with continued vaccination. There was no significant increase in the variables of patients with Crohn's disease. CONCLUSIONS Therefore, there may be a need to counsel patients with IBD younger than 40 years of age, and patients with UC before they receive COVID-19 vaccinations.
Collapse
Affiliation(s)
- Jung Hyun Ji
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hwan Shin
- Division of Gastroenterology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Eun Park
- Division of Gastroenterology, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jihye Park
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Jun Park
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Bum Kang
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Sang Hyoung Park
- Division of Gastroenterology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - IBD Research Group of the Korean Association for the Study of Intestinal Diseases (KASID)
- Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| |
Collapse
|
14
|
Evans L, Barral P. CD1 molecules: Beyond antigen presentation. Mol Immunol 2024; 170:1-8. [PMID: 38579449 PMCID: PMC11481681 DOI: 10.1016/j.molimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.
Collapse
Affiliation(s)
- Lauren Evans
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
15
|
Chen X, Ding Y, Yi Y, Chen Z, Fu J, Chang Y. Review of Animal Models of Colorectal Cancer in Different Carcinogenesis Pathways. Dig Dis Sci 2024; 69:1583-1592. [PMID: 38526618 DOI: 10.1007/s10620-024-08384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with increasing morbidity and mortality. Exploring the factors affecting colorectal carcinogenesis and controlling its occurrence at its root is as important as studying post-cancer treatment and management. Establishing ideal animal models of CRC is crucial, which can occur through various pathways, such as adenoma-carcinoma sequence, inflammation-induced carcinogenesis, serrated polyp pathway and de-novo pathway. This article aims to categorize the existing well-established CRC animal models based on different carcinogenesis pathways, and to describe their mechanisms, methods, advantages and limitations using domestic and international literature sources. This will provide suggestions for the selection of animal models in early-stage CRC research.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yirong Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhishan Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jiaping Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
16
|
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E, Lowenstein L, Bornstein J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. Int J Mol Sci 2024; 25:4261. [PMID: 38673846 PMCID: PMC11050705 DOI: 10.3390/ijms25084261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Provoked vulvodynia represents a challenging chronic pain condition, characterized by its multifactorial origins. The inherent complexities of human-based studies have necessitated the use of animal models to enrich our understanding of vulvodynia's pathophysiology. This review aims to provide an exhaustive examination of the various animal models employed in this research domain. A comprehensive search was conducted on PubMed, utilizing keywords such as "vulvodynia", "chronic vulvar pain", "vulvodynia induction", and "animal models of vulvodynia" to identify pertinent studies. The search yielded three primary animal models for vulvodynia: inflammation-induced, allergy-induced, and hormone-induced. Additionally, six agents capable of triggering the condition through diverse pathways were identified, including factors contributing to hyperinnervation, mast cell proliferation, involvement of other immune cells, inflammatory cytokines, and neurotransmitters. This review systematically outlines the various animal models developed to study the pathogenesis of provoked vulvodynia. Understanding these models is crucial for the exploration of preventative measures, the development of novel treatments, and the overall advancement of research within the field.
Collapse
Affiliation(s)
- Yara Nakhleh-Francis
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Yaseen Awad-Igbaria
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Reem Sakas
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Sarina Bang
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Saher Abu-Ata
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Lior Lowenstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jacob Bornstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
17
|
Jamtsho T, Yeshi K, Perry MJ, Loukas A, Wangchuk P. Approaches, Strategies and Procedures for Identifying Anti-Inflammatory Drug Lead Molecules from Natural Products. Pharmaceuticals (Basel) 2024; 17:283. [PMID: 38543070 PMCID: PMC10974486 DOI: 10.3390/ph17030283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2025] Open
Abstract
Natural products (NPs) have played a vital role in human survival for millennia, particularly for their medicinal properties. Many traditional medicine practices continue to utilise crude plants and animal products for treating various diseases, including inflammation. In contrast, contemporary medicine focuses more on isolating drug-lead compounds from NPs to develop new and better treatment drugs for treating inflammatory disorders such as inflammatory bowel diseases. There is an ongoing search for new drug leads as there is still no cure for many inflammatory conditions. Various approaches and technologies are used in drug discoveries from NPs. This review comprehensively focuses on anti-inflammatory small molecules and describes the key strategies in identifying, extracting, fractionating and isolating small-molecule drug leads. This review also discusses the (i) most used approaches and recently available techniques, including artificial intelligence (AI), (ii) machine learning, and computational approaches in drug discovery; (iii) provides various animal models and cell lines used in in-vitro and in-vivo assessment of the anti-inflammatory potential of NPs.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Karma Yeshi
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Matthew J. Perry
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
18
|
Abdel-Razek EAN, Mahmoud HM, Azouz AA. Management of ulcerative colitis by dichloroacetate: Impact on NFATC1/NLRP3/IL1B signaling based on bioinformatics analysis combined with in vivo experimental verification. Inflammopharmacology 2024; 32:667-682. [PMID: 37902927 PMCID: PMC10907436 DOI: 10.1007/s10787-023-01362-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
The inflammatory response in ulcerative colitis (UC) could be relieved by the conventional immunomodulatory agents; 5-aminosalicylic acid, corticosteroids, or azathioprine. However, the low remission rates and the intolerance to these agents necessitate investigation of gene expression signature in UC that could influence the therapeutic efficacy of drugs, as well as the interference with persistence genes by novel therapeutic option. Three microarray datasets (GSE66407, GSE38713 and GSE14580) from the NCBI-GEO database were utilized. Differentially expressed genes between samples of patients with UC and healthy ones were analyzed using R software. In addition, in vivo study using oxazolone-induced UC in BALB/c mice was carried out to investigate the proposed therapeutic efficacy of dichloroacetate (DCA). The bioinformatics analysis revealed the persistence of NLRP3, NFATC1, and IL1B in UC despite treatment with common therapeutic agents. DCA administration to oxazolone-treated mice showed remarkable interference with those persistence genes. Western blotting analysis for NLRP3, NFATC1, nuclear/total NF-κB, and cleaved caspase-1 revealed the ability of DCA to reduce the expression levels of these proteins in oxazolone-treated mice. Additionally, the inflammatory cytokines IL-1β and IL-13 were reduced in colonic tissue by DCA treatment. The therapeutic efficacy of DCA was further confirmed by the apparent reduction in histopathological scoring, disease activity index, and the normalization of colon length. Therefore, DCA could be suggested as a novel and promising therapeutic option in UC based on its ability to interfere with the persistence of NFATC1/NLRP3/IL1B signaling. That merits further safety/toxicological pre-clinical assessment and update of bioavailability/metabolism data prior to clinical investigation.
Collapse
Affiliation(s)
| | - Heba M Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Amany A Azouz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
19
|
Venken K, Decruy T, Sparwasser T, Elewaut D. Tregs protect against invariant NKT cell-mediated autoimmune colitis and hepatitis. Immunology 2024; 171:277-285. [PMID: 37984469 DOI: 10.1111/imm.13718] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Immunomodulatory T cells play a pivotal role in protection against (auto)immune-mediated diseases that open perspectives for therapeutic modulation. However, how immune regulatory networks operate in vivo is less understood. To this end, we focused on FOXP3+CD4+CD25+ regulatory T cells (Tregs) and invariant natural killer T (iNKT) cells, two lymphocyte populations that independently regulate adaptive and innate immune responses. In vitro, a functional interplay between Tregs and iNKT cells has been described, but whether Tregs modulate the function and phenotype of iNKT cell subsets in vivo and whether this controls iNKT-mediated autoimmunity is unclear. Taking advantage of the conditional depletion of Tregs, we examined the in vivo interplay between iNKT and Treg cells in steady state and in preclinical models of liver and gut autoimmunity. Under non-inflamed conditions, Treg depletion enhanced glycolipid-mediated iNKT cell responses, with a general impact on Type 1, 2 and 17 iNKT subsets. Moreover, in vivo iNKT activation in the absence of Tregs suppressed the induction of iNKT anergy, consistent with a reduction in programmed cell death receptor 1 (PD-1) expression. Importantly, we unveiled a clear role for an in vivo Treg-iNKT crosstalk both in concanavalin A-induced acute hepatitis and oxazolone-induced colitis. Here, the absence of Tregs led to a markedly enhanced liver and gut pathology, which was not observed in iNKT-deficient mice. Taken together, these results provide evidence for a functional interplay between regulatory T cell subsets critical in controlling the onset of autoimmune disease.
Collapse
Affiliation(s)
- Koen Venken
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tine Decruy
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
21
|
Selvakumar B, Eladham MW, Hafezi S, Ramakrishnan R, Hachim IY, Bayram OS, Sharif-Askari NS, Sharif-Askari FS, Ibrahim SM, Halwani R. Allergic Airway Inflammation Emerges from Gut Inflammation and Leakage in Mouse Model of Asthma. Adv Biol (Weinh) 2024; 8:e2300350. [PMID: 37752729 DOI: 10.1002/adbi.202300350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Asthma is an allergic airway inflammatory disease characterized by type 2 immune responses. Growing evidence suggests an association between allergic airways and intestinal diseases. However, the primary site of disease origin and initial mechanisms involved in the development of allergic airway inflammation (AAI) is not yet understood. Therefore, the initial contributing organs and mechanisms involved in the development of AAI are investigated using a mouse model of asthma. This study, without a local allergen challenge into the lungs, demonstrates a significant increase in intestinal inflammation with signature type-2 mediators including IL-4, IL-13, STAT6, eosinophils, and Th2 cells. In addition, gut leakage and mRNA expressions of gut leakage markers significantly increase in the intestine. Moreover, reduced mRNA expressions of tight junction proteins are observed in gut and interestingly, in lung tissues. Furthermore, in lung tissues, an increased pulmonary barrier permeability and IL-4 and IL-13 levels associated with significant increase of lipopolysaccharide-binding protein (LBP-gut leakage marker) and eosinophils are observed. However, with local allergen challenges into the lungs, these mechanisms are further enhanced in both gut and lungs. In conclusion, the primary gut originated inflammatory responses translocates into the lungs to orchestrate AAI in a mouse model of asthma.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Mariam Wed Eladham
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Rakhee Ramakrishnan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Ibrahim Yaseen Hachim
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Ola Salam Bayram
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Pharmacy Practice and Pharmaceutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, UAE
| | - Saleh Mohamed Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, 23562, Lübeck, Germany
- Deapartment of Biotechnology, Khalifa University, Abu Dhabi, 127788, UAE
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
22
|
Karmele EP, Moldoveanu AL, Kaymak I, Jugder BE, Ursin RL, Bednar KJ, Corridoni D, Ort T. Single cell RNA-sequencing profiling to improve the translation between human IBD and in vivo models. Front Immunol 2023; 14:1291990. [PMID: 38179052 PMCID: PMC10766350 DOI: 10.3389/fimmu.2023.1291990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.
Collapse
Affiliation(s)
- Erik P. Karmele
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ana Laura Moldoveanu
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Irem Kaymak
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bat-Erdene Jugder
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Rebecca L. Ursin
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Kyle J. Bednar
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Daniele Corridoni
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tatiana Ort
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
23
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
24
|
Xia Y, Liu C, Li R, Zheng M, Feng B, Gao J, Long X, Li L, Li S, Zuo X, Li Y. Lactobacillus-derived indole-3-lactic acid ameliorates colitis in cesarean-born offspring via activation of aryl hydrocarbon receptor. iScience 2023; 26:108279. [PMID: 38026194 PMCID: PMC10656274 DOI: 10.1016/j.isci.2023.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Cesarean section (CS) delivery is known to disrupt the transmission of maternal microbiota to offspring, leading to an increased risk of inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly characterized. Here, we demonstrate that CS birth renders mice susceptible to dextran sulfate sodium (DSS)-induced colitis and impairs group 3 innate lymphoid cell (ILC3) development. Additionally, CS induces a sustained decrease in Lactobacillus abundance, which subsequently contributes to the colitis progression and ILC3 deficiency. Supplementation with a probiotic strain, L. acidophilus, or its metabolite, indole-3-lactic acid (ILA), can attenuate intestinal inflammation and restore ILC3 frequency and interleukin (IL)-22 level in CS offspring. Mechanistically, we indicate that ILA activates ILC3 through the aryl hydrocarbon receptor (AhR) signaling. Overall, our findings uncover a detrimental role of CS-induced gut dysbiosis in the pathogenesis of colitis and suggest L. acidophilus and ILA as potential targets to re-establish intestinal homeostasis in CS offspring.
Collapse
Affiliation(s)
- Yanan Xia
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruijia Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bingcheng Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jiahui Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Long
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Nagase H, Takamoto M, Noben-Trauth N. Genetic deficiencies of both IL-4 receptor alpha chain and IL-10 trigger early onset of severe colitis in mice. Cell Immunol 2023; 393-394:104779. [PMID: 37935074 DOI: 10.1016/j.cellimm.2023.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
Inflammatory bowel diseases are associated with dysregulated inflammatory immune responses in the gastrointestinal tract. We found that deficiencies of both IL-4 receptor alpha chain (IL-4Rα) and IL-10 in BALB/c mice (IL-4Rα × IL-10 KO mice) highly induced spontaneous rectal prolapse and diarrhea. These mice also exhibited severe colitis in their cecum and colon and marked elevation of serum proinflammatory cytokines including TNFα and IFNγ. These pathologies were transmittable with their cecal contents containing Helicobacter spp. Their mesenteric LN cells produced TNFα and IFNγ in response to soluble H. hepaticus antigens and high titers of H. hepaticus-specific serum IgG were also detected. These results suggested the important function of IL-4Rα signaling in controlling the intestinal inflammation and the susceptibility to intestinal microbes including H. hepaticus. Therefore, these IL-4Rα × IL-10 KO mice potentially provide the significant murine model for clarifying the causes and control of spontaneous colitis and intestinal inflammation.
Collapse
Affiliation(s)
- Hisashi Nagase
- Department of Parasitology, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Masaya Takamoto
- Department of Parasitology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nancy Noben-Trauth
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Medical Center, Washington, D.C., USA
| |
Collapse
|
26
|
Xu G(B, Pan YX, Mei W, Chen H. Single-Cell RNA Sequencing (scRNA-seq) Identifies L1CAM as a Key Mediator between Epithelial Tuft Cell and Innate Lymphoid Cell in the Colon of Hnrnp I Knockout Mice. Biomedicines 2023; 11:2734. [PMID: 37893107 PMCID: PMC10604312 DOI: 10.3390/biomedicines11102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Knockout (KO) of heterogeneous nuclear ribonucleoprotein I (Hnrnp I) in mouse intestinal epithelial cells (IECs) induced a severe inflammatory response in the colon, followed by hyperproliferation. This study aimed to investigate the epithelial lineage dynamics and cell-cell communications that underlie inflammation and colitis. (2) Methods: Single cells were isolated from the colons of wildtype (WT) and KO mice and used in scRNA-seq. Whole colons were collected for immunofluorescence staining and cytokine assays. (3) Results: from scRNA-seq, the number of DCLK1 + colonic tuft cells was significantly higher in the Hnrnp I KO mice compared to the WT mice. This was confirmed by immunofluorescent staining of DCLK1. The DCLK1 + colonic tuft cells in KO mice developed unique communications with lymphocytes via interactions between surface L1 cell adhesion molecule (L1CAM) and integrins. In the KO mice colons, a significantly elevated level of inflammatory cytokines IL4, IL6, and IL13 were observed, which marks type-2 immune responses directed by group 2 innate lymphoid cells (ILC2s). (4) Conclusions: This study demonstrates one critical cellular function of colonic tuft cells, which facilitates type-2 immune responses by communicating with ILC2s via the L1CAM-integrins interaction. This communication promotes pro-inflammatory signaling pathways in ILC2, leading to the increased secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Guanying (Bianca) Xu
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenyan Mei
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hong Chen
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Luo J, Chen Z, Castellano D, Bao B, Han W, Li J, Kim G, An D, Lu W, Wu C. Lipids regulate peripheral serotonin release via gut CD1d. Immunity 2023; 56:1533-1547.e7. [PMID: 37354904 PMCID: PMC10527042 DOI: 10.1016/j.immuni.2023.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/04/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Bin Bao
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
28
|
Lam GA, Albarrak H, McColl CJ, Pizarro A, Sanaka H, Gomez-Nguyen A, Cominelli F, Paes Batista da Silva A. The Oral-Gut Axis: Periodontal Diseases and Gastrointestinal Disorders. Inflamm Bowel Dis 2023; 29:1153-1164. [PMID: 36527679 PMCID: PMC10320234 DOI: 10.1093/ibd/izac241] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 06/17/2023]
Abstract
One of the prospective sequelae of periodontal disease (PD), chronic inflammation of the oral mucosa, is the development of inflammatory gastrointestinal (GI) disorders due to the amplification and expansion of the oral pathobionts. In addition, chronic inflammatory diseases related to the GI tract, which include inflammatory bowel disease (IBD), can lead to malignancy susceptibility in the colon of both animals and humans. Recent studies suggest that dysbiosis of the oral microbiota can alter the microbial composition in relative abundance or diversity of the distal gut, leading to the progression of digestive carcinogenesis. The link between PD and specific GI disorders is also closely associated with the migration and colonization of periodontal pathogens and the subsequent microbe-reactive T cell induction within the intestines. In this review, an in-depth examination of this relationship and the accessibility of different mouse models of IBD and PD may shed light on the current dogma. As such, oral microbiota dysbiosis involving specific bacteria, including Fusobacterium nucleatum and Porphyromonas gingivalis, can ultimately lead to gut malignancies. Further understanding the precise mechanism(s) of the oral-gut microbial axis in PD, IBD, and colorectal cancer pathogenesis will be pivotal in diagnosis, prognosis, and future treatment.
Collapse
Affiliation(s)
- Gretchen A Lam
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hala Albarrak
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Periodontics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | - Adrian Gomez-Nguyen
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Andre Paes Batista da Silva
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Periodontics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Barker KH, Higham JP, Pattison LA, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitization of colonic nociceptors by IL-13 is dependent on JAK and p38 MAPK activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G250-G261. [PMID: 36749569 PMCID: PMC10010921 DOI: 10.1152/ajpgi.00280.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Iain P Chessell
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Fraser Welsh
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Tang V, Hamidi B, Janal MN, Barber CA, Godder B, Palomo L, Kamer AR. Periodontal Inflamed Surface Area (PISA) associates with composites of salivary cytokines. PLoS One 2023; 18:e0280333. [PMID: 36791096 PMCID: PMC9931150 DOI: 10.1371/journal.pone.0280333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Periodontal disease (PerioD) is a chronic, complex inflammatory condition resulting from the interaction between subgingival dysbiotic bacteria and the host immune response leading to local inflammation. Since periodontal inflammation is characterized by multiple cytokines effects we investigated whether Periodontal Inflamed Surface Area (PISA), a continuous measure of clinical periodontal inflammation is a predictor of composite indexes of salivary cytokines. METHODS AND FINDINGS In a cross-sectional study of 67 healthy, well-educated individuals, we evaluated PISA and several cytokines expressed in whole stimulated saliva. Two salivary cytokine indexes were constructed using weighted and unweighted approaches based on a Principal Component Analysis [named Cytokine Component Index (CCI)] or averaging the (standardized) level of all cytokines [named Composite Inflammatory Index (CII)]. In regression analysis we found that PISA scores were significantly associated with both salivary cytokine constructs, (CCI: part R = 0.51, p<0.001; CII: part R = 0.40, p = 0.001) independent of age, gender and BMI showing that single scores summarizing salivary cytokines correlated with severity of clinical periodontal inflammation. CONCLUSIONS Clinical periodontal inflammation may be reflected by a single score encompassing several salivary cytokines. These results are consistent with the complexity of interactions characterizing periodontal disease. In addition, Type I error is likely to be avoided.
Collapse
Affiliation(s)
- Vera Tang
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
| | - Bubak Hamidi
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, College of Dentistry, New York University, New York, New York, United States of America
| | - Cheryl A. Barber
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, New York, United States of America
| | - Benjamin Godder
- Cariology and Comprehensive Care, College of Dentistry, New York University, New York, New York, United States of America
| | - Leena Palomo
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
| | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Secher T, Couturier A, Huot L, Bouscayrol H, Grandjean T, Boulard O, Hot D, Ryffel B, Chamaillard M. A Protective Role of NOD2 on Oxazolone-induced Intestinal Inflammation Through IL-1β-mediated Signalling Pathway. J Crohns Colitis 2023; 17:111-122. [PMID: 35917251 DOI: 10.1093/ecco-jcc/jjac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS NOD2 has emerged as a critical player in the induction of both Th1 and Th2 responses for potentiation and polarisation of antigen-dependent immunity. Loss-of-function mutations in the NOD2-encoding gene and deregulation of its downstream signalling pathway have been linked to Crohn's disease. Although it is well documented that NOD2 is capable of sensing bacterial muramyl dipeptide, it remains counter-intuitive to link development of overt intestinal inflammation to a loss of bacterial-induced inflammatory response. We hypothesised that a T helper bias could also contribute to an autoimmune-like colitis different from inflammation that is fully fledged by Th1 type cells. METHODS An oedematous bowel wall with a mixed Th1/Th2 response was induced in mice by intrarectal instillation of the haptenating agent oxazolone. Survival and clinical scoring were evaluated. At several time points after instillation, colonic damage was assessed by macroscopic and microscopic observations. To evaluate the involvement of NOD2 in immunochemical phenomena, quantitative polymerase chain reaction [PCR] and flow cytometry analysis were performed. Bone marrow chimera experimentation allowed us to evaluate the role of haematopoietic/non-hematopoietic NOD2-expressing cells. RESULTS Herein, we identified a key regulatory circuit whereby NOD2-mediated sensing of a muramyl dipeptide [MDP] by radio-resistant cells improves colitis with a mixed Th1/Th2 response that is induced by oxazolone. Genetic ablation of either Nod2 or Ripk2 precipitated oxazolone colitis that is predominantly linked to a lack of interferon-gamma. Bone marrow chimera experiments revealed that inactivation of Nod2 signalling in non-haematopoietic cells is causing a biased M1-M2 polarisation of macrophages and a decreased frequency of splenic regulatory T cells that correlates with an impaired activation of CD4 + T cells within mesenteric lymph nodes. Mechanistically, mice were protected from oxazolone-induced colitis upon administration of MDP in an interleukin-1- and interleukin-23-dependent manner. CONCLUSIONS These findings indicate that Nod2 signalling may prevent pathological conversion of T helper cells for maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Thomas Secher
- INEM, Orléans University, CNRS UMR 7355, F-45071, Orléans, France.,CEPR, Tours University, INSERM U1100, F-37000, Tours, France
| | | | - Ludovic Huot
- Centre d'Infection et d'Immunité de Lille, Université de Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 9017, F-59000, Lille, France
| | - Helene Bouscayrol
- Service d'oncologie-radiothérapie, CHR d'Orléans-La Source, Orléans, France
| | - Teddy Grandjean
- Centre d'Infection et d'Immunité de Lille, Université de Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 9017, F-59000, Lille, France
| | - Olivier Boulard
- Laboratory of Cell Physiology, Inserm U1003, University of Lille, Lille, France
| | - David Hot
- CEPR, Tours University, INSERM U1100, F-37000, Tours, France.,University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - Bernhard Ryffel
- INEM, Orléans University, CNRS UMR 7355, F-45071, Orléans, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, Inserm U1003, University of Lille, Lille, France
| |
Collapse
|
32
|
Sakamoto E, Katahira Y, Mizoguchi I, Watanabe A, Furusaka Y, Sekine A, Yamagishi M, Sonoda J, Miyakawa S, Inoue S, Hasegawa H, Yo K, Yamaji F, Toyoda A, Yoshimoto T. Chemical- and Drug-Induced Allergic, Inflammatory, and Autoimmune Diseases Via Haptenation. BIOLOGY 2023; 12:biology12010123. [PMID: 36671815 PMCID: PMC9855847 DOI: 10.3390/biology12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Haptens are small molecules that only elicit an immune response when bound to proteins. Haptens initially bind to self-proteins and activate innate immune responses by complex mechanisms via inflammatory cytokines and damage-associated molecular patterns and the subsequent upregulation of costimulatory signals such as cluster of differentiation 86 (CD86) on dendritic cells. Subsequent interactions between CD86 and CD28 on T cells are critically important for properly activating naive T cells and inducing interleukin 2 production, leading to the establishment of adaptive immunity via effector and memory T cells. Accumulating evidence revealed the involvement of haptens in the development of various autoimmune-like diseases such as allergic, inflammatory, and autoimmune diseases including allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel diseases, hemolytic anemia, liver injury, leukoderma, and even antitumor immunity. Therefore, the development of in vitro testing alternatives to evaluate in advance whether a substance might lead to the development of these diseases is highly desirable. This review summarizes and discusses recent advances in chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation and the possible molecular underlying mechanisms, as well as in vitro testing alternatives to evaluate in advance whether a substance might cause the development of these diseases.
Collapse
Affiliation(s)
- Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Kazuyuki Yo
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Fumiya Yamaji
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Akemi Toyoda
- POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama-shi 244-0812, Kanagawa, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Correspondence: ; Tel.: +81-3-3351-6141
| |
Collapse
|
33
|
Ribeiro BE, Breves J, de Souza HSP. Pathogenesis: Crohn’s disease and ulcerative colitis. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:9-46. [DOI: 10.1016/b978-0-323-99111-7.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Jentzer A, Fauteux-Daniel S, Verhoeven P, Cantais A, Novoa MY, Jospin F, Chanut B, Rochereau N, Bourlet T, Roblin X, Pozzetto B, Pillet S. Impact of Dextran-Sodium-Sulfate-Induced Enteritis on Murine Cytomegalovirus Reactivation. Viruses 2022; 14:2595. [PMID: 36560599 PMCID: PMC9781000 DOI: 10.3390/v14122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Ulcerative colitis (UC) is an inflammatory bowel disease that causes inflammation of the intestines, which participates in human cytomegalovirus (HCMV) reactivation from its latent reservoir. CMV-associated colitis plays a pejorative role in the clinical course of UC. We took advantage of a model of chemically induced enteritis to study the viral reactivation of murine CMV (MCMV) in the context of gut inflammation. (2) Methods: Seven-week-old BALB/c mice were infected by 3 × 103 plaque-forming units (PFU) of MCMV; 2.5% (w/v) DSS was administered in the drinking water from day (D) 30 to D37 post-infection to induce enteritis. (3) Results: MCMV DNA levels in the circulation decreased from D21 after infection until resolution of the acute infection. DSS administration resulted in weight loss, high disease activity index, elevated Nancy index shortening of the colon length and increase in fecal lipocalin. However, chemically induced enteritis had no impact on MCMV reactivation as determined by qPCR and immunohistochemistry of intestinal tissues. (4) Conclusions: Despite the persistence of MCMV in the digestive tissues after the acute phase of infection, the gut inflammation induced by DSS did not induce MCMV reactivation in intestinal tissues, thus failing to recapitulate inflammation-driven HCMV reactivation in human UC.
Collapse
Affiliation(s)
- Alexandre Jentzer
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
| | - Sébastien Fauteux-Daniel
- French Blood Establishment Auvergne-Rhône-Alpes, Scientific Department, 42270 Saint-Etienne, France
| | - Paul Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Aymeric Cantais
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
| | - Melyssa Yaugel Novoa
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
| | - Fabienne Jospin
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
| | - Blandine Chanut
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
| | - Nicolas Rochereau
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
| | - Thomas Bourlet
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Xavier Roblin
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
- Department of Gastroenterology, University-Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Bruno Pozzetto
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Sylvie Pillet
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Univ Lyon, Univ St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 42023 Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| |
Collapse
|
35
|
Jaén M, Martín-Regalado Á, Bartolomé RA, Robles J, Casal JI. Interleukin 13 receptor alpha 2 (IL13Rα2): Expression, signaling pathways and therapeutic applications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188802. [PMID: 36152905 DOI: 10.1016/j.bbcan.2022.188802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Interleukin 13 receptor alpha 2 (IL13Rα2) is increasingly recognized as a relevant player in cancer invasion and metastasis. Despite being initially considered a decoy receptor for dampening the levels of interleukin 13 (IL-13) in diverse inflammatory conditions, accumulating evidences in the last decades indicate the capacity of IL13Rα2 for mediating IL-13 signaling in cancer cells. The biological reasons behind the expression of this receptor with such extremely high affinity for IL-13 in cancer cells remain unclear. Elevated expression of IL13Rα2 is commonly associated with invasion, late stage and cancer metastasis that results in poor prognosis for glioblastoma, colorectal or breast cancer, among others. The discovery of new mediators and effectors of IL13Rα2 signaling has been critical for deciphering its underlying molecular mechanisms in cancer progression. Still, many questions about the effects of inflammation, the cancer type and the tumor degree in the expression of IL13Rα2 remain largely uncharacterized. Here, we review and discuss the current status of the IL13Rα2 biology in cancer, with particular emphasis in the role of inflammation-driven expression and the regulation of different signaling pathways. As IL13Rα2 implications in cancer continue to grow exponentially, we highlight new targeted therapies recently developed for glioblastoma, colorectal cancer and other IL13Rα2-positive tumors.
Collapse
Affiliation(s)
- Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángela Martín-Regalado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Inflammatory Bowel Disease: A Review of Pre-Clinical Murine Models of Human Disease. Int J Mol Sci 2022; 23:ijms23169344. [PMID: 36012618 PMCID: PMC9409205 DOI: 10.3390/ijms23169344] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD pathology. Here, we discuss the current pre-clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the translation of experimental findings into novel clinical therapeutics is also discussed.
Collapse
|
37
|
Lin MK, Yang YT, Lin LJ, Yu WH, Chen HY. Pulsatilla decoction suppresses matrix metalloproteinase-7-mediated leukocyte recruitment in dextran sulfate sodium-induced colitis mouse model. BMC Complement Med Ther 2022; 22:211. [PMID: 35933374 PMCID: PMC9356479 DOI: 10.1186/s12906-022-03696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Intestinal inflammation is considered to be an important characteristic of ulcerative colitis (UC) and the current medical treatments for UC are usually proposed to suppress abnormal intestinal immune responses. Pulsatilla decoction (PD), a traditional Chinese medicine, is frequently used in UC treatments in Asian countries; however, the mechanism of the action of PD remains unclear. In the present study, the mechanism of the action of PD was elucidated in the dextran sulfate sodium (DSS)-induced colitis mouse model, a model to mimic UC. Methods Murine colitis was evaluated by comparing the disease activity index score. The intestinal inflammation was examined by histology analyses. The leukocyte infiltration in the colonic tissues was examined by immunohistochemistry analyses. The cytokines level in colonic tissues was examined by Multi-Plex immunoassay. The epithelial proliferation was evaluated by histological analyses. Immunofluorescence double staining was used to examine the expression of MMP-7 in the immune cells. Results In the DSS-induced colitis mouse model, administration of PD attenuated the intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells. Immunohistochemical analyses further showed that matrix metalloproteinase-7 (MMP-7) expressed by the infiltrating leukocytes, including neutrophils and macrophages was inhibited by PD treatment. PD increases the cytokine level of IL-6 in colonic tissues. Conclusion PD suppresses intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells, through decreasing MMP-7 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03696-w.
Collapse
|
38
|
Oh SF, Jung DJ, Choi E. Gut Microbiota-Derived Unconventional T Cell Ligands: Contribution to Host Immune Modulation. Immunohorizons 2022; 6:476-487. [PMID: 35868838 PMCID: PMC9924074 DOI: 10.4049/immunohorizons.2200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023] Open
Abstract
Besides the prototypic innate and adaptive pathways, immune responses by innate-like lymphocytes have gained significant attention due to their unique roles. Among innate-like lymphocytes, unconventional T cells such as NKT cells and mucosal-associated invariant T (MAIT) cells recognize small nonpeptide molecules of specific chemical classes. Endogenous or microbial ligands are loaded to MHC class I-like molecule CD1d or MR1, and inducing immediate effector T cell and ligand structure is one of the key determinants of NKT/MAIT cell functions. Unconventional T cells are in close, constant contact with symbiotic microbes at the mucosal layer, and CD1d/MR1 can accommodate diverse metabolites produced by gut microbiota. There is a strong interest to identify novel immunoactive molecules of endobiotic (symbiont-produced) origin as new NKT/MAIT cell ligands, as well as new cognate Ags for previously uncharacterized unconventional T cell subsets. Further studies will open an possibility to explore basic biology as well as therapeutic potential.
Collapse
Affiliation(s)
- Sungwhan F. Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Da-Jung Jung
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Eungyo Choi
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
39
|
Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem 2022; 109:109101. [PMID: 35777588 DOI: 10.1016/j.jnutbio.2022.109101] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder associated with the inflammation in the digestive tract. The exact cause of IBD is unknown; nevertheless, in IBD, the homeostasis of key regulatory factors involved in intestinal immunity has been documented to be disrupted. Despite the lack of a viable treatment for IBD, synthetic drugs and monoclonal antibodies are currently used to treat it. However, these treatments have side effects, and the high relapse rate limits their usage. Dietary polyphenols constitute a great variety of compounds and have shown an array of biological properties. Resveratrol is a natural polyphenol found in grapevines and berries. The therapeutic ability of resveratrol against IBD is amply demonstrated in many in vivo studies. Resveratrol can interact with several molecular targets (Nf-kB, SIRT1, mTOR, HIF-1α, miRNAs, and TNF-α) and effectively prevent/ alleviate IBD symptoms with promising results. Although resveratrol has profound anti-inflammatory properties against IBD, its therapeutic employment is limited due to its low water solubility, less chemical stability, less bioavailability, and rapid metabolism in vivo. Hence, resveratrol encapsulation using different carries and its controlled release has become a promising strategy to overcome limitations. Herein, we meticulously review, talk-over the anti-inflammatory effect and mechanisms of resveratrol in IBD. We further provide the latest information on resveratrol formulations and nano-delivery systems used in oral delivery of resveratrol for the treatment of IBD and offer our view on future research on resveratrol in IBD treatment.
Collapse
|
40
|
Elucidating the Role of Innate and Adaptive Immune Responses in the Pathogenesis of Canine Chronic Inflammatory Enteropathy-A Search for Potential Biomarkers. Animals (Basel) 2022; 12:ani12131645. [PMID: 35804545 PMCID: PMC9264988 DOI: 10.3390/ani12131645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Canine chronic inflammatory enteropathy (CIE) is a chronic disease affecting the small or large intestine and, in some cases, the stomach of dogs. This gastrointestinal disorder is common and is characterized by recurrent vomiting, diarrhea, and weight loss in affected dogs. The pathogenesis of IBD is not completely understood. Similar to human IBD, potential disease factors include genetics, environmental exposures, and dysregulation of the microbiota and the immune response. Some important components of the innate and adaptive immune response involved in CIE pathogenesis have been described. However, the immunopathogenesis of the disease has not been fully elucidated. In this review, we summarized the literature associated with the different cell types and molecules involved in the immunopathogenesis of CIE, with the aim of advancing the search for biomarkers with possible diagnostic, prognostic, or therapeutic utility. Abstract Canine chronic inflammatory enteropathy (CIE) is one of the most common chronic gastrointestinal diseases affecting dogs worldwide. Genetic and environmental factors, as well as intestinal microbiota and dysregulated host immune responses, participate in this multifactorial disease. Despite advances explaining the immunological and molecular mechanisms involved in CIE development, the exact pathogenesis is still unknown. This review compiles the latest reports and advances that describe the main molecular and cellular mechanisms of both the innate and adaptive immune responses involved in canine CIE pathogenesis. Future studies should focus research on the characterization of the immunopathogenesis of canine CIE in order to advance the establishment of biomarkers and molecular targets of diagnostic, prognostic, or therapeutic utility.
Collapse
|
41
|
Kreiss L, Thoma OM, Lemire S, Lechner K, Carlé B, Dilipkumar A, Kunert T, Scheibe K, Heichler C, Merten AL, Weigmann B, Neufert C, Hildner K, Vieth M, Neurath MF, Friedrich O, Schürmann S, Waldner MJ. Label-Free Characterization and Quantification of Mucosal Inflammation in Common Murine Colitis Models With Multiphoton Imaging. Inflamm Bowel Dis 2022; 28:1637-1646. [PMID: 35699622 PMCID: PMC9629455 DOI: 10.1093/ibd/izac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.
Collapse
Affiliation(s)
- Lucas Kreiss
- Address correspondence to: Lucas Kreiss, Dr.-Ing, Institute of Medical Biotechnology, Paul-Gordan-Str 3, 91052 Erlangen, Germany ()
| | | | - Sarah Lemire
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Lechner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Birgitta Carlé
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Ashwathama Dilipkumar
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Anna-Lena Merten
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
42
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
43
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
44
|
Kiran S, Rakib A, Moore BM, Singh UP. Cannabinoid Receptor 2 (CB2) Inverse Agonist SMM-189 Induces Expression of Endogenous CB2 and Protein Kinase A That Differentially Modulates the Immune Response and Suppresses Experimental Colitis. Pharmaceutics 2022; 14:pharmaceutics14050936. [PMID: 35631522 PMCID: PMC9147685 DOI: 10.3390/pharmaceutics14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
The causes of Crohn’s disease (CD) and ulcerative colitis (UC), the two most common forms of inflammatory bowel disease (IBD), are multi-factorial and include dysregulation of immune cells in the intestine. Cannabinoids mediate protection against intestinal inflammation by binding to the G-protein coupled cannabinoid receptors 1 and 2 (CB1 and CB2). Here, we investigate the effects of the CB2 inverse agonist SMM-189 on dextran sodium sulfate (DSS)-induced experimental colitis. We observed that SMM-189 effectively attenuated the overall clinical score, reversed colitis-associated pathogenesis, and increased both body weight and colon length. Treatment with SMM-189 also increased the expression of CB2 and protein kinase A (PKA) in colon lamina propria lymphocytes (LPLs). We noticed alterations in the percentage of Th17, neutrophils, and natural killer T (NKT) cells in the spleen, mesenteric lymph nodes (MLNs), and LPLs of mice with DSS-induced colitis after treatment with SMM-189 relative to DSS alone. Further, myeloid-derived suppressor cells (MDSCs) during colitis progression increased with SMM-189 treatment as compared to DSS alone or with control cohorts. These findings suggest that SMM-189 may ameliorate experimental colitis by inducing the expression of endogenous CB2 and PKA in LPLs, increasing numbers of MDSCs in the spleen, and reducing numbers of Th17 cells and neutrophils in the spleen, MLNs, and LPLs. Taken together, these data support the idea that SMM-189 may be developed as a safe novel therapeutic target for IBD.
Collapse
|
45
|
M’Koma AE. Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:567. [PMID: 35629984 PMCID: PMC9144337 DOI: 10.3390/medicina58050567] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022]
Abstract
This article is an overview of guidelines for the clinical diagnosis and surgical treatment of predominantly colonic inflammatory bowel diseases (IBD). This overview describes the systematically and comprehensively multidisciplinary recommendations based on the updated principles of evidence-based literature to promote the adoption of best surgical practices and research as well as patient and specialized healthcare provider education. Colonic IBD represents idiopathic, chronic, inflammatory disorders encompassing Crohn's colitis (CC) and ulcerative colitis (UC), the two unsolved medical subtypes of this condition, which present similarity in their clinical and histopathological characteristics. The standard state-of-the-art classification diagnostic steps are disease evaluation and assessment according to the Montreal classification to enable explicit communication with professionals. The signs and symptoms on first presentation are mainly connected with the anatomical localization and severity of the disease and less with the resulting diagnosis "CC" or "UC". This can clinically and histologically be non-definitive to interpret to establish criteria and is classified as indeterminate colitis (IC). Conservative surgical intervention varies depending on the disease phenotype and accessible avenues. The World Gastroenterology Organizations has, for this reason, recommended guidelines for clinical diagnosis and management. Surgical intervention is indicated when conservative treatment is ineffective (refractory), during intractable gastrointestinal hemorrhage, in obstructive gastrointestinal luminal stenosis (due to fibrotic scar tissue), or in the case of abscesses, peritonitis, or complicated fistula formation. The risk of colitis-associated colorectal cancer is realizable in IBD patients before and after restorative proctocolectomy with ileal pouch-anal anastomosis. Therefore, endoscopic surveillance strategies, aimed at the early detection of dysplasia, are recommended. During the COVID-19 pandemic, IBD patients continued to be admitted for IBD-related surgical interventions. Virtual and phone call follow-ups reinforcing the continuity of care are recommended. There is a need for special guidelines that explore solutions to the groundwork gap in terms of access limitations to IBD care in developing countries, and the irregular representation of socioeconomic stratification needs a strategic plan for how to address this serious emerging challenge in the global pandemic.
Collapse
Affiliation(s)
- Amosy Ephreim M’Koma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN 37208-3500, USA; or ; Tel.: +1-615-327-6796; Fax: +1-615-327-6440
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, TN 37208-3599, USA
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232-0260, USA
- The American Society of Colon and Rectal Surgeons (ASCRS), 2549 Waukegan Road, #210, Bannockburn, IL 600015, USA
- The American Gastroenterological Association (AGA), Bethesda, MD 20814, USA
| |
Collapse
|
46
|
Th2 IL-4/IL-13 dual blockade with Dupilumab is linked to some Emergent Th17 type Diseases including seronegative arthritis, enthesitis/enthesopathy, but not humoral autoimmune diseases. J Invest Dermatol 2022; 142:2660-2667. [PMID: 35395222 DOI: 10.1016/j.jid.2022.03.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023]
Abstract
Dupilumab, an IL-4/IL-13 receptor blocker, has been linked to emergent seronegative inflammatory arthritis and psoriasis that form part of the spondyloarthropathy (SpA) spectrum. We systematically investigated patterns of immune disorders including predominantly Th17- (SpA pattern), Th2-mediated disorders and humoral autoimmune pattern diseases, using VigiBase, the World Health Organization's (WHO) global pharmacovigilance of adverse drug reactions (ADRs). Several bioinformatics databases and repositories were mined to couple Dupilumab-related immune-pharmacovigilance with molecular cascades relevant to reported findings. 37,848 Dupilumab ADR cases were reported, with skin, eye, musculoskeletal systems most affected. Seronegative arthritis (OR 9.61) psoriasis (OR 1.48), enthesitis/enthesopathy (OR 12.65), and iridocyclitis (OR 3.77) were highly associated. However, Ankylosing Spondylitis and IBD were not conclusively associated. Overall, classic polygenic humorally-mediated autoimmune diseases such as RA and SLE were not associated with Dupilumab use. Pathway analysis identified several biological pathways potentially involved in Dupilumab-associated ADRs, including the fibroblast growth factor receptor (FGFR; in particular, FGFR2) pathway. miRNAs analysis revealed the potential involvement of hsa-miR-21-5p and hsa-miR-335-5p. In conclusion, IL-4/IL-13 blockers are not unexpectedly protective against humoral autoimmune diseases but dynamically skew immune responses towards some IL-23/IL-17 cytokine pathway-related diseases. A robust signal potentially towards degenerative related pathology in the eye and vasculature due to loss of IL-4/IL-13 tissue reparative homeostatic mechanisms emerged.
Collapse
|
47
|
Burrello C, Strati F, Lattanzi G, Diaz-Basabe A, Mileti E, Giuffrè MR, Lopez G, Cribiù FM, Trombetta E, Kallikourdis M, Cremonesi M, Conforti F, Botti F, Porretti L, Rescigno M, Vecchi M, Fantini MC, Caprioli F, Facciotti F. IL10 Secretion Endows Intestinal Human iNKT Cells with Regulatory Functions Towards Pathogenic T Lymphocytes. J Crohns Colitis 2022; 16:1461-1474. [PMID: 35358301 PMCID: PMC9455792 DOI: 10.1093/ecco-jcc/jjac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Invariant natural killer T [iNKT] cells perform pleiotropic functions in different tissues by secreting a vast array of pro-inflammatory and cytotoxic molecules. However, the presence and function of human intestinal iNKT cells capable of secreting immunomodulatory molecules such as IL-10 has never been reported so far. Here we describe for the first time the presence of IL10-producing iNKT cells [NKT10 cells] in the intestinal lamina propria of healthy individuals and of Crohn's disease [CD] patients. METHODS Frequency and phenotype of NKT10 cells were analysed ex vivo from intestinal specimens of Crohn's disease [n = 17] and controls [n = 7]. Stable CD-derived intestinal NKT10 cell lines were used to perform in vitro suppression assays and co-cultures with patient-derived mucosa-associated microbiota. Experimental colitis models were performed by adoptive cell transfer of splenic naïve CD4+ T cells in the presence or absence of IL10-sufficient or -deficient iNKT cells. In vivo induction of NKT10 cells was performed by administration of short chain fatty acids [SCFA] by oral gavage. RESULTS Patient-derived intestinal NKT10 cells demonstrated suppressive capabilities towards pathogenic CD4+ T cells. The presence of increased proportions of mucosal NKT10 cells associated with better clinical outcomes in CD patients. Moreover, an intestinal microbial community enriched in SCFA-producing bacteria sustained the production of IL10 by iNKT cells. Finally, IL10-deficient iNKT cells failed to control the pathogenic activity of adoptively transferred CD4+ T cells in an experimental colitis model. CONCLUSIONS These results describe an unprecedentd IL10-mediated immunoregulatory role of intestinal iNKT cells in controlling the pathogenic functions of mucosal T helper subsets and in maintaining the intestinal immune homeostasis.
Collapse
Affiliation(s)
- Claudia Burrello
- Current address: Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Erika Mileti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Adaptive Immunity, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marco Cremonesi
- Laboratory of Adaptive Immunity, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Conforti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- General and Emergency Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo C Fantini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Corresponding author: Dr Federica Facciotti, Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20135, Milan, Italy.
| |
Collapse
|
48
|
Zhang Z, Yu PF, Gu GL, Zhang YH, Wang YM, Dong ZW, Yang HR. Diffuse invasive signet ring cell carcinoma in total colorectum caused by ulcerative colitis: A case report and review of literature. World J Clin Cases 2022; 10:1729-1737. [PMID: 35211616 PMCID: PMC8855258 DOI: 10.12998/wjcc.v10.i5.1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diffuse invasive signet ring cell carcinoma of the colorectum is extremely rare clinically. This type of colorectal cancer has certain clinical, pathological and biological characteristics that are different from ordinary colorectal cancer. CASE SUMMARY A 31-year-old young woman was admitted to the hospital for nearly 1 wk due to recurrent symptoms of mucopurulent bloody stools and abdominal distension. Preoperative colonoscopy showed a ring-shaped intestinal wall mass 10 cm from the rectum to the anus. Three pieces of tumor tissue were removed for examination. The pathological results showed rectal mucinous adenocarcinoma. The patient underwent laparoscopic exploration under general anesthesia, and then laparoscopic total colorectal resection, ileal pouch-anal anastomosis and ileostomy were performed. The patient was switched to a FOLFOX + cetuximab regimen. After the fifth cycle, the patient was unable to tolerate further treatment due to tumor progression and multiple organ dysfunction, and died at the end of May 2020. Overall survival was 7 mo. CONCLUSION Carcinogenesis of ulcerative colitis is different from sporadic colon cancer, and the overall prognosis is extremely poor.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Guo-Li Gu
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Yu-Hui Zhang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yu-Ming Wang
- Health Team, 93656 Troop of Chinese People's Liberation Army, Beijing 101113, China
| | - Zhi-Wei Dong
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Hai-Rui Yang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| |
Collapse
|
49
|
Cruz MS, Loureiro JP, Oliveira MJ, Macedo MF. The iNKT Cell-Macrophage Axis in Homeostasis and Disease. Int J Mol Sci 2022; 23:ijms23031640. [PMID: 35163561 PMCID: PMC8835952 DOI: 10.3390/ijms23031640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted, lipid-reactive T cells that exhibit preponderant immunomodulatory properties. The ultimate protective or deleterious functions displayed by iNKT cells in tissues are known to be partially shaped by the interactions they establish with other immune cells. In particular, the iNKT cell–macrophage crosstalk has gained growing interest over the past two decades. Accumulating evidence has highlighted that this immune axis plays central roles not only in maintaining homeostasis but also during the development of several pathologies. Hence, this review summarizes the reported features of the iNKT cell–macrophage axis in health and disease. We discuss the pathophysiological significance of this interplay and provide an overview of how both cells communicate with each other to regulate disease onset and progression in the context of infection, obesity, sterile inflammation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Mariana S. Cruz
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - José Pedro Loureiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Instituto Nacional de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Department of Molecular Biology, ICBAS-Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Fatima Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
50
|
Jung SM, Kim S. In vitro Models of the Small Intestine for Studying Intestinal Diseases. Front Microbiol 2022; 12:767038. [PMID: 35058894 PMCID: PMC8765704 DOI: 10.3389/fmicb.2021.767038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The small intestine is a digestive organ that has a complex and dynamic ecosystem, which is vulnerable to the risk of pathogen infections and disorders or imbalances. Many studies have focused attention on intestinal mechanisms, such as host–microbiome interactions and pathways, which are associated with its healthy and diseased conditions. This review highlights the intestine models currently used for simulating such normal and diseased states. We introduce the typical models used to simulate the intestine along with its cell composition, structure, cellular functions, and external environment and review the current state of the art for in vitro cell-based models of the small intestine system to replace animal models, including ex vivo, 2D culture, organoid, lab-on-a-chip, and 3D culture models. These models are described in terms of their structure, composition, and co-culture availability with microbiomes. Furthermore, we discuss the potential application for the aforementioned techniques to these in vitro models. The review concludes with a summary of intestine models from the viewpoint of current techniques as well as their main features, highlighting potential future developments and applications.
Collapse
Affiliation(s)
- Sang-Myung Jung
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|