1
|
Joshi D, Jindal P, Shetty RK, Inamdar MS. Rudhira-mediated microtubule stability controls TGFβ signaling during mouse vascular development. eLife 2025; 13:RP98257. [PMID: 40372775 PMCID: PMC12080998 DOI: 10.7554/elife.98257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
The transforming growth factor β (TGFβ) signaling pathway is critical for survival, proliferation, and cell migration, and is tightly regulated during cardiovascular development. Smads, key effectors of TGFβ signaling, are sequestered by microtubules (MTs) and need to be released for pathway function. Independently, TGFβ signaling also stabilizes MTs. Molecular details and the in vivo relevance of this cross-regulation remain unclear, understanding which is important in complex biological processes such as cardiovascular development. Here, we use rudhira/Breast Carcinoma Amplified Sequence 3 (Bcas3), an MT-associated, endothelium-restricted, and developmentally essential proto-oncogene, as a pivot to decipher cellular mechanisms in bridging TGFβ signaling and MT stability. We show that Rudhira regulates TGFβ signaling in vivo, during mouse cardiovascular development, and in endothelial cells in culture. Rudhira associates with MTs and is essential for the activation and release of Smad2/3 from MTs. Consequently, Rudhira depletion attenuates Smad2/3-dependent TGFβ signaling, thereby impairing cell migration. Interestingly, Rudhira is also a transcriptional target of Smad2/3-dependent TGFβ signaling essential for TGFβ-induced MT stability. Our study identifies an immediate early physical role and a slower, transcription-dependent role for Rudhira in cytoskeleton-TGFβ signaling crosstalk. These two phases of control could facilitate temporally and spatially restricted targeting of the cytoskeleton and/or TGFβ signaling in vascular development and disease.
Collapse
Affiliation(s)
- Divyesh Joshi
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Preeti Jindal
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Ronak K Shetty
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| |
Collapse
|
2
|
Kalyoncu M, Demirci D, Eris S, Dayanc B, Cakiroglu E, Basol M, Uysal M, Cakan-Akdogan G, Liu F, Ozturk M, Karakülah G, Senturk S. Escape from TGF-β-induced senescence promotes aggressive hallmarks in epithelial hepatocellular carcinoma cells. Mol Oncol 2025. [PMID: 40083231 DOI: 10.1002/1878-0261.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/16/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Transforming growth factor-β (TGF-β) signaling and cellular senescence are key hallmarks of hepatocellular carcinoma (HCC) pathogenesis. Despite provoking senescence-associated growth arrest in epithelial HCC cells, elevated TGF-β activity paradoxically correlates with increased aggressiveness and poor prognosis in advanced tumors. Whether the transition between these dichotomous functions involves modulation of the senescence phenotype during disease progression remains elusive. Exploiting the epithelial HCC cell line Huh7 as a robust model, we demonstrate that chronic exposure to TGF-β prompts escape from Smad3-mediated senescence, leading to the development of TGF-β resistance. This altered state is characterized by an optimal proliferation rate and the acquisition of molecular and functional traits of less-differentiated mesenchymal cells, coinciding with differential growth capacity in 2D and 3D culture conditions, epithelial-to-mesenchymal transition (EMT), and increased invasiveness in vitro, and metastasis in vivo. Mechanistically, resistant cells exhibit defective activation and nuclear trafficking of Smad molecules, particularly Smad3, as ectopic activation of the TGF-β/Smad3 axis is able to reinstate TGF-β sensitivity. An integrated transcriptomic landscape reveals both shared and distinct gene signatures associated with senescent and TGF-β resistant states. Importantly, genetic ablation and molecular studies identify microtubule affinity regulating kinase 1 (MARK1) and glutamate metabotropic receptor 8 (GRM8) as critical modulators of the resistance phenomenon, potentially by impairing spatiotemporal signaling dynamics of Smad activity. Our findings unveil a novel phenomenon wherein epithelial HCC cells may exploit senescence plasticity as a mechanism to oppose TGF-β anti-tumor responses and progress towards more aggressive HCC phenotypes.
Collapse
Affiliation(s)
| | | | - Sude Eris
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Bengisu Dayanc
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Basol
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Uysal
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mehmet Ozturk
- Department of Medical Biology, Izmir Tinaztepe University School of Medicine, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
3
|
Xue X, Zhou Y, Liu H, Gao Y, Ma X, Xiao Z, Zhang W, Li P, Tian Z, Luan Y, Zhao X. A novel missense mutation Smad4 V354L enhances the efficacy of docetaxel in non-small cell lung cancer. Biomed Pharmacother 2025; 184:117899. [PMID: 39923405 DOI: 10.1016/j.biopha.2025.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
NSCLC is a heterogeneous disease with unique combinations of somatic molecular alterations in individual patients. The different mutations in tumor oncogene and suppressors might be associated with the response to therapy. However, little is known about how Smad4 genomic alterations cause the therapeutic effect of docetaxel. The retrospective analysis was conducted on 49 patients with stage IIB or IIIA non-small cell lung cancer receiving docetaxel chemotherapy. One novel missense variant, c.1060 G > C in Smad4 was identified by next-generation sequencing. The Smad4c.1060 G > C variant results in the substitution of valine with leucine at amino acid 354 (p.Val354Leu, V354L). The clinical analysis showed that the patients with Smad4 V354L mutation receiving docetaxel treatment manifested better prognosis with prolonged disease-free survival and overall survival compared with patients with the wild-type. Smad4 V354L cells demonstrated increased sensitivity to docetaxel with apoptosis and G2/M cell cycle arrest. Furthermore, the cell-cycle related protein expression of CDK2 was remarkably decreased, while the expression of cyclin-dependent kinase inhibitor p21 Waf1 and p27 Kip1 was significantly increased. In vivo experiments further demonstrated the increased inhibitory effects of docetaxel in the nude mice inoculated with Smad4 V354L cells compared to the mice inoculated with wild-type cells group. The novel V354L missense mutation of Smad4 gene enhances the efficacy of docetaxel in non-small cell lung cancer, which would provide new opportunities for precise clinical therapy of NSCLC.
Collapse
Affiliation(s)
- Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Yongjia Zhou
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Huiping Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yan Gao
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Xinyu Ma
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Zhaohua Xiao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China; Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China; Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Yun Luan
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China; Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China.
| |
Collapse
|
4
|
Piszczatowska K, Czerwaty K, Dżaman K, Jermakow N, Brzost J, Kantor I, Ludwig N, Szczepański MJ. Evaluation of CNPase and TGFβ1/Smad Signalling Pathway Molecule Expression in Sinus Epithelial Tissues of Patients with Chronic Rhinosinusitis with (CRSwNP) and without Nasal Polyps (CRSsNP). J Pers Med 2024; 14:894. [PMID: 39338148 PMCID: PMC11433593 DOI: 10.3390/jpm14090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP, respectively) is a chronic inflammatory disease affecting almost 5 to 12% of the population and exhibiting high recurrence rates after functional endoscopic sinus surgery (FESS). TGFβ1-related pathways contribute to tissue remodelling, which is one of the key aspects of CRS pathogenesis. Additionally, adenosine signalling participates in inflammatory processes, and CNPase was shown to elevate adenosine levels by metabolizing cyclic monophosphates. Thus, the aim of this study was to assess the expression levels of Smad2, pSmad3, TGFβ1, and CNPase protein via immunohistochemistry in sinus epithelial tissues from patients with CRSwNP (n = 20), CRSsNP (n = 23), and non-CRS patients (n = 8). The expression of Smad2, pSmad3, TGFβ1, and CNPase was observed in the sinus epithelium and subepithelial area of all three groups of patients, and their expression correlated with several clinical symptoms of CRS. Smad2 expression was increased in CRSsNP patients compared to CRSwNP patients and controls (p = 0.001 and p < 0.001, respectively), pSmad3 expression was elevated in CRSwNP patients compared to controls (p = 0.007), TGFβ1 expression was elevated in CRSwNP patients compared to controls (p = 0.009), and CNPase was decreased in CRSsNP patients compared to controls (p = 0.03). To the best of our knowledge, we are the first to demonstrate CNPase expression in the upper airway epithelium of CRSwNP, CRSsNP, and non-CRS patients and point out a putative synergy between CNPase and TGFβ1/Smad signalling in CRS pathogenesis that emerges as a novel still undiscovered aspect of CRS pathogenesis; further studies are needed to explore its function in the course of the chronic inflammation of the upper airways.
Collapse
Affiliation(s)
- Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland;
| | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Nils Ludwig
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| |
Collapse
|
5
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
6
|
Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat Commun 2022; 13:7108. [PMID: 36402791 PMCID: PMC9675748 DOI: 10.1038/s41467-022-34831-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The absence of dystrophin in Duchenne muscular dystrophy disrupts the dystrophin-associated glycoprotein complex resulting in skeletal muscle fiber fragility and atrophy, associated with fibrosis as well as microtubule and neuromuscular junction disorganization. The specific, non-conventional cytoplasmic histone deacetylase 6 (HDAC6) was recently shown to regulate acetylcholine receptor distribution and muscle atrophy. Here, we report that administration of the HDAC6 selective inhibitor tubastatin A to the Duchenne muscular dystrophy, mdx mouse model increases muscle strength, improves microtubule, neuromuscular junction, and dystrophin-associated glycoprotein complex organization, and reduces muscle atrophy and fibrosis. Interestingly, we found that the beneficial effects of HDAC6 inhibition involve the downregulation of transforming growth factor beta signaling. By increasing Smad3 acetylation in the cytoplasm, HDAC6 inhibition reduces Smad2/3 phosphorylation, nuclear translocation, and transcriptional activity. These findings provide in vivo evidence that Smad3 is a new target of HDAC6 and implicate HDAC6 as a potential therapeutic target in Duchenne muscular dystrophy.
Collapse
|
7
|
Novel Antibody Exerts Antitumor Effect through Downregulation of CD147 and Activation of Multiple Stress Signals. JOURNAL OF ONCOLOGY 2022; 2022:3552793. [PMID: 36385956 PMCID: PMC9652086 DOI: 10.1155/2022/3552793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
CD147 is an immunoglobulin-like receptor that is highly expressed in various cancers and involved in the growth, metastasis, and activation of inflammatory pathways via interactions with various functional molecules, such as integrins, CD44, and monocarboxylate transporters. Through screening of CD147-targeting antibodies with antitumor efficacy, we discovered a novel rat monoclonal antibody #147D. This humanized IgG4-formatted antibody, h4#147D, showed potent antitumor efficacy in xenograft mouse models harboring the human PDAC cell line MIA PaCa-2, HCC cell line Hep G2, and CML cell line KU812, which featured low sensitivity to the corresponding standard-of-care drugs (gemcitabine, sorafenib, and imatinib, respectively). An analysis of tumor cells derived from MIA PaCa-2 xenograft mice treated with h4#147D revealed that cell surface expression of CD147 and its binding partners, including CD44 and integrin α3β1/α6β1, was significantly reduced by h4#147D. Inhibition of focal adhesion kinase (FAK), activation of multiple stress responsible signal proteins such as c-JunN-terminal kinase (JNK) and mitogen-activated protein kinase p38 (p38MAPK), and expression of SMAD4, as well as activation of caspase-3 were obviously observed in the tumor cells, suggesting that h4#147D induced tumor shrinkage by inducing multiple stress responsible signals. These results suggest that the anti-CD147 antibody h4#147D offers promise as a new antibody drug candidate.
Collapse
|
8
|
Kumar D, Reiter JF. A kinesin mimics DNA. Nat Cell Biol 2022; 24:1015-1016. [PMID: 35798844 DOI: 10.1038/s41556-022-00958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dhivya Kumar
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions. Nat Cell Biol 2022; 24:1088-1098. [PMID: 35725768 PMCID: PMC10016618 DOI: 10.1038/s41556-022-00935-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.
Collapse
|
10
|
Hypoxia Selectively Increases a SMAD3 Signaling Axis to Promote Cancer Cell Invasion. Cancers (Basel) 2022; 14:cancers14112751. [PMID: 35681731 PMCID: PMC9179584 DOI: 10.3390/cancers14112751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor β (TGFβ) plays a paradoxical role in cancer, first inhibiting then promoting its progression, a duality that poses a real challenge for the development of effective TGFβ-targeted therapies. The major TGFβ downstream effectors, SMAD2 and SMAD3, display both distinct and overlapping functions and accumulating evidence suggests that their activation ratio may contribute to the dual effect of TGFβ. However, the mechanisms responsible for their selective activation remain poorly understood. Here, we provide experimental evidence that hypoxia induces the pro-invasive arm of TGFβ signaling through a selective increase in SMAD3 interaction with SMAD-Anchor for Receptor Activation (SARA). This event relies on HDAC6-dependent SMAD3 bioavailability, as well as increased SARA recruitment to EEA1+ endosomes. A motility gene expression study indicated that SMAD3 selectively increased the expression of ITGB2 and VIM, two genes that were found to be implicated in hypoxia-induced cell invasion and associated with tumor progression and metastasis in cohorts of cancer patients. Furthermore, CAM xenograft assays show the significant benefit of selective inhibition of the SMAD3 signaling pathway as opposed to global TGFβ inhibition in preventing tumor progression. Overall, these results suggest that fine-tuning of the pro-invasive HDAC6-SARA-SMAD3 axis could be a better strategy towards effective cancer treatments.
Collapse
|
11
|
Lyu J, Pirooznia M, Li Y, Xiong J. The short-chain fatty acid acetate modulates epithelial-to-mesenchymal transition. Mol Biol Cell 2022; 33. [PMID: 35544303 DOI: 10.1091/mbc.e22-02-0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Normal tissue and organ morphogenesis requires epithelial cell plasticity and conversion to a mesenchymal phenotype through a tightly regulated process: epithelial-to-mesenchymal transition (EMT). Alterations of EMT go far beyond cell-lineage segregation and contribute to pathologic conditions such as cancer. EMT is subject to intersecting control pathways; however, EMT's metabolic mechanism remains poorly understood. Here, we demonstrate that transforming growth factor β (TGF-β)-induced EMT is accompanied by decreased fatty acid oxidation (FAO) and reduced acetyl-coenzyme A (acetyl-CoA) levels. Acetyl-CoA is a central metabolite and the sole donor of acetyl groups to acetylate key proteins. Further, the short-chain fatty acid acetate increases acetyl-CoA levels-robustly inhibiting EMT and cancer cell migration. Acetate can restore EMT-associated α-tubulin acetylation levels, increasing microtubule stability. Transcriptome profiling and flow cytometric analysis show that acetate inhibits the global gene expression program associated with EMT and the EMT-associated G1 cell cycle arrest. Taken together, these results demonstrate that acetate is a potent metabolic regulator of EMT and that therapeutic manipulation of acetate metabolism could provide the basis for treating a wide range of EMT-linked pathological conditions, including cancer.
Collapse
Affiliation(s)
- Junfang Lyu
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Jianhua Xiong
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| |
Collapse
|
12
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
13
|
Lönn P, Al-Amin RA, Doulabi EM, Heldin J, Gallini R, Björkesten J, Oelrich J, Kamali-Moghaddam M, Landegren U. Image-based high-throughput mapping of TGF-β-induced phosphocomplexes at a single-cell level. Commun Biol 2021; 4:1284. [PMID: 34773084 PMCID: PMC8590043 DOI: 10.1038/s42003-021-02798-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Protein interactions and posttranslational modifications orchestrate cellular responses to e.g. cytokines and drugs, but it has been difficult to monitor these dynamic events in high-throughput. Here, we describe a semi-automated system for large-scale in situ proximity ligation assays (isPLA), combining isPLA in microtiter wells with automated microscopy and computer-based image analysis. Phosphorylations and interactions are digitally recorded along with subcellular morphological features. We investigated TGF-β-responsive Smad2 linker phosphorylations and complex formations over time and across millions of individual cells, and we relate these events to cell cycle progression and local cell crowding via measurements of DNA content and nuclear size of individual cells, and of their relative positions. We illustrate the suitability of this protocol to screen for drug effects using phosphatase inhibitors. Our approach expands the scope for image-based single cell analyses by combining observations of protein interactions and modifications with morphological details of individual cells at high throughput. To improve our ability to monitor cellular responses to e.g. cytokines or drugs, Lönn et al have developed a semi-automated system for large-scale in situ proximity ligation assays (isPLA) in HaCAT keratinocyte cells. Their approach expands the scope for image-based single cell analyses by combining observations of protein interactions and modifications with morphological details of individual cells at high throughput.
Collapse
Affiliation(s)
- Peter Lönn
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Rasel A Al-Amin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Heldin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Radiosa Gallini
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Björkesten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Oelrich
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Ciszewski WM, Wawro ME, Sacewicz-Hofman I, Sobierajska K. Cytoskeleton Reorganization in EndMT-The Role in Cancer and Fibrotic Diseases. Int J Mol Sci 2021; 22:ijms222111607. [PMID: 34769036 PMCID: PMC8583721 DOI: 10.3390/ijms222111607] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation promotes endothelial plasticity, leading to the development of several diseases, including fibrosis and cancer in numerous organs. The basis of those processes is a phenomenon called the endothelial–mesenchymal transition (EndMT), which results in the delamination of tightly connected endothelial cells that acquire a mesenchymal phenotype. EndMT-derived cells, known as the myofibroblasts or cancer-associated fibroblasts (CAFs), are characterized by the loss of cell–cell junctions, loss of endothelial markers, and gain in mesenchymal ones. As a result, the endothelium ceases its primary ability to maintain patent and functional capillaries and induce new blood vessels. At the same time, it acquires the migration and invasion potential typical of mesenchymal cells. The observed modulation of cell shape, increasedcell movement, and invasion abilities are connected with cytoskeleton reorganization. This paper focuses on the review of current knowledge about the molecular pathways involved in the modulation of each cytoskeleton element (microfilaments, microtubule, and intermediate filaments) during EndMT and their role as the potential targets for cancer and fibrosis treatment.
Collapse
|
15
|
P75 neurotrophin receptor controls subventricular zone neural stem cell migration after stroke. Cell Tissue Res 2021; 387:415-431. [PMID: 34698916 PMCID: PMC8975773 DOI: 10.1007/s00441-021-03539-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR−/−) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR−/− NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR−/− NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR−/− NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.
Collapse
|
16
|
Shi Y, Tao M, Ni J, Tang L, Liu F, Chen H, Ma X, Hu Y, Zhou X, Qiu A, Zhuang S, Liu N. Requirement of Histone Deacetylase 6 for Interleukin-6 Induced Epithelial-Mesenchymal Transition, Proliferation, and Migration of Peritoneal Mesothelial Cells. Front Pharmacol 2021; 12:722638. [PMID: 34526901 PMCID: PMC8435636 DOI: 10.3389/fphar.2021.722638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: Influenced by microenvironment, human peritoneal mesothelial cells (HPMCs) acquired fibrotic phenotype, which was identified as the protagonist for peritoneal fibrosis. In this study, we examined the role of histone deacetylase 6 (HDAC6) for interleukin-6 (IL-6) induced epithelial-mesenchymal transition (EMT), proliferation, and migration of HPMCs. Methods: The role of HDAC6 in IL-6-elicited EMT of HPMCs was tested by morphological observation of light microscope, immunoblotting, and immune-fluorescence assay; and the function of HDAC6 in proliferation and migration of HPMCs was examined by CCK-8 assay, wound healing experiment, and immunoblotting. Results: IL-6 stimulation significantly increased the expression of HDAC6. Treatment with tubastatin A (TA), a highly selective HDAC6 inhibitor, or silencing of HDAC6 with siRNA decreased the expression of HDAC6. Moreover, TA or HDAC6 siRNA suppressed IL-6-induced EMT, as evidenced by decreased expressions of α-SMA, Fibronectin, and collagen I and the preserved expression of E-cadherin in cultured HPMCs. Mechanistically, HDAC6 inhibition suppressed the expression of transforming growth factor β (TGFβ) receptor I (TGFβRI), phosphorylation of Smad3, secretion of connective tissue growth factor (CTGF), and transcription factor Snail. On the other hand, the pharmacological inhibition or genetic target of HDAC6 suppressed HPMCs proliferation, as evidenced by the decreased optical density of CCK-8 and the expressions of PCNA and Cyclin E. The migratory rate of HPMCs also decreased. Mechanistically, HDAC6 inhibition blocked the activation of JAK2 and STAT3. Conclusion: Our study illustrated that IL-6-induced HDAC6 not only regulated IL-6 itself downstream JAK2/STAT3 signaling but also co-activated the TGF-β/Smad3 signaling, leading to the change of the phenotype and mobility of HPMCs. HDAC6 could be a potential therapeutic target for the prevention and treatment of peritoneal fibrosis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Morita W, Snelling SJB, Wheway K, Watkins B, Appleton L, Murphy RJ, Carr AJ, Dakin SG. Comparison of Cellular Responses to TGF-β1 and BMP-2 Between Healthy and Torn Tendons. Am J Sports Med 2021; 49:1892-1903. [PMID: 34081556 DOI: 10.1177/03635465211011158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons heal by fibrotic repair, increasing the likelihood of reinjury. Animal tendon injury and overuse models have identified transforming growth factor beta (TGF-β) and bone morphogenetic proteins (BMPs) as growth factors actively involved in the development of fibrosis, by mediating extracellular matrix synthesis and cell differentiation. PURPOSE To understand how TGF-β and BMPs contribute to fibrotic processes using tendon-derived cells isolated from healthy and diseased human tendons. STUDY DESIGN Controlled laboratory study. METHODS Tendon-derived cells were isolated from patients with a chronic rotator cuff tendon tear (large to massive, diseased) and healthy hamstring tendons of patients undergoing anterior cruciate ligament repair. Isolated cells were incubated with TGF-β1 (10 ng/mL) or BMP-2 (100 ng/mL) for 3 days. Gene expression was measured by real-time quantitative polymerase chain reaction. Cell signaling pathway activation was determined by Western blotting. RESULTS TGF-β1 treatment induced ACAN mRNA expression in both cell types but less in the diseased compared with healthy cells (P < .05). BMP-2 treatment induced BGN mRNA expression in healthy but not diseased cells (P < .01). In the diseased cells, TGF-β1 treatment induced increased ACTA2 mRNA expression (P < .01) and increased small mothers against decapentaplegic (SMAD) signaling (P < .05) compared with those of healthy cells. Moreover, BMP-2 treatment induced ACTA2 mRNA expression in the diseased cells only (P < .05). CONCLUSION Diseased tendon-derived cells show reduced expression of the proteoglycans aggrecan and biglycan in response to TGF-β1 and BMP-2 treatments. These same treatments induced enhanced fibrotic differentiation and canonical SMAD cell signaling in diseased compared with healthy cells. CLINICAL RELEVANCE Findings from this study suggest that diseased tendon-derived cells respond differently than healthy cells in the presence of TGF-β1 and BMP-2. The altered responses of diseased cells may influence fibrotic repair processes during tendon healing.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Louise Appleton
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Richard J Murphy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Brighton and Sussex University NHS Trust, Royal Sussex County Hospital, Brighton, UK
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Zhong FJ, Sun B, Cao MM, Xu C, Li YM, Yang LY. STMN2 mediates nuclear translocation of Smad2/3 and enhances TGFβ signaling by destabilizing microtubules to promote epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2021; 506:128-141. [PMID: 33705863 DOI: 10.1016/j.canlet.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Metastasis remains the major obstacle of improving the survival of patients with hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is critical to cancer metastasis. Successful induction of EMT requires dramatic cytoskeleton rearrangement. However, the significance of microtubule (MT), one of the core components of cell cytoskeleton, in this process remains largely unknown. Here we revealed that STMN2, an important MT dynamics regulator, is barely expressed in normal live tissues but markedly up-regulated in HCCs, especially in those with early recurrence. High STMN2 expression correlates with aggressive clinicopathological features and predicts poor prognosis of HCC patients. STMN2 overexpression in HCC cells promotes EMT, invasion and metastasis in vitro and in vivo, whereas STMN2 knockdown has opposite results. Mechanistically, STMN2 modulates MTs disassembly, disrupts MT-Smad complex, and facilitates release from MT network, phosphorylation and nuclear translocation of Smad2/3 even independent of TGFβ stimulation, thereby enhancing TGFβ signaling. Collectively, STMN2 orchestrates MT disassembly to facilitate EMT via TGF-β signaling, providing a novel insight into the mechanisms underlying cancer metastasis. STMN2 is a promising prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Fang-Jing Zhong
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Sun
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mo-Mo Cao
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cong Xu
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Ming Li
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
Diao J, Chen X, Jiang L, Mou P, Wei R. Transforming growth factor-β1 suppress pentraxin-3 in human orbital fibroblasts. Endocrine 2020; 70:78-84. [PMID: 32300954 DOI: 10.1007/s12020-020-02307-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Transforming growth factor-β (TGF-β), recognized as a crucial factor in regulating fibrosis and tissue remodeling, plays a role in thyroid-associated ophthalmopathy (TAO). Pentraxin-3 (PTX3), a member of pentraxins, was recently implicated in many autoimmune and fibrotic diseases. Thus, we hypothesize if there is a potential correlation between TGF-β and PTX3 in orbital fibroblasts (OFs). METHODS Several strains of OFs obtained from patients with TAO (n = 8) and healthy donors (n = 3) were established as the study model. Recombinant TGF-β1 was exerted as an intervention and the expression of PTX3 was detected. To uncover the underlying mechanism, specific inhibitors of TGF-β and siRNA knockdown of Smads were utilized. RESULTS We found that TGF-β1 can reduce PTX3 protein expression in OFs. We also demonstrated that this downregulation was mediated at a pretranslational level, and PTX3 mRNA was inhibited in a time- and concentration-dependent manner by TGF-β1. Interestingly, the basic level of PTX3 and the magnitude of suppression were not significantly different between TAO and control groups. Furthermore, the TGF-β receptor complex (type I:type II) and the Smad2/3-Smad4-dependent pathway are essential for TGF-mediated PTX3 repression. CONCLUSION These findings indicated that TGF-β1 can inhibit PTX3 expression in human OFs, which may participate in inflammation and fibrosis in patients with TAO and provide a potential target for the antifibrotic treatment.
Collapse
Affiliation(s)
- Jiale Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Xinxin Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Lihong Jiang
- Department of Ophthalmology, Zhabei Central Hospital, Jingan District, 619 Zhonghua Xin Road, Shanghai, 200070, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
20
|
Fuess LE, Butler CC, Brandt ME, Mydlarz LD. Investigating the roles of transforming growth factor-beta in immune response of Orbicella faveolata, a scleractinian coral. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103639. [PMID: 32027869 DOI: 10.1016/j.dci.2020.103639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Symbiotic relationships range from parasitic to mutualistic, yet all endosymbionts face similar challenges, including evasion of host immunity. Many symbiotic organisms have evolved similar mechanisms to face these challenges, including manipulation of the host's transforming growth factor-beta (TGFβ) pathway. Here we investigate the TGFβ pathway in scelaractinian corals which are dependent on symbioses with dinoflagellates from the family Symbiodiniaceae. Using the Caribbean coral, Orbicella faveolata, we explore the effects of enhancement and inhibition of the TGFβ pathway on host gene expression. Following transcriptomic analyses, we demonstrated limited effects of pathway manipulation in absence of immune stimulation. However, manipulation of the TGFβ pathway significantly affects the subsequent ability of host corals to mount an immune response. Enhancement of the TGFβ pathway eliminates transcriptomic signatures of host coral immune response, while inhibition of the pathway maintains the response. This is, to our knowledge, the first evidence of an immunomodulatory role for TGFβ in a scelaractinian coral. These findings suggest variation in TGFβ signaling may have implications in the face of increasing disease prevelance. Our results suggest that the TGFβ pathway can modulate tradeoffs between symbiosis and immunity. Further study of links between symbiosis, TGFβ, and immunity is needed to better understand the ecological implications of these findings.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Biology, University of Texas Arlington, Arlington, TX, United States.
| | - Caleb C Butler
- Department of Biology, University of Texas Arlington, Arlington, TX, United States
| | - Marilyn E Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, United States
| | - Laura D Mydlarz
- Department of Biology, University of Texas Arlington, Arlington, TX, United States
| |
Collapse
|
21
|
Ojiaku CA, Chung E, Parikh V, Williams JK, Schwab A, Fuentes AL, Corpuz ML, Lui V, Paek S, Bexiga NM, Narayan S, Nunez FJ, Ahn K, Ostrom RS, An SS, Panettieri RA. Transforming Growth Factor-β1 Decreases β 2-Agonist-induced Relaxation in Human Airway Smooth Muscle. Am J Respir Cell Mol Biol 2020; 61:209-218. [PMID: 30742476 DOI: 10.1165/rcmb.2018-0301oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helper T effector cytokines implicated in asthma modulate the contractility of human airway smooth muscle (HASM) cells. We have reported recently that a profibrotic cytokine, transforming growth factor (TGF)-β1, induces HASM cell shortening and airway hyperresponsiveness. Here, we assessed whether TGF-β1 affects the ability of HASM cells to relax in response to β2-agonists, a mainstay treatment for airway hyperresponsiveness in asthma. Overnight TGF-β1 treatment significantly impaired isoproterenol (ISO)-induced relaxation of carbachol-stimulated, isolated HASM cells. This single-cell mechanical hyporesponsiveness to ISO was corroborated by sustained increases in myosin light chain phosphorylation. In TGF-β1-treated HASM cells, ISO evoked markedly lower levels of intracellular cAMP. These attenuated cAMP levels were, in turn, restored with pharmacological and siRNA inhibition of phosphodiesterase 4 and Smad3, respectively. Most strikingly, TGF-β1 selectively induced phosphodiesterase 4D gene expression in HASM cells in a Smad2/3-dependent manner. Together, these data suggest that TGF-β1 decreases HASM cell β2-agonist relaxation responses by modulating intracellular cAMP levels via a Smad2/3-dependent mechanism. Our findings further define the mechanisms underlying β2-agonist hyporesponsiveness in asthma, and suggest TGF-β1 as a potential therapeutic target to decrease asthma exacerbations in severe and treatment-resistant asthma.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Elena Chung
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Vishal Parikh
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | | | - Anthony Schwab
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Ana Lucia Fuentes
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Maia L Corpuz
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Victoria Lui
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sam Paek
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Natalia M Bexiga
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,6Department of Pharmaceutical Biochemistry Technology, University of Sao Paulo, Sao Paulo, Brazil
| | - Shreya Narayan
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Francisco J Nunez
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kwangmi Ahn
- 7National Institutes of Health, Bethesda, Maryland
| | - Rennolds S Ostrom
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Steven S An
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,8Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; and.,9Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Reynold A Panettieri
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
22
|
Chin HG, Esteve PO, Ruse C, Lee J, Schaus SE, Pradhan S, Hansen U. The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin. J Biol Chem 2020; 295:4748-4759. [PMID: 32111740 PMCID: PMC7135998 DOI: 10.1074/jbc.ra119.010951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.
Collapse
Affiliation(s)
- Hang Gyeong Chin
- New England Biolabs, Ipswich, Massachusetts 01938
- MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, Massachusetts 02215
| | | | | | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Scott E Schaus
- Center for Molecular Discovery, Boston University, Boston, Massachusetts 02215
| | | | - Ulla Hansen
- MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, Massachusetts 02215
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
23
|
Luo Y, Xie L, Liu HM, Liu B. [Effect of low-concentration paclitaxel on collagen deposition outside rat pulmonary artery smooth muscle cells and related mechanism]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:924-929. [PMID: 31506155 PMCID: PMC7390237 DOI: 10.7499/j.issn.1008-8830.2019.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the effect of low-concentration paclitaxel (PTX) on transforming growth factor-β1 (TGF-β1)-induced collagen deposition outside rat pulmonary artery smooth muscle cells (PASMCs) and related mechanism. METHODS Primary rat PASMCs were divided into a blank control group (n=3), a model group (n=3), and a drug intervention group (n=3). No treatment was given for the blank control group. The model group was treated with TGF-β1 with a final concentration of 10 ng/mL. The drug intervention group was treated with PTX with a final concentration of 100 nmol/L in addition to the treatment in the model group. MTT colorimetry was used to measure cell proliferation. Quantitative real-time PCR was used to measure the relative mRNA expression of collagen type I (COL-I) and collagen type III (COL-III). ELISA was used to measure the OD value of COL-I and COL-III proteins. Western blot was used to measure the relative protein expression of COL-I, COL-III, and the key proteins of the TGF-β1/Smad3 signaling pathway (Smad3 and p-Smad3). RESULTS Compared with the blank control group, the model group had significant increases in proliferation ability, relative mRNA and protein expression of COL-I and COL-III, and relative protein expression of p-Smad3 (P<0.05). Compared with the model group, the drug intervention group had significant reductions in the above indicators, but which were still higher than those in the blank control group (P<0.05). There was no significant difference in the relative protein expression of Smad3 among the three groups (P>0.05). CONCLUSIONS Low-concentration PTX exerts a marked inhibitory effect on TGF-β1-induced collagen deposition outside PASMCs, possibly by regulating the phosphorylation of Smad3 protein.
Collapse
Affiliation(s)
- Yan Luo
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | | | | | | |
Collapse
|
24
|
Comprehensive Analysis of Mouse Cancer/Testis Antigen Functions in Cancer Cells and Roles of TEKT5 in Cancer Cells and Testicular Germ Cells. Mol Cell Biol 2019; 39:MCB.00154-19. [PMID: 31208979 DOI: 10.1128/mcb.00154-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/06/2019] [Indexed: 01/07/2023] Open
Abstract
The cancer/testis antigen (CTA) genes were identified as human genes preferentially expressed in cancer cells and testis, but the contribution of CTAs to cancer and male germ cell development is unclear. In this study, we comprehensively examined mouse CTA functions and found that the majority of CTAs are involved in growth and/or survival of cancer cells. We focused on one mouse CTA gene, Tekt5, for its detailed functional analysis. Tekt5 knockdown (KD) in ovarian cancer cells caused G1 arrest and apoptosis, and p27kip1 was concomitantly upregulated. Tekt5 KD also resulted in decreased levels of acetylated α-tubulin and subsequent fragmentation of β-III-tubulin, upregulation of HDAC6 that deacetylates α-tubulin, and nuclear accumulation of SMAD3 that induces p27kip1 expression. Because depolymerization of tubulin is known to cause translocation of SMAD3 to the nucleus, these results together suggested that TEKT5 negatively regulates Hdac6 expression and consequently maintains cell cycle via stabilization of tubulin. We also found that the number of spermatids was significantly decreased and acetylated α-tubulin levels were decreased in vivo by KD of Tekt5 in testis. Because acetylated α-tubulin is required for sperm morphogenesis, these results suggest that TEKT5 is necessary for spermiogenesis via maintenance of acetylated α-tubulin levels.
Collapse
|
25
|
Hwang HJ, Oh MS, Lee DW, Kuh HJ. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res 2019; 38:258. [PMID: 31200779 PMCID: PMC6567511 DOI: 10.1186/s13046-019-1225-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a stroma-rich carcinoma, and pancreatic stellate cells (PSCs) are a major component of this dense stroma. PSCs play significant roles in metastatic progression and chemoresistance through cross-talk with cancer cells. Preclinical in vitro tumor model of invasive phenotype should incorporate three-dimensional (3D) culture of cancer cells and PSCs in extracellular matrix (ECM) for clinical relevance and predictability. METHODS PANC-1 cells were cultured as tumor spheroids (TSs) using our previously developed minipillar chips, and co-cultured with PSCs, both embedded in collagen gels. Effects of PSC co-culture on ECM fiber network, invasive migration of cancer cells, and expression of epithelial-mesenchymal transition (EMT)-related proteins were examined. Conditioned media was also analyzed for secreted factors involved in cancer cell-PSC interactions. Inhibitory effect on cancer cell invasion was compared between gemcitabine and paclitaxel at an equitoxic concentration in PANC-1 TSs co-cultured with PSCs. RESULTS Co-culture condition was optimized for the growth of TSs, activation of PSCs, and their interaction. Increase in cancer cell invasion via ECM remodeling, invadopodia formation and EMT, as well as drug resistance was recapitulated in the TS-PSC co-culture, and appeared to be mediated by cancer cell-PSC interaction via multiple secreted factors, including IL-6, IL-8, IGF-1, EGF, TIMP-1, uPA, PAI-1, and TSP-1. Compared to gemcitabine, paclitaxel showed a greater anti-invasive activity, which was attributed to suppresion of invadopodia formation in cancer cells as well as to PSC-specific cytotoxicity abrogating its paracrine signaling. CONCLUSIONS Here, we established 3D co-culture of TSs of PANC-1 cells and PSCs using minipillar histochips as a novel tumoroid model of PDAC. Our results indicate usefulness of the present co-culture model and multiplex quantitative analysis method not only in studying the role of PSCs and their interactions with tumor cell towards metastatic progression, but also in the drug evaluation of stroma-targeting drugs.
Collapse
Affiliation(s)
- Hyun Ju Hwang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Suk Oh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Lee
- Departments of Biomedical Engineering, Konyang University, Daejeon, Republic of Korea
- Medical & Bio Device, #B-9, 145 Gwanggyo-ro, Suwon, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-ku, Seoul, 06591 Republic of Korea
| |
Collapse
|
26
|
Zhao S, Yu W, Ukon N, Tan C, Nishijima KI, Shimizu Y, Higashikawa K, Shiga T, Yamashita H, Tamaki N, Kuge Y. Elimination of tumor hypoxia by eribulin demonstrated by 18F-FMISO hypoxia imaging in human tumor xenograft models. EJNMMI Res 2019; 9:51. [PMID: 31161539 PMCID: PMC6546772 DOI: 10.1186/s13550-019-0521-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Eribulin, an inhibitor of microtubule dynamics, shows antitumor potency against a variety of solid cancers through its antivascular activity and remodeling of tumor vasculature. 18F-Fluoromisonidazole (18F-FMISO) is the most widely used PET probe for imaging tumor hypoxia. In this study, we utilized 18F-FMISO to clarify the effects of eribulin on the tumor hypoxic condition in comparison with histological findings. MATERIAL AND METHODS Mice bearing a human cancer cell xenograft were intraperitoneally administered a single dose of eribulin (0.3 or 1.0 mg/kg) or saline. Three days after the treatment, mice were injected with 18F-FMISO and pimonidazole (hypoxia marker for immunohistochemistry), and intertumoral 18F-FMISO accumulation levels and histological characteristics were determined. PET/CT was performed pre- and post-treatment with eribulin (0.3 mg/kg, i.p.). RESULTS The 18F-FMISO accumulation levels and percent pimonidazole-positive hypoxic area were significantly lower, whereas the number of microvessels was higher in the tumors treated with eribulin. The PET/CT confirmed that 18F-FMISO distribution in the tumor was decreased after the eribulin treatment. CONCLUSIONS Using 18F-FMISO, we demonstrated the elimination of the tumor hypoxic condition by eribulin treatment, concomitantly with the increase in microvessel density. These findings indicate that PET imaging using 18F-FMISO may provide the possibility to detect the early treatment response in clinical patients undergoing eribulin treatment.
Collapse
Affiliation(s)
- Songji Zhao
- Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan. .,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Wenwen Yu
- Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Chengbo Tan
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Ken-Ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi Shimizu
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroko Yamashita
- Department of Breast Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Cortes J, Schöffski P, Littlefield BA. Multiple modes of action of eribulin mesylate: Emerging data and clinical implications. Cancer Treat Rev 2018; 70:190-198. [DOI: 10.1016/j.ctrv.2018.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
|
28
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
29
|
Estramustine Phosphate Inhibits TGF- β-Induced Mouse Macrophage Migration and Urokinase-Type Plasminogen Activator Production. Anal Cell Pathol (Amst) 2018; 2018:3134102. [PMID: 30245956 PMCID: PMC6139214 DOI: 10.1155/2018/3134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/29/2018] [Indexed: 11/17/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) has been demonstrated as a key regulator of immune responses including monocyte/macrophage functions. TGF-β regulates macrophage cell migration and polarization, as well as it is shown to modulate macrophage urokinase-type plasminogen activator (uPA) production, which also contributes to macrophage chemotaxis and migration toward damaged or inflamed tissues. Microtubule (MT) cytoskeleton dynamic plays a key role during the cell motility, and any interference on the MT network profoundly affects cell migration. In this study, by using estramustine phosphate (EP), which modifies MT stability, we analysed whether tubulin cytoskeleton contributes to TGF-β-induced macrophage cell migration and uPA expression. We found out that, in the murine macrophage cell line RAW 264.7, EP at noncytotoxic concentrations inhibited cell migration and uPA expression induced by TGF-β. Moreover, EP greatly reduced the capacity of TGF-β to trigger the phosphorylation and activation of its downstream Smad3 effector. Furthermore, Smad3 activation seems to be critical for the increased cell motility. Thus, our data suggest that EP, by interfering with MT dynamics, inhibits TGF-β-induced RAW 264.7 cell migration paralleled with reduction of uPA induction, in part by disabling Smad3 activation by TGF-β.
Collapse
|
30
|
Kurata T, Fushida S, Kinoshita J, Oyama K, Yamaguchi T, Okazaki M, Miyashita T, Tajima H, Ninomiya I, Ohta T. Low-dose eribulin mesylate exerts antitumor effects in gastric cancer by inhibiting fibrosis via the suppression of epithelial-mesenchymal transition and acts synergistically with 5-fluorouracil. Cancer Manag Res 2018; 10:2729-2742. [PMID: 30147370 PMCID: PMC6101023 DOI: 10.2147/cmar.s167846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Characterized by aggressive proliferation, extensive stromal fibrosis, and resulting drug resistance, peritoneal dissemination in gastric cancer remains associated with poor prognosis. Interaction between cancer and stromal cells accelerates tumor progression via epithelial–mesenchymal transition (EMT), which is one of the major causes of tissue fibrosis, and human peritoneal mesothelial cells (HPMCs) play important roles as cancer stroma in peritoneal dissemination. Transforming growth factor-β (TGF-β) has a pivotal function in the progression of EMT, and Smad proteins play an important role in the TGF-β signaling pathway. Eribulin mesylate (eribulin), a nontaxane microtubule dynamics inhibitor used for the treatment of advanced breast cancer, inhibits EMT changes in triple-negative breast cancer cells. We examined its ability to inhibit tumor progression and EMT changes resulting from the interaction between gastric cancer cells and HPMCs and to act synergistically with 5-fluorouracil (5-FU), a key drug for gastric cancer. Materials and methods Proliferation of gastric cancer cells and HPMCs isolated from healthy omentum was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Following gastric cancer cell/HPMC coculture, EMT markers were detected by immunofluorescence, immunohistochemistry, and Western blotting; invasion assays were performed; and TGF-β and Smad phosphorylation were assessed by Western blotting and enzyme-linked immunosorbent assay. A mouse fibrotic tumor xenograft model was established using gastric cancer cell/HPMC cocultures. The effect of eribulin and/or 5-FU was tested in each case. Results Eribulin significantly suppressed gastric cancer cell proliferation and EMT changes in MKN-45 gastric cancer cells and HPMCs induced by their interaction in vitro. Eribulin inhibited EMT at much lower concentrations (≥0.5 nM for MKN-45 and ≥0.1 nM for HPMCs) than its half maximal inhibitory concentrations (2.2 nM for MKN-45 and 8.1 nM for HPMCs), and this resulted, at least partly, from the downregulation of TGF-β/Smad signaling. Eribulin administration of ≥0.1 mg/kg suppressed tumor progression (0.1 mg/kg, p=0.02), and fibrosis was inhibited by lower dose (0.05 mg/kg, p=0.008) in the xenograft model. Furthermore, 0.05 mg/kg administration with 5-FU brought about synergistic antitumor effects (p=0.006). Conclusion Low-dose eribulin combined with 5-FU might be a promising therapy for peritoneal dissemination in gastric cancer.
Collapse
Affiliation(s)
- Toru Kurata
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| |
Collapse
|
31
|
Hirose Y, Shirai K, Hirai Y. Membrane-tethered syntaxin-4 locally abrogates E-cadherin function and activates Smad signals, contributing to asymmetric mammary epithelial morphogenesis. J Cell Biochem 2018; 119:7525-7539. [PMID: 29767852 DOI: 10.1002/jcb.27064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Spatial and temporal epithelial-mesenchymal transition (EMT) is a critical event for the generation of asymmetric epithelial architectures. We found that only restricted cell populations in the morphogenic mammary epithelia extrude syntaxin-4, a plasmalemmal t-SNARE protein, and that epithelial cell clusters with artificial heterogenic presentation of extracellular syntaxin-4 undergo asymmetric morphogenesis. A previous study revealed that inducible expression of cell surface syntaxin-4 causes EMT-like cell behaviors in the clonal mammary epithelial cells, where laminin-mediated signals were abolished so that cells readily succumb to initiate EMT. The present study added new mechanistic insight into syntaxin-4-driven EMT-like cell behaviors. Extracellular syntaxin-4 directly perturbs E-cadherin-mediated epithelial cell-cell adhesion and activates Smad signals. We found that the epithelial cells activated Smad2/3 upon induction of expression of extracellular syntaxin-4, leading to the upregulation of certain transcriptional targets of these TGF-β signaling mediators. Intriguingly, however, mRNA expression of canonical EMT initiators, such as Snail and Slug, was unchanged. In addition, E-cadherin protein was steeply decreased, yet its transcriptional expression remained constant for a couple of days. We found that extracellular syntaxin-4 directly bound to E-cadherin and sequestered β-catenin from cell-cell contact sites, perturbing intercellular adhesive property. The functional ablation of E-cadherin by syntaxin-4 was further validated by L cells with stably expressing E-cadherin, in which cells shows intercellular adhesive property solely by E-cadherin. These results underline the role of local exportation of syntaxin-4 for onset of complex epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuina Hirose
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kota Shirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
32
|
Morrison AJ. Genome maintenance functions of the INO80 chromatin remodeller. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0289. [PMID: 28847826 DOI: 10.1098/rstb.2016.0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin modification is conserved in all eukaryotes and is required to facilitate and regulate DNA-templated processes. For example, chromatin manipulation, such as histone post-translational modification and nucleosome positioning, play critical roles in genome stability pathways. The INO80 chromatin-remodelling complex, which regulates the abundance and positioning of nucleosomes, is particularly important for proper execution of inducible responses to DNA damage. This review discusses the participation and activity of the INO80 complex in DNA repair and cell cycle checkpoint pathways, with emphasis on the Saccharomyces cerevisiae model system. Furthermore, the role of ATM/ATR kinases, central regulators of DNA damage signalling, in the regulation of INO80 function will be reviewed. In addition, emerging themes of chromatin remodelling in mitotic stability pathways and chromosome segregation will be introduced. These studies are critical to understanding the dynamic chromatin landscape that is rapidly and reversibly modified to maintain the integrity of the genome.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Samarakoon R, Higgins PJ. The Cytoskeletal Network Regulates Expression of the Profibrotic Genes PAI-1 and CTGF in Vascular Smooth Muscle Cells. ADVANCES IN PHARMACOLOGY 2018; 81:79-94. [DOI: 10.1016/bs.apha.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Chang CC, Yang Y, Gao DY, Cheng HT, Hoang B, Chao PH, Chen LH, Bteich J, Chiang T, Liu JY, Li SD, Chen Y. Docetaxel-carboxymethylcellulose nanoparticles ameliorate CCl4-induced hepatic fibrosis in mice. J Drug Target 2017; 26:516-524. [DOI: 10.1080/1061186x.2017.1419358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chih-Chun Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yang Yang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, Vancouver, BC, Canada
| | - Dong-Yu Gao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin Chu City, Taiwan
| | - Bryan Hoang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, Vancouver, BC, Canada
| | - Po-Han Chao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ling-Hsuan Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin Chu City, Taiwan
| | - Joseph Bteich
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, Vancouver, BC, Canada
| | - Tsaiyu Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Yu Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver Campus, Vancouver, BC, Canada
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
35
|
Hira-Miyazawa M, Nakamura H, Hirai M, Kobayashi Y, Kitahara H, Bou-Gharios G, Kawashiri S. Regulation of programmed-death ligand in the human head and neck squamous cell carcinoma microenvironment is mediated through matrix metalloproteinase-mediated proteolytic cleavage. Int J Oncol 2017; 52:379-388. [PMID: 29345283 PMCID: PMC5741372 DOI: 10.3892/ijo.2017.4221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
Recurrent and/or metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. According to recent clinical studies, tumour growth can be effectively reduced and survival can be improved by blocking the programmed death receptor-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway. PD-L1 expression has been proposed as a potential causative mechanism, as HNSCC is highly immunosuppressive. However, anti-PD-1 treatment is beneficial only for certain patients. Therefore, the mechanisms controlling PD-L1 expression warrant further investigation in order to provide a better understanding of the predicting efficacy of and optimising anti-PD-1 therapy, alone or in combination. In this study, PD-L1 protein extracted from the cell membrane was found to be downregulated in OSC-20 cells compared with OSC-19 cells, despite a higher PD-L1 expression in the total cell lysate of the OSC-20 compared with the OSC-19 cells. Several matrix metalloproteinases (MMPs) were found to be upregulated in HNSCC; in particular, MMP-7 and -13 were upregulated in the OSC-20 compared with the OSC-19 cells. Purified PD-L1 was degraded by recombinant MMP-13 and -7. The expression of PD-L1 was significantly restored by a specific inhibitor of MMP-13 (CL82198), which suggested the involvement of MMP-13 in the shedding/cleavage of PD-L1 in the OSC-20 cells. Among the anticancer drugs conventionally used in the treatment of patients with HNSCC, paclitaxel increased MMP-13 expression in R/M HNSCC cells (HOC313 cells) co-cultured without/with dendritic cells (DCs). These results suggest that the shedding/cleavage of PD-L1 by MMP-13 is one of the mechanisms behind the protective effect against invasion and metastasis. Thus, MMP-13 has potential value as a marker predictive of the decreased efficacy of anti-PD-1 therapy. In addition, paclitaxel is a particularly promising candidate for combination therapy in R/M HNSCC with anti-PD-1 therapy.
Collapse
Affiliation(s)
- Mayuko Hira-Miyazawa
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Mariko Hirai
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Yutaka Kobayashi
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroko Kitahara
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
36
|
Li X, Guo L, Liu Y, Su Y, Xie Y, Du J, Zhou J, Ding G, Wang H, Bai Y, Liu Y. MicroRNA-21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7-Smad1/5/8-Runx2 pathway. Biochem Biophys Res Commun 2017; 493:928-933. [PMID: 28943430 DOI: 10.1016/j.bbrc.2017.09.119] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) are pluripotent stem cells, and the osteogenic differentiation of BMMSCs has been drawing attention for a long time. Bone formation is regulated by numerous molecular and cellular signaling pathways, and the differentiation of BMMSCs is controlled by a well-defined genetic program. In the present study, we isolated BMMSCs from the bone cavities of wild-type (WT) and microRNA-21 knock-out (miR-21-KO) mice and found that miR-21 was significantly upregulated during the osteogenic differentiation of BMMSCs. Under osteoinductive conditions, ALP staining and alizarin red staining showed that the bone formation of BMMSCs from miR-21-KO mice was less than that of BMMSCs from WT mice. Consistently, RT-PCR and western blotting revealed that ALP and Runx2 expression levels in miR-21-KO mice were downregulated compared with those in WT mice. Meanwhile, the calvarial bone defects of miR-21-KO mice showed less newly formed bone than did those of WT mice. Additionally, the Smad7-Smad1/5/8-Runx2 axis showed the same tendency; Smad7 overexpression and the expression of phosphorylated Smad1/5/8 complex decreased when miR-21 was knocked down. We identified a novel mechanism by which microRNA-21 (miR-21) promotes the bone formation of BMMSCs and found that this process is regulated, in part, by the Smad7-Smad1/5/8-Runx2 pathway.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, PR China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, PR China
| | - Yongmei Xie
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Jian Zhou
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, PR China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, PR China
| | - Yuxing Bai
- Department of Orthodontics School of Stomatology, Capital Medical University, PR China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China.
| |
Collapse
|
37
|
Kamata H, Tsukasaki Y, Sakai T, Ikebe R, Wang J, Jeffers A, Boren J, Owens S, Suzuki T, Higashihara M, Idell S, Tucker TA, Ikebe M. KIF5A transports collagen vesicles of myofibroblasts during pleural fibrosis. Sci Rep 2017; 7:4556. [PMID: 28676645 PMCID: PMC5496869 DOI: 10.1038/s41598-017-04437-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/16/2017] [Indexed: 01/28/2023] Open
Abstract
Fibrosis involves the production of extracellular matrix proteins in tissues and is often preceded by injury or trauma. In pleural fibrosis excess collagen deposition results in pleural thickening, increased stiffness and impaired lung function. Myofibroblasts are responsible for increased collagen deposition, however the molecular mechanism of transportation of procollagen containing vesicles for secretion is unknown. Here, we studied the role of kinesin on collagen-1 (Col-1) containing vesicle transportation in human pleural mesothelial cells (HPMCs). Among a number of cargo transporting kinesins, KIF5A was notably upregulated during TGF-β induced mesothelial-mesenchymal transition (MesoMT). Using superresolution structured illumination microscopy and the DUO-Link technique, we found that KIF5A colocalized with Col-1 containing vesicles. KIF5A knock-down significantly reduced Col-1 secretion and attenuated TGF-β induced increment in Col-1 localization at cell peripheries. Live cell imaging revealed that GFP-KIF5A and mCherry-Col-1 containing vesicles moved together. Kymography showed that these molecules continuously move with a mean velocity of 0.56 μm/sec, suggesting that the movement is directional but not diffusion limited process. Moreover, KIF5A was notably upregulated along with Col-1 and α-smooth muscle actin in pleural thickening in the carbon-black bleomycin mouse model. These results support our hypothesis that KIF5A is responsible for collagen transportation and secretion from HPMCs.
Collapse
Affiliation(s)
- Hirotoshi Kamata
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA.,Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshikazu Tsukasaki
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Julia Wang
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Jake Boren
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Takahiro Suzuki
- Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masaaki Higashihara
- Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Steven Idell
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA.
| |
Collapse
|
38
|
Abstract
上皮间质转化(epithelialmesenchymal transition, EMT)是一个动态的、可逆的过程, 可以促进组织发育、伤口愈合以及恶性上皮肿瘤发生、侵袭和转移, 已成为当前研究的热点. Smads蛋白作为细胞内重要的信号转导蛋白, 直接参与转化生长因子-β1(transforming growth factor β1, TGF-β1)超家族中许多成员的信号转导, 发挥调节细胞增殖、分化、迁移、凋亡等多种生物学活动. 随着对Smads蛋白结构与功能的不断认识, 日渐发现由Smads参与的TGF-β1/Smads通路所介导的EMT与人类的某些疾病(器官组织纤维化、肥厚性疤痕以及癌症等)密切相关. 本文简要综述了Smads蛋白在TGF-β1/Smads通路介导EMT中的作用, 以期对Smads参与调控EMT有更进一步的认识.
Collapse
|
39
|
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. BIOCHEMISTRY (MOSCOW) 2017; 81:1698-1708. [PMID: 28260491 DOI: 10.1134/s0006297916130071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton consists of three distinct types of protein polymer structures - microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation - a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.
Collapse
Affiliation(s)
- N Sandbo
- University of Wisconsin, Department of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
40
|
Lee JH, Kim SS, Lee HS, Hong S, Rajasekaran N, Wang LH, Choi JS, Shin YK. Upregulation of SMAD4 by MZF1 inhibits migration of human gastric cancer cells. Int J Oncol 2016; 50:272-282. [PMID: 27922669 DOI: 10.3892/ijo.2016.3793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
SMAD4 is a tumor suppressor that is frequently inactivated in many types of cancer. The role of abnormal expression of SMAD4 has been reported in developmental processes and the progression of various human cancers. The expression level of SMAD4 has been related to the survival rate in gastric cancer patients. However, the molecular mechanism underlying transcriptional regulation of SMAD4 remains largely unknown. In the present study, we characterized the promoter region of SMAD4 and identified myeloid zinc finger 1 (MZF1), as a putative transcription factor. MZF1 directly bound to a core region of the SMAD4 promoter and stimulated transcriptional activity. We also found that the expression of MZF1 influences the migration ability of gastric adenocarcinoma cells. Collectively, our results showed that MZF1 has a role in cellular migration of gastric cancer cells via promoting an increase in intracellular SMAD4 levels. This study might provide new evidence for the molecular basis of the tumor suppressive effect of the MZF1-SMAD4 axis, a new therapeutic target in advanced human gastric cancer.
Collapse
Affiliation(s)
- Jin-Hee Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Su Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sungyoul Hong
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Nirmal Rajasekaran
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Li-Hui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Joon-Seok Choi
- Department of Pharmaceutical Microbiology, College of Pharmacy, Catholic University, Daegu, Republic of Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
42
|
Kitahara H, Hirai M, Kato K, Bou-Gharios G, Nakamura H, Kawashiri S. Eribulin sensitizes oral squamous cell carcinoma cells to cetuximab via induction of mesenchymal-to-epithelial transition. Oncol Rep 2016; 36:3139-3144. [PMID: 27779690 PMCID: PMC5112623 DOI: 10.3892/or.2016.5189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022] Open
Abstract
Inhibition of epidermal growth factor receptor (EGFR) signalling has emerged as a new treatment strategy for oral squamous cell carcinoma (OSCC). Previously, we found that loss of EGFR expression in OSCC was associated with epithelial-mesenchymal transition (EMT), and may have functional implications with regard to resistance to cetuximab, a monoclonal anti-EGFR antibody. Eribulin (a microtubule inhibitor) reportedly renders breast cancer less aggressive, and less likely to metastasise, by triggering mesenchymal-to-epithelial (MET) transition. In the present study we evaluated whether eribulin-induced MET was associated with re-sensitization of resistant OSCC cell lines to cetuximab. In vitro antiproliferative activities were determined in three human OSCC lines (OSC-20, OSC-19 and HOC313) treated with eribulin. These three human OSCC represented different EMT/MET states. Interestingly, HOC313 cells (mesenchymal phenotype) were highly sensitive to eribulin in comparison with other cell lines, and significantly enhanced the anti-proliferative effect of cetuximab in response to the drug. Eribulin also underwent a MET-associated gene switch that resulted in morphological changes and high EGFR expression in HOC313 cells, and abrogated a TGF-β-induced EMT gene expression signature. Eribulin-dependent sensitization of OSCC to cetuximab is likely due to induction of MET. Combination therapies based on eribulin and cetuximab have potential as a novel treatment regimen in OSCC.
Collapse
Affiliation(s)
- Hiroko Kitahara
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Mariko Hirai
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Koroku Kato
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
43
|
Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol 2016; 132:339-59. [PMID: 27062260 DOI: 10.1007/s00401-016-1562-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Granule-containing vacuoles in the cytoplasm of hippocampal neurons are a neuropathological feature of Alzheimer's disease. Granulovacuolar degeneration (GVD) is not disease-specific and can be observed in other neurodegenerative disorders and even in the brains of non-demented elderly people. However, several studies have reported much higher numbers of neurons undergoing GVD in the hippocampus of Alzheimer's disease cases. Recently, a neuropathological staging system for GVD has facilitated neuropathological assessment. Data obtained by electron microscopy and immunolabeling suggest that GVD inclusions are a special form of autophagic vacuole. GVD frequently occurs together with pathological changes of the microtubule-associated protein tau, but to date, the relationship between the two lesions remains elusive. Originally identified in hematoxylin- and silver-stained sections, immunolabeling has shown that the granules are composed of a variety of proteins, including those related to tau pathology, autophagy, diverse signal transduction pathways, cell stress and apoptosis. Several of these proteins serve as markers of GVD. Most researchers and authors have interpreted the sequestration of proteins into GVD inclusions as either a cellular defense mechanism or one that leads to the impairment of important cellular functions. This review provides a detailed overview of the various aspects of GVD and focuses on the relationship between tau pathology and GVD.
Collapse
|
44
|
Jung ES, Lee J, Heo NJ, Kim S, Kim DK, Joo KW, Han JS. Low-dose paclitaxel ameliorates renal fibrosis by suppressing transforming growth factor-β1-induced plasminogen activator inhibitor-1 signaling. Nephrology (Carlton) 2016; 21:574-82. [DOI: 10.1111/nep.12747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/11/2016] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Eun Sook Jung
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Jeonghwan Lee
- Department of Internal Medicine; Hallym University Hangang Sacred Heart Hospital; Seoul Korea
| | - Nam Ju Heo
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Sejoong Kim
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Dong Ki Kim
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Kwon Wook Joo
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Jin Suk Han
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| |
Collapse
|
45
|
Abstract
Ciliopathy nephronophthisis (NPHP), a common cause of end-stage renal disease (ESRD) in children and young adults, is characterized by disintegration of the tubular basement membrane accompanied by irregular thickening and attenuation, interstitial fibrosis and tubular atrophy, and occasionally cortico-medullary cyst formation. Pharmacological approaches that delay the development of ESRD could potentially extend the window of therapeutic opportunity for this group of patients, generating time to find an appropriate donor or even for new treatments to mature. In this review we provide an overview of compounds that have been tested to ameliorate kidney cysts and/or fibrosis. We also revisit paclitaxel as a potential strategy to target fibrosis in NPHP. At low dosage this chemotherapy drug shows promising results in rodent models of renal fibrosis. Possible adverse events and safety of paclitaxel treatment in pediatric patients would need to be investigated, as would the efficacy, optimum dose, and administration schedule for the treatment of renal fibrosis in NPHP patients. Paclitaxel is an approved drug for human use with known pharmacokinetics, which could potentially be used in other ciliopathies through targeting the microtubule skeleton.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department of Nephrology and Hypertension, F03.233, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marc R Lilien
- Department of Pediatric Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, F03.233, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Gu S, Liu Y, Zhu B, Ding K, Yao TP, Chen F, Zhan L, Xu P, Ehrlich M, Liang T, Lin X, Feng XH. Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition. J Biol Chem 2016; 291:5396-405. [PMID: 26763233 DOI: 10.1074/jbc.m115.713123] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 12/27/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a process by which differentiated epithelial cells reprogram gene expression, lose their junctions and polarity, reorganize their cytoskeleton, increase cell motility and assume a mesenchymal morphology. Despite the critical functions of the microtubule (MT) in cytoskeletal organization, how it participates in EMT induction and maintenance remains poorly understood. Here we report that acetylated α-tubulin, which plays an important role in microtubule (MT) stabilization and cell morphology, can serve as a novel regulator and marker of EMT. A high level of acetylated α-tubulin was correlated with epithelial morphology and it profoundly decreased during TGF-β-induced EMT. We found that TGF-β increased the activity of HDAC6, a major deacetylase of α-tubulin, without affecting its expression levels. Treatment with HDAC6 inhibitor tubacin or TGF-β type I receptor inhibitor SB431542 restored the level of acetylated α-tubulin and consequently blocked EMT. Our results demonstrate that acetylated α-tubulin can serve as a marker of EMT and that HDAC6 represents an important regulator during EMT process.
Collapse
Affiliation(s)
- Shuchen Gu
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanjing Liu
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bowen Zhu
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ke Ding
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University Medical School, Durham, North Carolina 27710
| | - Fenfang Chen
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixing Zhan
- Institute of Nutritional Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pinglong Xu
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and the Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang 310009, China, and
| | - Xia Lin
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- From the Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China, Michael E. DeBakey Department of Surgery, and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
47
|
Nalluri SM, O'Connor JW, Gomez EW. Cytoskeletal signaling in TGFβ-induced epithelial-mesenchymal transition. Cytoskeleton (Hoboken) 2015; 72:557-69. [PMID: 26543012 DOI: 10.1002/cm.21263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological process that plays an important role in embryonic development and wound healing and is appropriated during pathological conditions including fibrosis and cancer metastasis. EMT can be initiated by a variety of factors, including transforming growth factor (TGF)-β, and is characterized by loss of epithelial features including cell-cell contacts and apicobasal polarity and acquisition of a motile, mesenchymal phenotype. A key feature of EMT is reorganization of the cytoskeleton and recent studies have elucidated regulation mechanisms governing this process. This review describes changes in gene expression patterns of cytoskeletal associated proteins during TGFβ-induced EMT. It further reports TGFβ-induced intracellular signaling cascades that regulate cytoskeletal reorganization during EMT. Finally, it highlights how changes in cytoskeletal architecture during EMT can regulate gene expression, thus further promoting EMT progression.
Collapse
Affiliation(s)
- Sandeep M Nalluri
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
48
|
Tsui H, Zi M, Wang S, Chowdhury SK, Prehar S, Liang Q, Cartwright EJ, Lei M, Liu W, Wang X. Smad3 Couples Pak1 With the Antihypertrophic Pathway Through the E3 Ubiquitin Ligase, Fbxo32. Hypertension 2015; 66:1176-83. [DOI: 10.1161/hypertensionaha.115.06068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
Abstract
Pathological cardiac hypertrophy is regarded as a critical intermediate step toward the development of heart failure. Many signal transduction cascades are demonstrated to dictate the induction and progression of pathological hypertrophy; however, our understanding in regulatory mechanisms responsible for the suppression of hypertrophy remains limited. In this study, we showed that exacerbated hypertrophy induced by pressure overload in cardiac-deleted Pak1 mice was attributable to a failure to upregulate the antihypertrophic E3 ligase, Fbxo32, responsible for targeting proteins for the ubiquitin-degradation pathway. Under pressure overload, cardiac overexpression of constitutively active Pak1 mice manifested strong resilience against pathological hypertrophic remodeling. Mechanistic studies demonstrated that subsequent to Pak1 activation, the binding of Smad3 on a critical singular AGAC
-286
-binding site on the
FBXO32
promoter was crucial for its transcriptional regulation. Pharmacological upregulation of Fbxo32 by Berberine ameliorated hypertrophic remodeling and improved cardiac performance in cardiac-deficient Pak1 mice under pressure overload. Our findings discover Smad3 and Fbxo32 as novel downstream components of the Pak1-dependent signaling pathway for the suppression of hypertrophy. This discovery opens a new venue for opportunities to identify novel targets for the management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hoyee Tsui
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Min Zi
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Shunyao Wang
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Sanjoy K. Chowdhury
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Sukhpal Prehar
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Qiangrong Liang
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Elizabeth J. Cartwright
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Ming Lei
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Wei Liu
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| | - Xin Wang
- From the Faculty of Life Sciences (H.T, S.W., S.K.C., W.L., X.W.) and Faculty of Medical and Human Sciences (M.Z., S.P., E.J.C.), University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, New York Institute of Technology, NY (Q.L.); and Department of Pharmacology, University of Oxford, Oxford, United Kingdom (M.L.)
| |
Collapse
|
49
|
Isshiki K, Hirase T, Matsuda S, Miyamoto K, Tsuji A, Yuasa K. Death-associated protein kinase 2 mediates nocodazole-induced apoptosis through interaction with tubulin. Biochem Biophys Res Commun 2015; 468:113-8. [PMID: 26529546 DOI: 10.1016/j.bbrc.2015.10.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 11/29/2022]
Abstract
Death-associated protein kinase 2 (DAPK2) is a positive regulator of apoptosis. Although we recently reported that 14-3-3 proteins inhibit DAPK2 activity and its subsequent apoptotic effects via binding to DAPK2, the molecular mechanisms underlying the DAPK2-mediated apoptotic pathway remain unclear. Therefore, we attempted to further identify DAPK2-interacting proteins using pull-down assays and mass spectrometry. The microtubule β-tubulin was identified as a novel DAPK2-binding protein in HeLa cells. Pull-down assays revealed that DAPK2 interacted with the α/β-tubulin heterodimer, and that the C-terminal region of DAPK2, which differs from that of other DAPK family members, was sufficient for the association with β-tubulin. Although the microtubule-depolymerizing agent nocodazole induced apoptosis in HeLa cells, the level of apoptosis was significantly decreased in the DAPK2 knockdown cells. Furthermore, we found that treatment with nocodazole resulted in an increased binding of DAPK2 to β-tubulin. These findings indicate that DAPK2 mediates nocodazole-induced apoptosis via binding to tubulin.
Collapse
Affiliation(s)
- Kinuka Isshiki
- Department of Biological Science and Technology, Tokushima University Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Taishi Hirase
- Department of Biological Science and Technology, Tokushima University Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Shinya Matsuda
- Department of Biological Science and Technology, Tokushima University Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Kenji Miyamoto
- Department of Biological Science and Technology, Tokushima University Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Akihiko Tsuji
- Department of Biological Science and Technology, Tokushima University Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Keizo Yuasa
- Department of Biological Science and Technology, Tokushima University Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan.
| |
Collapse
|
50
|
Selina AK, Murat K, Emre K, Ismail M, Bunyami U, Cemal G. The relationship between estrogen receptors and microtubule dynamics in post-menopausal rat brain. Acta Histochem 2015; 117:747-51. [PMID: 26319549 DOI: 10.1016/j.acthis.2015.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Estrogen is one of the most important regulators of neuron function. There is a broad consensus that a loss of estrogen is associated with neurodegeneration in the hippocampus which leads to cognitive impairment. Hematopoietic-Pbx-interaction-protein (HPIP) is a novel scaffolding protein which interacts with microtubules and estrogen receptors. In this study, we investigated the presence and role of HPIP in hippocampal neurons and examined the relationship between estrogen receptors and microtubule damage in post-menopausal rat brains. METHOD Eighty female Wistar albino rats, 12 weeks old, were divided into 10 groups: control, control+17-β-estradiol, control+tamoxifen, control+mitogen-activated protein kinases (MAPK) inhibitor, control+phosphoinositide 3-kinase (PI3-K) inhibitor, ovariectomized, ovariectomized+17-β-estradiol, ovariectomized+tamoxifen, ovariectomized+MAPK inhibitor, and ovariectomized+PI3-K inhibitor. Light and electron microscopic examinations were performed. Real-time polymerase chain reaction (PCR) was used to determine the expression level of HPIP in experimental groups. RESULTS Light and electron microscopic examinations revealed morphological changes in hippocampal neuron axons. Axonal fluctuations and shrinkage were detected in all ovariectomized groups. HPIP was detected in all neurons with difference expression levels. CONCLUSION Proof that the HPIP protein can be found on hippocampal neurons may give rise to a new focus on neurodegeneration in post-menopausal women. Future molecular and pharmacological studies should be performed to reduce the rate of cognitive symptoms resulting from hippocampal neurodegeneration.
Collapse
|