1
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
McDaniel ZS, Hales KE, Salih H, Deters A, Shi X, Nagaraja TG, Lawrence TE, Tennant TC, Amachawadi RG, Carroll JA, Burdick Sanchez NC, Galyean ML, Smock TM, Ballou MA, Machado VS, Davis E, Broadway PR. Development of an experimental model for liver abscess induction in Holstein steers using an acidotic diet challenge and bacterial inoculation. J Anim Sci 2024; 102:skae046. [PMID: 38447078 PMCID: PMC10941643 DOI: 10.1093/jas/skae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Holstein steers (n = 40; initial BW = 84.9 ± 7.1 kg) were used to study the genesis of liver abscesses (LA) using an acidotic diet challenge with or without intraruminal bacterial inoculation. Steers were housed in individual pens inside a barn and randomly assigned to one of three treatments: (1) low-starch control diet comprised primarily of dry-rolled corn and wet corn gluten feed (CON); (2) high-starch acidotic diet with steam-flaked corn (AD); or (3) acidotic diet plus intraruminal inoculation with Fusobacterium necrophorum subsp. necrophorum (9.8 × 108 colony forming units [CFU]/mL), Trueperella pyogenes (3.91 × 109 CFU/mL), and Salmonella enterica serovar Lubbock (3.07 × 108 CFU/mL), previously isolated from LA (ADB). Steers in AD and ADB were fed the acidotic diet for 3 d followed by 2 d of the CON diet, and this cycle was repeated four times. On day 23, ADB steers were intraruminally inoculated with the bacteria. At necropsy, gross pathology of livers, lungs, rumens, and colons was noted. Continuous data were analyzed via mixed models as repeated measures over time with individual steer as the experimental unit. Mixed models were also used to determine the difference in prevalence of necropsy scores among treatments. Ruminal pH decreased in AD and ADB steers during each acidotic diet cycle (P ≤ 0.05). LA prevalence was 42.9% (6 of 14) in ADB vs. 0% in AD or CON treatments (P < 0.01). Ruminal damage was 51.1% greater in ADB than in AD (P ≤ 0.04). Culture of LA determined that 100% of the abscesses contained F. necrophorum subsp. necrophorum, 0% contained T. pyogenes, 50% contained Salmonella, and 50% contained a combination of F. necrophorum subsp. necrophorum and Salmonella. The F. necrophorum subsp. necrophorum was clonally identical to the strain used for the bacterial inoculation based on phylogenetic analysis of the whole genome. This experimental model successfully induced rumenitis and LA in Holstein steers and confirms the central dogma of LA pathogenesis that acidosis and rumenitis lead to the entry of F. necrophorum into the liver to cause abscesses. Our findings suggest that an acidotic diet, in conjunction with intraruminal bacterial inoculation, is a viable model to induce LA. Further research is needed to determine the repeatability of this model, and a major application of the model will be in evaluations of novel interventions to prevent LA.
Collapse
Affiliation(s)
- Zach S McDaniel
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kristin E Hales
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Harith Salih
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alyssa Deters
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Xiaorong Shi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Ty E Lawrence
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, USA
| | - Travis C Tennant
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, USA
| | | | - Jeff A Carroll
- United States Department of Agriculture, Agricultural Research Service, Livestock Issues Research Unit, Lubbock, TX, USA
| | - Nicole C Burdick Sanchez
- United States Department of Agriculture, Agricultural Research Service, Livestock Issues Research Unit, Lubbock, TX, USA
| | - Michael L Galyean
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Taylor M Smock
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michael A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
| | - Vinicius S Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
| | - Emily Davis
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
| | - Paul R Broadway
- United States Department of Agriculture, Agricultural Research Service, Livestock Issues Research Unit, Lubbock, TX, USA
| |
Collapse
|
3
|
Ng WNI, Kalimuthu S, Law COK, Lee AHC, Lau TCK, Leung YY, Cheung GSP, Neelakantan P. Intracellular bacterial eradication using a novel peptide in vitro. Int Endod J 2023; 56:1360-1372. [PMID: 37615967 DOI: 10.1111/iej.13965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
AIM To determine the effect of a novel antimicrobial peptide (AMP; OP145) and cell-penetrating peptide (Octa-arginine/R8) conjugate on the killing of intracellular Enterococcus faecalis, compared to OP145 and an antibiotic combination recommended for regenerative endodontic procedures. METHODOLOGY The biocompatible concentrations of OP145 and OP145-R8 were determined by assessing their cytotoxicity against human macrophages and red blood cells. Spatiotemporal internalization of the peptides into macrophages was investigated qualitatively and quantitatively by confocal laser scanning microscopy and flow cytometry respectively. Killing of extracellular and intracellular E. faecalis OG1RF by the peptides was determined by counting the colony-forming units (CFU). Intracellular antibacterial activity of the peptides was compared to a double antibiotic combination. Confocal microscopy was used to confirm the intracellular bacterial eradication. Significant differences between the different test groups were analysed using one-way analysis of variance. p < .05 was considered to be statistically significant. RESULTS Peptides at a concentration of 7.5 μmol/L were chosen for subsequent experiments based on the results of the alamarBlue™ cell viability assay and haemolytic assay. OP145-R8 selectively internalized into lysosomal compartments and the cytosol of macrophages. Conjugation with R8 improved the internalization of OP145 into macrophages in a temporal manner (70.53% at 1 h to 77.13% at 2 h), while no temporal increase was observed for OP145 alone (60.53% at 1 h with no increase at 2 h). OP145-R8 demonstrated significantly greater extracellular and intracellular antibacterial activity compared to OP145 at all investigated time-points and concentrations (p < .05). OP145-R8 at 7.5 μmol/L eradicated intracellular E. faecalis after 2 h (3.5 log reduction compared to the control; p < .05), while the antibiotics could not reduce more than 0.5 log CFU compared to the control (p > .05). Confocal microscopy showed complete absence of E. faecalis within the OP145-R8 treated macrophages. CONCLUSIONS The results of this study demonstrated that the conjugation of an AMP OP145 to a cell-penetrating peptide R8 eradicated extracellular and intracellular E. faecalis OG1RF without toxic effects on the host cells.
Collapse
Affiliation(s)
- Wing Nok Isaac Ng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Gary Shun Pan Cheung
- Department of Dental Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| |
Collapse
|
4
|
Villanueva JA, Crooks AL, Nagy TA, Quintana JLJ, Dalebroux ZD, Detweiler CS. Salmonella enterica Infections Are Disrupted by Two Small Molecules That Accumulate within Phagosomes and Differentially Damage Bacterial Inner Membranes. mBio 2022; 13:e0179022. [PMID: 36135367 PMCID: PMC9601186 DOI: 10.1128/mbio.01790-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. S. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed S. Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of S. Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. IMPORTANCE Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.
Collapse
Affiliation(s)
- Joseph A. Villanueva
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy L. Crooks
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
5
|
Chandra K, Roy Chowdhury A, Chatterjee R, Chakravortty D. GH18 family glycoside hydrolase Chitinase A of Salmonella enhances virulence by facilitating invasion and modulating host immune responses. PLoS Pathog 2022; 18:e1010407. [PMID: 35482710 PMCID: PMC9049553 DOI: 10.1371/journal.ppat.1010407] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a facultative intracellular pathogen that has co-evolved with its host and has also developed various strategies to evade the host immune responses. Salmonella recruits an array of virulence factors to escape from host defense mechanisms. Previously chitinase A (chiA) was found to be upregulated in intracellular Salmonella. Although studies show that several structurally similar chitinases and chitin-binding proteins (CBP) of many human pathogens have a profound role in various aspects of pathogenesis, like adhesion, virulence, and immune evasion, the role of chitinase in the intravacuolar pathogen Salmonella has not yet been elucidated. Therefore, we made chromosomal deletions of the chitinase encoding gene (chiA) to study the role of chitinase of Salmonella enterica in the pathogenesis of the serovars, Typhimurium, and Typhi using in vitro cell culture model and two different in vivo hosts. Our data indicate that ChiA removes the terminal sialic acid moiety from the host cell surface, and facilitates the invasion of the pathogen into the epithelial cells. Interestingly we found that the mutant bacteria also quit the Salmonella-containing vacuole and hyper-proliferate in the cytoplasm of the epithelial cells. Further, we found that ChiA aids in reactive nitrogen species (RNS) and reactive oxygen species (ROS) production in the phagocytes, leading to MHCII downregulation followed by suppression of antigen presentation and antibacterial responses. Notably, in the murine host, the mutant shows compromised virulence, leading to immune activation and pathogen clearance. In continuation of the study in C. elegans, Salmonella Typhi ChiA was found to facilitate bacterial attachment to the intestinal epithelium, intestinal colonization, and persistence by downregulating antimicrobial peptides. This study provides new insights on chitinase as an important and novel virulence determinant that helps in immune evasion and increased pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Richards AF, Torres-Velez FJ, Mantis NJ. Salmonella Uptake into Gut-Associated Lymphoid Tissues: Implications for Targeted Mucosal Vaccine Design and Delivery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:305-324. [PMID: 34914054 DOI: 10.1007/978-1-0716-1884-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peyer's patches are organized gut-associated lymphoid tissues (GALT) in the small intestine and the primary route by which particulate antigens, including viruses and bacteria, are sampled by the mucosal immune system. Antigen sampling occurs through M cells, a specialized epithelial cell type located in the follicle-associated epithelium (FAE) that overlie Peyer's patch lymphoid follicles. While Peyer's patches play an integral role in intestinal homeostasis, they are also a gateway by which enteric pathogens, like Salmonella enterica serovar Typhimurium (STm), cross the intestinal barrier. Once pathogens like STm gain access to the underlying network of mucosal dendritic cells and macrophages they can spread systemically. Thus, Peyer's patches are at the crossroads of mucosal immunity and intestinal pathogenesis. In this chapter, we provide detailed methods to assess STm entry into mouse Peyer's patch tissues. We describe Peyer's patch collection methods and provide strategies to enumerate bacterial uptake. We also detail a method for quantifying bacterial shedding from infected animals and provide an immunohistochemistry protocol for the localization of STm along the gastrointestinal tract and insight into pathogen transit in the presence of protective antibodies. While the protocols are written for STm, they are easily tailored to other enteric pathogens.
Collapse
Affiliation(s)
- Angelene F Richards
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Fernando J Torres-Velez
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nicholas J Mantis
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, USA. .,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
7
|
Wang Y, Wu C, Gao J, Du X, Chen X, Zhang M. Host metabolic shift during systemic Salmonella infection revealed by comparative proteomics. Emerg Microbes Infect 2021; 10:1849-1861. [PMID: 34461813 PMCID: PMC8451668 DOI: 10.1080/22221751.2021.1974316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a food-borne bacterium that causes acute gastroenteritis in humans and typhoid fever in mice. Salmonella pathogenicity island II (SPI-2) is an important virulence gene cluster responsible for Salmonella survival and replication within host cells, leading to systemic infection. Previous studies have suggested that SPI-2 function to modulate host vesicle trafficking and immune response to promote systemic infection. However, the molecular mechanism and the host responses triggered by SPI-2 remain largely unknown. To assess the roles of SPI-2, we used a differential proteomic approach to analyse host proteins levels during systemic infections in mice. Our results showed that infection by WT S. Typhimurium triggered the reprogramming of host cell metabolism and inflammatory response. Salmonella systemic infection induces an up-regulation of glycolytic process and a repression of the tricarboxylic acid (TCA) cycle. WT-infected tissues prefer to produce adenosine 5′-triphosphate (ATP) through aerobic glycolysis rather than relying on oxidative phosphorylation to generate energy. Moreover, our data also revealed that infected macrophages may undergo both M1 and M2 polarization. In addition, our results further suggest that SPI-2 is involved in altering actin cytoskeleton to facilitate the Salmonella-containing vacuole (SCV) biogenesis and perhaps even the release of bacteria later in the infection process. Results from our study provide valuable insights into the roles of SPI-2 during systemic Salmonella infection and will guide future studies to dissect the molecular mechanisms of how SPI-2 functions in vivo.
Collapse
Affiliation(s)
- Yuanyuan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chunmei Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiacong Gao
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xudong Du
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiangyun Chen
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
8
|
Ma S, Jiang L, Wang J, Liu X, Li W, Ma S, Feng L. Downregulation of a novel flagellar synthesis regulator AsiR promotes intracellular replication and systemic pathogenicity of Salmonella typhimurium. Virulence 2021; 12:298-311. [PMID: 33410728 PMCID: PMC7808427 DOI: 10.1080/21505594.2020.1870331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) exploits host macrophage as a crucial survival and replicative niche. To minimize host immune response stimulated by flagellin, the expression of flagellar genes is downregulated during S. Typhimurium growth within host macrophages. However, the underlying mechanisms are largely unknown. In this study, we show that STM14_1285 (named AsiR), a putative RpiR-family transcriptional regulator, which is downregulated within macrophages as previously reported and also confirmed here, positively regulates the expression of flagellar genes by directly binding to the promoter of flhDC. By generating an asiR mutant strain and a strain that persistently expresses asiR gene within macrophages, we confirmed that the downregulation of asiR contributes positively to S. Typhimurium replication in macrophages and systemic infection in mice, which could be attributed to decreased flagellar gene expression and therefore reduced flagellin-stimulated secretion of pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, the acidic pH in macrophages is identified as a signal for the downregulation of asiR and therefore flagellar genes. Collectively, our results reveal a novel acidic pH signal-mediated regulatory pathway that is utilized by S. Typhimurium to promote intracellular replication and systemic pathogenesis by repressing flagellar gene expression.
Collapse
Affiliation(s)
- Shuangshuang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Jingting Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Xiaoqian Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Wanwu Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| |
Collapse
|
9
|
Sachdeva K, Sundaramurthy V. The Interplay of Host Lysosomes and Intracellular Pathogens. Front Cell Infect Microbiol 2020; 10:595502. [PMID: 33330138 PMCID: PMC7714789 DOI: 10.3389/fcimb.2020.595502] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as Mycobacterium tuberculosis (Mtb) and Salmonella avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.
Collapse
|
10
|
Kim S, Lee YH. Impact of small RNA RaoN on nitrosative-oxidative stress resistance and virulence of Salmonella enterica serovar Typhimurium. J Microbiol 2020; 58:499-506. [PMID: 32279276 DOI: 10.1007/s12275-020-0027-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
RaoN is a Salmonella-specific small RNA that is encoded in the cspH-envE intergenic region on Salmonella pathogenicity island-11. We previously reported that RaoN is induced under conditions of acid and oxidative stress combined with nutrient limitation, contributing to the intramacrophage growth of Salmonella enterica serovar Typhimurium. However, the role of RaoN in nitrosative stress response and virulence has not yet been elucidated. Here we show that the raoN mutant strain has increased susceptibility to nitrosative stress by using a nitric oxide generating acidified nitrite. Extending previous research on the role of RaoN in oxidative stress resistance, we found that NADPH oxidase inhibition restores the growth of the raoN mutant in LPS-treated J774A.1 macrophages. Flow cytometry analysis further revealed that the inactivation of raoN leads to an increase in the intracellular level of reactive oxygen species (ROS) in Salmonella-infected macrophages, suggesting that RaoN is involved in the inhibition of NADPH oxidase-mediated ROS production by mechanisms not yet resolved. Moreover, we evaluated the effect of raoN mutation on the virulence in murine systemic infection and determined that the raoN mutant is less virulent than the wild-type strain following oral inoculation. In conclusion, small regulatory RNA RaoN controls nitrosative-oxidative stress resistance and is required for virulence of Salmonella in mice.
Collapse
Affiliation(s)
- Sinyeon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Heon Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, 47011, Republic of Korea.
| |
Collapse
|
11
|
Mshelbwala FM, Ibrahim NDG, Saidu SN, Babatunde EG, Kadiri AKF, Thomas FC, Kwanashie CN, Agbaje M. Quantitative distribution and interaction of Salmonella Zega with host cells in visceral organs of chickens infected orally, intraperitoneally and per cloaca. Heliyon 2020; 6:e03180. [PMID: 31956710 PMCID: PMC6956758 DOI: 10.1016/j.heliyon.2020.e03180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 01/06/2020] [Indexed: 11/02/2022] Open
Abstract
Immunohistochemical study of the visceral organs of chickens experimentally infected with Salmonella Zega by three routes was carried out to compare the quantitative distribution and interaction of the organism with host cells. 100 birds comprising of 2 week-old chickens were divided into 4 groups of 25 each. Group A was inoculated orally, group B intraperitoneally, group C were administered per cloaca and D were not inoculated and served as control. All the infected birds were inoculated with 0.2 ml of 1 × 108 cfu of the bacteria. Two birds from each group were sacrificed every 24 h post infection. Samples of visceral organs were collected for immunohistochemistry. The distribution of Salmonella Zega in every organ was taken as Mean ± SD of the number of foci of immunoreactions and Compared using a 2-way ANOVA. The interaction of Salmonella Zega with host cells was determined by taking the percentage of the days post infection in which immunoreactions were detected in host cells in each route of infection. The distribution of the organism was highest in the lung of intraperitoneally infected chickens (83.95 ± 27.89) and lowest in the heart (5.21 ± 3.65) of chickens that were infected per cloaca. The highest percentage of interaction of Salmonella Zega was recorded in the epithelial (100%) and blood (100%) cells in all the routes of infection. There were variations in the distribution of Salmonella Zega in visceral organs of chickens but the level of interactions with host cells were similar even when infected through different routes.
Collapse
Affiliation(s)
| | | | | | | | | | - Funmilola Clara Thomas
- Department of Veterinary Physiology, Pharmacology and Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Clara Nna Kwanashie
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Nigeria
| | - Michael Agbaje
- Department of Veterinary Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
12
|
Gogoi M, Shreenivas MM, Chakravortty D. Hoodwinking the Big-Eater to Prosper: The Salmonella-Macrophage Paradigm. J Innate Immun 2018; 11:289-299. [PMID: 30041182 PMCID: PMC6738159 DOI: 10.1159/000490953] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/10/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
Salmonella is a major cause of morbidity and mortality in the developing and underdeveloped nations. Being a foodborne disease, Salmonella infection is primarily contracted through the ingestion of contaminated food or water, or due to close contact with infected/carrier individuals. It is an intracellular pathogen, which can survive and replicate in various cells including macrophages, dendritic cells, epithelial cells, and other white blood cells. Once Salmonella crosses the intestinal barrier, it disseminates to various systemic sites by circulation via immune cells. One of the major cell types which are involved in Salmonella infection are host macrophages. They are the niche for intracellular survival and proliferation of Salmonella and a mode of dissemination to distal systemic sites. These cells are very crucial as they mediate the mounting of an appropriate innate and adaptive anti-Salmonella immune response. In this review, we have tried to concise the current knowledge of complex interactions that occur between Salmonella and macrophages.
Collapse
Affiliation(s)
- Mayuri Gogoi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Meghanashree M Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Undergraduate Studies, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India,
- Division of Biological Sciences, Indian Institute of Science, Bangalore, India,
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
13
|
Kurtz JR, Goggins JA, McLachlan JB. Salmonella infection: Interplay between the bacteria and host immune system. Immunol Lett 2017; 190:42-50. [PMID: 28720334 DOI: 10.1016/j.imlet.2017.07.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Salmonella infection causes morbidity and mortality throughout the world with the host immune response varying depending on whether the infection is acute and limited, or systemic and chronic. Additionally, Salmonella bacteria have evolved multiple mechanisms to avoid or subvert immunity to its own benefit and often the anatomical location of infection plays a role in both the immune response and bacterial fate. Here, we provide an overview of the interplay between the immune system and Salmonella, while discussing how different host and bacterial factors influence the outcome of infection.
Collapse
Affiliation(s)
- Jonathan R Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - J Alan Goggins
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
14
|
Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 2017; 174:2225-2236. [PMID: 27925153 PMCID: PMC5481648 DOI: 10.1111/bph.13664] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to threaten human and animal health and welfare globally, impacting millions of lives and causing substantial economic loss. The use of antibacterials has been only partially successful in reducing disease impact. Bacterial cells are inherently resilient, and the therapy challenge is increased by the development of antibacterial resistance, the formation of biofilms and the ability of certain clinically important pathogens to invade and localize within host cells. Invasion into host cells provides protection from both antibacterials and the host immune system. Poor delivery of antibacterials into host cells causes inadequate bacterial clearance, resulting in chronic and unresolved infections. In this review, we discuss the challenges associated with existing antibacterial therapies with a focus on intracellular pathogens. We consider the requirements for successful treatment of intracellular infections and novel platforms currently under development. Finally, we discuss novel strategies to improve drug penetration into host cells. As an example, we discuss our recent demonstration that the cell penetrating cationic polymer polyhexamethylene biguanide has antibacterial activity against intracellular Staphylococcus aureus. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
- Faculty of Veterinary MedicineUniversiti Malaysia KelantanLocked Bag 36, Pengkalan Chepa16100Kota BharuKelantanMalaysia
| | - Sharon Kendall
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| | - Liam Good
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| |
Collapse
|
15
|
Jensen K, Gallagher IJ, Kaliszewska A, Zhang C, Abejide O, Gallagher MP, Werling D, Glass EJ. Live and inactivated Salmonella enterica serovar Typhimurium stimulate similar but distinct transcriptome profiles in bovine macrophages and dendritic cells. Vet Res 2016; 47:46. [PMID: 27000047 PMCID: PMC4802613 DOI: 10.1186/s13567-016-0328-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of gastroenteritis in cattle and humans. Dendritic cells (DC) and macrophages (Mø) are major players in early immunity to Salmonella, and their response could influence the course of infection. Therefore, the global transcriptional response of bovine monocyte-derived DC and Mø to stimulation with live and inactivated S. Typhimurium was compared. Both cell types mount a major response 2 h post infection, with a core common response conserved across cell-type and stimuli. However, three of the most affected pathways; inflammatory response, regulation of transcription and regulation of programmed cell death, exhibited cell-type and stimuli-specific differences. The expression of a subset of genes associated with these pathways was investigated further. The inflammatory response was greater in Mø than DC, in the number of genes and the enhanced expression of common genes, e.g., interleukin (IL) 1B and IL6, while the opposite pattern was observed with interferon gamma. Furthermore, a large proportion of the investigated genes exhibited stimuli-specific differential expression, e.g., Mediterranean fever. Two-thirds of the investigated transcription factors were significantly differentially expressed in response to live and inactivated Salmonella. Therefore the transcriptional responses of bovine DC and Mø during early S. Typhimurium infection are similar but distinct, potentially due to the overall function of these cell-types. The differences in response of the host cell will influence down-stream events, thus impacting on the subsequent immune response generated during the course of the infection.
Collapse
Affiliation(s)
- Kirsty Jensen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Iain J Gallagher
- Health and Exercise Research Group, University of Stirling, Cottrell Building, Stirling, FK9 4LA, UK
| | - Anna Kaliszewska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Chen Zhang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Oluyinka Abejide
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.,Scotland's Rural College, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Maurice P Gallagher
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Dirk Werling
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
| | - Elizabeth J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| |
Collapse
|
16
|
Hayes CN, Zhang Y, Makokha GN, Hasan MZ, Omokoko MD, Chayama K. Early events in hepatitis B virus infection: From the cell surface to the nucleus. J Gastroenterol Hepatol 2016; 31:302-9. [PMID: 26414381 DOI: 10.1111/jgh.13175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
While most adults are able to clear acute hepatitis B virus (HBV) infection, chronic HBV infection is recalcitrant to current therapy because of the persistence of covalently closed circular DNA in the nucleus. Complete clearance of the virus in these patients is rare, and long-term therapy with interferon and/or nucleoside analogues may be required in an attempt to suppress viral replication and prevent progressive liver damage. The difficulty of establishing HBV infection in cell culture and experimental organisms has hindered efforts to elucidate details of the HBV life cycle, but it has also revealed the importance of the cellular microenvironment required for HBV binding and entry. Recent studies have demonstrated an essential role of sodium-taurocholate cotransporting polypeptide as a functional receptor in HBV infection, which has facilitated the development of novel infection systems and opened the way for more detailed understanding of the early steps of HBV infection as well as a potential new therapeutic target. However, many gaps remain in understanding of how HBV recognizes and attaches to hepatocytes prior to binding to sodium-taurocholate cotransporting polypeptide, as well as events that are triggered after binding, including entry into the cell, intracellular transport, and passage through the nuclear pore complex. This review summarizes current knowledge of the initial stages of HBV infection leading to the establishment of covalently closed circular DNA in the nucleus.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yizhou Zhang
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Md Zobaer Hasan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Magot D Omokoko
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells. Infect Immun 2015; 83:2897-906. [PMID: 25939512 DOI: 10.1128/iai.02882-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Salmonella species can gain access into nonphagocytic cells, where the bacterium proliferates in a unique membrane-bounded compartment. In order to reveal bacterial adaptations to their intracellular niche, here we conducted the first comprehensive proteomic survey of Salmonella isolated from infected epithelial cells. Among ∼ 3,300 identified bacterial proteins, we found that about 100 proteins were significantly altered at the onset of Salmonella intracellular replication. In addition to substantially increased iron-uptake capacities, bacterial high-affinity manganese and zinc transporters were also upregulated, suggesting an overall limitation of metal ions in host epithelial cells. We also found that Salmonella induced multiple phosphate utilization pathways. Furthermore, our data suggested upregulation of the two-component PhoPQ system as well as of many downstream virulence factors under its regulation. Our survey also revealed that intracellular Salmonella has increased needs for certain amino acids and biotin. In contrast, Salmonella downregulated glycerol and maltose utilization as well as chemotaxis pathways.
Collapse
|
18
|
McEwan DG, Richter B, Claudi B, Wigge C, Wild P, Farhan H, McGourty K, Coxon FP, Franz-Wachtel M, Perdu B, Akutsu M, Habermann A, Kirchof A, Helfrich MH, Odgren PR, Van Hul W, Frangakis AS, Rajalingam K, Macek B, Holden DW, Bumann D, Dikic I. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe 2014; 17:58-71. [PMID: 25500191 DOI: 10.1016/j.chom.2014.11.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/21/2014] [Accepted: 11/14/2014] [Indexed: 01/13/2023]
Abstract
The host endolysosomal compartment is often manipulated by intracellular bacterial pathogens. Salmonella (Salmonella enterica serovar Typhimurium) secrete numerous effector proteins, including SifA, through a specialized type III secretion system to hijack the host endosomal system and generate the Salmonella-containing vacuole (SCV). To form this replicative niche, Salmonella targets the Rab7 GTPase to recruit host membranes through largely unknown mechanisms. We show that Pleckstrin homology domain-containing protein family member 1 (PLEKHM1), a lysosomal adaptor, is targeted by Salmonella through direct interaction with SifA. By binding the PLEKHM1 PH2 domain, Salmonella utilize a complex containing PLEKHM1, Rab7, and the HOPS tethering complex to mobilize phagolysosomal membranes to the SCV. Depletion of PLEKHM1 causes a profound defect in SCV morphology with multiple bacteria accumulating in enlarged structures and significantly dampens Salmonella proliferation in multiple cell types and mice. Thus, PLEKHM1 provides a critical interface between pathogenic infection and the host endolysosomal system.
Collapse
Affiliation(s)
- David G McEwan
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| | - Benjamin Richter
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| | - Beatrice Claudi
- Infection Biology, Biozentrum, University Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland
| | - Christoph Wigge
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, Goethe University 60438 Frankfurt am Main, Germany
| | - Philipp Wild
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| | - Hesso Farhan
- Infection Biology, Biozentrum, University Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland; Biotechnology Institute Thurga, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kieran McGourty
- Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Fraser P Coxon
- Musculoskeletal Research Programme, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Bram Perdu
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| | - Masato Akutsu
- Infection Biology, Biozentrum, University Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland
| | - Anja Habermann
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, Goethe University 60438 Frankfurt am Main, Germany
| | - Anja Kirchof
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| | - Miep H Helfrich
- Musculoskeletal Research Programme, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Paul R Odgren
- Deptartment of Cell Biology, S7-242, University of Massachusetts Medical School, North Worcester, MA 01655, USA
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| | - Achilleas S Frangakis
- Infection Biology, Biozentrum, University Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland
| | - Krishnaraj Rajalingam
- Molecular Signaling Unit, FZI, Institute for immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Mainz 55131, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - David W Holden
- Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Dirk Bumann
- Infection Biology, Biozentrum, University Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland.
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany; Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, Goethe University 60438 Frankfurt am Main, Germany; University of Split, School of Medicine, Department of Immunology and Medical Genetics, Soltanska 2, 21 000 Split, Croatia.
| |
Collapse
|
19
|
DiRienzo JM. Uptake and processing of the cytolethal distending toxin by mammalian cells. Toxins (Basel) 2014; 6:3098-116. [PMID: 25365527 PMCID: PMC4247254 DOI: 10.3390/toxins6113098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxin (Cdt) is a heterotrimeric holotoxin produced by a diverse group of Gram-negative pathogenic bacteria. The Cdts expressed by the members of this group comprise a subclass of the AB toxin superfamily. Some AB toxins have hijacked the retrograde transport pathway, carried out by the Golgi apparatus and endoplasmic reticulum (ER), to translocate to cytosolic targets. Those toxins have been used as tools to decipher the roles of the Golgi and ER in intracellular transport and to develop medically useful delivery reagents. In comparison to the other AB toxins, the Cdt exhibits unique properties, such as translocation to the nucleus, that present specific challenges in understanding the precise molecular details of the trafficking pathway in mammalian cells. The purpose of this review is to present current information about the mechanisms of uptake and translocation of the Cdt in relation to standard concepts of endocytosis and retrograde transport. Studies of the Cdt intoxication process to date have led to the discovery of new translocation pathways and components and most likely will continue to reveal unknown features about the mechanisms by which bacterial proteins target the mammalian cell nucleus. Insight gained from these studies has the potential to contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Hurley D, McCusker MP, Fanning S, Martins M. Salmonella-host interactions - modulation of the host innate immune system. Front Immunol 2014; 5:481. [PMID: 25339955 PMCID: PMC4188169 DOI: 10.3389/fimmu.2014.00481] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/20/2014] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica (S. enterica) are Gram-negative bacteria that can invade a broad range of hosts causing both acute and chronic infections. This phenotype is related to its ability to replicate and persist within non-phagocytic host epithelial cells as well as phagocytic dendritic cells and macrophages of the innate immune system. Infection with S. enterica manifests itself through a broad range of clinical symptoms and can result in asymptomatic carriage, gastroenteritis, systemic disease such as typhoid fever and in severe cases, death (1). Exposure to S. enterica serovars Typhi and Paratyphi exhibits clinical symptoms including diarrhea, fatigue, fever, and temperature fluctuations. Other serovars such as the non-typhoidal Salmonella (NTS), of which there are over 2,500, are commonly contracted as, but not limited to, food-borne sources causing gastrointestinal symptoms, which include diarrhea and vomiting. The availability of complete genome sequences for many S. enterica serovars has facilitated research into the genetic determinants of virulence for this pathogen. This work has led to the identification of important bacterial components, including flagella, type III secretion systems, lipopolysaccharides, and Salmonella pathogenicity islands, all of which support the intracellular life cycle of S. enterica. Studies focusing on the host-pathogen interaction have provided insights into receptor activation of the innate immune system. Therefore, characterizing the host-S. enterica interaction is critical to understand the pathogenicity of the bacteria in a clinically relevant context. This review outlines salmonellosis and the clinical manifestations between typhoidal and NTS infections as well as discussing the host immune response to infection and the models that are being used to elucidate the mechanisms involved in Salmonella pathogenicity.
Collapse
Affiliation(s)
- Daniel Hurley
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| | - Matthew P McCusker
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| | - Séamus Fanning
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| | - Marta Martins
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin , Dublin , Ireland
| |
Collapse
|
21
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
22
|
Zhu X, Lei H, Wu J, Li JV, Tang H, Wang Y. Systemic responses of BALB/c mice to Salmonella typhimurium infection. J Proteome Res 2014; 13:4436-45. [PMID: 25209111 DOI: 10.1021/pr500770x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salmonella typhimurium is a bacterial pathogen that poses a great threat to humans and animals. In order to discover hosts' responses to S. typhimurium infection, we collected and analyzed biofluids and organ tissues from mice which had ingested S. typhimurium. We employed (1)H NMR spectroscopy coupled with multivariate data analysis and immunological techniques. The results indicate that infection leads to a severe impact on mice spleen and ileum, which are characterized by splenomegaly and edematous villi, respectively. We found that increased levels of itaconic acid were correlated with the presence of splenomegaly during infection and may play an important role in Salmonella-containing vacuole acidification. In addition, metabonomic analyses of urine displayed the development of salmonellosis in mice, which is characterized by dynamic changes in energy metabolism. Furthermore, we found that the presence of S. typhimurium activated an anti-oxidative response in infected mice. We also observed changes in the gut microbial co-metabolites (hippurate, TMAO, TMA, methylamine). This investigation sheds much needed light on the host-pathogen interactions of S. typhimurium, providing further information to deepen our understanding of the long co-evolution process between hosts and infective bacteria.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | | | | | | | | | | |
Collapse
|
23
|
Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 2014; 55:238-52. [PMID: 24954904 PMCID: PMC4104028 DOI: 10.1016/j.molcel.2014.05.021] [Citation(s) in RCA: 666] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/16/2014] [Accepted: 05/14/2014] [Indexed: 02/09/2023]
Abstract
Mammalian cell homeostasis during starvation depends on initiation of autophagy by endoplasmic reticulum-localized phosphatidylinositol 3-phosphate (PtdIns(3)P) synthesis. Formation of double-membrane autophagosomes that engulf cytosolic components requires the LC3-conjugating Atg12-5-16L1 complex. The molecular mechanisms of Atg12-5-16L1 recruitment and significance of PtdIns(3)P synthesis at autophagosome formation sites are unknown. By identifying interacting partners of WIPIs, WD-repeat PtdIns(3)P effector proteins, we found that Atg16L1 directly binds WIPI2b. Mutation experiments and ectopic localization of WIPI2b to plasma membrane show that WIPI2b is a PtdIns(3)P effector upstream of Atg16L1 and is required for LC3 conjugation and starvation-induced autophagy through recruitment of the Atg12-5-16L1 complex. Atg16L1 mutants, which do not bind WIPI2b but bind FIP200, cannot rescue starvation-induced autophagy in Atg16L1-deficient MEFs. WIPI2b is also required for autophagic clearance of pathogenic bacteria. WIPI2b binds the membrane surrounding Salmonella and recruits the Atg12-5-16L1 complex, initiating LC3 conjugation, autophagosomal membrane formation, and engulfment of Salmonella.
Collapse
Affiliation(s)
- Hannah C Dooley
- London Research Institute, Cancer Research UK, 44 Lincolns Inn Fields, London WC2A 3LY, UK
| | - Minoo Razi
- London Research Institute, Cancer Research UK, 44 Lincolns Inn Fields, London WC2A 3LY, UK
| | - Hannah E J Polson
- London Research Institute, Cancer Research UK, 44 Lincolns Inn Fields, London WC2A 3LY, UK
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael I Wilson
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Sharon A Tooze
- London Research Institute, Cancer Research UK, 44 Lincolns Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
24
|
Souwer Y, Griekspoor A, de Wit J, Martinoli C, Zagato E, Janssen H, Jorritsma T, Bar-Ephraïm YE, Rescigno M, Neefjes J, van Ham SM. Selective infection of antigen-specific B lymphocytes by Salmonella mediates bacterial survival and systemic spreading of infection. PLoS One 2012; 7:e50667. [PMID: 23209805 PMCID: PMC3510171 DOI: 10.1371/journal.pone.0050667] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer's Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading. METHODOLOGY/PRINCIPAL FINDINGS Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood. CONCLUSIONS/SIGNIFICANCE This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection.
Collapse
Affiliation(s)
- Yuri Souwer
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alexander Griekspoor
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle de Wit
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chiara Martinoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Elena Zagato
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Hans Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yotam E. Bar-Ephraïm
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail: (SMVH); (JN)
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (SMVH); (JN)
| |
Collapse
|
25
|
Tattoli I, Philpott DJ, Girardin SE. The bacterial and cellular determinants controlling the recruitment of mTOR to the Salmonella-containing vacuole. Biol Open 2012; 1:1215-25. [PMID: 23259056 PMCID: PMC3522883 DOI: 10.1242/bio.20122840] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/30/2022] Open
Abstract
Bacterial invasion results in the rapid induction of an acute state of cytosolic amino acid (AA) starvation, provoked by host membrane damage. Bacteria-induced AA starvation, in turn, down-regulates mTOR signaling while triggering autophagy and the integrated stress response pathway dependent on GCN2, eIF2α and ATF3. In Salmonella-infected cells, we now demonstrate that the host AA starvation response program depended on the Salmonella pathogenicity island (SPI)-1, the activity of which was required to damage the Salmonella-containing vacuole (SCV) in the early stage of infection. At a later stage (3–4 hour post-infection), the progressive recruitment of mTOR to the surface of the SCV appeared to be independent of the activity of SPI-2 and of SCV positioning in the cell. Instead, mTOR localization to the SCV required the activity of host AA transporters SLC1A5, SLC3A2 and SLC7A5, resulting in bacterial escape from autophagy. These results expand our understanding of the mechanisms underlying the AA starvation response in Salmonella-infected cells.
Collapse
Affiliation(s)
- Ivan Tattoli
- Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, ON M6G 2T6 , Canada ; Department of Immunology, University of Toronto , Toronto, ON M6G 2T6 , Canada
| | | | | |
Collapse
|
26
|
Gog JR, Murcia A, Osterman N, Restif O, McKinley TJ, Sheppard M, Achouri S, Wei B, Mastroeni P, Wood JLN, Maskell DJ, Cicuta P, Bryant CE. Dynamics of Salmonella infection of macrophages at the single cell level. J R Soc Interface 2012; 9:2696-707. [PMID: 22552918 PMCID: PMC3427505 DOI: 10.1098/rsif.2012.0163] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.
Collapse
Affiliation(s)
- Julia R Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Verbrugghe E, Boyen F, Van Parys A, Van Deun K, Croubels S, Thompson A, Shearer N, Leyman B, Haesebrouck F, Pasmans F. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages. Vet Res 2011; 42:118. [PMID: 22151081 PMCID: PMC3256119 DOI: 10.1186/1297-9716-42-118] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/07/2011] [Indexed: 01/31/2023] Open
Abstract
Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vogels MW, van Balkom BWM, Heck AJR, de Haan CAM, Rottier PJM, Batenburg JJ, Kaloyanova DV, Helms JB. Quantitative proteomic identification of host factors involved in the Salmonella typhimurium infection cycle. Proteomics 2011; 11:4477-91. [PMID: 21919203 PMCID: PMC7167899 DOI: 10.1002/pmic.201100224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 01/14/2023]
Abstract
To identify host factors involved in Salmonella replication, SILAC‐based quantitative proteomics was used to investigate the interactions of Salmonella typhimurium with the secretory pathway in human epithelial cells. Protein profiles of Golgi‐enriched fractions isolated from S. typhimurium‐infected cells were compared with those of mock‐infected cells, revealing significant depletion or enrichment of 105 proteins. Proteins annotated to play a role in membrane traffic were overrepresented among the depleted proteins whereas proteins annotated to the cytoskeleton showed a diverse behavior with some proteins being enriched, others being depleted from the Golgi fraction upon Salmonella infection. To study the functional relevance of identified proteins in the Salmonella infection cycle, small interfering RNA (siRNA) experiments were performed. siRNA‐mediated depletion of a selection of affected proteins identified five host factors involved in Salmonella infection. Depletion of peroxiredoxin‐6 (PRDX6), isoform β‐4c of integrin β‐4 (ITGB4), isoform 1 of protein lap2 (erbin interacting protein; ERBB2IP), stomatin (STOM) or TBC domain containing protein 10b (TBC1D10B) resulted in increased Salmonella replication. Surprisingly, in addition to the effect on Salmonella replication, depletion of STOM or ITGB4 resulted in a dispersal of intracellular Salmonella microcolonies. It can be concluded that by using SILAC‐based quantitative proteomics we were able to identify novel host cell proteins involved in the complex interplay between Salmonella and epithelial cells.
Collapse
Affiliation(s)
- Mijke W Vogels
- Department of Biochemistry and Cell Biology, Biochemistry Division, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bhowmick PP, Devegowda D, Ruwandeepika HAD, Karunasagar I, Karunasagar I. Presence of Salmonella pathogenicity island 2 genes in seafood-associated Salmonella serovars and the role of the sseC gene in survival of Salmonella enterica serovar Weltevreden in epithelial cells. Microbiology (Reading) 2011; 157:160-168. [DOI: 10.1099/mic.0.043596-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type III secretion system encoded by the Salmonella pathogenicity island 2 (SPI-2) has a central role in the pathogenesis of systemic infections by Salmonella. Sixteen genes (ssaU, ssaB, ssaR, ssaQ, ssaO, ssaS, ssaP, ssaT, sscB, sseF, sseG, sseE, sseD, sseC, ssaD and sscA) of SPI-2 were targeted for PCR amplification in 57 seafood-associated serovars of Salmonella. The sseC gene of SPI-2 was found to be absent in two isolates of Salmonella enterica serovar Weltevreden, SW13 and SW39. Absence of sseC was confirmed by sequencing using flanking primers. SW13 had only 66 bp sequence of the sseC gene and SW39 had 58 bp sequence of this gene. A clinical isolate, S. Weltevreden – SW3, 10 : r : z6 – was used to construct a deletion mutant for the sseC gene. Significant reduction in the survival of SW3, 10 : r : z6 ΔsseC and natural mutants SW13 and SW39 in HeLa cells suggests that sseC has a crucial role in the intracellular survival of S. Weltevreden. Expression of sseC was upregulated during the intracellular phase of both S. enterica serovar Typhimurium and clinical isolate S. Weltevreden SW3, 10 : r : z6, suggesting a crucial role for this gene in the survival of S. Weltevreden inside host cells.
Collapse
Affiliation(s)
- Patit P. Bhowmick
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575 002, India
| | - Devananda Devegowda
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575 002, India
| | - H. A. Darshanee Ruwandeepika
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575 002, India
| | - Iddya Karunasagar
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575 002, India
| | - Indrani Karunasagar
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575 002, India
| |
Collapse
|
30
|
Braun V, Wong A, Landekic M, Hong WJ, Grinstein S, Brumell JH. Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cell Microbiol 2010; 12:1352-67. [PMID: 20482551 DOI: 10.1111/j.1462-5822.2010.01476.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Salmonella enterica serovar Typhimurium is an intracellular pathogen that grows within a modified endomembrane compartment, the Salmonella-containing vacuole (SCV). Maturation of nascent SCVs involves the recruitment of early endosome markers and the remodelling of phosphoinositides at the membrane of the vacuole, in particular the production of phosphatidylinositol 3-phosphate [PI(3)P]. Sorting nexins (SNXs) are a family of proteins characterized by the presence of a phox homology (PX) domain that binds to phosphoinositides and are involved in intracellular trafficking in eukaryotic cells. We therefore studied whether sorting nexins, particularly sorting nexin 3 (SNX3), play a role in Salmonella infection. We found that SNX3 transiently localized to SCVs at early times post invasion (10 min) and presented a striking tubulation phenotype in the vicinity of SCVs at later times (30-60 min). The bacterial effector SopB, which is known to promote PI(3)P production on SCVs, was required for the formation of SNX3 tubules. In addition, RAB5 was also required for the formation of SNX3 tubules. Depletion of SNX3 by siRNA impaired RAB7 and LAMP1 recruitment to the SCV. Moreover, the formation of Salmonella-induced filaments (Sifs) was altered by SNX3 knock-down. Therefore, SNX3 plays a significant role in regulating the maturation of SCVs.
Collapse
Affiliation(s)
- Virginie Braun
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada M5G1X8
| | | | | | | | | | | |
Collapse
|
31
|
Souwer Y, Griekspoor A, Jorritsma T, de Wit J, Janssen H, Neefjes J, van Ham SM. B cell receptor-mediated internalization of salmonella: a novel pathway for autonomous B cell activation and antibody production. THE JOURNAL OF IMMUNOLOGY 2009; 182:7473-81. [PMID: 19494270 DOI: 10.4049/jimmunol.0802831] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present paradigm is that primary B cells are nonphagocytosing cells. In this study, we demonstrate that human primary B cells are able to internalize bacteria when the bacteria are recognized by the BCR. BCR-mediated internalization of Salmonella typhimurium results in B cell differentiation and secretion of anti-Salmonella Ab by the Salmonella-specific B cells. In addition, BCR-mediated internalization leads to efficient Ag delivery to the MHC class II Ag-loading compartments, even though Salmonella remains vital intracellularly in primary B cells. Consequently, BCR-mediated bacterial uptake induces efficient CD4(+) T cell help, which boosts Salmonella-specific Ab production. BCR-mediated internalization of Salmonella by B cells is superior over extracellular Ag extraction to induce rapid and specific humoral immune responses and efficiently combat infection.
Collapse
Affiliation(s)
- Yuri Souwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Guignot J, Servin AL. Maintenance of the Salmonella-containing vacuole in the juxtanuclear area: a role for intermediate filaments. Microb Pathog 2008; 45:415-22. [PMID: 18977288 DOI: 10.1016/j.micpath.2008.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Until recently, intermediate filaments (IF) were thought to be only involved in resistance to physical stress and mechanical integrity of cells and tissues. Recent data indicate that IF play a much more important role in cellular physiology including organelle structure and positioning within the cell. Here, we show that Salmonella enterica serovar Typhimurium (S. typhimurium) induces in epithelial cells and macrophages the formation of an aggresome-like structure with a dramatic remodelling of cytoplasmic IF (vimentin and cytokeratin) networks and the adaptor proteins 14-3-3 which are recruited around intracellular S. typhimurium microcolonies. These rearrangements are not necessary for bacterial replication. Depletion of vimentin and cytokeratin by siRNA indicates that IF remodelling is required to maintain Salmonella microcolonies in the juxtanuclear area.
Collapse
Affiliation(s)
- Julie Guignot
- Centre for Molecular Microbiology and Infection, Imperial College of London, London SW7 2AZ, UK.
| | | |
Collapse
|
33
|
Jordao L, Lengeling A, Bordat Y, Boudou F, Gicquel B, Neyrolles O, Becker PD, Guzman CA, Griffiths G, Anes E. Effects of omega-3 and -6 fatty acids on Mycobacterium tuberculosis in macrophages and in mice. Microbes Infect 2008; 10:1379-86. [DOI: 10.1016/j.micinf.2008.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 11/26/2022]
|
34
|
Salmonella enterica serovar Typhimurium NiFe uptake-type hydrogenases are differentially expressed in vivo. Infect Immun 2008; 76:4445-54. [PMID: 18625729 DOI: 10.1128/iai.00741-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium, a common enteric pathogen, possesses three NiFe uptake-type hydrogenases. The results from mouse infection studies suggest that the H(2) oxidation capacity provided by these hydrogenases is important for virulence. Since the three enzymes are similar in structure and function, it may be expected that they are utilized under different locations and times during an infection. A recombination-based method to examine promoter activity in vivo (RIVET) was used to determine hydrogenase gene expression in macrophages, polymorphonuclear leukocyte (PMN)-like cells, and a mouse model of salmonellosis. The hyd and hya promoters showed increased expression in both murine macrophages and human PMN-like cells compared to that in the medium-only controls. Quantitative reverse transcription-PCR results suggested that hyb is also expressed in phagocytes. A nonpolar hya mutant was compromised for survival in macrophages compared to the wild type. This may be due to lower tolerance to acid stress, since the hya mutant was much more acid sensitive than the wild type. In addition, hya mutant cells were internalized by macrophages the same as wild-type cells. Mouse studies (RIVET) indicate that hyd is highly expressed in the liver and spleen early during infection but is expressed poorly in the ileum in infected animals. Late in the infection, the hyd genes were expressed at high levels in the ileum as well as in the liver and spleen. The hya genes were expressed at low levels in all locations tested. These results suggest that the hydrogenases are used to oxidize hydrogen in different stages of an infection.
Collapse
|
35
|
Bujny MV, Ewels PA, Humphrey S, Attar N, Jepson MA, Cullen PJ. Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J Cell Sci 2008; 121:2027-36. [PMID: 18505799 DOI: 10.1242/jcs.018432] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium replicate within host cells in a specialized membrane-bound compartment, the Salmonella-containing vacuole (SCV). Interaction of SCVs with the host endocytic network is modulated by bacterial effectors, some of which, such as SigD/SopB, manipulate the level of endosomal phosphoinositides. Here, we establish that at early stages of Salmonella infection, sorting nexin-1 (SNX1) - a host phosphoinositide-binding protein that normally associates with early endosomes and regulates transport to the trans-Golgi network (TGN) - undergoes a rapid and transient translocation to bacterial entry sites, an event promoted by SigD/SopB. Recruitment of SNX1 to SCVs results in the formation of extensive, long-range tubules that we have termed ;spacious vacuole-associated tubules'. Formation of these tubules is coupled with size reduction of vacuoles and the removal of TGN-resident cargo. SNX1 suppression perturbs intracellular progress of bacteria, resulting in a delayed replication. We propose that SNX1 is important in tubular-based re-modeling of nascent SCVs and, in doing so, regulates intracellular bacterial progression and replication.
Collapse
Affiliation(s)
- Miriam V Bujny
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
36
|
García-Pérez BE, Hernández-González JC, García-Nieto S, Luna-Herrera J. Internalization of a non-pathogenic mycobacteria by macropinocytosis in human alveolar epithelial A549 cells. Microb Pathog 2008; 45:1-6. [PMID: 18487035 DOI: 10.1016/j.micpath.2008.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 01/25/2008] [Indexed: 11/29/2022]
Abstract
Mycobacterium smegmatis (MSM) a non-pathogenic mycobacterium is often employed as a tool to understand many aspects of the mycobacterial infections. However, its own biology and particularly its mechanism of entry into non-phagocytic cells are not well known. Previously, we demonstrated that Mycobacterium tuberculosis (MTB) invades epithelial cells by macropinocytosis. In the present study, we investigated whether MSM also invades human epithelial type II pneumocytes (A549) by macropinocytosis. Infection of A549 cells with MSM elicited actin filaments redistribution, lamellipodia formation and increased fluid phase uptake, suggesting macropinocytosis. Furthermore, macropinocytosis inhibitors like cytochalasin D and amiloride caused inhibition of fluid phase and bacterial uptake. We can conclude that MSM, like MTB, takes advantage of macropinocytosis for entry into epithelial cells, however, unlike MTB, internalized MSM are killed by host cells. These findings suggest that induction of macropinocytosis and cell invasion is not an exclusive feature of pathogenic organisms.
Collapse
Affiliation(s)
- Blanca Estela García-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, 11340 México City, D.F., Mexico.
| | | | | | | |
Collapse
|
37
|
Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, Bongaerts RJM, Ahmad N, Rhen M, Hinton JCD. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 2007; 10:958-84. [PMID: 18031307 PMCID: PMC2343689 DOI: 10.1111/j.1462-5822.2007.01099.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biogenesis of the Salmonella-containing vacuole within mammalian cells has been intensively studied over recent years. However, the ability of Salmonella to sense and adapt to the intracellular environment of different types of host cells has received much less attention. To address this issue, we report the transcriptome of Salmonella enterica serovar Typhimurium SL1344 within epithelial cells and show comparisons with Salmonella gene expression inside macrophages. We report that S. Typhimurium expresses a characteristic intracellular transcriptomic signature in response to the environments it encounters within different cell types. The signature involves the upregulation of the mgtBC, pstACS and iro genes for magnesium, phosphate and iron uptake, and Salmonella pathogenicity island 2 (SPI2). Surprisingly, in addition to SPI2, the invasion-associated SPI1 pathogenicity island and the genes involved in flagellar biosynthesis were expressed inside epithelial cells at later stages of the infection, while they were constantly downregulated in macrophage-like cells. To our knowledge, this is the first report of the simultaneous transcription of all three Type Three Secretion Systems (T3SS) within an intracellular Salmonella population. We discovered that S. Typhimurium strain SL1344 was strongly cytotoxic to epithelial cells after 6 h of infection and hypothesize that the time-dependent changes in Salmonella gene expression within epithelial cells reflects the bacterial response to host cells that have been injured by the infection process.
Collapse
Affiliation(s)
- I Hautefort
- Molecular Microbiology Group, Institute of Food Research, Norwich NR4 7UA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Reduced in vitro functional activity of human NRAMP1 (SLC11A1) allele that predisposes to increased risk of pediatric tuberculosis disease. Genes Immun 2007; 8:691-8. [DOI: 10.1038/sj.gene.6364435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Abstract
Salmonella species cause substantial morbidity, mortality and burden of disease globally. Infections with Salmonella species cause multiple clinical syndromes. Central to the pathophysiology of all human salmonelloses is the induction of a strong host innate immune/inflammatory response. Whether this ultimately reflects an adaptive advantage to the host or pathogen is not clear. However, it is evident that both the host and pathogen have evolved mechanisms of triggering host responses that are detrimental to the other. In this review, we explore some of the host and pathogenic mechanisms mobilized in the two predominant clinical syndromes associated with infection with Salmonella enterica species: enterocolitis and typhoid.
Collapse
Affiliation(s)
- Bryan Coburn
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
40
|
Lim S, Kim B, Choi HS, Lee Y, Ryu S. Fis is required for proper regulation of ssaG expression in Salmonella enterica serovar Typhimurium. Microb Pathog 2006; 41:33-42. [PMID: 16777370 DOI: 10.1016/j.micpath.2006.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/27/2006] [Accepted: 05/14/2006] [Indexed: 12/21/2022]
Abstract
Salmonella pathogenicity island 2 (SPI2) encodes a type III secretion system (TTSS) necessary for bacterial survival and replication in intracellular environment of host cells. SPI2 genes are transcribed preferentially after Salmonella enters the host cells. Transcriptional regulation of ssaG encoding the component of SPI2-TTSS apparatus was studied in vivo and in vitro. Fis, one of the major components of bacterial nucleoid, activated the stationary phase-specific expression of ssaG when Salmonella was grown in LB media. Gel-shift and footprinting analysis showed Fis bound to four distinct sites of the ssaG promoter region with different affinities. All four Fis-binding sites were required for timely transcription activation of ssaG after Salmonella entered macrophage cells. Gentamicin protection experiments using bacteria grown to stationary phase prior to infection showed that the ability of the fis mutant strain to replicate within the RAW264.7 macrophage cells was lower than the wild type. These observations confirm that Fis plays an important role in regulations of SPI2 as well as SPI1 for an efficient regulation of the virulence genes.
Collapse
Affiliation(s)
- Sangyong Lim
- Radiation Food Science & Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Korea
| | | | | | | | | |
Collapse
|
41
|
al-Ramadi BK, Fernandez-Cabezudo MJ, Ullah A, El-Hasasna H, Flavell RA. CD154 Is Essential for Protective Immunity in ExperimentalSalmonellaInfection: Evidence for a Dual Role in Innate and Adaptive Immune Responses. THE JOURNAL OF IMMUNOLOGY 2005; 176:496-506. [PMID: 16365443 DOI: 10.4049/jimmunol.176.1.496] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CD40-CD154 interactions are of central importance in the induction of humoral and cellular immune responses. In the present study, CD154-deficient (CD154-/-) mice were used to assess the role of CD40-CD154 interactions in regulating the immune response to a systemic Salmonella infection. Compared with C57BL/6 (CD154+/+) controls, CD154-/- mice were hypersusceptible to infection by an attenuated strain of Salmonella enterica serovar Typhimurium (S. typhimurium), as evidenced by decreased survival rate and mean time to death, which correlated with increased bacterial burden and persistence in target organs. CD154-/- mice exhibited a defect both in the production of IL-12, IFN-gamma, and NO during the acute phase of the disease and in the generation of Salmonella-specific Ab responses and Ig isotype switching. Furthermore, when CD154-/- animals were administered a sublethal dose of attenuated S. typhimurium and subsequently challenged with a virulent homologous strain, all mice succumbed to an overwhelming infection. Similar treatment of CD154+/+ mice consistently resulted in > or =90% protection. The lack of protective immunity in CD154-/- mice correlated with a decreased T cell recall response to Salmonella Ags. Significant protection against virulent challenge was conferred to presensitized CD154-/- mice by transfer of serum or T cells from immunized CD154+/+ mice. For best protection, however, a combination of immune serum and T cells was required. We conclude that intercellular communications via the CD40-CD154 pathway play a critical role in the induction of type 1 cytokine responses, memory T cell generation, Ab formation, and protection against primary as well as secondary Salmonella infections.
Collapse
Affiliation(s)
- Basel K al-Ramadi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University.
| | | | | | | | | |
Collapse
|
42
|
Tierrez A, García-del Portillo F. New concepts in Salmonella virulence: the importance of reducing the intracellular growth rate in the host. Cell Microbiol 2005; 7:901-9. [PMID: 15953023 DOI: 10.1111/j.1462-5822.2005.00540.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The literature refers to Salmonella enterica as an intracellular bacterial pathogen that proliferates within vacuoles of mammalian cells. However, recent in vivo studies have revealed that the vast majority of infected cells contain very few intracellular bacteria (three to four organisms). Salmonella intracellular growth is also limited in cultured dendritic cells and fibroblasts, two cell types abundant in tissues located underneath the intestinal epithelium. Recently, a Salmonella factor previously known for its role as a negative regulator of intracellular growth has been shown to tightly repress certain pathogen functions upon host colonization and to be critical for virulence. The connection between virulence and the negative control of intracellular growth is further sustained by the fact that some attenuated mutants overgrow in non-phagocytic cells located in the intestinal lamina propria. These findings are changing our classical view of Salmonella as a fast growing intracellular pathogen and suggest that this pathogen may trigger responses directed to reduce the growth rate within the infected cell. These responses could play a critical role in modulating the delicate balance between disease and persistence.
Collapse
Affiliation(s)
- Alberto Tierrez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | | |
Collapse
|
43
|
Kalupahana RS, Mastroeni P, Maskell D, Blacklaws BA. Activation of murine dendritic cells and macrophages induced by Salmonella enterica serovar Typhimurium. Immunology 2005; 115:462-72. [PMID: 16011515 PMCID: PMC1782185 DOI: 10.1111/j.1365-2567.2005.02180.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Macrophages and dendritic cells (DCs) are antigen-presenting cells (APCs), and the direct involvement of both cell types in the immune response to Salmonella has been identified. In this study we analysed the phenotypic and functional changes that take place in murine macrophages and DCs in response to live and heat-killed Salmonella enterica serovar Typhimurium. Both types of cell secreted proinflammatory cytokines and nitric oxide (NO) in response to live and heat-killed salmonellae. Bacterial stimulation also resulted in up-regulation of costimulatory molecules on macrophages and DCs. The expression of major histocompatibility complex (MHC) class II molecules by macrophages and DCs was differentially regulated by interferon (IFN)-gamma and salmonellae. Live and heat-killed salmonellae as well as lipopolysaccharide (LPS) inhibited the up-regulation of MHC class II expression induced by IFN-gamma on macrophages but not on DCs. Macrophages as well as DCs presented Salmonella-derived antigen to CD4 T cells, although DCs were much more efficient than macrophages at stimulating CD4 T-cell cytokine release. Macrophages are effective in the uptake and killing of bacteria whilst DCs specialize in antigen presentation. This study showed that the viability of salmonellae was not essential for activation of APCs but, unlike live bacteria, prolonged contact with heat-killed bacteria was necessary to obtain maximal expression of the activation markers studied.
Collapse
Affiliation(s)
- Ruwani Sagarika Kalupahana
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
44
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
45
|
Reinicke AT, Hutchinson JL, Magee AI, Mastroeni P, Trowsdale J, Kelly AP. A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery. J Biol Chem 2005; 280:14620-7. [PMID: 15710609 DOI: 10.1074/jbc.m500076200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SifA is a Salmonella effector protein that is required for maintenance of the vacuolar membrane that surrounds replicating bacteria. It associates with the Salmonella-containing vacuole but how it interacts with the membrane is unknown. Here we show by immunofluorescence, S100 fractionation and Triton X-114 partitioning that the membrane association and targeting properties of SifA are influenced by a motif encoded within the C-terminal six amino acids. This sequence shares homology with both CAAX and Rab geranylgeranyl transferase prenylation motifs. We characterized the post-translational processing of SifA and showed that the cysteine residue within the CAAX motif is modified by isoprenoid addition through the action of protein geranylgeranyl transferase I. SifA was additionally modified by S-acylation of an adjacent cysteine residue. Similar modifications to host cell proteins regulate numerous functions including protein targeting, membrane association, protein-protein interaction, and signal transduction. This is the only known example of a bacterial effector protein that is modified both by mammalian cell S-acylation and prenylation machinery.
Collapse
Affiliation(s)
- Anna T Reinicke
- Division of Immunology, Department of Pathology, Center for Veterinary Science, University of Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Kujat Choy SL, Boyle EC, Gal-Mor O, Goode DL, Valdez Y, Vallance BA, Finlay BB. SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar typhimurium. Infect Immun 2004; 72:5115-25. [PMID: 15322005 PMCID: PMC517430 DOI: 10.1128/iai.72.9.5115-5125.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica is a gram-negative, facultative intracellular pathogen that causes disease symptoms ranging from gastroenteritis to typhoid fever. A key virulence strategy is the translocation of bacterial effector proteins into the host cell, mediated by the type III secretion systems (TTSSs) encoded in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. In S. enterica serovar Typhimurium LT2, we identified the protein products of STM4157 and STM2137 as novel candidate secreted proteins by comparison to known secreted proteins from enterohemorrhagic Escherichia coli and Citrobacter rodentium. The STM4157 and STM2137 proteins, which we have designated SseK1 and SseK2, respectively, are 61% identical at the amino acid level and differ mainly in their N termini. Western analysis showed that in vitro accumulation and secretion of these proteins in serovar Typhimurium were affected by mutations in the two-component systems SsrA/B and PhoP/Q, which are key mediators of intracellular growth and survival. SPI-2 TTSS-dependent translocation of recombinant SseK1::Cya was evident at 9 h postinfection of epithelial cells, while translocation of SseK2::Cya was not detected until 21 h. Remarkably, the translocation signal for SseK1 was contained within the N-terminal 32 amino acids. Fractionation of infected epithelial cells revealed that following translocation SseK1 localizes to the host cytosol, which is unusual among the currently known Salmonella effectors. Phenotypic analysis of DeltasseK1, DeltasseK2, and DeltasseK1/DeltasseK2 mutants provided evidence for a role that was not critical during systemic infection. In summary, this work demonstrates that SseK1 and SseK2 are novel translocated proteins of serovar Typhimurium.
Collapse
Affiliation(s)
- Sonya L Kujat Choy
- Biotechnology Laboratory, University of British Columbia, Room 237, Wesbrook Building, 6174 University Blvd., Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
47
|
Haghjoo E, Galán JE. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci U S A 2004; 101:4614-9. [PMID: 15070766 PMCID: PMC384795 DOI: 10.1073/pnas.0400932101] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many bacterial pathogens encode the cytolethal distending toxin (CDT), which causes host cells to arrest during their cell cycle by inflicting DNA damage. CDT is composed of three proteins, CdtA, CdtB, and CdtC. CdtB is the enzymatically active or A subunit, which possesses DNase I-like activity, whereas CdtA and CdtC function as heteromeric B subunits that mediate the delivery of CdtB into host cells. We show here that Salmonella enterica serovar Typhi encodes CDT activity, which depends on the function of a CdtB homologous protein. Remarkably, S. enterica serovar Typhi does not encode apparent homologs of CdtA or CdtC. Instead, we found that toxicity, as well as cdtB expression, requires bacterial internalization into host cells. We propose a pathway of toxin delivery in which bacterial internalization relieves the requirement for the functional equivalent of the B subunit of the CDT toxin.
Collapse
Affiliation(s)
- Erik Haghjoo
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
48
|
Hernandez LD, Hueffer K, Wenk MR, Galán JE. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 2004; 304:1805-7. [PMID: 15205533 DOI: 10.1126/science.1098188] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Salmonella enterica, the cause of food poisoning and typhoid fever, induces actin cytoskeleton rearrangements and membrane ruffling to gain access into nonphagocytic cells, where it can replicate and avoid innate immune defenses. Here, we found that SopB, a phosphoinositide phosphatase that is delivered into host cells by a type III secretion system, was essential for the establishment of Salmonella's intracellular replicative niche. SopB mediated the formation of spacious phagosomes following bacterial entry and was responsible for maintaining high levels of phosphatidylinositol-three-phosphate [PtdIns(3)P] in the membrane of the bacteria-containing vacuoles. Absence of SopB caused a significant defect in the maturation of the Salmonella-containing vacuole and impaired bacterial intracellular growth.
Collapse
Affiliation(s)
- Lorraine D Hernandez
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
49
|
Cano DA, Pucciarelli MG, Martínez-Moya M, Casadesús J, García-del Portillo F. Selection of small-colony variants of Salmonella enterica serovar typhimurium in nonphagocytic eucaryotic cells. Infect Immun 2003; 71:3690-8. [PMID: 12819049 PMCID: PMC161971 DOI: 10.1128/iai.71.7.3690-3698.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica strains are enteropathogenic bacteria that survive and proliferate within vacuolar compartments of epithelial and phagocytic cells. Recently, it has been reported that fibroblast cells are capable of restricting S. enterica serovar Typhimurium intracellular growth. Here, we show that prolonged residence of bacteria in the intracellular environment of fibroblasts results in the appearance of genetically stable small-colony variants (SCV). A total of 103 SCV isolates, obtained from four independent infections, were subjected to phenotypic analysis. The following phenotypes were observed: (i) delta-aminolevulinic acid auxotrophy; (ii) requirement for acetate or succinate for growth in glucose minimal medium; (iii) auxotrophy for aromatic amino acids; and (iv) reduced growth rate under aerobic conditions not linked to nutrient auxotrophy. The exact mutations responsible for the SCV phenotype in three representative isolates were mapped in the lpd, hemL, and aroD genes, which code for dihydrolipoamide dehydrogenase, glutamate-1-semyaldehyde aminotransferase, and 3-dehydroquinate dehydratase, respectively. The lpd, hemL, and aroD mutants had intracellular persistence rates in fibroblasts that were 3 to 4 logs higher than that of the parental strain and decreased susceptibility to aminoglycoside antibiotics. All three of these SCV isolates were attenuated in the BALB/c murine typhoid model. Complementation with lpd(+), hem(+), and aroD(+) genes restored the levels of intracellular persistence and antibiotic susceptibility to levels of the wild-type strain. However, virulence was not exhibited by any of the complemented strains. Altogether, our data demonstrate that similar to what it has been reported for SCV isolates of other pathogens, S. enterica SCV display enhanced intracellular persistence in eucaryotic cells and are impaired in the ability to cause overt disease. In addition, they also suggest that S. enterica SCV may be favored in vivo.
Collapse
Affiliation(s)
- David A Cano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain
| | | | | | | | | |
Collapse
|
50
|
Qualmann B, Mellor H. Regulation of endocytic traffic by Rho GTPases. Biochem J 2003; 371:233-41. [PMID: 12564953 PMCID: PMC1223314 DOI: 10.1042/bj20030139] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 02/04/2003] [Indexed: 11/17/2022]
Abstract
The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39008, Magdeburg, Germany
| | | |
Collapse
|