1
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. The neurotensin receptor 1 agonist PD149163 alleviates visceral hypersensitivity and colonic hyperpermeability in rat irritable bowel syndrome model. Neurogastroenterol Motil 2024; 36:e14925. [PMID: 39314062 DOI: 10.1111/nmo.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND An impaired intestinal barrier with the activation of corticotropin-releasing factor (CRF), Toll-like receptor 4 (TLR4), and proinflammatory cytokine signaling, resulting in visceral hypersensitivity, is a crucial aspect of irritable bowel syndrome (IBS). The gut exhibits abundant expression of neurotensin; however, its role in the pathophysiology of IBS remains uncertain. This study aimed to clarify the effects of PD149163, a specific agonist for neurotensin receptor 1 (NTR1), on visceral sensation and gut barrier in rat IBS models. METHODS The visceral pain threshold in response to colonic balloon distention was electrophysiologically determined by monitoring abdominal muscle contractions, while colonic permeability was measured by quantifying absorbed Evans blue in colonic tissue in vivo in adult male Sprague-Dawley rats. We employed the rat IBS models, i.e., lipopolysaccharide (LPS)- and CRF-induced visceral hypersensitivity and colonic hyperpermeability, and explored the effects of PD149163. KEY RESULTS Intraperitoneal PD149163 (160, 240, 320 μg kg-1) prevented LPS (1 mg kg-1, subcutaneously)-induced visceral hypersensitivity and colonic hyperpermeability dose-dependently. It also prevented the gastrointestinal changes induced by CRF (50 μg kg-1, intraperitoneally). Peripheral atropine, bicuculline (a GABAA receptor antagonist), sulpiride (a dopamine D2 receptor antagonist), astressin2-B (a CRF receptor subtype 2 [CRF2] antagonist), and intracisternal SB-334867 (an orexin 1 receptor antagonist) reversed these effects of PD149163 in the LPS model. CONCLUSIONS AND INFERENCES PD149163 demonstrated an improvement in visceral hypersensitivity and colonic hyperpermeability in rat IBS models through the dopamine D2, GABAA, orexin, CRF2, and cholinergic pathways. Activation of NTR1 may modulate these gastrointestinal changes, helping to alleviate IBS symptoms.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
2
|
Costa SF, Soares MF, Poleto Bragato J, dos Santos MO, Rebech GT, de Freitas JH, de Lima VMF. MicroRNA-194 regulates parasitic load and IL-1β-dependent nitric oxide production in the peripheral blood mononuclear cells of dogs with leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0011789. [PMID: 38241360 PMCID: PMC10798644 DOI: 10.1371/journal.pntd.0011789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
Domestic dogs are the primary urban reservoirs of Leishmania infantum, the causative agent of visceral leishmaniasis. In Canine Leishmaniasis (CanL), modulation of the host's immune response may be associated with the expression of small non-coding RNAs called microRNA (miR). miR-194 expression increases in peripheral blood mononuclear cells (PBMCs) of dogs with leishmaniasis with a positive correlation with the parasite load and in silico analysis demonstrated that the TRAF6 gene is the target of miR-194 in PBMCs from diseased dogs. Here, we isolated PBMCs from 5 healthy dogs and 28 dogs with leishmaniasis, naturally infected with L. infantum. To confirm changes in miR-194 and TRAF6 expression, basal expression of miR-194 and gene expression of TRAF6 was measured using qPCR. PBMCs from healthy dogs and dogs with leishmaniasis were transfected with miR-194 scramble, mimic, and inhibitor and cultured at 37° C, 5% CO2 for 48 hours. The expression of possible targets was measured: iNOS, NO, T-bet, GATA3, and FoxP3 were measured using flow cytometry; the production of cytokines IL-1β, IL-4, IL-6, IL-10, TNF-α, IFN-γ, and TGF-β in cell culture supernatants was measured using capture enzyme-linked immunosorbent assays (ELISA). Parasite load was measured using cytometry and qPCR. Functional assays followed by miR-194 inhibitor and IL-1β blockade and assessment of NO production were also performed. Basal miR-194 expression was increased in PBMC from dogs with Leishmaniasis and was negatively correlated with TRAF6 expression. The mimic of miR-194 promoted an increase in parasite load. There were no significant changes in T-bet, GATA3, or FoxP3 expression with miR-194 enhancement or inhibition. Inhibition of miR-194 increased IL-1β and NO in PBMCs from diseased dogs, and blockade of IL-1β following miR-194 inhibition decreased NO levels. These findings suggest that miR-194 is upregulated in PBMCs from dogs with leishmaniasis and increases parasite load, possibly decreasing NO production via IL-1β. These results increase our understanding of the mechanisms of evasion of the immune response by the parasite and the identification of possible therapeutic targets.
Collapse
Affiliation(s)
- Sidnei Ferro Costa
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Matheus Fujimura Soares
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jaqueline Poleto Bragato
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Marilene Oliveira dos Santos
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Gabriela Torres Rebech
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Henrique de Freitas
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| |
Collapse
|
3
|
Polat B, Okur DT, Çolak A, Okur S, Özkaraca M, Yilmaz K. Comparison of three different dosages of low-level laser therapy on expression of cell proliferation and inflammatory markers following ovariohysterectomy in rats. Cutan Ocul Toxicol 2023; 42:273-282. [PMID: 37624142 DOI: 10.1080/15569527.2023.2252075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The objective of the current study was to evaluate Low-level laser therapy (LLLT) on the healing of incisional wounds following ovariohysterectomy in rats, by means of subjective histopathological and immunohistochemical analysis. A total of 72 female Wistar rats were categorised into four treatment groups (Group I; sacrification 4 hours following only one LLLT application, Group II; sacrification 7 days following only one LLLT application, Group III; sacrification 4 hours after two LLLT applications, and Group IV; sacrification 7 days after two LLLT applications). Each group was further divided into four different doses subgroups (Group Control [C, off mode LLLT application], L1 [1 J/cm2], L3 [3 J/cm2], and L6 [6 J/cm2]), with equal representation in each subgroup. Ovariohysterectomy was employed using two 2-cm-length midline abdominal incisions in the left and right sides of line alba. The Group C was assigned to the left side incision to each rat in the study. After irradiation, the tissue was subjected to histopathological analysis to determine the extent of mononuclear cell infiltration, edoema, and epithelialization. Additionally, immunohistochemical analysis was performed to evaluate the expression of proliferating cell nuclear antigen (pCNA) and inducible nitric oxide synthase (iNOS). Group L1 and L3 significantly decreased mononuclear cell infiltration compared with Group C in all treatment groups (p < 0.05). Group L3 significantly decreased edoema compared with Group C in all groups except for treatment Group I (p < 0.05). Group L2 and L3 significantly increased epithelization in treatment Group IV (p < 0.05). Moreover, Group L2 and L3 significantly increased pCNA in all groups, while L2 and L3 significantly decreased iNOS expression in treatment Group II, III, and IV (p < 0.05). However, no statistical difference was found between subgroups of treatment Group I in iNOS expiration (p > 0.05). The results of the current examination demonstrated that LLLT can modulate mononuclear cell infiltration and edoema, and improve epithelization, as well as increase pCNA expression, whereas decrease iNOS expression during the wound healing process, therefore enhancing wound healing following ovariohysterectomy in rats.
Collapse
Affiliation(s)
- Bülent Polat
- Department of Obstetrics and Gynecology, Atatürk University, Erzurum, Turkey
- Bil-Tek, Ata Teknokent, Erzurum, TR, Turkey
| | - Damla Tuğçe Okur
- Department of Obstetrics and Gynecology, Atatürk University, Erzurum, Turkey
| | - Armağan Çolak
- Department of Obstetrics and Gynecology, Atatürk University, Erzurum, Turkey
| | - Sıtkıcan Okur
- Department of Surgery, Atatürk University, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Kader Yilmaz
- Celal Oruç Animal Production School, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| |
Collapse
|
4
|
Drab D, Santocki M, Opydo M, Kolaczkowska E. Impact of endogenous and exogenous nitrogen species on macrophage extracellular trap (MET) formation by bone marrow-derived macrophages. Cell Tissue Res 2023; 394:361-377. [PMID: 37789240 PMCID: PMC10638184 DOI: 10.1007/s00441-023-03832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Macrophage extracellular traps (METs) represent a novel defense mechanism in the antimicrobial arsenal of macrophages. However, mechanisms of MET formation are still poorly understood and this is at least partially due to the lack of reliable and reproducible models. Thus, we aimed at establishing a protocol of MET induction by bone marrow-derived macrophages (BMDMs) obtained from cryopreserved and then thawed bone marrow (BM) mouse cells. We report that BMDMs obtained in this way were morphologically (F4/80+) and functionally (expression of inducible nitric oxide (NO) synthase and NO production) differentiated and responded to various stimuli of bacterial (lipopolysaccharide, LPS), fungal (zymosan) and chemical (PMA) origin. Importantly, BMDMs were successfully casting METs composed of extracellular DNA (extDNA) serving as their backbone to which proteins such as H2A.X histones and matrix metalloproteinase 9 (MMP-9) were attached. In rendered 3D structure of METs, extDNA and protein components were embedded in each other. Since studies had shown the involvement of oxygen species in MET release, we aimed at studying if reactive nitrogen species (RNS) such as NO are also involved in MET formation. By application of NOS inhibitor - L-NAME or nitric oxide donor (SNAP), we studied the involvement of endogenous and exogenous RNS in traps release. We demonstrated that L-NAME halted MET formation upon stimulation with LPS while SNAP alone induced it. The latter phenomenon was further enhanced in the presence of LPS. Taken together, our findings demonstrate that BMDMs obtained from cryopreserved BM cells are capable of forming METs in an RNS-dependent manner.
Collapse
Affiliation(s)
- Dominika Drab
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Michal Santocki
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Malgorzata Opydo
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
5
|
Marcuccio G, Ambrosino P, Merola C, Manzo F, Motta A, Rea G, Cantone E, Maniscalco M. Clinical Applications of Nasal Nitric Oxide in Allergic Rhinitis: A Review of the Literature. J Clin Med 2023; 12:5081. [PMID: 37568482 PMCID: PMC10420175 DOI: 10.3390/jcm12155081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Allergic rhinitis, a common allergic disease affecting a significant number of individuals worldwide, is observed in 25% of children and 40% of adults, with its highest occurrence between the ages of 20 and 40. Its pathogenesis, like other allergic diseases, involves innate and adaptive immune responses, characterized by immunologic hypersensitivity to environmental substances. This response is mediated by type 2 immunity. Within type 2 allergic diseases, certain molecules have been identified as clinical biomarkers that contribute to diagnosis, prognosis, and therapy monitoring. Among these biomarkers, nitric oxide has shown to play a key role in various physiological and pathological processes, including neurotransmission, immunity, inflammation, regulation of mucus and cilia, inhibition of microorganisms, and tumor cell growth. Therefore, measurement of nasal nitric oxide has been proposed as an objective method for monitoring airway obstruction and inflammation in different settings (community, hospital, rehabilitation) and in various clinical conditions, including upper airways diseases of the nose and paranasal sinuses. The purpose of this review is to analyze the potential mechanisms contributing to the production of nasal nitric oxide in allergic rhinitis and other related health issues. Additionally, this review aims to identify potential implications for future research, treatment strategies, and long-term management of symptoms.
Collapse
Affiliation(s)
- Giuseppina Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (C.M.)
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Claudia Merola
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (C.M.)
| | - Fabio Manzo
- Fleming Clinical Laboratory, 81020 Casapulla, Italy;
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 00185 Pozzuoli, Italy;
| | - Gaetano Rea
- Department of Radiology, Monaldi Hospital, AO dei Colli, 80131 Naples, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive and Odontostomatological Sciences—ENT Section, University of Naples Federico II, 80138 Naples, Italy;
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (C.M.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
6
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides 2022; 94:102248. [PMID: 35526468 DOI: 10.1016/j.npep.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
Growing evidence indicates that visceral hypersensitivity and impaired gut barrier play an important role in the pathophysiology of irritable bowel syndrome (IBS). In animal models, these changes are known to be mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4 (TLR4)-proinflammatory cytokine signaling. Apelin, an endogenous ligand of APJ, was reported to modulate CRF-induced enhanced colonic motility. In this context, we hypothesized that apelin also modulates visceral sensation and gut barrier, and tested this hypothesis. We measured visceral pain threshold in response to colonic balloon distention by abdominal muscle contractions assessed by electromyogram in rats. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal (ip) administration of [Ala13]-apelin-13, an APJ antagonist, blocked lipopolysaccharide (LPS)- or CRF-induced visceral hypersensitivity and colonic hyperpermeability (IBS model) in a dose-response manner. These inhibitory effects were blocked by compound C, an AMPK inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor or naloxone in the LPS model. On the other hand, ip [Pyr1]-apelin-13, an APJ agonist, caused visceral hypersensitivity and colonic hyperpermeability, and these effects were reversed by astressin, a CRF receptor antagonist, TAK-242, a TLR4 antagonist or anakinra, an interleukin-1 receptor antagonist. APJ system modulated CRF-TLR4-proinflammatory cytokine signaling to cause visceral hypersensitivity and colonic hyperpermeability. APJ antagonist blocked these GI changes in IBS models, which were mediated via AMPK, NO and opioid signaling. Apelin may contribute to the IBS pathophysiology, and the inhibition of apelinergic signaling may be a promising therapeutic option for IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
7
|
Colomeu TC, de Figueiredo D, de Matos da Silva P, Fernandes LGR, Zollner RDL. Antiproliferative and Pro-Oxidant Effect of Polyphenols in Aqueous Leaf Extract of Passiflora alata Curtis on Activated T Lymphocytes from Non-Obese Diabetic (NOD SHILT/J) Mice. Antioxidants (Basel) 2022; 11:antiox11081503. [PMID: 36009222 PMCID: PMC9405454 DOI: 10.3390/antiox11081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
The antioxidant, anti-inflammatory and antiproliferative properties of Passiflora alata Curtis are due to the presence of polyphenols in its composition. Our previous work showed that non-obese diabetic (NOD) mice undergoing treatment with aqueous leaf extract of P. alata present reduced insulitis in the pancreas, possibly due to its anti-inflammatory properties. However, depending on the concentration and their ability to interact with other molecules, these phenolic compounds may promote oxidation reactions in some cellular components, such as proteins and lipids, thus presenting a pro-oxidant effect. The present work aimed to evaluate the in vitro effects of aqueous leaf extract of P. alata and its polyphenols (vitexin, isoorientin, rutin and catechin) on lymphocyte proliferation and viability, the cell cycle and oxidative stress. Our results showed that T lymphocytes stimulated with concanavalin A mitogen (ConA) and in the presence of IC50 concentrations of P. alata extract and polyphenols undergo cell injury via inhibition of proliferation, with these effects being more pronounced concerning CD4+ T cells (P. alata, 3.54 ± 0.34%; isoorientin, 57.07 ± 6.4%; vitexin, 16.95 ± 1.11%; catechin, 37.9 ± 4.2% and rutin, 40.14 ± 4.5%), compared to the non-treated group (77.17 ± 6.29) (p < 0.0001 for all comparisons). This process includes late apoptosis/necrosis induction (P. alata, 77.5 ± 0.7%; vitexin, 83 ± 3.3%; isoorientin, 83.8 ± 1.4%; catechin, 83 ± 1.9% and rutin, 74.9 ± 3.2, while the control presented 53.6% ± 3.1 (p < 0.0001 for all comparisons)) and mitochondrial depolarization leading to cell-death induction. Furthermore, an in vitro model of a mixed culture of NOD mice T cells with a mouse pancreatic beta-cell line (MIN6) showed increased intracellular nitric oxide and lipid peroxidation in NOD T cells submitted to P. alata extract (46.41 ± 3.08) compared to the untreated control group (33.57 ± 1.99, p = 0.01315). These results suggest that aqueous leaf extract of P. alata and the polyphenols in these leaves represent a target for translational research showing the plant’s benefits for developing new drugs with immunomodulatory properties against inflammatory diseases such as diabetes mellitus.
Collapse
|
8
|
Isaac-Márquez AP, Lezama-Dávila CM. PHARMACOLOGICAL AND MECHANISTIC STUDIES OF UREQUINONA, A MOLECULE FROM ROOTS OF PENTALINON ANDRIEUXII MUELL-ARG THAT HEALS MURINE LEISHMANIA MEXICANA INFECTION. J Parasitol 2022; 108:254-263. [PMID: 35687319 DOI: 10.1645/21-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this work we tested both the in vitro and in vivo anti-Leishmania mexicana activity of a molecule we originally identified in the root of Pentalinon andrieuxii Muell-Arg, a plant that is widely used in Mayan traditional medicine. The chemical name of this molecule is 24-methylcholesta-4-24(28)-dien-3-one, but for simplicity's sake, we assigned the short and trivial name of urequinona that will be used throughout this work. It induces necrosis and apoptosis of promastigotes cultured in vitro and extensive ultrastructural damage of amastigotes. It also induces production of Interleukin (IL)-2 and interferon (IFN)-γ by splenic cells from infected and urequinona treated mice stimulated in vitro with parasite antigen (Ag) but inhibits the production of IL-6 and IL-12p70 by bone-marrow-derived macrophages (BMM) infected in vitro and then treated with urequinona. It also induces activation of transcription factors such as NFkB and AP-1 (NFkB/AP-1) in RAW reporter cells. We also developed a novel pharmaceutical preparation of urequinona encapsulated in hydroxyethyl cellulose for dermal application that significantly reduced (P < 0.05) experimentally induced ear lesions of C57BL/6 mice. We conclude the preparation containing this molecule is a good candidate for a novel anti-leishmanial drug's preparation.
Collapse
Affiliation(s)
- A P Isaac-Márquez
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Avenida Agustín Melgar s/n, San Francisco de Campeche, Mexico 24030
| | - C M Lezama-Dávila
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Avenida Agustín Melgar s/n, San Francisco de Campeche, Mexico 24030.,The Ohio State University, 281 West Lane Avenue, Columbus, Ohio 43210
| |
Collapse
|
9
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Borujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2022; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, and EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low/moderate levels may favor tumorigenesis, while higher levels would exert antitumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "doubleedged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Mojtaba Shabani-Borujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
The Relationship of Glutathione- S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules 2021; 26:molecules26195784. [PMID: 34641326 PMCID: PMC8510172 DOI: 10.3390/molecules26195784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide is a diatomic gas that has traditionally been viewed, particularly in the context of chemical fields, as a toxic, pungent gas that is the product of ammonia oxidation. However, nitric oxide has been associated with many biological roles including cell signaling, macrophage cytotoxicity, and vasodilation. More recently, a model for nitric oxide trafficking has been proposed where nitric oxide is regulated in the form of dinitrosyl-dithiol-iron-complexes, which are much less toxic and have a significantly greater half-life than free nitric oxide. Our laboratory has previously examined this hypothesis in tumor cells and has demonstrated that dinitrosyl-dithiol-iron-complexes are transported and stored by multi-drug resistance-related protein 1 and glutathione-S-transferase P1. A crystal structure of a dinitrosyl-dithiol-iron complex with glutathione-S-transferase P1 has been solved that demonstrates that a tyrosine residue in glutathione-S-transferase P1 is responsible for binding dinitrosyl-dithiol-iron-complexes. Considering the roles of nitric oxide in vasodilation and many other processes, a physiological model of nitric oxide transport and storage would be valuable in understanding nitric oxide physiology and pathophysiology.
Collapse
|
11
|
Pourang A, Dourra M, Ezekwe N, Kohli I, Hamzavi I, Lim HW. The potential effect of Polypodium leucotomos extract on ultraviolet- and visible light-induced photoaging. Photochem Photobiol Sci 2021; 20:1229-1238. [PMID: 34449075 DOI: 10.1007/s43630-021-00087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
Photoaging induced by both ultraviolet and visible light has been shown to lead to increased inflammation and dysregulation of the extracellular matrix. Standardized extract of the Polypodium leucotomos fern, PLE, possesses anti-inflammatory and antioxidant properties, and has been shown to potentially mitigate photoaging through various mechanisms. This comprehensive review presents the data available on the effects of P. leucotomos extract on UV and VL-induced photoaging in vitro as well as in vivo in murine and human models.
Collapse
Affiliation(s)
- Aunna Pourang
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Mohsen Dourra
- College of Medicine, Michigan State University, East Lansing, MI, USA
| | - Nneamaka Ezekwe
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Indermeet Kohli
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Iltefat Hamzavi
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Henry W Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
12
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Phlorizin attenuates visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Biomed Pharmacother 2021; 139:111649. [PMID: 33957565 DOI: 10.1016/j.biopha.2021.111649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Visceral hypersensitivity and impaired gut barrier are crucial contributors to the pathophysiology of irritable bowel syndrome (IBS), and those are mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4-pro-inflammatory cytokine signaling. Phlorizin is an inhibitor of sodium-linked glucose transporters (SGLTs), and known to have anti-cytokine properties. Thus, we hypothesized that phlorizin may improve these gastrointestinal changes in IBS, and tested this hypothesis in rat IBS models, i.e., lipopolysaccharide (LPS) or CRF-induced visceral hypersensitivity and colonic hyperpermeability. The visceral pain threshold in response to colonic balloon distention was estimated by abdominal muscle contractions by electromyogram, and colonic permeability was measured by quantifying the absorbed Evans blue in colonic tissue. Subcutaneous (s.c.) injection of phlorizin inhibited visceral hypersensitivity and colonic hyperpermeability induced by LPS in a dose-dependent manner. Phlorizin also blocked CRF-induced these gastrointestinal changes. Phlorizin is known to inhibit both SGLT1 and SGLT2, but intragastric administration of phlorizin may only inhibit SGLT1 because gut mainly expresses SGLT1. We found that intragastric phlorizin did not display any effects, but ipragliflozin, an orally active and selective SGLT2 inhibitor improved the gastrointestinal changes in the LPS model. Compound C, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor and naloxone, an opioid receptor antagonist reversed the effects of phlorizin. In conclusions, phlorizin improved visceral hypersensitivity and colonic hyperpermeability in IBS models. These effects may result from inhibition of SGLT2, and were mediated via AMPK, NO and opioid pathways. Phlorizin may be effective for the treatment of IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
13
|
Palmieri EM, McGinity C, Wink DA, McVicar DW. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites 2020; 10:metabo10110429. [PMID: 33114647 PMCID: PMC7693038 DOI: 10.3390/metabo10110429] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric Oxide (NO) is a soluble endogenous gas with various biological functions like signaling, and working as an effector molecule or metabolic regulator. In response to inflammatory signals, immune myeloid cells, like macrophages, increase production of cytokines and NO, which is important for pathogen killing. Under these proinflammatory circumstances, called “M1”, macrophages undergo a series of metabolic changes including rewiring of their tricarboxylic acid (TCA) cycle. Here, we review findings indicating that NO, through its interaction with heme and non-heme metal containing proteins, together with components of the electron transport chain, functions not only as a regulator of cell respiration, but also a modulator of intracellular cell metabolism. Moreover, diverse effects of NO and NO-derived reactive nitrogen species (RNS) involve precise interactions with different targets depending on concentration, temporal, and spatial restrictions. Although the role of NO in macrophage reprogramming has been in evidence for some time, current models have largely minimized its importance. It has, therefore, been hiding in plain sight. A review of the chemical properties of NO, past biochemical studies, and recent publications, necessitates that mechanisms of macrophage TCA reprogramming during stimulation must be re-imagined and re-interpreted as mechanistic results of NO exposure. The revised model of metabolic rewiring we describe here incorporates many early findings regarding NO biochemistry and brings NO out of hiding and to the forefront of macrophages immunometabolism.
Collapse
|
14
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Losartan improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2020; 32:e13819. [PMID: 32056324 DOI: 10.1111/nmo.13819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and colonic hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is considered to be a rat irritable bowel syndrome (IBS) model. As losartan is known to inhibit proinflammatory cytokine release, we hypothesized that it improves these visceral changes. METHODS The threshold of visceromotor response (VMR), that is, abdominal muscle contractions induced by colonic balloon distention was electrophysiologically measured in rats. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 minutes spectrophotometrically. KEY RESULTS Lipopolysaccharide (1 mg kg-1 ) subcutaneously (s.c.) reduced the threshold of VMR and increased colonic permeability. Losartan (5-25 mg kg-1 s.c.) for 3 days inhibited these changes in a dose-dependent manner. Moreover, repeated WAS (1 hour daily for 3 days) or intraperitoneal injection of CRF (50 µg kg-1 ) induced the similar visceral changes as LPS, which were also eliminated by losartan. These effects by losartan in LPS model were reversed by GW9662 (a peroxisome proliferator-activated receptor-γ [PPAR-γ] antagonist), NG -nitro-L-arginine methyl ester (a nitric oxide [NO] synthesis inhibitor), or naloxone (an opioid receptor antagonist). Moreover, it also inhibited by sulpiride (a dopamine D2 receptor antagonist) or domperidone (a peripheral dopamine D2 antagonist). CONCLUSION & INFERENCES Losartan prevented visceral allodynia and colonic hyperpermeability in rat IBS models. These actions may be PPAR-γ-dependent and also mediated by the NO, opioid, and dopamine D2 pathways. Losartan may be useful for IBS treatment.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
15
|
|
16
|
Ahmad N, Ansari MY, Haqqi TM. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J Cell Physiol 2020; 235:6366-6376. [PMID: 32017079 DOI: 10.1002/jcp.29607] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/22/2020] [Indexed: 01/15/2023]
Abstract
Accumulating evidence suggests that inflammation has a key role in the pathogenesis of osteoarthritis (OA). Nitric oxide (NO) has been established as one of the major inflammatory mediators in OA and drives many pathological changes during the development and progression of OA. Excessive production of NO in chondrocytes promotes cartilage destruction and cellular injury. The synthesis of NO in chondrocytes is catalyzed by inducible NO synthase (iNOS), which is thereby an attractive therapeutic target for the treatment of OA. A number of direct and indirect iNOS inhibitors, bioactive compounds, and plant-derived small molecules have been shown to exhibit chondroprotective effects by suppressing the expression of iNOS. Many of these iNOS inhibitors hold promise for the development of new, disease-modifying therapies for OA; however, attempts to demonstrate their success in clinical trials are not yet successful. Many plant extracts and plant-derived small molecules have also shown promise in animal models of OA, though further studies are needed in human clinical trials to confirm their therapeutic potential. In this review, we discuss the role of iNOS in OA pathology and the effects of various iNOS inhibitors in OA.
Collapse
Affiliation(s)
- Nashrah Ahmad
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
17
|
Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci Rep 2019; 9:19603. [PMID: 31862976 PMCID: PMC6925246 DOI: 10.1038/s41598-019-56132-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and gut hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is a rat irritable bowel syndrome (IBS) model. As butyrate is known to suppress the release of proinflammatory cytokine, we hypothesized that butyrate alleviates these colonic changes in IBS models. The visceral pain was assessed by electrophysiologically measuring the threshold of abdominal muscle contractions in response to colonic distention. Colonic permeability was determined by measuring the absorbance of Evans blue in colonic tissue. Colonic instillation of sodium butyrate (SB; 0.37-2.9 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral allodynia and colonic hyperpermeability dose-dependently. Additionally, the visceral changes induced by repeated WAS (1 h for 3 days) or CRF (50 µg/kg) were also blocked by SB. These effects of SB in the LPS model were eliminated by compound C, an AMPK inhibitor, or GW9662, a PPAR-γ antagonist, NG-nitro-L-arginine methyl ester, a NO synthesis inhibitor, naloxone or sulpiride. SB attenuated visceral allodynia and colonic hyperpermeability in animal IBS models. These actions may be AMPK and PPAR-γ dependent and also mediated by the NO, opioid and central dopamine D2 pathways. Butyrate may be effective for the treatment of IBS.
Collapse
|
18
|
Farrell K, Simmers P, Mahajan G, Boytard L, Camardo A, Joshi J, Ramamurthi A, Pinet F, Kothapalli CR. Alterations in phenotype and gene expression of adult human aneurysmal smooth muscle cells by exogenous nitric oxide. Exp Cell Res 2019; 384:111589. [PMID: 31473210 DOI: 10.1016/j.yexcr.2019.111589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Abdominal aortic aneurysms (AAA) are characterized by matrix remodeling, elastin degradation, absence of nitric oxide (NO) signaling, and inflammation, influencing smooth muscle cell (SMC) phenotype and gene expression. Little is known about the biomolecular release and intrinsic biomechanics of human AAA-SMCs. NO delivery could be an attractive therapeutic strategy to restore lost functionality of AAA-SMCs by inhibiting inflammation and cell stiffening. We aim to establish the differences in phenotype and gene expression of adult human AAA-SMCs from healthy SMCs. Based on our previous study which showed benefits of optimal NO dosage delivered via S-Nitrosoglutathione (GSNO) to healthy aortic SMCs, we tested whether such benefits would occur in AAA-SMCs. The mRNA expression of three genes involved in matrix degradation (ACE, ADAMTS5 and ADAMTS8) was significantly downregulated in AAA-SMCs. Total protein and glycosaminoglycans synthesis were higher in AAA-SMCs than healthy-SMCs (p < 0.05 for AAA-vs. healthy- SMC cultures) and was enhanced by GSNO and 3D cultures (p < 0.05 for 3D vs. 2D cultures; p < 0.05 for GSNO vs. non-GSNO cases). Elastin gene expression, synthesis and deposition, desmosine crosslinker levels, and lysyl oxidase (LOX) functional activity were lower, while cell proliferation, iNOS, LOX and fibrillin-1 gene expressions were higher in AAA-SMCs (p < 0.05 between respective cases), with differential benefits from GSNO exposure. GSNO and 3D cultures reduced MMPs -2, -9, and increased TIMP-1 release in AAA-SMC cultures (p < 0.05 for GSNO vs. non-GSNO cultures). AAA-SMCs were inherently stiffer and had smoother surface than healthy SMCs (p < 0.01 in both cases), but GSNO reduced stiffness (~25%; p < 0.01) and increased roughness (p < 0.05) of both cell types. In conclusion, exogenously-delivered NO offers an attractive strategy by providing therapeutic benefits to AAA-SMCs.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Phillip Simmers
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Ludovic Boytard
- University of Lille, Inserm U1167, Institut Pasteur de Lille, France
| | - Andrew Camardo
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44141, USA
| | - Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44141, USA
| | - Florence Pinet
- University of Lille, Inserm U1167, Institut Pasteur de Lille, France
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA.
| |
Collapse
|
19
|
Dehydroepiandrosterone sulfate improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Eur J Pharmacol 2019; 852:198-206. [DOI: 10.1016/j.ejphar.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
20
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
21
|
Li Y, Li YP, He J, Liu D, Zhang QZ, Li K, Zheng X, Tang GT, Guo Y, Liu Y. The Relationship between Pharmacological Properties and Structure- Activity of Chrysin Derivatives. Mini Rev Med Chem 2019; 19:555-568. [PMID: 29692242 DOI: 10.2174/1389557518666180424094821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/24/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022]
Abstract
Chrysin is a natural product of a flavonoid compound. Chemically, chrysin consists of two phenyl rings (A and B) and a heterocyclic ring (C). Biologically, chrysin exerts many different physiological activities. In recent years, with the in-depth development for more active drugs, the synthesis and biological activities of chrysin derivatives have been well studied. Besides, structure-activity relationship of chrysin revealed that the chemical construction meets the critical chemical structural necessities of flavonoids for numerous pharmacological activities. It is generally believed that modified chrysin could be more potent than unmodified chrysin. Different modification in the rings of chrysin could possess various degrees of biological activities. This review aims to summarize the mechanism for the activities of chrysin and its derivatives in different rings. We also explored the relationship between biological function and structure-activity of substituted chrysin derivatives with different functional groups. The influence of chrysin derivatives on the proliferation and apoptosis of cancer cells is also investigated. Development of novel drugs based on the biological functions of chrysin could better improve clinical outcomes of affected population, especially for tumor patients and diabetic patients.
Collapse
Affiliation(s)
- Yang Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yan-Peng Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ding Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qi-Zhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Kang Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xing Zheng
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guo-Tao Tang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
22
|
Guan F, Lam W, Hu R, Kim YK, Han H, Cheng YC. Majority of Chinese Medicine Herb Category "Qing Re Yao" Have Multiple Mechanisms of Anti-inflammatory Activity. Sci Rep 2018; 8:7416. [PMID: 29743639 PMCID: PMC5943244 DOI: 10.1038/s41598-018-25813-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
Herbs categorized as “Qing Re Yao” are translated into “medicine that removes heat” where heat symptoms strongly resemble inflammation. 226 herbs, among those 54 herbs are classified as “Qing Re Yao”, were studied on six key mechanisms of inflammation: COX2, iNOS activity, and the pathways of IL-6, IFNγ, TNF-α and glucocorticoid in order to assess if the majority of this family of herbs have anti-inflammatory activity. 96% demonstrated at least one anti-inflammatory process or innate immunity modular activity, and 72% could affect one anti-inflammatory process. Of the, 54 “Qing Re Yao” 68% affect at least 2 mechanism compared to only 4% (47 herbs) in the “Bu Yi Yao” category that are used to “tonify body energy” and prevent diseases. Moreover 43% of “Qing Re Yao” herbs affect 3 or more mechanisms while none of the “Bu Yi Yao” have this poly-mechanism quality. Additionally “Qing Re Yao” herbs exhibiting activity against STAT3 or GAS could have downstream effects on these target genes and their pathways. Our study addresses the key action on why “Qing Re Yao” work on inflammation. This study also demonstrates the utility in isolating anti-inflammatory substances to be used as a lead for drug discovery and development.
Collapse
Affiliation(s)
- Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Rong Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Yun Kyung Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Hua Han
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.
| |
Collapse
|
23
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
- 4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
24
|
Reiber C, Brieger A, Engelhardt G, Hebel S, Rink L, Haase H. Zinc chelation decreases IFN-β-induced STAT1 upregulation and iNOS expression in RAW 264.7 macrophages. J Trace Elem Med Biol 2017; 44:76-82. [PMID: 28965604 DOI: 10.1016/j.jtemb.2017.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022]
Abstract
One consequence of lipopolysaccharide (LPS)-induced stimulation of macrophages is the release of Interferon (IFN)-β, and subsequently the activation of the JAK-STAT1 pathway, resulting in the expression of inducible nitric oxide synthase (iNOS). Free intracellular zinc ions (Zn2+) have a profound impact as a second messenger in LPS-dependent gene expression. Previous work had indicated a Zn2+-dependent upregulation of STAT1 mRNA in response to LPS and IFN-β, potentially affecting STAT1-dependent downstream signaling upon pre-incubation with these agents. The aim of the present study was to investigate the long-term influence of Zn2+ chelation on cellular STAT1 levels and their effect on protein levels and activity of iNOS. The LPS- and IFN-β-mediated increase of STAT1 mRNA and protein levels was abrogated by chelation of Zn2+ with the membrane permeable chelator N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) in RAW 264.7 macrophages. After 48h pre-incubation together with IFN-β, TPEN also led to reduced nitric monoxide formation in response to a second stimulation with LPS. Nonetheless, the latter was observed regardless of any pre-incubation with IFN-β, suggesting that the effect of treatment with TPEN negatively affects iNOS induction independently from cellular STAT1 levels. In conclusion, long term Zn2+ chelation does affect STAT1 protein expression, but interferes with NO production by a different, yet unknown pathway not involving STAT1. However, as there are many additional STAT1-dependent genes, there might still be effects on targets other than iNOS.
Collapse
Affiliation(s)
- Cathleen Reiber
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Anne Brieger
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gabriela Engelhardt
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Silke Hebel
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
25
|
de Groot M, Schuurs TA, Keizer PPM, Fekken S, Leuvenink HGD, Van Schilfgaarde R. Response of Encapsulated Rat Pancreatic Islets to Hypoxia. Cell Transplant 2017; 12:867-875. [PMID: 28863739 DOI: 10.3727/000000003771000219] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hypoxia contributes to encapsulated pancreatic islet graft failure. To gain insight into the mechanisms that lead to hypoxia-induced graft failure, encapsulated islet function, vitality, and cell replication were assessed after 2 and 5 days of hypoxic (1% O2) and normoxic (20% O2) culture. The mRNA expression levels of Bcl-2, Bax, inducible nitric oxide synthase (iNOS), and monocyte chemoattractant protein 1 (MCP-1) were assessed, as well as the amount of nitrite and MCP-1 in the culture medium. Hypoxia was associated with loss of encapsulated islet function and vitality, but not with an increase in islet cell replication. Loss of vitality was due to necrosis, and only modestly due to apoptosis. Hypoxia was not associated with changes in the Bcl-2/Bax mRNA ratio, but it did increase the expression of iNOS and MCP-1 mRNA. The increased mRNA levels were, however, not associated with elevated concentrations of nitrite nor with elevated levels of MCP-1 protein. The increased iNOS mRNA levels imply a role for NO in the completion of cell death by hypoxia. The increased MCP-1 mRNA levels suggest that encapsulated islets in vivo contribute to their own graft failure by attracting cytokine-producing macrophages. The discrepancy between iNOS mRNA and nitrite is explained by the longer half-life of NO during hypoxia. MCP-1 protein levels are underestimated as a consequence of the lower number of vital cells in combination with a higher proteolytic activity due to necrosis. Thus, strategies to eliminate hypoxia may not only improve islet function and vitality, but may also reduce the attraction of macrophages by encapsulated islets.
Collapse
Affiliation(s)
- M de Groot
- Surgical Research Laboratory, Department of Surgery, Groningen University Hospital, Groningen, The Netherlands
| | - T A Schuurs
- Surgical Research Laboratory, Department of Surgery, Groningen University Hospital, Groningen, The Netherlands
| | - P P M Keizer
- Surgical Research Laboratory, Department of Surgery, Groningen University Hospital, Groningen, The Netherlands
| | - S Fekken
- Surgical Research Laboratory, Department of Surgery, Groningen University Hospital, Groningen, The Netherlands
| | - H G D Leuvenink
- Surgical Research Laboratory, Department of Surgery, Groningen University Hospital, Groningen, The Netherlands
| | - R Van Schilfgaarde
- Surgical Research Laboratory, Department of Surgery, Groningen University Hospital, Groningen, The Netherlands
| |
Collapse
|
26
|
Li S, Li J, Shi F, Yang L, Ye M. Protection effect of intracellular melanin from Lachnum YM156 and Haikunshenxi capsule combination on adenine-induced chronic renal failure in mice. MEDCHEMCOMM 2017; 8:917-923. [PMID: 30108807 DOI: 10.1039/c6md00646a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 11/21/2022]
Abstract
This study aimed to elucidate the therapeutic effects of oral administration of intracellular melanin from Lachnum YM156 (LIM) on chronic renal failure (CRF) in mice. The cytotoxicity of LIM was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. CRF was induced in mice by chronic dietary adenine intake. We have used this intervention to explore the effects of oral treatment with LIM (100 and 200 mg kg-1) in CRF mice. The treatment with LIM alone and a combination of Haikunshenxi capsule (HC) add LIM increased the concentration levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and glutathione reductase (GSH), reduced malonaldehyde (MDA) in the nephridial tissues and also reduced the nephridial levels of tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interleukin (IL)-6, and the activities of inducible nitric oxide synthase (iNOS). Interestingly, the HC and LIM combination produced a higher therapeutic effect than HC alone. The mechanism of the reported salutary effects of LIM in adenine-induced CRF is associated with amelioration of the adenine induced inflammation and oxidative stress. The present findings recommend that LIM is a useful natural product which can be used to enhance the protection function of HC in CRF mice.
Collapse
Affiliation(s)
- Shenglan Li
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Jinglei Li
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Fang Shi
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Liuqing Yang
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| | - Ming Ye
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; Tel: +86 551 62901505 8614
| |
Collapse
|
27
|
Gil J, Kim D, Yoon SK, Ham JS, Jang A. Anti-Oxidative and Anti-Inflammation Activities of Pork Extracts. Korean J Food Sci Anim Resour 2016; 36:275-82. [PMID: 27194938 PMCID: PMC4869556 DOI: 10.5851/kosfa.2016.36.2.275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to evaluate the antioxidative and anti-inflammatory effects of boiled pork powder (BPP) and hot water extract powder (HWEP) from 4 cuts of meat from Landrace × Yorkshire × Duroc (LYD). The highest DPPH radical scavenging activities determined were from BPP of Boston butt (13.65 M TE) and HWEP of loin (19.40 M TE) and ham (21.45 M TE). The 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities of BPP from shoulder ham (39.28 M TE) and ham (39.43 M TE) were higher than those of other meat cuts, while HWEP of ham exhibited the highest ABTS radical scavenging activity. A higher oxygen radical absorbance capacity was determined for BPP from ham (198.35 M TE) and in HWEP from loin (204.07 M TE), Boston butt (192.85 M TE), and ham (201.36 M TE). Carnosine content of BPP and HWEP from loin and were determined to be 106.68 and 117.77 mg/g on a dry basis, respectively. The anserine content of BPP (5.26 mg/g, dry basis) and HWEP (6.79 mg/g, dry basis) of shoulder ham exhibited the highest value as compared to the extracts from the other meat cuts. The viability of RAW 264.7 cells was increased with increasing HWEP from loin and ham treatment. In addition, the expression of IL-6 and TNF-α was significantly reduced by HWEP from loin and ham, in a dose dependent manner. These results suggested that boiled pork and hot water extract of pork have antioxidative and cytokine inhibitory effects.
Collapse
Affiliation(s)
- Juae Gil
- Animal Products and Food Science Program, Kangwon National University, Chuncheon 24341, Korea
| | - Dongwook Kim
- Animal Products and Food Science Program, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ki Yoon
- Korea Institute for Animal Products Quality Evaluation, KAPE, Sejong 30100, Korea
| | - Jun-Sang Ham
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Aera Jang
- Animal Products and Food Science Program, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
28
|
Habermeyer M, Roth A, Guth S, Diel P, Engel KH, Epe B, Fürst P, Heinz V, Humpf HU, Joost HG, Knorr D, de Kok T, Kulling S, Lampen A, Marko D, Rechkemmer G, Rietjens I, Stadler RH, Vieths S, Vogel R, Steinberg P, Eisenbrand G. Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Mol Nutr Food Res 2014; 59:106-28. [PMID: 25164923 DOI: 10.1002/mnfr.201400286] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/15/2022]
Abstract
Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However, their relevance for human health has not been adequately explored up to now. Nitrate and nitrite are per se not carcinogenic, but under conditions that result in endogenous nitrosation, it cannot be excluded that ingested nitrate and nitrite may lead to an increased cancer risk and may probably be carcinogenic to humans. In this review, the known beneficial and detrimental health effects related to dietary nitrate/nitrite intake are described and the identified gaps in knowledge as well as the research needs required to perform a reliable benefit/risk assessment in terms of long-term human health consequences due to dietary nitrate/nitrite intake are presented.
Collapse
Affiliation(s)
- Michael Habermeyer
- Department of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany**
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shah G, Zhang G, Chen F, Cao Y, Kalyanaraman B, See WA. iNOS expression and NO production contribute to the direct effects of BCG on urothelial carcinoma cell biology. Urol Oncol 2013; 32:45.e1-9. [PMID: 24054867 DOI: 10.1016/j.urolonc.2013.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Evidence suggests that oxidative stress occurring as a consequence of inducible nitric oxide synthase/nitric oxide (iNOS/NO) contributes to the biologic effects of bacille Calmette-Guérin (BCG). Objective of this study is to examine iNOS expression, NO production, and the biologic effect of NO on established intermediate end points for the human urothelial carcinoma cell response to BCG. MATERIALS AND METHODS Quantitative reverse transcriptase-polymerase chain reaction and real-time measurement of NO was used to assess iNOS and NO production, respectively, in 2 human urothelial carcinoma (UC) cell lines, in response to BCG. The effect of blocking NO production using the specific iNOS inhibitor 1400W was determined for multiple intermediate end points characterizing BCG's direct effects on tumor cell biology. Activation of nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 signaling pathways, transactivation of genes, including p21, CD54, IL6, IL8, CXCL1, CXCL3, CCL20, and cytotoxicity, as measured by vital dye exclusion, lactate dehydrogenase release, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were measured in response to BCG with and without iNOS inhibition. RESULTS Exposure of UC cells to BCG significantly increased both iNOS expression and NO production. Inhibition of iNOS activity with 1400W significantly inhibited BCG's direct biologic effect on UC cells for all of the end points evaluated. CONCLUSIONS iNOS expression, NO production, and the associated oxidative stress play a central role in the response of UC cells to BCG exposure. Manipulation of oxidative stress may afford an opportunity to enhance the antitumor effects of BCG.
Collapse
Affiliation(s)
- Gopitkumar Shah
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI
| | - Guangjian Zhang
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI
| | - Fanghong Chen
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI
| | - Yanli Cao
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI
| | - Balaraman Kalyanaraman
- Department of Biophysics and the Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - William A See
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
30
|
|
31
|
Brieger A, Rink L, Haase H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. THE JOURNAL OF IMMUNOLOGY 2013; 191:1808-17. [PMID: 23863901 DOI: 10.4049/jimmunol.1301261] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc signals are utilized by several immune cell receptors. One is TLR4, which causes an increase of free zinc ions (Zn(2+)) that is required for the MyD88-dependent expression of inflammatory cytokines. This study investigates the role of Zn(2+) on Toll/IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent signals, the other major intracellular pathway activated by TLR4. Chelation of Zn(2+) with the membrane-permeable chelator N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine augmented TLR4-mediated production of IFN-β and subsequent synthesis of inducible NO synthase and production of NO. The effect is based on Zn(2+) acting as a negative regulator of the TRIF pathway via reducing IFN regulatory factor 3 activation. This was also observed with TLR3, the only TLR that signals exclusively via TRIF, but not MyD88, and does not trigger a zinc signal. In contrast, IFN-γ-induced NO production was unaffected by N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine. Taken together, Zn(2+) is specifically involved in TLR signaling, where it differentially regulates MyD88 and TRIF signaling via a zinc signal or via basal Zn(2+) levels, respectively.
Collapse
Affiliation(s)
- Anne Brieger
- Institute of Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | | |
Collapse
|
32
|
Opländer C, Suschek CV. The role of photolabile dermal nitric oxide derivates in ultraviolet radiation (UVR)-induced cell death. Int J Mol Sci 2012; 14:191-204. [PMID: 23344028 PMCID: PMC3565258 DOI: 10.3390/ijms14010191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 01/22/2023] Open
Abstract
Human skin is exposed to solar ultraviolet radiation comprising UVB (280–315 nm) and UVA (315–400 nm) on a daily basis. Within the last two decades, the molecular and cellular response to UVA/UVB and the possible effects on human health have been investigated extensively. It is generally accepted that the mutagenic and carcinogenic properties of UVB is due to the direct interaction with DNA. On the other hand, by interaction with non-DNA chromophores as endogenous photosensitizers, UVA induces formation of reactive oxygen species (ROS), which play a pivotal role as mediators of UVA-induced injuries in human skin. This review gives a short overview about relevant findings concerning the molecular mechanisms underlying UVA/UVB-induced cell death. Furthermore, we will highlight the potential role of cutaneous antioxidants and photolabile nitric oxide derivates (NODs) in skin physiology. UVA-induced decomposition of the NODs, like nitrite, leads not only to non-enzymatic formation of nitric oxide (NO), but also to toxic reactive nitrogen species (RNS), like peroxynitrite. Whereas under antioxidative conditions the generation of protective amounts of NO is favored, under oxidative conditions, less injurious reactive nitrogen species are generated, which may enhance UVA-induced cell death.
Collapse
Affiliation(s)
- Christian Opländer
- Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-241-80-35271; Fax: +49-241-80-82448
| | - Christoph V. Suschek
- Department of Trauma and Hand Surgery, Medical Faculty of the Heinrich-Heine-University, 40225 Düsseldorf, Germany; E-Mail:
| |
Collapse
|
33
|
Shurtleff AC, Warren TK, Bavari S. Nonhuman primates as models for the discovery and development of ebolavirus therapeutics. Expert Opin Drug Discov 2012; 6:233-50. [PMID: 22647202 DOI: 10.1517/17460441.2011.554815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ebolaviruses are human pathogenic Category A priority pathogens for which no vaccines or therapeutics are currently licensed; however, several therapeutic agents have shown promising efficacy in nonhuman primate models of infection and are potential candidates for use in humans. Demonstration of efficacy in nonhuman primate models of ebolavirus infection will probably be central to the development and eventual licensure of ebolavirus medical countermeasures given the ethical and feasibility constraints of human efficacy assessments. AREAS COVERED The authors describe ebolavirus hemorrhagic fever (EHF), with an emphasis on comparing human and nonhuman primate pathophysiology. Published data examining human and animal clinical disease parameters, histopathological findings, and immune responses in fatal and nonfatal cases are synthesized and evaluated. Importantly, the authors also introduce and describe the FDA Animal Efficacy Rule as well as recent advances in antiviral drug development strategies for the treatment of EHF. EXPERT OPINION Well-characterized models of ebolavirus infection are currently under development and scrutiny as to their accuracy and utility for modeling fatal infection in humans. The advanced development and eventual licensure of therapeutic agents will require demonstration that mechanisms conferring protection in nonhuman primate models of infection are predictive of protective responses in humans.
Collapse
Affiliation(s)
- Amy C Shurtleff
- US Army Medical Research Institute of Infectious Diseases, Integrated Toxicology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA +1 301 619 4246 ; +1 541 754 3545 ;
| | | | | |
Collapse
|
34
|
Assis L, Moretti AIS, Abrahão TB, Cury V, Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 2012; 44:726-35. [PMID: 23001637 DOI: 10.1002/lsm.22077] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. MATERIAL AND METHODS Sixty Wistar rats were randomly divided into three groups (n = 20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808 nm, tip area of 0.00785 cm(2) , power 30 mW, application time 47 seconds, fluence 180 J/cm(2) ; 3.8 mW/cm(2) ; and total energy 1.4 J). The animals were sacrificed on the fourth day after injury. RESULTS LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-kβ and COX-2 and by TNF-α and IL-1β concentration. CONCLUSION These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle.
Collapse
Affiliation(s)
- Lívia Assis
- Laboratory of Electrothermophototherapy, Department of Phisiotherapy, University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Correa-Costa M, Landgraf MA, Cavanal MF, Semedo P, Vieira DA, De Marco DT, Hirata AE, Câmara NO, Gil FZ. Inflammatory milieu as an early marker of kidney injury in offspring rats from diabetic mothers. Eur J Pharmacol 2012; 689:233-40. [DOI: 10.1016/j.ejphar.2012.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/29/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022]
|
36
|
Long SH, Yu ZQ, Shuai L, Guo YL, Duan DL, Xu XY, Li XD. The hypoglycemic effect of the kelp on diabetes mellitus model induced by alloxan in rats. Int J Mol Sci 2012; 13:3354-3365. [PMID: 22489155 PMCID: PMC3317716 DOI: 10.3390/ijms13033354] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 11/23/2022] Open
Abstract
Hypoglycemic effects and the use of kelp in diabetes mellitus (DM) model rats induced by alloxan were investigated. Sixty healthy male rats were used to establish DM models by injecting alloxan intraperitoneally. Kelp powder was added to the general forage for the rats. The levels of fasting blood glucose (FBG) were determined by an automatic blood glucose device. Electrochemiluminescence immunoassay was applied to determine the serum levels of insulin. The serum levels of malondialdehyde (MDA) were measured by thiobarbituric acid assay and nitric oxide (NO) by nitrate reductase assay. The activities of superoxide dismutase (SOD) were determined by xanthinoxidase assay and glutathione peroxidase (GSH-Px) by chemical colorimetry. The shape and structure of islet cells were observed with Hematine-Eosin staining, and the expression of superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) in islet cells were detected by immunohistochemical assay. The results showed that the serum levels of insulin after treatment with kelp powder increased significantly compared to those in the DM-model group, while the FBG in the medium-high dose treated groups decreased significantly compared to those in the DM-model group (P < 0.05). The levels of MDA and NO in the kelp powder groups were lower than those in the DM-model group, while the activities of SOD and GSH-Px were higher than those in the DM-model group, of which a significant difference existed between the medium-high dose treated groups and the DM-model group (P < 0.05). The shape and structure of islet cells improved with the up-expressing SOD and down-expressing iNOS in the medium-high dose treated groups compared to those in the DM-model group (P < 0.05). There were no significant differences between the medium and high dose treated groups, all above indexes (P > 0.05). It is suggested that kelp might aid recovery of the the islet cell secreting function and reduce the level of FBG by an antioxidant effect.
Collapse
Affiliation(s)
- Shao-Hua Long
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - Zhu-Qin Yu
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - Li Shuai
- School of Chemistry, Chemical Engineering and Environmental Sciences, Qingdao University, Qingdao Shandong 266071, China; E-Mail:
| | - Yun-Liang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - De-Lin Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin-Ying Xu
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - Xiao-Dan Li
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| |
Collapse
|
37
|
Opländer C, Volkmar CM, Paunel-Görgülü A, Fritsch T, van Faassen EE, Mürtz M, Grieb G, Bozkurt A, Hemmrich K, Windolf J, Suschek CV. Dermal application of nitric oxide releasing acidified nitrite-containing liniments significantly reduces blood pressure in humans. Nitric Oxide 2012; 26:132-40. [DOI: 10.1016/j.niox.2012.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/01/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
|
38
|
Pehlivanoglu B, Bayrak S, Gurel EI, Balkanci ZD. Effect of gender and menstrual cycle on immune system response to acute mental stress: apoptosis as a mediator. Neuroimmunomodulation 2012; 19:25-32. [PMID: 22067619 DOI: 10.1159/000327993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/01/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND/AIMS We aimed to explore the immunological outcomes of short-term mental stress in apoptosis in peripheral lymphocytes and variations by gender and hormonal status of the individuals together with possible mediators of this interaction. METHODS Acute mental stress (computerized Stroop color-word interference and cold pressor tests) was applied to men (n = 17) and women (n = 16, in both follicular and luteal phases). Heart rate and blood pressure were monitored throughout the test and after the test until baseline values were recorded. Blood samples were drawn for measuring cortisol and nitric oxide (NO) levels and flow-cytometric cell counting before and after the test. RESULTS Activation of the stress system was ascertained by increased heart rate, blood pressure and serum cortisol levels after the test. Relative to baseline values, acute mental stress altered the distribution of T and natural killer cells. There was a significant decrease in T helper/T cytotoxic-suppressor cell ratio and an increase in apoptotic T helper cell percentage irrespective of gender or menstrual cycle phase. An increased number of natural killer cells was detected in women, whereas it was decreased in men. After stress induction, serum NO levels remained the same in women and increased in men. Although a correlation was not found between immune system changes and NO levels, glucocorticoids seem to have a role in the observed differences. CONCLUSION Acute mental stress triggers apoptotic T helper cell loss which was associated with stress system activation, and sex steroids affect the pattern of stress-related immune cell distribution.
Collapse
Affiliation(s)
- Bilge Pehlivanoglu
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara, Turkey. pbilge @ hacettepe.edu.tr
| | | | | | | |
Collapse
|
39
|
Romano G, Costantini M, Buttino I, Ianora A, Palumbo A. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2011; 6:e25980. [PMID: 22022485 PMCID: PMC3191173 DOI: 10.1371/journal.pone.0025980] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.
Collapse
Affiliation(s)
- Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Isabella Buttino
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
40
|
Xiong M, Lai H, He Q, Wang J. Astragaloside IV attenuates impulse noise-induced trauma in guinea pig. Acta Otolaryngol 2011; 131:809-16. [PMID: 21526907 DOI: 10.3109/00016489.2011.568524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
CONCLUSION These results suggest that the beneficial effect of astragaloside IV on impulse noise-induced hearing loss may be due to its ability to inhibit inducible nitric oxide synthase (iNOS) and prevent the formation of reactive nitrogen species (RNS). OBJECTIVE Astragaloside IV is the major active constituent of Astragalus membranaceus, which has been widely used for the treatment of diseases in China due to its antioxidant properties. iNOS and RNS are involved in damage induced by impulse noise trauma. The purpose of the present study was to investigate if astragaloside IV has the potential to reduce cochlear damage from impulse noise. METHODS Guinea pigs in the experimental group were administered astragaloside IV intragastrically. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) at click and tone bursts of 8, 16 and 32 kHz, 72 h before and after exposure to impulse noise. iNOS and nitrotyrosine were determined immunohistochemically. Hair cell damage was analyzed by scanning electron microscopy. RESULTS Astragaloside IV significantly reduced ABR deficits, reduced hair cell damage, and decreased the expression of iNOS and RNS formation.
Collapse
Affiliation(s)
- Min Xiong
- Department of Otolaryngology, General Hospital of PLA Guangzhou Command, Liu Hua Road 111, Guangzhou, China.
| | | | | | | |
Collapse
|
41
|
Kitaura H, Fujimura Y, Yoshimatsu M, Kohara H, Morita Y, Aonuma T, Fukumoto E, Masuyama R, Yoshida N, Takano-Yamamoto T. IL-12- and IL-18-mediated, nitric oxide-induced apoptosis in TNF-α-mediated osteoclastogenesis of bone marrow cells. Calcif Tissue Int 2011; 89:65-73. [PMID: 21611811 DOI: 10.1007/s00223-011-9494-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 04/19/2011] [Indexed: 01/05/2023]
Abstract
TNF-α has been recognized as an important factor for osteoclastogenesis and plays an important role in bone resorption under pathological conditions. IL-12 and IL-18, which are T-cell mediators, are also important inflammatory cytokines. We have reported that IL-12 and IL-18 induce apoptosis in bone marrow cells treated with TNF-α in vitro and that osteoclastogenesis is inhibited by the interaction of TNF-α-induced Fas and the IL-12-induced Fas ligand (FasL). However, the anti-FasL antibody could not completely inhibit apoptosis. Therefore, it is possible that IL-12 and IL-18 may also trigger some other apoptotic mechanisms. Nitric oxide (NO) may act as a mediator of the apoptotic effect. In this study, we examined whether NO causes the IL-12- and IL-18-induced apoptosis of bone marrow cells in TNF-α-mediated osteoclast formation. We found that NO production was induced in bone marrow cells cultured with IL-12 and IL-18 in the presence of TNF-α. When bone marrow cells were cultured with TNF-α, osteoclasts were formed. In contrast, when bone marrow cells were cultured with both TNF-α and IL-12 or IL-18, the adherent cells were induced to undergo apoptosis. Apoptosis was partially inhibited when bone marrow cells were treated with NO synthase inhibitors. Furthermore, IL-12 and IL-18 synergistically induced cell death and upregulated NO production in the presence of TNF-α. These results indicate that the simultaneous effects of TNF-α and IL-12 or IL-18 on bone marrow cells induce apoptosis and that apoptosis is induced by the production of NO.
Collapse
Affiliation(s)
- Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
González R, Cruz A, Ferrín G, López-Cillero P, Fernández-Rodríguez R, Briceño J, Gómez MA, Rufián S, Mata MDL, Martínez-Ruiz A, Marin JJG, Muntané J. Nitric oxide mimics transcriptional and post-translational regulation during α-tocopherol cytoprotection against glycochenodeoxycholate-induced cell death in hepatocytes. J Hepatol 2011; 55:133-44. [PMID: 21145864 DOI: 10.1016/j.jhep.2010.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Reactive oxygen species (ROS) and nitric oxide (NO) exert a relevant role during bile acid-induced hepatotoxicity. Whether α-Tocopherol regulates oxidative and nitrosative stress, bile acid transporter expression and their NO-dependent post-translational modifications, and cell death were assessed in vitro and in vivo. METHODS α-Tocopherol and/or NO donors (DETA-NONOate or CSNO, and V-PYRRO/NO) were administered to glycochenodeoxycholic acid (GCDCA)-treated cultured human hepatocytes or to bile duct obstructed rats. Cell injury, superoxide anion (O⁻₂) production, as well as inducible nitric oxide synthase (NOS-2), cytochrome P4507A1 (CYP7A1), heme oxygenase-1, (HO-1) and bile acid transporter expression were determined. Cysteine S-nitrosylation and tyrosine nitration of Na(+)-taurocholate co-transporting polypeptide (NTCP), as well as taurocholic acid (TC) uptake were also evaluated. RESULTS GCDCA-induced cell death was associated with increased (O⁻₂) production, NTCP and HO-1 expression, and with a reduction of CYP7A1 and NOS-2 expression. α-Tocopherol reduced cell death, (O⁻₂) production, CYP7A1, NTCP, and HO-1 expression, as well as increased NOS-2 expression and NO production in GCDCA-treated hepatocytes. α-Tocopherol and NO donors increased NTCP cysteine S-nitrosylation and tyrosine nitration, and reduced TC uptake in hepatocytes. α-Tocopherol and V-PYRRO/NO reduced liver injury and NTCP expression in obstructed rats. CONCLUSIONS The regulation of CYP7A1, NTCP, and HO-1 expression may be relevant for the cytoprotective properties of α-Tocopherol and NO against mitochondrial dysfunction, oxidative stress and cell death in GCDCA-treated hepatocytes. The regulation of NO-dependent post-translational modifications of NTCP by α-Tocopherol and NO donors reduces the uptake of toxic bile acids by hepatocytes.
Collapse
Affiliation(s)
- Raúl González
- Instituto Maimónides para la Investigación Biomédica de Córdoba, Reina Sofia University Hospital, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 2011; 14:689-724. [PMID: 20649471 DOI: 10.1089/ars.2009.2984] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
44
|
Hamsa TP, Kuttan G. Ipomoea obscura (L.) enhances the functions of immunological effector cells, inhibits proinflammatory cytokines and nitric oxide production by LPS induced macrophages. Immunopharmacol Immunotoxicol 2010; 31:222-9. [PMID: 18798043 DOI: 10.1080/08923970802382227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most of the synthetic chemotherapeutic agents available today are immunosuppressant, cytotoxic and exerts variety of side effects. Botanical based immunomodulators are often employed as supportive or adjuvant therapy to overcome the undesired effects of cytotoxic chemotherapeutic agents and to restore normal health. The methanolic extract of traditionally important medicinal plant Ipomoea obscura exhibited immunomodulatory activity in BALB/c mice. Intraperitoneal administration of five doses of the extract (10 mg/kg body wt) was found to enhance the total WBC count (13912 cells/mm(3)) on the 12(th) day, bone marrow cellularity (28.9 x 10(6)cells/femur) and number of alpha-esterase positive cells (1246 cells/4000 cells). Treatment with the extract along with the antigen, sheep red blood cells (SRBC), produced an enhancement in the circulating antibody titer and the number of plaque forming cells (PFC) in the spleen. Maximum number of PFC (267.6 PFC/10(6) spleen cells) was obtained on the 6(th) day. At the same time administration of Ipomoea obscura extract significantly reduced the elevated levels of proinflammatory cytokines and nitric oxide production by lipopolysaccharide stimulated macrophages. These results indicate the immunomodulatory activity of the alcoholic extract of Ipomoea obscura.
Collapse
Affiliation(s)
- T P Hamsa
- Amala Cancer Research Centre, Amala Nagar, Thrissur, 680555, Kerala State, India
| | | |
Collapse
|
45
|
Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG. The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 2010; 120:2156-70. [PMID: 20501948 PMCID: PMC2877928 DOI: 10.1172/jci38924] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/10/2010] [Indexed: 12/15/2022] Open
Abstract
In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to beta cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent beta cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.
Collapse
Affiliation(s)
- Bernhard Maier
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takeshi Ogihara
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony P. Trace
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sarah A. Tersey
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Reiesha D. Robbins
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Swarup K. Chakrabarti
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Craig S. Nunemaker
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natalie D. Stull
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Catherine A. Taylor
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John E. Thompson
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard S. Dondero
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eli C. Lewis
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Charles A. Dinarello
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jerry L. Nadler
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghavendra G. Mirmira
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
46
|
Kim J, Kim CS, Sohn E, Kim H, Jeong IH, Kim JS. Lens epithelial cell apoptosis initiates diabetic cataractogenesis in the Zucker diabetic fatty rat. Graefes Arch Clin Exp Ophthalmol 2010; 248:811-8. [PMID: 20162295 DOI: 10.1007/s00417-010-1313-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/17/2010] [Accepted: 01/18/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It has been suggested that damage of lens epithelial cell (LEC) may play an important role in cataract formation. Nitric oxide is involved in cataract development. Here, we investigated the relationship between LEC damage and iNOS expression in the Zucker diabetic fatty (ZDF) rat. METHODS At 21 weeks of age, the eyes were enucleated and the lens opacity was then examined. Apoptosis were detected by TUNEL assay, and the expression of iNOS and NF-kappaB activation were studied by immunohistochemistry and southwestern histochemistry respectively. RESULTS In 21-week-old male ZDF rats, cataract was developed, TUNEL-positive LECs were markedly increased, and the expression levels of iNOS mRNA and protein were significantly upregulated. The expression pattern of iNOS was closely correlated with apoptotic change of LECs. In addition, advanced glycation end products (AGEs) were accumulated in cytoplasm of LECs. Activated NF-kappaB was mainly detected in nucleus of LECs. CONCLUSIONS The higher expressions of AGEs, NF-kappaB and iNOS in LECs of diabetic rats suggest that these factors are involved in apoptosis of LEC alterations related to diabetic cataract.
Collapse
Affiliation(s)
- Junghyun Kim
- Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine, 483 Exporo, Yuseong-gu, Daejeon, 305-811, South Korea.
| | | | | | | | | | | |
Collapse
|
47
|
Wu M, Tsirka SE. Endothelial NOS-deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis. Glia 2009; 57:1204-15. [PMID: 19170181 PMCID: PMC2706940 DOI: 10.1002/glia.20842] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.
Collapse
Affiliation(s)
- Muzhou Wu
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
- Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
- Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
48
|
Eleftherianos I, Felföldi G, ffrench-Constant RH, Reynolds SE. Induced nitric oxide synthesis in the gut of Manduca sexta protects against oral infection by the bacterial pathogen Photorhabdus luminescens. INSECT MOLECULAR BIOLOGY 2009; 18:507-16. [PMID: 19538546 DOI: 10.1111/j.1365-2583.2009.00899.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Injecting the insect pathogenic bacterium Photorhabdus luminescens into the blood system of the model lepidopteran insect Manduca sexta induces nitric oxide synthase (NOS) expression in the fat body and blood cells (haemocytes), whereas following oral ingestion of bacteria NOS expression is limited to the gut. We used RNA interference to knock-down expression of NOS throughout the insect. Preventing NOS induction in this way adversely affected the survival of orally infected insects and caused a significant increase in the number of bacteria crossing into the haemolymph. By contrast, knock-down of NOS had no effect on the mortality rate of insects infected with P. luminescens by injection. Pharmacological inhibition of NOS decreased both nitric oxide (NO) levels in the gut wall and survival of orally infected insects, whereas elevation of gut wall NO using an NO donor increased survival of NOS silenced caterpillars. Together, our results imply that induced synthesis of NO is important in mediating insect immune defence against the pathogen by inhibiting transfer of bacteria across the gut wall.
Collapse
Affiliation(s)
- I Eleftherianos
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
49
|
Zhang D, Shen J, Wang C, Zhang X, Chen J. GSH-dependent iNOS and HO-1 mediated apoptosis of human Jurkat cells induced by nickel(II). ENVIRONMENTAL TOXICOLOGY 2009; 24:404-414. [PMID: 18830972 DOI: 10.1002/tox.20440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molecular mechanisms by which nickel compounds cause immune cytotoxicity are far from understood. Our preliminary data suggested that nickel(II) induced apoptosis in Jurkat cells by mitochondrial pathway, specifically via mitochondrial membrane potential dissipation and antiapoptotic gene bcl-2 down-regulation. The main goal of this study was to further investigate the toxicity of nickel, especially the induction of reactive oxygen species (ROS) on immune cells, which finally induced apoptosis. Nickel was found to induce glutathione (GSH) depletion in a dose- and time-dependent manner. When Jurkat cells were preincubated with antioxidant N-acetylcysteine (NAC), apoptosis was inhibited distinctly, which suggested that ROS played an initial role in nickel immune toxicity. Heme oxygenase-1 (HO-1) and Nitric oxide (NO) which may play an important role in regulatory and protective processes in cells were assayed upon nickel treatment. A significant increase in HO-1 mRNA levels was detected in nickel treated cells. We confirmed that reduction of Nitrate levels in Jurkat cells was due to down-regulation of inducible nitric oxide synthase (iNOS), not endothelial nitric oxide synthase (eNOS). Expression changes of HO-1 and iNOS were markedly blocked when Jurkat cells were preincubated with NAC, suggesting that ROS resulted in HO-1 and iNOS dysfunction in Jurkat cells. We supposed that the immune toxicity of nickel(II) was mainly due to GSH depletion and finally led to apoptosis, probably via changing the expression levels of HO-1 and iNOS in human T lymphocytes.
Collapse
|
50
|
Lemaire G, Guittet O, Vesin MF, Lepoivre M, Cottet MH. Glutathione depletion reveals impairment of antigen processing and inhibition of cathepsin activity by nitric oxide in antigen-presenting cells. Mol Immunol 2009; 46:1100-8. [DOI: 10.1016/j.molimm.2008.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/14/2008] [Indexed: 01/26/2023]
|