1
|
Marena GD, Thomaz L, Nosanchuk JD, Taborda CP. Galleria mellonella as an Invertebrate Model for Studying Fungal Infections. J Fungi (Basel) 2025; 11:157. [PMID: 39997451 PMCID: PMC11856299 DOI: 10.3390/jof11020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
The incidence of fungal infections continues to increase and one of the factors responsible for these high rates is the emergence of multi-resistant species, hospitalizations, inappropriate or prolonged use of medications, and pandemics, such as the ongoing HIV/AIDS pandemic. The recent pandemic caused by the severe acute respiratory syndrome virus (SARS-CoV-2) has led to a significant increase in fungal infections, especially systemic mycoses caused by opportunistic fungi. There is a growing and urgent need to better understand how these microorganisms cause infection and develop resistance as well as to develop new therapeutic strategies to combat the diverse diseases caused by fungi. Non-mammalian hosts are increasingly used as alternative models to study microbial infections. Due to their low cost, simplicity of care, conserved innate immunity and reduced ethical issues, the greater wax moth Galleria mellonella is an excellent model host for studying fungal infections and it is currently widely used to study fungal pathogenesis and develop innovative strategies to mitigate the mycoses studied. G. mellonella can grow at 37 °C, which is similar to the mammalian temperature, and the anatomy of the larvae allows researchers to easily deliver pathogens, biological products, compounds and drugs. The aim of this review is to describe how G. mellonella is being used as a model system to study fungal infections as well as the importance of this model in evaluating the antifungal profile of potential drug candidates or new therapies against fungi.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Institute of Biomedical Science, Department of Microbiology, University of São Paulo (ICB II—USP), São Paulo 05508-900, Brazil;
| | - Luciana Thomaz
- Institute of Biomedical Science, Department of Microbiology, University of São Paulo (ICB II—USP), São Paulo 05508-900, Brazil;
| | - Joshua Daniel Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Carlos Pelleschi Taborda
- Institute of Biomedical Science, Department of Microbiology, University of São Paulo (ICB II—USP), São Paulo 05508-900, Brazil;
- Laboratory of Medical Mycology, Institute of Tropical Medicine of São Paulo/LIM53, School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| |
Collapse
|
2
|
Ali MG, Abdelhamid AG, Yousef AE. How colonizing alfalfa sprouts modulates the virulence of Shiga toxin-producing Escherichia coli. Int J Food Microbiol 2025; 428:110972. [PMID: 39608275 DOI: 10.1016/j.ijfoodmicro.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC), a significant cause of foodborne illnesses, is often associated with the consumption of fresh produce, including alfalfa sprouts. This study was executed to determine how quickly STEC grows, adapts, and colonizes alfalfa sprouts during production and storage, and whether the pathogen's virulence and infectious doses are affected by physiological adaptation to sprouts as an environment. A reporter STEC O157:H7 EDL933 strain was developed to track the transcription of eae, a virulence gene involved in colonizing human intestinal enterocytes. When the seeds were inoculated with 2.1 × 103 CFU/g of the reporter strain, the pathogen's population increased to 1.5 × 106 CFU/g sprouts within 1.38 days and then remained stable during the remainder of the 5-day sprouting, indicating physiological adaptation to this environment. Seeds were inoculated with ∼108 CFU/g and subsequently treated with 2000 ppm calcium hypochlorite solution, followed by a water-rinse (treated seeds), or just rinsed with water (untreated seeds). After 5 days of sprouting, the resulting fresh sprouts were refrigerated for three days at 4 °C. Sprout samples were collected and treated with 2000 ppm calcium hypochlorite solution and rinsed thoroughly with water before counting internalized STEC, or just water-washed before measuring total STEC. The transcription of eae (normalized to cell count) was the highest on the second day of sprouting, but the transcription of other virulence and stress-related genes varied, with sodA being upregulated in STEC cells. Lethal dose 50 (LD50) to Galleria mellonella, a STEC infection animal model, was lower (i.e., virulence was higher) in total STEC collected from fresh sprouts produced from treated seeds, compared to that from untreated seeds (1.9 × 100 and 6.0 × 101 CFU/larva, respectively). Compared to refrigerated sprouts, the LD50 of STEC from freshly produced sprouts was lower. Based on these findings, it can be concluded that (a) STEC quickly adapts physiologically to sprouts as an environment, (b) transcription of STEC virulence genes changed during sprouts production but generally decreased during refrigeration, and (c) STEC from fresh sprouts grown from sanitizer-treated seeds were more virulent in the animal model, but STEC from refrigerated sprouts were less virulent.
Collapse
Affiliation(s)
- Mostafa G Ali
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Pereira ED, Moreira TR, Cruz-Leite VRM, Tomazett MV, Souza Silva LO, Graziani D, Martins JA, Amaral AC, Weber SS, Parente-Rocha JA, Soares CMDA, Borges CL. Paracoccidioides lutzii Infects Galleria mellonella Employing Formamidase as a Virulence Factor. PLoS Negl Trop Dis 2024; 18:e0012452. [PMID: 39226308 PMCID: PMC11398694 DOI: 10.1371/journal.pntd.0012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
The formamidase (FMD) enzyme plays an important role in fungal thriving by releasing a secondary nitrogen source as a product of its activity. In Paracoccidioides species, previous studies have demonstrated the upregulation of this enzyme in a wide range of starvation and infective-like conditions. However, Paracoccidioides lutzii formamidase has not yet been defined as a virulence factor. Here, by employing in vivo infections using an fmd-silenced strain in Galleria mellonella larvae model, we demonstrate the influence of formamidase in P. lutzii's immune stimulation and pathogenicity. The formamidase silencing resulted in improper arrangement of the nodules, poor melanogenesis and decreased fungal burden. Thus, we suggest that formamidase may be a piece composing the process of molecular recognition by Galleria immune cells. Furthermore, formamidase silencing doubled the observed survival rate of the larvae, demonstrating its importance in fungal virulence in vivo. Therefore, our findings indicate that formamidase contributes to Galleria's immune incitement and establishes the role of this enzyme as a P. lutzii virulence factor.
Collapse
Affiliation(s)
- Elisa Dias Pereira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Thalison Rodrigues Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | | | - Mariana Vieira Tomazett
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Graziani
- Multiuser Laboratory for the Evaluation of Molecules, Cells and Tissues, Federal University of Goiás, Goiânia, Brazil
| | - Juliana Assis Martins
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - André Corrêa Amaral
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
4
|
Giammarino A, Bellucci N, Angiolella L. Galleria mellonella as a Model for the Study of Fungal Pathogens: Advantages and Disadvantages. Pathogens 2024; 13:233. [PMID: 38535576 PMCID: PMC10976154 DOI: 10.3390/pathogens13030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 02/11/2025] Open
Abstract
The study of pathogenicity and virulence of fungal strains, in vivo in the preclinical phase, is carried out through the use of animal models belonging to various classes of mammals (rodents, leproids, etc.). Although animals are functionally more similar to humans, these studies have some limitations in terms of ethics (animal suffering), user-friendliness, cost-effectiveness, timing (physiological response time) and logistics (need for adequately equipped laboratories). A good in vivo model must possess some optimal characteristics to be used, such as rapid growth, small size and short life cycle. For this reason, insects, such as Galleria mellonella (Lepidoptera), Drosophila melanogaster (Diptera) and Bombyx mori (Lepidoptera), have been widely used as alternative non-mammalian models. Due to their simplicity of use and low cost, the larvae of G. mellonella represent an optimal model above all to evaluate the virulence of fungal pathogens and the use of antifungal treatments (either single or in combination with biologically active compounds). A further advantage is also represented by their simple neuronal system limiting the suffering of the animal itself, their ability to survive at near-body ambient temperatures as well as the expression of proteins able to recognise combined pathogens following the three R principles (replacement, refinement and reduction). This review aims to assess the validity as well as the advantages and disadvantages of replacing mammalian classes with G. mellonella as an in vivo study model for preclinical experimentation.
Collapse
Affiliation(s)
| | | | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Rome, Italy; (A.G.); (N.B.)
| |
Collapse
|
5
|
Carestia A, Godin LC, Jenne CN. Step up to the platelet: Role of platelets in inflammation and infection. Thromb Res 2023; 231:182-194. [PMID: 36307228 DOI: 10.1016/j.thromres.2022.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Platelets are anucleated cells derived from megakaryocytes that are primarily responsible for hemostasis. However, in recent years, these cytoplasts have become increasingly recognized as immune cells, able to detect, interact with, and kill pathogens. As platelets are involved in both immunity and coagulation, they have a central role in immunothrombosis, a physiological process in which immune cells induce the formation of microthrombi to both prevent the spread of pathogens, and to help facilitate clearance. In this review, we will highlight the role of platelets as key players in the inflammatory and innate immune response against bacterial and viral infection, including direct and indirect interactions with pathogens and other immune cells.
Collapse
Affiliation(s)
- Agostina Carestia
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Laura C Godin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
6
|
Xiao Z, Yao X, Bai S, Wei J, An S. Involvement of an Enhanced Immunity Mechanism in the Resistance to Bacillus thuringiensis in Lepidopteran Pests. INSECTS 2023; 14:151. [PMID: 36835720 PMCID: PMC9965922 DOI: 10.3390/insects14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bacillus thuringiensis (Bt) is the safest, economically successful entomopathogen to date. It is extensively produced in transgenic crops or used in spray formulations to control Lepidopteran pests. The most serious threat to the sustainable usage of Bt is insect resistance. The resistance mechanisms to Bt toxins depend not only on alterations in insect receptors, but also on the enhancement of insect immune responses. In this work, we review the current knowledge of the immune response and resistance of insects to Bt formulations and Bt proteins, mainly in Lepidopteran pests. We discuss the pattern recognition proteins for recognizing Bt, antimicrobial peptides (AMPs) and their synthetic signaling pathways, the prophenoloxidase system, reactive oxygen species (ROS) generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates, which are involved in immune response reactions or resistance to Bt. This review also analyzes immune priming, which contributes to the evolution of insect resistance to Bt, and puts forward strategies to improve the insecticidal activity of Bt formulations and manage insect resistance, targeting the insect immune responses and resistance.
Collapse
|
7
|
Hu C, Garey KW. Nonmammalian models to study Clostridioides difficile infection; a systematic review. Anaerobe 2023; 79:102694. [PMID: 36626950 PMCID: PMC9975065 DOI: 10.1016/j.anaerobe.2023.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Clostridioide difficile is the leading cause of diarrhea disease worldwide and is a CDC-designated urgent threat level pathogen. Mammalian models are commonly utilized as gold standard to study the pathogenesis of C. difficile infection (CDI); however, alternatives are needed due to cost, higher throughput ability, and mammalian animal ethics. Nonmammalian models such as great wax worm, nematode, fruit fly, and zebrafish have been used as CDI models. This review provides a comprehensive summary of nonmammalian models used to study CDI. Multiple studies were identified using these models to study C. difficile infection, pathogenicity, colonization, host immunity, and therapy. Translational outcomes and strength and weakness of each nonmammalian model are discussed.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, 77204, USA.
| |
Collapse
|
8
|
Elizalde-Bielsa A, Aragón-Aranda B, Loperena-Barber M, Salvador-Bescós M, Moriyón I, Zúñiga-Ripa A, Conde-Álvarez R. Development and evaluation of the Galleria mellonella (greater wax moth) infection model to study Brucella host-pathogen interaction. Microb Pathog 2023; 174:105930. [PMID: 36496059 DOI: 10.1016/j.micpath.2022.105930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Beatriz Aragón-Aranda
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Maite Loperena-Barber
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain.
| |
Collapse
|
9
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
10
|
Arokiyaraj C, Tamilarasan K, Manikandan R, Janarthanan S. Purification and structural characterization of lectin with antibacterial and anticancer properties from grubs of hide beetle, Dermestes frischii. Int J Biol Macromol 2022; 203:312-332. [PMID: 35074334 DOI: 10.1016/j.ijbiomac.2022.01.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022]
Abstract
Lectins or haemagglutinins are diverse classes of non-immune proteins; they bind to carbohydrates and are abundant in nature. In the present study, a coleopteran lectin from grubs of hide beetle, Dermestes frischii called DFL, was purified by glutaraldehyde (fixative-agent) fixed hen erythrocytes and characterized further for its functional properties. The purified DFL was stable between pH range 5 to 9 and heat-stable up to 50C. It was insensitive to EDTA and did not require any divalent cations. DFL native molecular mass was approximately 69 kDa with three different polypeptide subunits of 33 (pI ~4.4), 22 (pI ~6) and 14 (pI ~4.4) kDa. Haemagglutinating activity of DFL was highly inhibited by N-acetyl-D-glucosamine. DFL partial peptide sequences obtained from peptide mass fingerprinting experiments matched with amino acid sequences of lectins from different organisms confirmed its nature. Biological properties of purified DFL namely antibacterial and bacterial agglutination experiments revealed that DFL have both the effects against laboratory cultures of Aeromonas hydrophila, Enterococcus faecalis, Escherichia coli and habitat bacterial isolates of Staphylococcus cohnii and Bacillus cereus. In addition, the DFL exhibited substantial anticancer properties against HeLa cells. These results concluded that purified DFL could serve as a potent therapeutic agent for various biomedical applications.
Collapse
Affiliation(s)
- Charles Arokiyaraj
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Ramar Manikandan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
11
|
Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data. mSystems 2021; 6:e0091621. [PMID: 34726490 PMCID: PMC8562489 DOI: 10.1128/msystems.00916-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dermatophagoides farinae is inhabited by an intracellular bacterium, Cardinium. Using correlations between host and symbiont gene expression profiles, we identified several important molecular pathways that potentially regulate/facilitate their interactions. The expression of Cardinium genes collectively explained 95% of the variation in the expression of mite genes assigned to pathways for phagocytosis, apoptosis, the MAPK signaling cascade, endocytosis, the tumor necrosis factor (TNF) pathway, the transforming growth factor beta (TGF-β) pathway, lysozyme, and the Toll/Imd pathway. In addition, expression of mite genes explained 76% of the variability in Cardinium gene expression. In particular, the expression of the Cardinium genes encoding the signaling molecules BamD, LepA, SymE, and VirD4 was either positively or negatively correlated with the expression levels of mite genes involved in endocytosis, phagocytosis, and apoptosis. We also found that Cardinium possesses a complete biosynthetic pathway for lipoic acid and may provide lipoate, but not biotin, to mites. Cardinium gene expression collectively explained 84% of the variation in expression related to several core mite metabolic pathways, and, most notably, a negative correlation was observed between bacterial gene expression and expression of mite genes assigned to the glycolysis and citric acid cycle pathways. Furthermore, we showed that Cardinium gene expression is correlated with expression levels of genes associated with terpenoid backbone biosynthesis. This pathway is important for the synthesis of pheromones, thus providing an opportunity for Cardinium to influence mite reproductive behavior to facilitate transmission of the bacterium. Overall, our study provided correlational gene expression data that can be useful for future research on mite-Cardinium interactions. IMPORTANCE The molecular mechanisms of mite-symbiont interactions and their impacts on human health are largely unknown. Astigmatid mites, such as house dust and stored-product mites, are among the most significant allergen sources worldwide. Although mites themselves are the main allergen sources, recent studies have indicated that mite-associated microbiomes may have implications for allergen production and human health. The major medically important house dust mite, D. farinae, is known to harbor a highly abundant intracellular bacterium belonging to the genus Cardinium. Expression analysis of the mite and symbiont genes can identify key mite molecular pathways that facilitate interactions with this endosymbiont and possibly shed light on how this bacterium affects mite allergen production and physiology in general.
Collapse
|
12
|
Geng T, Lu F, Zhu F, Wang S. Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104171. [PMID: 34118279 DOI: 10.1016/j.dci.2021.104171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori is a model species of Lepidoptera, in which 21 gene families and 220 genes have been identified as involved in immunity. However, only 45 B. mori - Drosophila melanogaster - Anopheles gambiae - Apis mellifera - Tribolium castaneum 1:1:1:1:1 orthologous genes were identified. B. mori has unique immune factors not found in D. melanogaster - A. gambiae - A. mellifera - T. castaneum. Pattern recognition receptors, signal transducers and effector genes for antifungal immune responses in B. mori have evolved through expansion and modification of existing genes. This review summarizes the current knowledge of the antifungal immune responses of B. mori and focuses on the lineage-specific gene evolution used by Lepidoptera to adapt to the challenge by pathogens, especially entomopathogenic fungi.
Collapse
Affiliation(s)
- Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fuping Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
13
|
Vommaro ML, Kurtz J, Giglio A. Morphological Characterisation of Haemocytes in the Mealworm Beetle Tenebrio molitor (Coleoptera, Tenebrionidae). INSECTS 2021; 12:insects12050423. [PMID: 34066849 PMCID: PMC8151185 DOI: 10.3390/insects12050423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The immunocompetence of the mealworm beetle Tenebrio molitor has been well investigated at molecular and physiological levels, but information on morphological and functional characteristics of its immune cells (haemocytes) is still scarce and fragmentary. This study provides an updated overview of the morphology of circulating immune cells from mealworm beetle adults, using light and transmission electron microscopy. Based on their affinities for May-Grünwald Giemsa stain, haemocytes were defined as either eosinophilic, basophilic or neutral. Ultrastructural descriptions allowed to detect four main cell types in the haemolymph: prohaemocytes, plasmatocytes, granular cells and oenocytoids. The morphological plasticity of haemocytes and the evidence of mitotic circulating cells, intermediate cell stages, as well as autophagic activities suggest haemocyte proliferation, turnover and transdifferentiation as constantly active processes in the haemolymph. Cytochemical tests revealed differences in the distribution of carbohydrates among cell types underling the great plasticity of the immune response and the direct involvement of circulating immune cells in the resource allocation. In addition, our results provide a detailed morphological description of vesicle trafficking, macro- and microautophagy, apoptotic and necrotic processes, confirming the suitability of T. molitor haemocytes as a model for studying evolutionarily conserved cellular mechanisms.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
- Correspondence: ; Tel.: +39-098-449-2982; Fax: +39-098-449-2986
| |
Collapse
|
14
|
Tobiansky DJ, Long KM, Hamden JE, Brawn JD, Fuxjager MJ. Cost-reducing traits for agonistic head collisions: a case for neurophysiology. Integr Comp Biol 2021; 61:1394-1405. [PMID: 33885750 DOI: 10.1093/icb/icab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animal species have evolved extreme behaviors requiring them to engage in repeated high-impact collisions. These behaviors include mating displays like headbutting in sheep and drumming in woodpeckers. To our knowledge, these taxa do not experience any notable acute head trauma, even though the deceleration forces would cause traumatic brain injury in most animals. Previous research has focused on skeletomuscular morphology, biomechanics, and material properties in an attempt to explain how animals moderate these high-impact forces. However, many of these behaviors are understudied, and most morphological or computational studies make assumptions about the behavior without accounting for the physiology of an organism. Studying neurophysiological and immune adaptations that co-vary with these behaviors can highlight unique or synergistic solutions to seemingly deleterious behavioral displays. Here, we argue that selection for repeated, high-impact head collisions may rely on a suite of coadaptations in intracranial physiology as a cost-reducing mechanism. We propose that there are three physiological systems that could mitigate the effects of repeated head trauma: (i) the innate neuroimmune response, (ii) the glymphatic system, and (iii) the choroid plexus. These systems are interconnected yet can evolve in an independent manner. We then briefly describe the function of these systems, their role in head trauma, and research that has examined how these systems may evolve to help reduce the cost of repeated, forceful head impacts. Ultimately, we note that little is known about cost-reducing intracranial mechanisms making it a novel field of comparative study that is ripe for exploration.
Collapse
Affiliation(s)
| | - Kira M Long
- The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL USAKML
| | | | - Jeffrey D Brawn
- The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL USAJDB
| | | |
Collapse
|
15
|
Exopolysaccharide from Porphyridium cruentum ( purpureum) is Not Toxic and Stimulates Immune Response against Vibriosis: The Assessment Using Zebrafish and White Shrimp Litopenaeus vannamei. Mar Drugs 2021; 19:md19030133. [PMID: 33670856 PMCID: PMC7997376 DOI: 10.3390/md19030133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Exopolysaccharides, or extracellular polysaccharides (EPS, sPS), represent a valuable metabolite compound synthesized from red microalgae. It is a non-toxic natural agent and can be applied as an immunostimulant. The toxicity test of exopolysaccharides from Porphyridium has been done in vivo using zebrafish (Danio rerio) embryonic model, or the ZET (zebrafish embryotoxicity test). The administration of extracellular polysaccharides or exopolysaccharides (EPS) from microalgae Porphyridium cruentum (synonym: P. purpureum) to shrimps Litopenaeus vannamei was investigated to determine the effect of this immunostimulant on their non-specific immune response and to test if this compound can be used as a protective agent for shrimps in relation to Vibrio infection. For immune response, exopolysaccharides were given to shrimps via the immersion method on day 1 and booster on day 8. Shrimp hemocytes were taken on day 1 (EPS administration), day 7 (no treatment), day 8 (EPS booster) and day 9 (Vibrio infection) and tested for their immune response on each treatment. The result shows that the EPS is not toxic, as represented by the normal embryonic development and the mortality data. In the Pacific white shrimps, an increase in the values of all immune parameters was shown, in line with the increasing EPS concentration, except for the differential hemocyte count (DHC). In detail, an increase was noted in total hemocytes (THC) value, phagocytotic activity (PA) and respiratory burst (RB) in line with the EPS concentration increase. These results and other previous studies indicate that EPS from Porphyridium is safe, enhances immune parameters in shrimp rapidly, and has the ability to act as an immunostimulant or an immunomodulator. It is a good modulator for the non-specific immune cells of Pacific white shrimps, and it can be used as a preventive agent against vibriosis.
Collapse
|
16
|
Geng T, Lu F, Wu H, Wang Y, Lou D, Tu N, Zhu F, Wang S. C-type lectin 5, a novel pattern recognition receptor for the JAK/STAT signaling pathway in Bombyx mori. J Invertebr Pathol 2020; 179:107473. [PMID: 32946913 DOI: 10.1016/j.jip.2020.107473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
The Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway is highly conserved in mammals, but the pattern recognition receptors (PRRs) and their functions are unclear. We found that the expression pattern of Bombyx mori C-type lectin 5 (BmCTL 5) had a synergy relevance with the JAK/STAT signaling pathway against Beauveria bassiana. An RNAi assay, subcellular localization analysis, yeast two-hybrid technique, protein recruitment experiment and pathogen infection tests were used to explore the roles of BmCTL 5 in the JAK/STAT signaling pathway. Knock-down of the BmCTL 5 suppressed the JAK/STAT signaling pathway and the PO cascade of nodule melanization. BmCTL 5 is located in the cytomembrane and interacted with BmHOP both in yeast and B. mori ovary cells N (BmN cells). BmCTL 5 and the JAK/STAT signaling pathway was activated by B. bassiana but only slightly activated by B. mori cytoplasmic polyhedrosis virus (BmCPV), Nosema bombycis and bacteria LPS. These findings suggest that BmCTL 5 might be an important PRR for the JAK/STAT signaling pathway and may mediate the nodule melanization for fungi infection. These data provide insights into the immune mechanism of the JAK/STAT signaling pathway in insects and aid understanding of the mechanism of the JAK/STAT signaling pathway and adaptive immune systems in mammals.
Collapse
Affiliation(s)
- Tao Geng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fuping Lu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huazhou Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongsong Wang
- College of Forestry, Hainan University, Haikou 570228, China
| | - Dezhao Lou
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Nana Tu
- College of Tropical Crop, Hainan University, Haikou 570228, China
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
17
|
Auguste M, Balbi T, Ciacci C, Canesi L. Conservation of Cell Communication Systems in Invertebrate Host-Defence Mechanisms: Possible Role in Immunity and Disease. BIOLOGY 2020; 9:E234. [PMID: 32824821 PMCID: PMC7464772 DOI: 10.3390/biology9080234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Innate immunity is continuously revealing multiple and highly conserved host-defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells release net-like material, including DNA, histones and proteins. ETs are thought to immobilise and kill microorganisms, but are also involved in inflammation and autoimmune disease. Immune cells are also known to communicate through extracellular vesicles secreted in the extracellular environment or exosomes, which can carry a variety of different signalling molecules. Tunnelling nanotubes (TNTs) represent a direct cell-to-cell communication over a long distance, that allow for bi- or uni-directional transfer of cellular components between cells. Their functional role in a number of physio-pathological processes, including immune responses and pathogen transfer, has been underlined. Although ETs, exosomes, and TNTs have been described in invertebrate species, their possible role in immune responses is not fully understood. In this work, available data on these communication systems are summarised, in an attempt to provide basic information for further studies on their relevance in invertebrate immunity and disease.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Teresa Balbi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University “Carlo Bo” of Urbino, 61029 Urbino, Italy;
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| |
Collapse
|
18
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
19
|
Liu G, Li Z, Yang M, Lin L, Liu J, Chen M. Functional characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) from blood clam Tegillarca granosa in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 97:390-402. [PMID: 31866450 DOI: 10.1016/j.fsi.2019.12.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharide-induced TNF-alpha factor (LITAF), as a transcription factor, activates the transcription of TNF and other cytokines in inflammatory response upon lipopolysaccharide (LPS) stimulation. In the present study, we cloned and identified the full-length cDNA of LITAF homolog from blood clam Tegillarca granosa for the first time. The full-length cDNA of TgLITAF was 1801 bp encoding a polypeptide of 147 amino acids with an estimated molecular mass of 16.13 kDa. TgLITAF contained a zf-LITAF-like zinc ribbon domain at the C-terminal of the protein and the TgLITAF domain showed 48-74% amino acid sequence identity with other known LITAFs from other species. Subcellular localization study showed that TgLITAF was mainly expressed in the nucleus. qRT-PCR analysis showed that the TgLITAF transcription expressed constitutively in all the examined tissues with the highest expression level in the gills. After LPS or V. alginolyticus treatment, expression of TgLITAF in hemocytes was both up-regulated significantly at 3-6 h. Furthermore, in vitro study indicated that overexpression of TgLITAF in HeLa cells resulted in the activation of TNFα, p53, and influenced the expression levels of apoptotic-related genes Bax, Bcl-2, Caspase-3, Caspase-6, and Caspase-7. The proliferation of HeLa cells was inhibited by overexpression of TgLITAF. Apoptotic fluorescence assay further revealed that TgLITAF participated in the apoptotic process of HeLa cells. Western blotting analysis showed that overexpression of TgLITAF increased endogenous level of cleaved Caspase-7. Taken together, these results revealed that TgLITAF participates in the innate immune response to the pathogen invasion in blood clams and induces apoptosis in HeLa cells.
Collapse
Affiliation(s)
- Guosheng Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, PR China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, PR China
| | - Minghan Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, PR China
| | - Linjun Lin
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, PR China
| | - Jinqiang Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, PR China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
20
|
Chemical depletion of phagocytic immune cells in Anopheles gambiae reveals dual roles of mosquito hemocytes in anti- Plasmodium immunity. Proc Natl Acad Sci U S A 2019; 116:14119-14128. [PMID: 31235594 DOI: 10.1073/pnas.1900147116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mosquito immunity is composed of both cellular and humoral factors that provide protection from invading pathogens. Immune cells known as hemocytes, have been intricately associated with phagocytosis and innate immune signaling. However, the lack of genetic tools has limited hemocyte study despite their importance in mosquito anti-Plasmodium immunity. To address these limitations, we employ the use of a chemical-based treatment to deplete phagocytic immune cells in Anopheles gambiae, demonstrating the role of phagocytes in complement recognition and prophenoloxidase production that limit the ookinete and oocyst stages of malaria parasite development, respectively. Through these experiments, we also define specific subtypes of phagocytic immune cells in An. gambiae, providing insights beyond the morphological characteristics that traditionally define mosquito hemocyte populations. Together, this study represents a significant advancement in our understanding of the roles of mosquito phagocytes in mosquito vector competence and demonstrates the utility of clodronate liposomes as an important tool in the study of invertebrate immunity.
Collapse
|
21
|
Zucoloto AZ, Jenne CN. Platelet-Neutrophil Interplay: Insights Into Neutrophil Extracellular Trap (NET)-Driven Coagulation in Infection. Front Cardiovasc Med 2019; 6:85. [PMID: 31281822 PMCID: PMC6595231 DOI: 10.3389/fcvm.2019.00085] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
Well established for their central role in hemostasis, platelets have increasingly been appreciated as immune cells in recent years. This emerging role should not come as a surprise as the central immune cells of invertebrates, hemocytes, are able to phagocytose, secrete soluble mediators and promote coagulation of hemolymph, blurring the line between immunity and hemostasis. The undeniable evolutionary link between coagulation and immunity becomes even clearer as the role of platelets in inflammation is better understood. Platelets exert a range of immune-related functions, many of which involve an intimate interplay with leukocytes. Platelets promote leukocyte recruitment via endothelial activation and can serve as “landing pads” for leukocytes, facilitating cellular adhesion in vascular beds devoid of classic adhesion molecules. Moreover, platelets enhance leukocyte function both through direct interactions and through release of soluble mediators. Among neutrophil-platelets interactions, the modulation of neutrophil extracellular traps (NETs) is of great interest. Platelets have been shown to induce NET formation; and, in turn, NET components further regulate platelet and neutrophil function. While NETs have been shown to ensnare and kill pathogens, they also initiate coagulation via thrombin activation. In fact, increased NET formation has been associated with hypercoagulability in septic patients as well as in chronic vascular disorders. This review will delve into current knowledge of platelet-neutrophil interactions, with a focus on NET-driven coagulation, in the context of infectious diseases. A better understanding of these mechanisms will shed a light on the therapeutic potential of uncoupling immunity and coagulation through targeting of NETs.
Collapse
Affiliation(s)
- Amanda Z Zucoloto
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, The University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Schlüter-Vorberg L, Coors A. Impact of an immunosuppressive human pharmaceutical on the interaction of a bacterial parasite and its invertebrate host. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:91-101. [PMID: 30468978 DOI: 10.1016/j.aquatox.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The interaction of pollutants and pathogens may result in altered and often enhanced effects of the chemical, the biotic stressor or both. These interaction effects cannot be reliably predicted from the toxicity of the chemical or the virulence of the pathogen alone. While standardized detection methods for immunotoxic effects of chemicals exist with regard to human health, employing host-resistance assays with vertebrates, such standardized test systems are completely lacking for invertebrate species and no guidance is available on how immunotoxic effects of a chemical in invertebrates could be definitively identified. In the present study, we investigated the impact of the immunosuppressive pharmaceutical cyclosporine A (CsA) on the invertebrate host-pathogen system Daphnia magna - Pasteuria ramosa. CsA is a calcineurin-inhibitor in vertebrates and also known to have antibiotic as well as antifungal properties. Juvenile D. magna were exposed to CsA for 21 days with or without additional pathogen challenge during the first 72 h of exposure. Long-term survival of the host D. magna was synergistically impacted by co-exposure to the chemical and the pathogen, expressed e.g. in significantly enhanced hazard ratios. Additionally, enhanced virulence of the pathogen upon chemical co-exposure was expressed in an increased proportion of infected hosts and an increased speed of Pasteuria-induced host sterilization. In contrast, effects on reproduction were additive in Pasteuria-challenged, but finally non-infected D. magna. The enhancing effects of CsA occurred at and below 3 μg/L, which was in the absence of the pathogen the lowest concentration significantly impacting the standard toxicity endpoint 'reproduction' in D. magna. Hence, the present study provides evidence that a pharmaceutical intended to suppress the human immune system can also suppress disease resistance of an aquatic invertebrate organism at otherwise non-toxic concentrations. Plausible ways of direct interactions of CsA with the host's immune system are discussed, e.g. interference with phagocytosis or Toll-like receptors. Experimental verification of such a direct interference would be warranted to support the strong evidence for immunotoxic activity of CsA in invertebrates. While it remains open whether CsA concentrations in the environment are high enough to trigger adverse effects in environmental organisms, our findings highlight the need to consider immunotoxicity in an environmental risk assessment, and to develop suitable standardized methods for this purpose.
Collapse
Affiliation(s)
- Lisa Schlüter-Vorberg
- ECT Oekotoxikologie GmbH, Flörsheim/Main, Germany; Goethe-University Frankfurt am Main, Department Aquatic Ecotoxicology, Frankfurt am Main, Germany.
| | - Anja Coors
- ECT Oekotoxikologie GmbH, Flörsheim/Main, Germany
| |
Collapse
|
23
|
Mosaheb MUWFZ, Khan NA, Siddiqui R. Cockroaches, locusts, and envenomating arthropods: a promising source of antimicrobials. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:873-877. [PMID: 30524685 PMCID: PMC6272074 DOI: 10.22038/ijbms.2018.30442.7339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To present a brief overview of various natural sources of antimicrobials with the aim of highlighting invertebrates living in polluted environments as additional sources of antimicrobials. MATERIALS AND METHODS A PubMed search using antibacterials, antimicrobials, invertebrates, and natural products as keywords was carried out. In addition, we consulted conference proceedings, original unpublished research undertaken in our laboratories, and discussions in specific forums. RESULTS Representative of a stupefying 95% of the fauna, invertebrates are fascinating organisms which have evolved strategies to survive germ-infested environments, yet they have largely been ignored. Since invertebrates such as cockroaches inhabit hazardous environments which are rampant with pathogens, they must have developed defense mechanisms to circumvent infections. This is corroborated by the presence of antimicrobial molecules in the nervous systems and hemolymph of cockroaches. Antimicrobial compounds have also been unraveled from the nervous, adipose, and salivary glandular tissues of locusts. Interestingly, the venoms of arthropods including ants, scorpions, and spiders harbor toxins, but also possess multiple antimicrobials. CONCLUSION These findings have rekindled the hopes for newer and enhanced therapeutic agents derived from a plentiful and diverse resource to combat fatal infectious diseases. Such antimicrobials from unusual sources can potentially be translated into clinical practice, however intensive research is needed over the next several years to realize these expectations.
Collapse
Affiliation(s)
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| |
Collapse
|
24
|
Hernández-Palomares MLE, Godoy-Lugo JA, Gómez-Jiménez S, Gámez-Alejo LA, Ortiz RM, Muñoz-Valle JF, Peregrino-Uriarte AB, Yepiz-Plascencia G, Rosas-Rodríguez JA, Soñanez-Organis JG. Regulation of lactate dehydrogenase in response to WSSV infection in the shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 74:401-409. [PMID: 29337249 DOI: 10.1016/j.fsi.2018.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Lactate dehydrogenase (LDH) is key for anaerobic glycolysis. LDH is induced by the hypoxia inducible factor -1 (HIF-1). HIF-1 induces genes involved in glucose metabolism and regulates cellular oxygen homeostasis. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive β-subunit (HIF-1β). The white spot syndrome virus (WSSV) induces anaerobic glycolysis in shrimp hemocytes, associated with lactate accumulation. Although infection and lactate production are associated, the LDH role in WSSV-infected shrimp has not been examined. In this work, the effects of HIF-1 silencing on the expression of two LDH subunits (LDHvan-1 and LDHvan-2) in shrimp infected with the WSSV were studied. HIF-1α transcripts increased in gills, hepatopancreas, and muscle after WSSV infection, while HIF-1β remained constitutively expressed. The expression for both LDH subunits increased in each tissue evaluated during the WSSV infection, translating into increased enzyme activity. Glucose concentration increased in each tissue evaluated, while lactate increased in gills and hepatopancreas, but not in muscle. Silencing of HIF-1α blocked the increase of LDH expression and enzyme activity, along with glucose (all tissues) and lactate (gills and hepatopancreas) concentrations produced by WSSV infection. These results demonstrate that HIF-1 up regulates the expression of LDH subunits during WSSV infection, and that this induction contributes to substrate metabolism in energetically active tissues of infected shrimp.
Collapse
Affiliation(s)
- M L E Hernández-Palomares
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - J A Godoy-Lugo
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - S Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - L A Gámez-Alejo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - R M Ortiz
- School of Natural Sciences, University of California Merced, 5200 N Lake Road, Merced, CA, 95343, USA
| | - J F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - A B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - G Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - J A Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - J G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| |
Collapse
|
25
|
Jin P, Li S, Sun L, Lv C, Ma F. Transcriptome-wide analysis of microRNAs in Branchiostoma belcheri upon Vibrio parahemolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:243-252. [PMID: 28487235 DOI: 10.1016/j.dci.2017.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via regulating expressions of target genes at post-transcriptional level. Amphioxus, as modern survivor of an ancient chordate lineage, is a model organism for comparative genomics study. However, miRNAs involved in regulating immune responses in Branchiostoma belcheri are largely unclear. Here, we systematically investigated the microRNAs (miRNAs) involved in regulating immune responses in the cephalochordate amphioxus (Branchiostoma belcheri) through next-generation deep sequencing of amphioxus samples infected with Vibrio parahemolyticus. We identified 198 novel amphioxus miRNAs, consisting of 12 conserved miRNAs, 33 candidate star miRNAs and 153 potential amphioxus-specific-miRNAs. Using microarray profiling, 14 miRNAs were differentially expressed post infection, suggesting they are immune-related miRNAs. Eight miRNAs (bbe-miR-92a-3p, bbe-miR-92c-3p, bbe-miR-210-5p, bbe-miR-22-3p, bbe-miR-1∼bbe-miR-133 and bbe-miR-217∼bbe-miR-216 clusters) were significantly increased at 12 h post-infection, while bbe-miR-2072-5p was downregulated at 6 h and 12 h. Three miRNAs, bbe-miR-1-3p, bbe-miR-22-3p and bbe-miR-92a-3p, were confirmed to be involved in immune responses to infection by qRT-PCR. Our findings further clarify important regulatory roles of miRNAs in the innate immune response to bacterial infection in amphioxus.
Collapse
Affiliation(s)
- Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Lianjie Sun
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Caiyun Lv
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
26
|
Liu G, Chen M, Yu C, Wang W, Yang L, Li Z, Wang W, Chen J. Molecular cloning, characterization and functional analysis of a putative mitogen-activated protein kinase kinase kinase 4 (MEKK4) from blood clam Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2017; 66:372-381. [PMID: 28476674 DOI: 10.1016/j.fsi.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades stand for one of the most important signaling mechanisms in response to environmental stimuli. In the present study, we cloned and identified for the first time the full-length cDNA of MAPK kinase kinase 4 (TgMEKK4) from Blood clam Tegillarca granosa using rapid amplification of cDNA ends method. The full-length cDNA of TgMEKK4 was of 1605 bp in length, encoding a polypeptide of 364 amino acids with a predicted molecular mass of 41.22 kDa and theoretical isoelectric point of 6.29. The conserved MEKK4-domain was identified in TgMEKK4 by SMART program analysis. Homology analysis of the deduced amino acid sequence of TgMEKK4 with other known sequences revealed that TgMEKK4 shared 58%-80% identity to MEKK4s from other species. TgMEKK4 mRNA transcripts could be detected in all tissues examined with the highest expression level in the gill by qRT-PCR. The mRNA expression of TgMEKK4 was up-regulated significantly in hemocytes after Vibrio parahaemolyticus, Vibrio alginolyticus and Lipopolysaccharide (LPS) challenges. Overexpression of TgMEKK4 in HEK 293T cells resulted in the activation of JNK and ERK, but not p38. Consistently, In vivo study indicated that LPS stimulation enhanced JNK, ERK and p38 phosphorylation in blood clams. These results suggest that TgMEKK4 is a powerful factor in the regulation of genes that may be involved in innate immune response of blood clam.
Collapse
Affiliation(s)
- Guosheng Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China.
| | - Chen Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Lirong Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Weiyi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China.
| |
Collapse
|
27
|
Liao X, Yang L, Zhang Q, Chen J. microRNA expression changes after lipopolysaccharide treatment in gills of amphioxus Branchiostoma belcheri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:39-44. [PMID: 28069432 DOI: 10.1016/j.dci.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Recently, amphioxus has served as a model for studying the origin and evolution of vertebrate immunity. However, little is known about how microRNAs (miRNAs) are involved in the immune defense in amphioxus. In this article, we identified the amphioxus miRNAs in the acute-phase response to lipopolysaccharide (LPS). We determined the time point for the peak of immune response in amphioxus after LPS challenge by evaluating the expression of Branchiostoma belcheri toll-like receptor 1, NF-κb (c-Rel), and big defensin which react with pathogen-associated molecular patterns(PAMPs). Then we chose 12 h as the point to perform miRNA microarray analysis to select the differentially expressed miRNAs. Furthermore, we used quantitative real-time PCR to detect the expression patterns of selected amphioxus miRNAs under effective LPS challenge during the time course. The microarray data revealed that the miRNA expression file was significantly changed after LPS stimulation. The changes of the 10 most upregulated and 7 most downregualted miRNAs in gills of the amphioxus following challenge with LPS revealed a temporal induction kinetic. Our current study will provide valuable information to take an insight into molecular mechanism of innate immune and the evolution of the miRNA family.
Collapse
Affiliation(s)
- Xin Liao
- School of Life Sciences, Nanjing University, China; Beihai Marine Station of Evo-devo Institute, Nanjing University, China
| | - Liu Yang
- Department of Biomedical Research Center, The First People's Hospital of Kunming, China
| | - Qilin Zhang
- School of Life Sciences, Nanjing University, China; Beihai Marine Station of Evo-devo Institute, Nanjing University, China
| | - Junyuan Chen
- Beihai Marine Station of Evo-devo Institute, Nanjing University, China; Nanjing Institute of Geology and Paleontology, Nanjing, China.
| |
Collapse
|
28
|
Reddy A, Sangenito LS, Guedes ADA, Branquinha MH, Kavanagh K, McGinley J, dos Santos ALS, Velasco-Torrijos T. Glycosylated metal chelators as anti-parasitic agents with tunable selectivity. Dalton Trans 2017; 46:5297-5307. [DOI: 10.1039/c6dt04615k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metal complexation imparts selective anti-parasitic activity to aminopyridyl ligands: Zn(ii) and Cu(ii) complexes show potent activity and remarkable selectivity indexes.
Collapse
Affiliation(s)
- Andrew Reddy
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Leandro Stefano Sangenito
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | - Arthur de Azevedo Guedes
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | - Marta Helena Branquinha
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | | | - John McGinley
- Department of Chemistry
- University of Copenhagen
- Copenhagen
- Denmark
| | - André Luis Souza dos Santos
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | | |
Collapse
|
29
|
Velikova N, Kavanagh K, Wells JM. Evaluation of Galleria mellonella larvae for studying the virulence of Streptococcus suis. BMC Microbiol 2016; 16:291. [PMID: 27978817 PMCID: PMC5160000 DOI: 10.1186/s12866-016-0905-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/28/2016] [Indexed: 11/11/2022] Open
Abstract
Background Streptococcus suis is an encapsulated Gram-positive bacterium and the leading cause of sepsis and meningitis in young pigs, resulting in considerable economic losses in the porcine industry. S. suis is considered an emerging zoonotic agent with increasing numbers of human cases over the last years. In the environment, both avirulent and virulent strains occur in pigs, with no evidence for consistent adapatation of virulent strains to the human host. Currently, there is an urgent need for a convenient, reliable and standardised animal model to rapidly assess S. suis virulence. Wax moth (Galleria mellonella) larvae have successfully been used in human and animal infectious disease studies. Here, we developed G. mellonella larvae as a model to assess virulence of S. suis strains. Results Fourteen isolates of S. suis belonging to different serotypes killed G. mellonella larvae in a dose-dependent manner. Larvae infected with the virulent serotype 2 strain, S. suis S3881/S10, were rescued by antibiotic therapy. Crucially, the observed virulence of the different serotypes and mutants was in agreement with virulence observed in piglets (Sus scrofa) and the zebrafish larval infection model. Infection with heat-inactivated bacteria or bacteria-free culture supernatants showed that in most cases live bacteria are needed to cause mortality in G. mellonella. Conclusions The G. mellonella model is simple, cost-efficient, and raises less ethical issues than experiments on vertebrates and reduces infrastructure requirements. Furthermore, it allows experiments to be performed at the host temperature (37 °C). The results reported here, indicate that the G. mellonella model may aid our understanding of veterinary microbial pathogens such as the emerging zoonotic pathogen S. suis and generate hypotheses for testing in the target animal host. Ultimately, this might lead to the timely introduction of new effective remedies for infectious diseases. Last but not least, use of the G. mellonella infection model to study S. suis virulence adheres to the principles of replacement, reduction and refinement (3Rs) and can potentially reduce the number of vertebrates used for experimental infection studies. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0905-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadya Velikova
- Host-microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Zodiac 122, De Elst 1, 6708WD, Wageningen, The Netherlands.
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Jerry M Wells
- Host-microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Zodiac 122, De Elst 1, 6708WD, Wageningen, The Netherlands
| |
Collapse
|
30
|
Kim SJ, Jenne CN. Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin Immunol 2016; 28:546-554. [PMID: 27876233 DOI: 10.1016/j.smim.2016.10.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
In addition to their well-known role as the cellular mediator of thrombosis, numerous studies have identified key roles for platelets during various disease processes. Importantly, platelets play a critical role in the host immune response, directly interacting with, and eliminating pathogens, from the blood stream. In addition to pathogen clearance, platelets also contribute to leukocyte recruitment at sites of infection and inflammation, and modulate leukocyte activity. Platelet interaction with activated neutrophils is a potent inducer of neutrophil extracellular trap (NET). NETs consist of a diffuse, sticky web of extracellular DNA, nuclear and granular proteins, and serve to ensnare and kill pathogens. In addition to catching pathogens, the cytotoxic molecules and proteases on NETs have the potential to inflict significant tissue damage. Additionally, NET components have been suggested to be key activators of infection-induced coagulopathy. These critical roles, at the interface between hemostasis and immunity, highlight the need for balance in the platelet response; too little platelet activity results in bleeding and immune deficit, too much leads to tissue pathogenesis. In this review, we highlight recent advances in our understanding of the role platelets play in inflammation, the link between platelets and NETs and the role platelets play in disease pathogenesis.
Collapse
Affiliation(s)
- Seok-Joo Kim
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, T2N 4N1, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, T2N 4N1, Calgary, AB, Canada.
| |
Collapse
|
31
|
Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, Khan NA. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl Microbiol Biotechnol 2016; 101:253-286. [PMID: 27743045 DOI: 10.1007/s00253-016-7872-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/21/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022]
Abstract
Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential sources of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analysed. Among hundreds of compounds, only a few homologous compounds were identified that contained the isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole-containing analogs, sulfonamides, furanones, and flavanones and known to possess broad-spectrum antimicrobial properties and anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization, and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Ayaz Anwar
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Peter J Heard
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
32
|
Abstract
As a front line of defense against pathogenic microbes, our body employs a primitive, yet highly sophisticated and potent innate immune response pathway collectively referred to as the inflammasome. Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury and mounting a coordinated molecular defense. For example, Gram-negative bacteria are specifically detected via a surveillance mechanism that involves activation of extracellular receptors such as Toll-like receptors (TLRs) followed by intracellular recognition and activation of pathways such as caspase-11 (caspase-4/5 in humans). Importantly, lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a strong trigger of these pathways. Extracellular LPS primarily stimulates TLR4, which can serve as a priming signal for expression of inflammasome components. Intracellular LPS can then trigger caspase-11-dependent inflammasome activation in the cytoplasm. Here, we briefly review the burgeoning caspase-11-dependent non-canonical inflammasome field, focusing mainly on the innate sensing of LPS.
Collapse
Affiliation(s)
- Irma Stowe
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
33
|
Grandiosa R, Mérien F, Pillay K, Alfaro A. Innovative application of classic and newer techniques for the characterization of haemocytes in the New Zealand black-footed abalone (Haliotis iris). FISH & SHELLFISH IMMUNOLOGY 2016; 48:175-184. [PMID: 26672903 DOI: 10.1016/j.fsi.2015.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
Haemocytes play an important role in innate immune responses within invertebrate organisms. However, identification and quantification of different types of haemocytes can be extremely challenging, and has led to numerous inconsistencies and misinterpretations within the literature. As a step to rectify this issue, we present a comprehensive and detailed approach to characterize haemocytes using a combination of classical (cytochemical and phagocytosis assays with optical microscopy) and novel (flow cytometry with Sysmex XN-1000 and Muse(®) Cell analyser) techniques. The Sysmex XN-1000 is an innovative fluorescent flow cytometric analyser that can effectively detect, identify and count haemocytes, while the Muse(®) Cell analyser provides accurate and rapid haemocyte cell counts and viability. To illustrate this approach, we present the first report on morphological and functional features of New Zealand black-footed abalone (Haliotis iris) haemocyte cells. Two types of haemocytes were identified in this study, including type I (monocyte-like) and type II (lymphocyte-like) cells. Granular cells, which have been reported in other molluscan species, were not detected in H. iris. Cell types were categorized based on shape, size, internal structures and function. The lymphocyte-like haemocytes were the most abundant hemocytes in the haemolymph samples, and they had large nuclei and basic cytoplasms. Monocyte-like cells generally were larger cells compared to lymphocyte-like cells, and had low nucleus-cytoplasm ratios. Monocyte-like cells showed higher phagocytic activity when encountering Zymosan A particles compared to lymphocyte-like cells. The present study provides a comprehensive and accurate new approach to identify and quantify haemocyte cells for future comparative studies on the immune system of abalone and other molluscan species.
Collapse
Affiliation(s)
- Roffi Grandiosa
- Institute for Applied Ecology, School of Applied Sciences, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Fabrice Mérien
- AUT-Roche Diagnostics Laboratory, School of Applied Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Krish Pillay
- Anatomical Pathology Services, Community Laboratories, Auckland, New Zealand
| | - Andrea Alfaro
- Institute for Applied Ecology, School of Applied Sciences, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
34
|
Salawu MO, Oloyede HOB, Oladiji TA, Yakubu MT, Amuzat AO. Hemolymph coagulation and phenoloxidase activity in Uca tangeri induced by Escherichia coli endotoxin. J Immunotoxicol 2015; 13:355-63. [DOI: 10.3109/1547691x.2015.1096983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Musa O. Salawu
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | | | | | - Musa T. Yakubu
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Aliyu O. Amuzat
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
35
|
Matusiak A, Kuczer M, Czarniewska E, Urbański A, Rosiński G, Kowalik-Jankowska T. Copper(II) complexes of terminally free alloferon peptide mutants containing two different histidyl (H1 and H6 or H9 or H12) binding sites Structure Stability and Biological Activity. J Inorg Biochem 2015; 151:44-57. [DOI: 10.1016/j.jinorgbio.2015.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/27/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022]
|
36
|
Benthall G, Touzel RE, Hind CK, Titball RW, Sutton JM, Thomas RJ, Wand ME. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Int J Antimicrob Agents 2015; 46:538-45. [PMID: 26364845 DOI: 10.1016/j.ijantimicag.2015.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
The lack of novel antibiotics for more than a decade has placed increased pressure on existing therapies to combat the emergence of multidrug-resistant (MDR) bacterial pathogens. This study evaluated the Galleria mellonella insect model in determining the efficacy of available antibiotics against planktonic and biofilm infections of MDR Pseudomonas aeruginosa and Klebsiella pneumoniae strains in comparison with in vitro minimum inhibitory concentration (MIC) determination. In general, in vitro analysis agreed with the G. mellonella studies, and susceptibility in Galleria identified different drug resistance mechanisms. However, the carbapenems tested appeared to perform better in vivo than in vitro, with meropenem and imipenem able to clear K. pneumoniae and P. aeruginosa infections with strains that had bla(NDM-1) and bla(VIM) carbapenemases. This study also established an implant model in G. mellonella to allow testing of antibiotic efficacy against biofilm-derived infections. A reduction in antibiotic efficacy of amikacin against K. pneumoniae and P. aeruginosa biofilms was observed compared with a planktonic infection. Ciprofloxacin was found to be less effective at clearing a P. aeruginosa biofilm infection compared with a planktonic infection, but no statistical difference was seen between K. pneumoniae biofilm and planktonic infections treated with this antibiotic (P>0.05). This study provides important information regarding the suitability of Galleria as a model for antibiotic efficacy testing both against planktonic and biofilm-derived MDR infections.
Collapse
Affiliation(s)
- Gabriel Benthall
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Rebecca E Touzel
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Charlotte K Hind
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - J Mark Sutton
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Rachael J Thomas
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Matthew E Wand
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
37
|
Oyinloye BE, Adenowo AF, Kappo AP. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel) 2015; 8:151-75. [PMID: 25850012 PMCID: PMC4491653 DOI: 10.3390/ph8020151] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022] Open
Abstract
Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance.
Collapse
Affiliation(s)
- Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Abiola Fatimah Adenowo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
38
|
Abstract
Although platelets are traditionally recognized for their central role in hemostasis, many lines of research clearly demonstrate these rather ubiquitous blood components are potent immune modulators and effectors. Platelets have been shown to directly recognize, sequester and kill pathogens, to activated and recruit leukocytes to sites of infection and inflammation, and to modulate leukocyte behavior, enhancing their ability to phagocytose and kill pathogens and inducing unique effector functions, such as the production of Neutrophil Extracellular Traps (NETs). This multifaceted response to infection and inflammation is due, in part, to the huge array of soluble mediators and cell surface molecules expressed by platelets. From their earliest origins as primordial hemocytes in invertebrates to their current form as megakaryocyte-derived cytoplasts, platelets have evolved to be one of the key regulators of host intravascular immunity and inflammation. In this review, we present the diverse roles platelets play in immunity and inflammation associated with autoimmune diseases and infection. Additionally, we highlight recent advances in our understanding of platelet behavior made possible through the use of advanced imaging techniques that allow us to visualize platelets and their interactions, in real-time, within the intact blood vessels of a living host.
Collapse
Affiliation(s)
- Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases and
| | | |
Collapse
|
39
|
Wu G, Yi Y. Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae. Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:131-9. [PMID: 25463648 DOI: 10.1016/j.cbpc.2014.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 01/02/2023]
Abstract
In this work, we analyzed the effects of chromium (Cr) and lead (Pb) on immune and antioxidant systems of Galleria mellonella. In particular, after exposure to diets containing environmentally relevant concentrations (5, 50 and 100 μg/g) of Cr or Pb for 7 d, alterations in innate immune parameters and the activity of endogenous enzymes were measured in larvae. The results showed that 1) compared with the control, the lowest doses (5 μg/g) of Cr and Pb significantly increased the levels of innate immune parameters (total hemocyte count, THC; phagocytic activity; extent of encapsulation) of the larvae and hemolymph immune enzyme activities (acid phosphatase, ACP; alkaline phosphatase, AKP; phenoloxidase, PO), whereas the highest doses (100 μg/g) of Cr and Pb inhibited them; 2) the activity of antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT) showed significant increases with increasing concentrations of dietary Cr and Pb, and were significantly higher than those of the control; and 3) feeding the larvae with experimental concentrations of either Cr or Pb resulted similar patterns of changes of all the parameters examined. The current study suggested that moderate amounts of Cr and Pb enhance the innate immunity of G. mellonella, but that large amounts led to the inhibition of larval immune function, and also indicated that the experimental concentrations of Cr and Pb used caused strong oxidative stresses in the larvae.
Collapse
Affiliation(s)
- Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | | |
Collapse
|
40
|
Maldonado-Aguayo W, Lafarga-De la Cruz F, Gallardo-Escárate C. Identification and expression of antioxidant and immune defense genes in the surf clam Mesodesma donacium challenged with Vibrio anguillarum. Mar Genomics 2014; 19:65-73. [PMID: 25481276 DOI: 10.1016/j.margen.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/20/2014] [Accepted: 11/21/2014] [Indexed: 02/09/2023]
Abstract
The immune system in marine invertebrates is mediated through cellular and humoral components, which act together to address the action of potential pathogenic microorganisms. In bivalve mollusks biomolecules implicated in oxidative stress and recognition of pathogens have been involved in the innate immune response. To better understand the molecular basis of the immune response of surf clam Mesodesma donacium, qPCR approaches were used to identify genes related to its immune response against Vibrio anguillarum infection. Genes related to oxidative stress response and recognition of pathogens like superoxide dismutase (MdSOD), catalase (MdCAT), ferritin (MdFER) and filamin (MdFLMN) were identified from 454-pyrosequencing cDNA library of M. donacium and were evaluated in mantle, adductor muscle and gills. The results for transcripts expression indicated that MdSOD, MdFLMN and MdFER were primarily expressed in the muscle, while MdCAT was more expressed in gills. Challenge experiments with the pathogen V. anguillarum had showed that levels of transcript expression for MdSOD, MdCAT, MdFER, and MdFLMN were positively regulated by pathogen, following a time-dependent expression pattern with significant statistical differences between control and challenge group responses (p<0.05). These results suggest that superoxide dismutase, catalase, ferritin and filamin, could be contributing to the innate immune response of M. donacium against the pathogen V. anguillarum.
Collapse
Affiliation(s)
- W Maldonado-Aguayo
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - F Lafarga-De la Cruz
- Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Mexico
| | - C Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| |
Collapse
|
41
|
Alghoribi MF, Gibreel TM, Dodgson AR, Beatson SA, Upton M. Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PLoS One 2014; 9:e101547. [PMID: 25061819 PMCID: PMC4111486 DOI: 10.1371/journal.pone.0101547] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023] Open
Abstract
Galleria mellonella larvae are an alternative in vivo model for investigating bacterial pathogenicity. Here, we examined the pathogenicity of 71 isolates from five leading uropathogenic E. coli (UPEC) lineages using G. mellonella larvae. Larvae were challenged with a range of inoculum doses to determine the 50% lethal dose (LD50) and for analysis of survival outcome using Kaplan-Meier plots. Virulence was correlated with carriage of a panel of 29 virulence factors (VF). Larvae inoculated with ST69 and ST127 isolates (104 colony-forming units/larvae) showed significantly higher mortality rates than those infected with ST73, ST95 and ST131 isolates, killing 50% of the larvae within 24 hours. Interestingly, ST131 isolates were the least virulent. We observed that ST127 isolates are significantly associated with a higher VF-score than isolates of all other STs tested (P≤0.0001), including ST69 (P<0.02), but one ST127 isolate (strain EC18) was avirulent. Comparative genomic analyses with virulent ST127 strains revealed an IS1 mediated deletion in the O-antigen cluster in strain EC18, which is likely to explain the lack of virulence in the larvae infection model. Virulence in the larvae was not correlated with serotype or phylogenetic group. This study illustrates that G. mellonella are an excellent tool for investigation of the virulence of UPEC strains. The findings also support our suggestion that the incidence of ST127 strains should be monitored, as these isolates have not yet been widely reported, but they clearly have a pathogenic potential greater than that of more widely recognised clones, including ST73, ST95 or ST131.
Collapse
Affiliation(s)
- Majed F. Alghoribi
- Microbiology and Virology Unit, School of Medicine, University of Manchester, Manchester, United Kingdom
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tarek M. Gibreel
- Microbiology and Virology Unit, School of Medicine, University of Manchester, Manchester, United Kingdom
| | | | - Scott A. Beatson
- Australian Infectious Disease Centre, School of Chemistry & Molecular Biosciences, University of Queensland, Queensland, Australia
| | - Mathew Upton
- Microbiology and Virology Unit, School of Medicine, University of Manchester, Manchester, United Kingdom
- School of Biomedical and Healthcare Science, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Selot R, Kumar V, Shukla S, Chandrakuntal K, Brahmaraju M, Dandin SB, Laloraya M, Kumar PG. Identification of a Soluble NADPH Oxidoreductase (BmNOX) with Antiviral Activites in the Gut Juice ofBombyx mori. Biosci Biotechnol Biochem 2014; 71:200-5. [PMID: 17213661 DOI: 10.1271/bbb.60450] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Silkworms show high variability in silk quality and disease resistance. Attempts are on to combine the disease tolerance of multivoltine races and the silk quality of bivoltine races to generate new races with desirable phenotypic traits. We report the identification of a 26.5-kDa protein that is overexpressed in the gut juice of disease-resistant multivoltine races and that has anti-BmNPV activity. We have characterized this protein as a soluble NADH-oxidoreductase-like protein (BmNOX). Treatment of live BmNPV particles with BmNOX inhibited the capability of the viral particles to infect BmN cells in vitro.
Collapse
Affiliation(s)
- Ruchita Selot
- Central Sericultural Research and Training Institute, Mysore, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gomez-Lopez A, Forastiero A, Cendejas-Bueno E, Gregson L, Mellado E, Howard S, Livermore J, Hope W, Cuenca-Estrella M. An invertebrate model to evaluate virulence in Aspergillus fumigatus: The role of azole resistance. Med Mycol 2014; 52:311-9. [DOI: 10.1093/mmy/myt022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
In vivo Pathogenicity Studies of Aspergilli in Lepidopteran Model Host Galleria Mellonella. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.apcbee.2014.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Wand ME, McCowen JWI, Nugent PG, Sutton JM. Complex interactions of Klebsiella pneumoniae with the host immune system in a Galleria mellonella infection model. J Med Microbiol 2013; 62:1790-1798. [DOI: 10.1099/jmm.0.063032-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Worldwide, Klebsiella pneumoniae is an increasingly problematic opportunistic pathogen, with the emergence of carbapenem-resistant isolates of special importance. The mechanisms of virulence are poorly understood, and the current study utilized the invertebrate model Galleria mellonella to investigate facets of the virulence process. A range of UK clinical isolates and reference strains was assessed in Galleria by measuring survival as an end point. The clinical strains showed a range of virulence, with the majority of strains (68 %) causing greater than 50 % mortality at a challenge dose of 1×105 c.f.u. Three additional intermediate read-outs were developed to allow the mechanisms of virulence of Klebsiella to be dissected further. The release of lactate dehydrogenase as a marker of cell damage was the best predictor of virulence. Melanization as a marker of the insect innate immune system and ability to proliferate within Galleria as a marker of immune evasion also broadly correlated with survival but with some notable exceptions. No direct correlation was observed between virulence and either K1 or other defined capsular types, the carriage of defined virulence factors or particular functional phenotypes. Overall, the study showed that Galleria can provide significant insights into the mechanisms of virulence, and that this can be applied to the study of opportunistic human pathogens.
Collapse
Affiliation(s)
- Matthew E. Wand
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - James W. I. McCowen
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Philip G. Nugent
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - J. Mark Sutton
- Public Health England, Microbiology Services Division, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| |
Collapse
|
46
|
Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 2013; 35:254-61. [PMID: 23590652 DOI: 10.1111/ijlh.12084] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/06/2013] [Indexed: 01/08/2023]
Abstract
Although the function of platelets in the maintenance of hemostasis has been studied in great detail, more recent evidence has highlighted a central role for platelets in the host inflammatory and immune responses. Platelets by virtue of their large numbers and their ability to rapidly release a broad spectrum of immunomodulatory cytokines, chemokines, and other mediators act as circulating sentinels. Upon detection of a pathogen, platelets quickly activate and begin to drive the ensuing inflammatory response. Platelets have the ability to directly modulate the activity of neutrophils (phagocytosis, oxidative burst), endothelium (adhesion molecule and chemokine expression), and lymphocytes. Due to their diverse array of adhesion molecules and preformed chemokines, platelets are able to adhere to leukocytes and facilitate their recruitment to sites of tissue damage or infection. Furthermore, platelets directly participate in the capture and sequestration of pathogens within the vasculature. Platelet-neutrophil interactions are known to induce the release of neutrophil extracellular traps (NETs) in response to either bacterial or viral infection, and platelets have been shown to internalize pathogens, sequestering them in engulfment vacuoles. Finally, emerging data indicate that platelets also participate in the host immune response by directly killing infected cells. This review will highlight the central role platelets play in the initiation and modulation of the host inflammatory and immune responses.
Collapse
Affiliation(s)
- C N Jenne
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
47
|
Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013; 4:597-603. [PMID: 23921374 PMCID: PMC3906293 DOI: 10.4161/viru.25906] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022] Open
Abstract
The insect immune response demonstrates a number of structural and functional similarities to the innate immune system of mammals. As a result of these conserved features insects have become popular choices for evaluating the virulence of microbial pathogens or for assessing the efficacy of antimicrobial agents and give results which are comparable to those that can be obtained using mammals. Analysis of the cellular component of the insect and mammalian immune systems demonstrates many similarities. Insect hemocytes recognize pathogens and phagocytose material in a similar manner to neutrophils. The killing of ingested microbes is achieved in both cell types by the production of superoxide and by the release of enzymes in the process of degranulation. Insect hemocytes and mammalian neutrophils are sensitive to the same inhibitors. This review highlights the strong similarities between the phagocytic cells of both groups of animals and demonstrates the potential benefits of using selected insects as in vivo screening systems.
Collapse
Affiliation(s)
- Niall Browne
- Department of Biology; NUI Maynooth; Maynooth, Co. Kildare Ireland
| | - Michelle Heelan
- Department of Biology; NUI Maynooth; Maynooth, Co. Kildare Ireland
| | - Kevin Kavanagh
- Department of Biology; NUI Maynooth; Maynooth, Co. Kildare Ireland
| |
Collapse
|
48
|
Cooper EL, Hirabayashi K. Origin of innate immune responses: revelation of food and medicinal applications. J Tradit Complement Med 2013; 3:204-12. [PMID: 24716179 PMCID: PMC3924995 DOI: 10.4103/2225-4110.119708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much is known about the strong ecological impact that earthworms ( Qiū Yǐn; Pheretima) have on soil in terms of fertility, nutrient production, and tilling. Even more interesting though is the impact they have had on our understanding of innate immunity, and from this discovery, there has been a simultaneous recognition of their potential through their historical use as food and their use in treatment of certain chronic health problems that often afflict humans. This bifurcating growing knowledge base has stemmed from centuries of honing and practicing traditional and complementary forms of medicine such as Ayurveda (India) Traditional Chinese Medicine (China), Kampo (Japan), and Traditional Korean Medicine (Korea). Earthworms (Dilong) have also been credited as a model for research concerning the nervous and endocrine systems. One of the reasons behind the earthworm's tremendous impact on research into these biomedical endeavors is partly due to its lack of ethical restrictions, like those imposed on vertebrate models. Using invertebrate models as opposed to mice or other mammalian models bypasses ethical concerns. Moreover, financial constraints consistently hover over biological research that requires living subjects, preferably mammals. Earthworms are a rich source of several vital biological macromolecules and other nutrients. They have long been used as food in several cultures such as the Ye'Kuana in Venezuela, the Maori in New Zealand, and the nomadic populations in Papua New Guinea. Earthworms and their nutritious products have been shown to exert significant effects in treating humans for disorders of inflammation and blood coagulation. One area that continues to be examined is the earthworm's ability to regenerate lost appendages, and these effects have been extended to mammals. Evidence reveals that earthworm extracts may actually promote the regeneration of damaged nerves. This presentation will explore how earthworms may reveal significant advances and conclusions that decipher innate immunity. This is intimately associated with them as sources of their various nutritional and medicinal benefits.
Collapse
Affiliation(s)
- Edwin L. Cooper
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School Of Medicine at UCLA, University of California, Los Angeles, USA
| | - Kyle Hirabayashi
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School Of Medicine at UCLA, University of California, Los Angeles, USA
| |
Collapse
|
49
|
Lee S, Siddiqui R, Khan NA. Animals living in polluted environments are potential source of antimicrobials against infectious agents. Pathog Glob Health 2013; 106:218-23. [PMID: 23265422 DOI: 10.1179/2047773212y.0000000033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of bacteria, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances which show potent activity in the nervous system. We hope that the discovery of antimicrobial activity in the cockroach brain will stimulate research in finding antimicrobials from unusual sources, and has potential for the development of novel antibiotics. Nevertheless, intensive research in the next few years will be required to approach or realize these expectations.
Collapse
Affiliation(s)
- Simon Lee
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | | | | |
Collapse
|
50
|
Quiblier C, Seidl K, Roschitzki B, Zinkernagel AS, Berger-Bächi B, Senn MM. Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence. PLoS One 2013; 8:e63513. [PMID: 23658837 PMCID: PMC3643904 DOI: 10.1371/journal.pone.0063513] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/02/2013] [Indexed: 01/27/2023] Open
Abstract
The Sec pathway plays a prominent role in protein export and membrane insertion, including the secretion of major bacterial virulence determinants. The accessory Sec constituent SecDF has been proposed to contribute to protein export. Deletion of Staphylococcus aureus secDF has previously been shown to reduce resistance, to alter cell separation, and to change the expression of certain virulence factors. To analyse the impact of the secDF deletion in S. aureus on protein secretion, a quantitative secretome analysis was performed. Numerous Sec signal containing proteins involved in virulence were found to be decreased in the supernatant of the secDF mutant. However, two Sec-dependent hydrolases were increased in comparison to the wild type, suggesting additional indirect, regulatory effects to occur upon deletion of secDF. Adhesion, invasion, and cytotoxicity of the secDF mutant were reduced in human umbilical vein endothelial cells. Virulence was significantly reduced using a Galleria mellonella insect model. Altogether, SecDF is a promising therapeutic target for controlling S. aureus infections.
Collapse
Affiliation(s)
- Chantal Quiblier
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Kati Seidl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Maria M. Senn
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|