1
|
Liu S, Ma J, Zhang L, Yang Y, Han Z, Tian L. Circulating leptin levels in thyroid dysfunction: a systematic review and meta-analysis. BMC Endocr Disord 2025; 25:140. [PMID: 40481466 PMCID: PMC12142830 DOI: 10.1186/s12902-025-01943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/17/2025] [Indexed: 06/11/2025] Open
Abstract
PURPOSE Leptin is an important regulator of energy homeostasis, analogous to thyroid hormone (TH). The purpose of this study was to investigate circulating leptin levels in thyroid dysfunction (TD) patients and the role of TH levels. METHODS The electronic databases PubMed, Embase, Cochrane Library, and Web of Science were independently searched by two researchers, from inception until February 3, 2024, and updated on February 15, 2025. Pooled standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated by the random effects model. RESULTS Thirty-eight studies reported circulating leptin levels in TD and control with euthyroidism, 4295 subjects were included in total, of which 1277 were hypothyroidism, 540 were hyperthyroidism, and 2478 were control. Compared to euthyroidism, leptin levels were significantly higher in hypothyroidism, and not significantly altered in hyperthyroidism (SMD [95%CI] = 0.71 [0.38, 1.04] and -0.03 [-0.57, 0.51], respectively). The subgroup analysis indicated that, compared to euthyroidism, leptin levels were significantly higher in subjects regardless of overt and subclinical hypothyroidism (SMD [95%CI] = 0.76 [0.25, 1.26] and 0.41 [0.11, 0.70], respectively), and not significantly different in overt hyperthyroidism (SMD [95%CI] = -0.14 [-0.74, 0.45]). Furthermore, when compared to age-, gender-, and body mass index (BMI)-matched euthyroidism, leptin levels were significantly higher in hypothyroidism and had no significant difference in hyperthyroidism (SMD [95%CI] = 0.66 [0.24, 1.07] and -0.43 [-1.13, 0.27], respectively). A total of 16 studies analyzed the correlations between leptin levels and TH levels in TD, 488 were hypothyroidism and 206 were hyperthyroidism. Following correlation analysis, leptin levels displayed a positive correlation with thyroid-stimulating hormone (TSH) levels (r = 0.19) and a negative correlation with triiodothyronine (T3) levels (r = -0.40) in TD. CONCLUSION Compared to euthyroidism, circulating leptin levels were significantly higher in hypothyroidism, and not significantly altered in hyperthyroidism. Besides, leptin levels in TD may be directly regulated by TSH and T3 levels, independent of BMI. TRIAL REGISTRATION CRD42024561055.
Collapse
Affiliation(s)
- Shanshan Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Jun Ma
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Leyuan Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Yanlong Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, Gansu, 730000, China
| | - Limin Tian
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610000, China.
| |
Collapse
|
2
|
Blasco-Roset A, Quesada-López T, Mestres-Arenas A, Villarroya J, Godoy-Nieto FJ, Cereijo R, Rupérez C, Neess D, Færgeman NJ, Giralt M, Planavila A, Villarroya F. Acyl CoA-binding protein in brown adipose tissue acts as a negative regulator of adaptive thermogenesis. Mol Metab 2025; 96:102153. [PMID: 40220929 PMCID: PMC12050000 DOI: 10.1016/j.molmet.2025.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE Defective activity of brown adipose tissue (BAT) is linked to obesity and cardiometabolic diseases. While much is known regarding the biological signals that trigger BAT thermogenesis, relatively little is known about the repressors that may impair BAT function in physiological and pathological settings. Acyl CoA-binding protein (ACBP; also known as diazepam binding inhibitor, DBI) has intracellular functions related to lipid metabolism and can be secreted to act as a circulating regulatory factor that affects multiple organs. Our objective was to determine the role of ACBP in BAT function. METHODS Experimental models based on the targeted inactivation of the Acbp gene in brown adipocytes, both in vitro and in vivo, as well as brown adipocytes treated with recombinant ACBP, were developed and analyzed for transcriptomic and metabolic changes. RESULTS ACBP expression and release in BAT are suppressed by noradrenergic cAMP-dependent signals that stimulate thermogenesis. This regulation occurs through gene expression modulation and autophagy-related processes. Mice with targeted ablation of Acbp in brown adipocytes exhibit enhanced BAT thermogenic activity and protection against high-fat diet-induced obesity and glucose intolerance; this is associated with BAT transcriptome changes, including upregulation of BAT thermogenesis-related genes. Treatment of brown adipocytes with exogenous ACBP suppresses oxidative activity, lipolysis, and thermogenesis-related gene expression. ACBP treatment inhibits the noradrenergic-induced phosphorylation of p38 MAP-kinase and CREB, which are major intracellular mediators of brown adipocyte thermogenesis. CONCLUSIONS The ACBP system acts as a crucial auto regulatory repressor of BAT thermogenesis that responds reciprocally to the noradrenergic induction of BAT activity.
Collapse
Affiliation(s)
- Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Barcelona, Spain; Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Alberto Mestres-Arenas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Francisco J Godoy-Nieto
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of South Denmark, DK-5230, Odense, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of South Denmark, DK-5230, Odense, Denmark
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Castro-Rodríguez LI, Velez-delValle C, Hernández-Mosqueira CP, Kuri-Harcuch W. Spot-14 and its paralog Spot-14R regulate expression of metabolic and thermogenic pathway genes in murine brown and beige adipocytes. FEBS Lett 2025. [PMID: 40317955 DOI: 10.1002/1873-3468.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/24/2025] [Accepted: 03/07/2025] [Indexed: 05/07/2025]
Abstract
Spot 14 (S14), encoded by Thrsp, is a thyroid hormone-responsive transcriptional activator that regulates lipogenesis, though its mechanisms remain unclear. We aimed to study the role of S14 on gene expression in adipocytes. We analyzed Thrsp and its paralog Mid1ip1 in brown (EB5), beige (EB7), and white (F442A) adipocytes. Thrsp expression was higher in EB5 and EB7 than in F442A and increased with thyroid hormone T3 in EB5 and EB7 but decreased in F442A. Mid1ip1 expression rose moderately in EB5 and EB7, influencing lipid metabolism genes. Silencing Thrsp upregulated Mid1ip1 in EB7 and reduced thermogenic gene expression in EB5 and EB7. These findings underscore the roles of Thrsp and Mid1ip1 in metabolic and thermogenic pathways, highlighting the responsiveness of S14 to thyroid hormones and nutrient signals. Impact statement This study reveals that Thyroid Hormone-Induced Protein 8 (THRSP), also known as Spot-14, and its paralog Spot-14R, regulate metabolic and thermogenic gene expression differently in brown and beige adipocytes. These findings provide insights into adipocyte metabolism, offering potential targets for obesity and metabolic disorder treatments.
Collapse
Affiliation(s)
| | - Cristina Velez-delValle
- Department of Cell Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | - Walid Kuri-Harcuch
- Department of Cell Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
4
|
Zhang M, Traspov A, Yang J, Zheng M, Kharzinova VR, Ai H, Zinovieva NA, Huang L. Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars. Commun Biol 2025; 8:116. [PMID: 39856249 PMCID: PMC11759952 DOI: 10.1038/s42003-025-07536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China. Demographic analysis revealed the appearance of Russian wild boars in Far East of Asia (RUA) and Europe (RUE) after the last glacial maximum till ~ 10 thousand years ago. Recent gene flow (<100 years) from RUA to RUE reflects human-mediated introductions. Cold-region wild boars exhibit strong selection signatures indicative of genetic adaptation to cold climates. Further pathway and transcriptomic analyses reveal a novel cold resistance mechanism centered on enhanced vitamin A metabolism and catalysis, involving the reuse of UGT2B31 and rhythm regulation by ANGPTL8, RLN3 and ZBTB20. This may compensate for the pig's lack of brown fat/UCP1 thermogenesis. These findings provide new insights into the molecular basis of cold adaptation and improve our understanding of Eurasian wild boar migration history.
Collapse
Affiliation(s)
- Mingpeng Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, P.R. China
| | - Aleksei Traspov
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Jiawen Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Min Zheng
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Veronika R Kharzinova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Huashui Ai
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| | - Natalia A Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
5
|
Chen Q, Wang J, Li K, Luan JQ, Li JM, Wang YT. Irisin in thyroid diseases. Clin Chim Acta 2025; 564:119929. [PMID: 39154700 DOI: 10.1016/j.cca.2024.119929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Irisin, a hormone-like adipo-myokine, has garnered considerable attention in recent years for its potential impact in metabolic diseases. Its physiological effects are similar to those of thyroid hormones, prompting numerous investigations into potential correlations and interactions between irisin and thyroid function through various in vitro and animal experiments. However, existing studies suggest that the relationship between irisin and thyroid diseases is highly complex and multifaceted. In this paper, we have summarized the research results on serum irisin and thyroid function, providing an overview of advancements and constraints in current research on irisin and thyroid hormones. The aim is to offer insights and directions for future clinical trials in this field.
Collapse
Affiliation(s)
- Qi Chen
- Department of outpatient, Shijiazhuang No.8 Retired Cadre Retirement Home of Hebei Military Region, Shijiazhuang 050000, China
| | - Jing Wang
- Department of Cardionephrology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Kang Li
- Department of oncology, hematology and endocrinology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Jun-Qin Luan
- Clinical laboratory, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Jing-Mei Li
- Department of oncology, hematology and endocrinology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China
| | - Ya-Ting Wang
- Department of oncology, hematology and endocrinology, Hospital affiliated to NCO School of Army Military Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
6
|
Jia Z, Wang Z, Pan H, Zhang J, Wang Q, Zhou C, Liu J. Crosstalk between fat tissue and muscle, brain, liver, and heart in obesity: cellular and molecular perspectives. Eur J Med Res 2024; 29:637. [PMID: 39741333 DOI: 10.1186/s40001-024-02176-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
A high-fat diet and physical inactivity are key contributors to obesity, predisposing individuals to various chronic diseases, such as cardiovascular disease and diabetes, which involve multiple organs and tissues. To better understand the role of multi-organ interaction mechanisms in the rising incidence of obesity and its associated chronic conditions, treatment and prevention strategies are being extensively investigated. This review examines the signaling mechanisms between different tissues and organs, with a particular focus on the crosstalk between adipose tissue and the muscle, brain, liver, and heart, and potentially offers new strategies for the treatment and management of obesity and its complications.
Collapse
Affiliation(s)
- Zixuan Jia
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Ziqi Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Huixin Pan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Jing Zhang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Caixia Zhou
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China.
| | - Jun Liu
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Laclaustra M, Alonso-Ventura V, Schipf S, Lou-Bonafonte JM, Dörr M, Trincado-Aznar P, Völzke H, Nauck M, Civeira F, Ittermann T. Higher Parametric Thyroid Feedback Quantile-based Index Is a Predictor of Type 2 Diabetes in a German Population Sample. J Clin Endocrinol Metab 2024; 109:e2205-e2213. [PMID: 38421022 DOI: 10.1210/clinem/dgae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
CONTEXT Type 2 diabetes has been described to be associated with hypothyroidism but we recently found that a decrease in pituitary sensitivity to thyroid hormone is associated with diabetes, obesity, and metabolic syndrome. OBJECTIVE We aimed to assess the longitudinal nature of this association in the population-based Study of Health in Pomerania (SHIP) in Germany. METHODS Among a population-based sample of 4308 participants aged 20 to 79 years, 77% were followed for a period of 5 years. We studied 2542 participants without diabetes or thyroid medication at baseline and complete data in the variables of interest. Data of baseline free thyroxine (fT4) and thyrotropin (TSH) were used to calculate the Parametric Thyroid Feedback Quantile-based Index (PTFQI), which measures whether TSH remains elevated despite fT4 being high. It uses the average population response as reference. PTFQI association with incidence of type 2 diabetes over 5 years was estimated with Poisson regression models adjusted for age, sex, and body mass index (BMI). RESULTS Compared with the first PTFQI quartile, incidence rate ratios for diabetes were 1.54 (95% CI, 0.97-2.46), 1.55 (0.94-2.57), and 1.97 (1.27-3.10) for the upper quartiles (P trend = .004) after adjusting for age and sex. The association remained statistically significant after additionally adjusting for BMI: 1.64 (1.05-2.59) for the fourth vs the first quartile (P trend = .043). CONCLUSION An elevation of the pituitary TSH-inhibition threshold is associated with incident type 2 diabetes independently of BMI. The PTFQI might have clinical potential for prognosis and metabolic status monitoring.
Collapse
Affiliation(s)
- Martin Laclaustra
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Translational Research Unit, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- CIBERCV, 28029 Madrid, Spain
- Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Vanesa Alonso-Ventura
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Cardiology Department, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain
| | - Sabine Schipf
- Institute for Community Medicine, Department SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, 17475 Greifswald, Germany
- DZD (German Center for Diabetes Research), partner site Greifswald, 85764 Oberschleißheim, Germany
| | - Jose Manuel Lou-Bonafonte
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50059 Zaragoza, Spain
- CIBEROBN, 28029 Madrid, Spain
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, 10785 Berlin, Germany
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Pablo Trincado-Aznar
- Endocrinology Department, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Henry Völzke
- Institute for Community Medicine, Department SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, 10785 Berlin, Germany
| | - Matthias Nauck
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Fernando Civeira
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Translational Research Unit, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- CIBERCV, 28029 Madrid, Spain
- Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Till Ittermann
- Institute for Community Medicine, Department SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
8
|
Pingitore A, Gaggini M, Mastorci F, Sabatino L, Cordiviola L, Vassalle C. Metabolic Syndrome, Thyroid Dysfunction, and Cardiovascular Risk: The Triptych of Evil. Int J Mol Sci 2024; 25:10628. [PMID: 39408957 PMCID: PMC11477096 DOI: 10.3390/ijms251910628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The triad formed by thyroid dysfunction, metabolic syndrome (MetS), and cardiovascular (CV) risk forms a network with many connections that aggravates health outcomes. Thyroid hormones (THs) play an important role in glucose and lipid metabolism and hemodynamic regulation at the molecular level. It is noteworthy that a bidirectional association between THs and MetS and their components likely exists as MetS leads to thyroid dysfunction, whereas thyroid alterations may cause a higher incidence of MetS. Thyroid dysfunction increases insulin resistance, the circulating levels of lipids, in particular LDL-C, VLDL-C, and triglycerides, and induces endothelial dysfunction. Furthermore, THs are important regulators of both white and brown adipose tissue. Moreover, the pathophysiological relationship between MetS and TH dysfunction is made even tighter considering that these conditions are usually associated with inflammatory activation and increased oxidative stress. Therefore, the role of THs takes place starting from the molecular level, then manifesting itself at the clinical level, through an increased risk of CV events in the general population as well as in patients with heart failure or acute myocardial infarction. Thus, MetS is frequently associated with thyroid dysfunction, which supports the need to assess thyroid function in this group, and when clinically indicated, to correct it to maintain euthyroidism. However, there are still several critical points to be further investigated both at the molecular and clinical level, in particular considering the need to treat subclinical dysthyroidism in MetS patients.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | - Francesca Mastorci
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | - Laura Sabatino
- Clinical Physiology Institute, CNR, 56124 Pisa, Italy; (M.G.); (F.M.); (L.S.)
| | | | | |
Collapse
|
9
|
Huang L, Guo Z, Huang M, Zeng X, Huang H. Triiodothyronine (T3) promotes browning of white adipose through inhibition of the PI3K/AKT signalling pathway. Sci Rep 2024; 14:20370. [PMID: 39223267 PMCID: PMC11369215 DOI: 10.1038/s41598-024-71591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity arises from an imbalance between energy consumption and energy expenditure, and thyroid hormone levels serve as a determinant of energy expenditure. We conducted experiments at the animal and cellular levels and combined those findings with clinical data to elucidate the role of triiodothyronine (T3) in facilitating the browning of white adipose tissue (WAT) and its underlying mechanism. The results showed (i) the impaired metabolic function of local WAT and the compensatory elevation of systemic thermogenesis in obesity; (ii) T3 treatment of white adipocytes in vitro and local WAT in vivo induced a shift towards a morphologically "brown" phenotype, accompanied by upregulation of mRNA and protein expression of browning-related and mitochondrial function markers, which suggest that T3 intervention promotes the browning of WAT; and (iii) the aforementioned processes could be modulated through inhibition of the PI3K/AKT signalling pathway; however, whether T3 affects the PI3K/AKT signalling pathway by affecting insulin signalling remains to be studied and clarified. The results of our study indicate that T3 treatment promotes browning of WAT through inhibition of the PI3K/AKT signalling pathway; these findings offer novel perspectives regarding the potential of localised therapies for addressing WAT volume in individuals with obesity.
Collapse
Affiliation(s)
- LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - ZhiFeng Guo
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - MingJing Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - XiYing Zeng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
10
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
11
|
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Negroiu CE, Tudorașcu I, Bezna CM, Godeanu S, Diaconu M, Danoiu R, Danoiu S. Beyond the Cold: Activating Brown Adipose Tissue as an Approach to Combat Obesity. J Clin Med 2024; 13:1973. [PMID: 38610736 PMCID: PMC11012454 DOI: 10.3390/jcm13071973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
With a dramatic increase in the number of obese and overweight people, there is a great need for new anti-obesity therapies. With the discovery of the functionality of brown adipose tissue in adults and the observation of beige fat cells among white fat cells, scientists are looking for substances and methods to increase the activity of these cells. We aimed to describe how scientists have concluded that brown adipose tissue is also present and active in adults, to describe where in the human body these deposits of brown adipose tissue are, to summarize the origin of both brown fat cells and beige fat cells, and, last but not least, to list some of the substances and methods classified as BAT promotion agents with their benefits and side effects. We summarized these findings based on the original literature and reviews in the field, emphasizing the discovery, function, and origins of brown adipose tissue, BAT promotion agents, and batokines. Only studies written in English and with a satisfying rating were identified from electronic searches of PubMed.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Iulia Tudorașcu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| | - Cristina Maria Bezna
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| | - Sanziana Godeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marina Diaconu
- Department of Radiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania;
| | - Raluca Danoiu
- Department of Social Sciences and Humanities, University of Craiova, 200585 Craiova, Romania;
| | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| |
Collapse
|
13
|
Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm Sin B 2024; 14:468-491. [PMID: 38322325 PMCID: PMC10840437 DOI: 10.1016/j.apsb.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
Collapse
Affiliation(s)
- Weijun Lun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
14
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
15
|
Petito G, Cioffi F, Magnacca N, de Lange P, Senese R, Lanni A. Adipose Tissue Remodeling in Obesity: An Overview of the Actions of Thyroid Hormones and Their Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16040572. [PMID: 37111329 PMCID: PMC10146771 DOI: 10.3390/ph16040572] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome and obesity have become important health issues of epidemic proportions and are often the cause of related pathologies such as type 2 diabetes (T2DM), hypertension, and cardiovascular disease. Adipose tissues (ATs) are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. An ample body of evidence indicates that in some pathophysiological conditions, the aberrant remodeling of adipose tissue may provoke dysregulation in the production of various adipocytokines and metabolites, thus leading to disorders in metabolic organs. Thyroid hormones (THs) and some of their derivatives, such as 3,5-diiodo-l-thyronine (T2), exert numerous functions in a variety of tissues, including adipose tissues. It is known that they can improve serum lipid profiles and reduce fat accumulation. The thyroid hormone acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein 1 (UCP1) to generate heat. Multitudinous investigations suggest that 3,3',5-triiodothyronine (T3) induces the recruitment of brown adipocytes in white adipose depots, causing the activation of a process known as "browning". Moreover, in vivo studies on adipose tissues show that T2, in addition to activating brown adipose tissue (BAT) thermogenesis, may further promote the browning of white adipose tissue (WAT), and affect adipocyte morphology, tissue vascularization, and the adipose inflammatory state in rats receiving a high-fat diet (HFD). In this review, we summarize the mechanism by which THs and thyroid hormone derivatives mediate adipose tissue activity and remodeling, thus providing noteworthy perspectives on their efficacy as therapeutic agents to counteract such morbidities as obesity, hypercholesterolemia, hypertriglyceridemia, and insulin resistance.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
16
|
Association of high BMI with subclinical hypothyroidism in young, first-episode and drug-naïve patients with major depressive disorder: a large-scale cross-sectional study. Eur Arch Psychiatry Clin Neurosci 2023; 273:183-190. [PMID: 35546358 DOI: 10.1007/s00406-022-01415-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Thyroid dysfunction is known to be associated with obesity, but the reliability of this relationship is easily affected by drug treatment, age, and subclinical hypothyroidism (SCH) with no apparent symptoms. Our research aims to compare obese and overweight BMI ranges with SCH and without SCH in a large sample of young, first-episode and drug-naïve (FEDN) patients with major depressive disorder (MDD), which has received little systemic investigation. A total of 1289 FEDN MDD young outpatients were recruited for this study. Serum thyroid function and lipid level parameters were measured; HAMD and PANSS scales were used to assess patients' depression and positive symptoms. A self-administered questionnaire collected other clinical and demographic data. The prevalence of SCH in FEDN MDD young patients was 58.26%. Compared to patients without SCH, the patients with SCH had a more prolonged illness duration, higher BMI levels, increased prevalence of overweight and obesity, higher HAMD score and PANSS-positive symptom scores, higher levels of TG, TC, LDL-C, and lower levels of HDL-C. Further logistic regression indicated that overweight BMI, obese BMI, illness duration, HAMD score, HDL-C, and TC were significantly associated with SCH. Our results indicate that obesity and overweight may be associated with SCH in young, FEDN MDD patients. The importance of regular thyroid function assessment in young FEDN MDD patients with high BMI should be taken into account.
Collapse
|
17
|
Chinnasamy P, Casimiro I, Riascos-Bernal DF, Venkatesh S, Parikh D, Maira A, Srinivasan A, Zheng W, Tarabra E, Zong H, Jayakumar S, Jeganathan V, Pradan K, Aleman JO, Singh R, Nandi S, Pessin JE, Sibinga NES. Increased adipose catecholamine levels and protection from obesity with loss of Allograft Inflammatory Factor-1. Nat Commun 2023; 14:38. [PMID: 36596796 PMCID: PMC9810600 DOI: 10.1038/s41467-022-35683-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Recent studies implicate macrophages in regulation of thermogenic, sympathetic neuron-mediated norepinephrine (NE) signaling in adipose tissues, but understanding of such non-classical macrophage activities is incomplete. Here we show that male mice lacking the allograft inflammatory factor-1 (AIF1) protein resist high fat diet (HFD)-induced obesity and hyperglycemia. We link this phenotype to higher adipose NE levels that stem from decreased monoamine oxidase A (MAOA) expression and NE clearance by AIF1-deficient macrophages, and find through reciprocal bone marrow transplantation that donor Aif1-/- vs WT genotype confers the obesity phenotype in mice. Interestingly, human sequence variants near the AIF1 locus associate with obesity and diabetes; in adipose samples from participants with obesity, we observe direct correlation of AIF1 and MAOA transcript levels. These findings identify AIF1 as a regulator of MAOA expression in macrophages and catecholamine activity in adipose tissues - limiting energy expenditure and promoting energy storage - and suggest how it might contribute to human obesity.
Collapse
Affiliation(s)
- Prameladevi Chinnasamy
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Isabel Casimiro
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shreeganesh Venkatesh
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dippal Parikh
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alishba Maira
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aparna Srinivasan
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Zheng
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elena Tarabra
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
| | - Haihong Zong
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Venkatesh Jeganathan
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jose O Aleman
- Department of Medicine (Endocrinology), New York University Langone Health, New York, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sayan Nandi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Pessin
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Guo Y, Shi W, Liu Z, Sun X, Wu J, Wu Y. Bisphenol A alternatives continuously contribute to the endocrine disruption in cetaceans. ENVIRONMENT INTERNATIONAL 2023; 171:107679. [PMID: 36493609 DOI: 10.1016/j.envint.2022.107679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The bans on bisphenol A (BPA) have facilitated the widespread use of BPA alternatives and shifted environmental contamination profiles of bisphenols (BPs). However, the continued reports of toxicities of emerging BPA alternatives have raised questions about whether the shifting profiles are contributed to mitigate BPs-mediated endocrine-disruption effects (EDEs). Cetaceans are commonly used as the ideal sentinel species for monitoring marine pollutants of concern and determining potential health effects, but far less is known about BP loads and BPs-mediated EDEs in cetaceans. Here we measured the hepatic concentrations of six BPs in eight stranded cetacean species (n = 41) in the South China Sea, between 2007 and 2020. The large-bodied whales generally showed higher ∑BPs concentrations than the small-bodied dolphins. In Indo-Pacific finless porpoises (Neophocaena phocaenoides) (n = 33), BPA concentrations first increased (2007-2014) and then decreased (2014-2020), while ∑BPAlternatives concentrations increased from 2007 to 2020. It appears that the alternatives gradually replaced BPA, probably due to the BPA-related bans in China. In order to examine the hormone disruption of BPA and its alternatives in finless porpoises, five blubber hormones (cortisol, progesterone, testosterone, triiodothyronine and tetraiodothyronine), which are proven to be validated endocrine biomarkers, were measured in 21 samples. Tetraiodothyronine, testosterone, and cortisol were significantly and positively correlated with BPA and its alternatives, suggesting that the interference of endocrine hormone homeostasis may continue to occur despite the changes of BP profiles in finless porpoises. This is the first investigation of the relationship between hormone and BP concentrations in cetaceans and represents a substantial advance in understanding BPs-mediated endocrine effects on cetaceans.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Wei Shi
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
19
|
Wen X, Ding X, Chang X, Wang J, Wang Q, Liu J, Wang G. Elevated serum Meteorin-like levels in patients with hyperthyroidism. BMC Endocr Disord 2022; 22:304. [PMID: 36476346 PMCID: PMC9727892 DOI: 10.1186/s12902-022-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Meteorin-like (Metrnl) is a newly discovered adipomyokine that regulates systemic energy homeostasis. Both thyroid hormones and Metrnl increase energy expenditure and induce browning of adipose tissue. Thus, the aim of this study was to investigate serum Metrnl levels in hyperthyroid patients and the association of serum Metrnl levels with hyperthyroidism. METHODS The study included 88 patients with newly diagnosed untreated overt hyperthyroidism and 100 age- and sex- matched healthy controls. Serum Metrnl levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. RESULTS Serum Metrnl levels were significantly elevated in patients with hyperthyroidism compared with controls. Linear regression analyses indicated that serum Metrnl levels were independently associated with FT3 (β = 0.324, P = 0.001), FT4 (β = 0.293, P = 0.001), and TSH (β = -0.234, P = 0.006) after full adjustment. Additionally, further logistic regression analyses revealed that the highest Metrnl tertile was significantly associated with hyperthyroidism compared with the lowest tertile (P for trend < 0.001). The relationship remained significant even after adjusting for potential confounders. Meanwhile, each one-unit increase in circulating Metrnl was independently associated with hyperthyroidism (OR 1.021, 95%CI 1.007-1.036, P < 0.01). CONCLUSION Serum Metrnl levels were elevated in patients with hyperthyroidism and were independently associated with hyperthyroidism.
Collapse
Affiliation(s)
- Xiaohui Wen
- Department of Otolaryngology Head & Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoyu Ding
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, NO. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, NO. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Jiaxuan Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, NO. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Qiu Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, NO. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, NO. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, NO. 8, Gongti South Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
20
|
RNAseq Analysis of Brown Adipose Tissue and Thyroid of Newborn Lambs Subjected to Short-Term Cold Exposure Reveals Signs of Early Whitening of Adipose Tissue. Metabolites 2022; 12:metabo12100996. [PMID: 36295898 PMCID: PMC9607389 DOI: 10.3390/metabo12100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
During the early postnatal period, lambs have the ability to thermoregulate body temperature via non-shivering thermogenesis through brown adipose tissue (BAT), which soon after birth begins to transform into white adipose tissue. An RNA seq approach was used to characterize the transcriptome of BAT and thyroid tissue in newborn lambs exposed to cold conditions. Fifteen newborn Romney lambs were selected and divided into three groups: group 1 (n = 3) was a control, and groups 2 and 3 (n = 6 each) were kept indoors for two days at an ambient temperature (20–22 °C) or at a cold temperature (4 °C), respectively. Sequencing was performed using a paired-end strategy through the BGISEQ-500 platform, followed by the identification of differentially expressed genes using DESeq2 and an enrichment analysis by g:Profiler. This study provides an in-depth expression network of the main characters involved in the thermogenesis and fat-whitening mechanisms that take place in the newborn lamb. Data revealed no significant differential expression of key thermogenic factors such as uncoupling protein 1, suggesting that the heat production peak under cold exposure might occur so rapidly and in such an immediate way that it may seem undetectable in BAT by day three of life. Moreover, these changes in expression might indicate the start of the whitening process of the adipose tissue, concluding the non-shivering thermogenesis period.
Collapse
|
21
|
Relationships between Uncoupling Protein Genes UCP1, UCP2 and UCP3 and Irisin Levels in Residents of the Coldest Region of Siberia. Genes (Basel) 2022; 13:genes13091612. [PMID: 36140780 PMCID: PMC9498418 DOI: 10.3390/genes13091612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, it is known that irisin can participate in the processes of thermoregulation and browning of adipose tissue, and, therefore, it is possible that it is involved in the microevolutionary mechanisms of adaptation to a cold. The aim of this study is to investigate the relationship between the uncoupling protein genes (UCP1, UCP2, UCP3) and the irisin levels in the residents of the coldest region of Siberia. The sample consisted of 279 Yakut people (185 females, 94 males, average age 19.8 ± 2.03 years). The females plasma irisin concentration was 8.33 ± 2.74 mcg/mL and the males was 7.76 ± 1.86 mcg/mL. Comparative analysis of irisin levels with the genotypes of six studied SNP-markers in females revealed a significant association of irisin with rs1800849-UCP3. The TT genotype of rs1800849 was associated with elevated levels of irisin (p = 0.01). It was also found that this TT genotype in females was associated with reduced weight and height (p = 0.03). We searched for natural selection signals for the T-allele rs1800849-UCP3; as a result of which, it was found that this allele has a significantly high frequency of distribution in northern (45%, CI: 0.42–0.484) compared with southern Asian populations (28%, CI: 0.244–0.316) (p = 0.01). The results obtained indicate the probable involvement of irisin and the UCP3 gene in thermoregulation, and the spread of its allelic variants is probably related to adaptation to a cold climate.
Collapse
|
22
|
Tews D, Wabitsch M. Brown Adipose Tissue in Children and Its Metabolic Function. Horm Res Paediatr 2022; 95:104-111. [PMID: 34348306 DOI: 10.1159/000518353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To regulate body temperature, mammals possess brown adipose tissue (BAT), which converts significant amounts of chemical energy into heat. Due to its remarkable energy demand, BAT is currently discussed as a target organ to treat obesity and obesity-related disorders. SUMMARY Although BAT is predominantly present in infants and its relative mass declines with age, new findings suggest that BAT has a relevant role in the regulation of energy homeostasis as well as in the regulation of the energy substrates glucose and lipids in older children, adolescents, and adults. In this overview, we will outline basic mechanisms of BAT thermogenesis and the recently described physiological relevance of BAT in metabolism in children and adolescents. KEY MESSAGE The connection of BAT activity with glucose metabolism and insulin sensitivity seems to be evident from recent studies, implicating BAT as an important influencing factor in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
23
|
Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nat Commun 2022; 13:3394. [PMID: 35697700 PMCID: PMC9192766 DOI: 10.1038/s41467-022-31154-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
The thyroid hormone (TH)-controlled recruitment process of brown adipose tissue (BAT) is not fully understood. Here, we show that long-term treatment of T3, the active form of TH, increases the recruitment of thermogenic capacity in interscapular BAT of male mice through hyperplasia by promoting the TH receptor α-mediated adipocyte progenitor cell proliferation. Our single-cell analysis reveals the heterogeneous nature and hierarchical trajectory within adipocyte progenitor cells of interscapular BAT. Further analyses suggest that T3 facilitates cell state transition from a more stem-like state towards a more committed adipogenic state and promotes cell cycle progression towards a mitotic state in adipocyte progenitor cells, through mechanisms involving the action of Myc on glycolysis. Our findings elucidate the mechanisms underlying the TH action in adipocyte progenitors residing in BAT and provide a framework for better understanding of the TH effects on hyperplastic growth and adaptive thermogenesis in BAT depot at a single-cell level. Thyroid hormone (TH) action regulates brown adipose tissue thermogenic capacity through incompletely understood mechanisms. Here the authors report that T3, the active form of TH, increases thermogenic capacity via thyroid hormone receptor α-mediated hyperplasia of brown adipose tissue adipocyte progenitor cells.
Collapse
|
24
|
Scheel AK, Espelage L, Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet-Do They All Affect BAT Activation and WAT Browning in the Same Manner? Int J Mol Sci 2022; 23:ijms23094759. [PMID: 35563150 PMCID: PMC9103087 DOI: 10.3390/ijms23094759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023] Open
Abstract
The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their metabolic rate by utilizing lipids to generate heat via non-shivering thermogenesis, which is dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Non-shivering thermogenesis elevates energy expenditure and promotes a negative energy balance, which may ameliorate metabolic complications of obesity and Type 2 Diabetes Mellitus (T2DM) such as insulin resistance (IR) in skeletal muscle and adipose tissue. Despite the recent advances in pharmacological approaches to reduce obesity and IR by inducing non-shivering thermogenesis in BAT and WAT, the administered pharmacological compounds are often associated with unwanted side effects. Therefore, lifestyle interventions such as exercise, cold exposure, and/or specified dietary regimens present promising anchor points for future disease prevention and treatment of obesity and T2DM. The exact mechanisms where exercise, cold exposure, dietary interventions, and pharmacological treatments converge or rather diverge in their specific impact on BAT activation or WAT browning are difficult to determine. In the past, many reviews have demonstrated the mechanistic principles of exercise- and/or cold-induced BAT activation and WAT browning. In this review, we aim to summarize not only the current state of knowledge on the various mechanistic principles of diverse external stimuli on BAT activation and WAT browning, but also present their translational potential in future clinical applications.
Collapse
Affiliation(s)
- Anna K. Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
- Correspondence: ; Tel./Fax: +49-211-3382-577/430
| |
Collapse
|
25
|
Maric I, Krieger JP, van der Velden P, Börchers S, Asker M, Vujicic M, Wernstedt Asterholm I, Skibicka KP. Sex and Species Differences in the Development of Diet-Induced Obesity and Metabolic Disturbances in Rodents. Front Nutr 2022; 9:828522. [PMID: 35284452 PMCID: PMC8908889 DOI: 10.3389/fnut.2022.828522] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Prevalence and health consequences of obesity differ between men and women. Yet, most preclinical studies investigating the etiology of obesity have, to date, been conducted in male rodents. Notably, diet is a major determinant of obesity, but sex differences in rodent models of diet-induced obesity, and the mechanisms that underlie such differences, are still understudied. Here, we aim to determine whether time course and characteristics of diet-induced obesity differ between sexes in rats and mice, and to investigate the potential causes of the observed divergence. To achieve this, we offered the most commonly tested rodents of both sexes, SD rats and C57BL/6 mice, a free choice of 60 % high-fat diet (HFD) and regular chow; body weight, food intake, fat mass, brown adipose responses, locomotor activity and glucose tolerance were assessed in a similar manner in both species. Our results indicate that overall diet-induced hyperphagia is greater in males but that females display a higher preference for the HFD, irrespective of species. Female rats, compared to males, showed a delay in diet-induced weight gain and less metabolic complications. Although male rats increased brown adipose tissue thermogenesis in response to the HFD challenge, this was not sufficient to counteract increased adiposity. In contrast to rats, female and male mice presented with a dramatic adiposity and impaired glucose tolerance, and a decreased energy expenditure. Female mice showed a 5-fold increase in visceral fat, compared to 2-fold increase seen in male mice. Overall, we found that male and female rodents responded very differently to HFD challenge, and engaged different compensatory energy expenditure mechanisms. In addition, these sex differences are divergent in rats and mice. We conclude that SD rats have a better face validity for the lower prevalence of overweight in women, while C57BL/6 mice may better model the increased prevalence of morbid obesity in women.
Collapse
Affiliation(s)
- Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jean-Philippe Krieger
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pauline van der Velden
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Milica Vujicic
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
26
|
Tawfik I, Gottschalk B, Jarc A, Bresilla D, Rost R, Obermayer-Pietsch B, Graier WF, Madreiter-Sokolowski CT. T3-induced enhancement of mitochondrial Ca 2+ uptake as a boost for mitochondrial metabolism. Free Radic Biol Med 2022; 181:197-208. [PMID: 35091061 DOI: 10.1016/j.freeradbiomed.2022.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Thyroid hormones act as master regulators of cellular metabolism. Thereby, the biologically active triiodothyronine (T3) induces the expression of genes to enhance mitochondrial metabolic function. Notably, Ca2+ ions are necessary for the activity of dehydrogenases of the tricarboxylic acid cycle and, thus, mitochondrial respiration. We investigated whether treating HeLa cells with T3 causes alterations in mitochondrial Ca2+ ([Ca2+]mito) levels. Real-time measurements by fluorescence microscopy revealed that treatment with T3 for 3 h induces a significant increase in basal [Ca2+]mito levels and [Ca2+]mito uptake upon the depletion of the endoplasmic reticulum (ER) Ca2+ store, while cytosolic Ca2+ levels remained unchanged. T3 incubation was found to upregulate mRNA expression levels of uncoupling proteins 2 and 3 (UCP2, UCP3) and of protein arginine methyltransferase 1 (PRMT1). Live-cell imaging revealed that T3-induced enhancement of mitochondrial Ca2+ uptake depends on the mitochondrial Ca2+ uniporter (MCU), UCP2, and PRMT1 that are essential for increased mitochondrial ATP ([ATP]mito) production after T3 treatment. Besides, increased [Ca2+]mito and [ATP]mito levels correlated with enhanced production of reactive oxygen species (ROS) in mitochondria. Notably, ROS scavenging causes mitochondrial Ca2+ elevation and outplays the impact of T3 on [Ca2+]mito homeostasis. Based on these results, we assume that thyroid hormones adjust [Ca2+]mito homeostasis by modulating the UCP2- and PRMT1-balanced [Ca2+]mito uptake via MCU in case of physiological ROS levels to convey their impact on mitochondrial ATP and ROS production.
Collapse
Affiliation(s)
- Ines Tawfik
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Angelo Jarc
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Doruntina Bresilla
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8010, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria; BioTechMed, Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
27
|
Bjertnæs LJ, Næsheim TO, Reierth E, Suborov EV, Kirov MY, Lebedinskii KM, Tveita T. Physiological Changes in Subjects Exposed to Accidental Hypothermia: An Update. Front Med (Lausanne) 2022; 9:824395. [PMID: 35280892 PMCID: PMC8904885 DOI: 10.3389/fmed.2022.824395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Background Accidental hypothermia (AH) is an unintended decrease in body core temperature (BCT) to below 35°C. We present an update on physiological/pathophysiological changes associated with AH and rewarming from hypothermic cardiac arrest (HCA). Temperature Regulation and Metabolism Triggered by falling skin temperature, Thyrotropin-Releasing Hormone (TRH) from hypothalamus induces release of Thyroid-Stimulating Hormone (TSH) and Prolactin from pituitary gland anterior lobe that stimulate thyroid generation of triiodothyronine and thyroxine (T4). The latter act together with noradrenaline to induce heat production by binding to adrenergic β3-receptors in fat cells. Exposed to cold, noradrenaline prompts degradation of triglycerides from brown adipose tissue (BAT) into free fatty acids that uncouple metabolism to heat production, rather than generating adenosine triphosphate. If BAT is lacking, AH occurs more readily. Cardiac Output Assuming a 7% drop in metabolism per °C, a BCT decrease of 10°C can reduce metabolism by 70% paralleled by a corresponding decline in CO. Consequently, it is possible to maintain adequate oxygen delivery provided correctly performed cardiopulmonary resuscitation (CPR), which might result in approximately 30% of CO generated at normal BCT. Liver and Coagulation AH promotes coagulation disturbances following trauma and acidosis by reducing coagulation and platelet functions. Mean prothrombin and partial thromboplastin times might increase by 40-60% in moderate hypothermia. Rewarming might release tissue factor from damaged tissues, that triggers disseminated intravascular coagulation. Hypothermia might inhibit platelet aggregation and coagulation. Kidneys Renal blood flow decreases due to vasoconstriction of afferent arterioles, electrolyte and fluid disturbances and increasing blood viscosity. Severely deranged renal function occurs particularly in the presence of rhabdomyolysis induced by severe AH combined with trauma. Conclusion Metabolism drops 7% per °C fall in BCT, reducing CO correspondingly. Therefore, it is possible to maintain adequate oxygen delivery after 10°C drop in BCT provided correctly performed CPR. Hypothermia may facilitate rhabdomyolysis in traumatized patients. Victims suspected of HCA should be rewarmed before being pronounced dead. Rewarming avalanche victims of HCA with serum potassium > 12 mmol/L and a burial time >30 min with no air pocket, most probably be futile.
Collapse
Affiliation(s)
- Lars J. Bjertnæs
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Torvind O. Næsheim
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, Cardiovascular Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eirik Reierth
- Science and Health Library, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Evgeny V. Suborov
- The Nikiforov Russian Center of Emergency and Radiation Medicine, St. Petersburg, Russia
| | - Mikhail Y. Kirov
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russia
| | - Konstantin M. Lebedinskii
- Department of Anesthesiology and Intensive Care, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Torkjel Tveita
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
28
|
Cicatiello AG, Sagliocchi S, Nappi A, Di Cicco E, Miro C, Murolo M, Stornaiuolo M, Dentice M. Thyroid hormone regulates glutamine metabolism and anaplerotic fluxes by inducing mitochondrial glutamate aminotransferase GPT2. Cell Rep 2022; 38:110409. [PMID: 35196498 PMCID: PMC8889437 DOI: 10.1016/j.celrep.2022.110409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Thyroid hormones (THs) are key metabolic regulators coordinating short- and long-term energy needs. In skeletal muscle, THs modulate energy metabolism in pathophysiological conditions. Indeed, hypo- and hyperthyroidism are leading causes of muscle weakness and strength; however, the metabolic pathways underlying these effects are still poorly understood. Using molecular, biochemical, and isotope-tracing approaches combined with mass spectrometry and denervation experiments, we find that THs regulate glutamine metabolism and anaplerotic fluxes by up-regulating the glutamate pyruvate transaminase 2 (GPT2) gene. In humans, GPT2 autosomal recessive mutations cause a neurological syndrome characterized by intellectual disability, microcephaly, and progressive motor symptoms. Here, we demonstrate a role of the TH/GPT2 axis in skeletal muscle in which it regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. These results describe an anabolic route by which THs rewire glutamine metabolism toward the maintenance of muscle mass. THs induce the expression of the mitochondrial GPT2 gene in skeletal muscle The GPT2 up-regulation by THs enhances anaplerotic cycles and α-KG production GPT2 is reduced during muscle atrophy and is reactivated by THs treatment GPT2 KO+/– mice undergo muscle loss that is partially attenuated by THs
Collapse
Affiliation(s)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", Naples, NA 80138 Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, NA 80138 Italy; CEINGE-Biotecnologie Avanzate Scarl, Naples, NA 80131, Italy.
| |
Collapse
|
29
|
Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance. Nat Commun 2021; 12:6845. [PMID: 34824246 PMCID: PMC8617289 DOI: 10.1038/s41467-021-27171-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal obesity (MO) predisposes offspring to obesity and metabolic disorders but little is known about the contribution of offspring brown adipose tissue (BAT). We find that MO impairs fetal BAT development, which persistently suppresses BAT thermogenesis and primes female offspring to metabolic dysfunction. In fetal BAT, MO enhances expression of Dio3, which encodes deiodinase 3 (D3) to catabolize triiodothyronine (T3), while a maternally imprinted long noncoding RNA, Dio3 antisense RNA (Dio3os), is inhibited, leading to intracellular T3 deficiency and suppression of BAT development. Gain and loss of function shows Dio3os reduces D3 content and enhances BAT thermogenesis, rendering female offspring resistant to high fat diet-induced obesity. Attributing to Dio3os inactivation, its promoter has higher DNA methylation in obese dam oocytes which persists in fetal and adult BAT, uncovering an oocyte origin of intergenerational obesity. Overall, our data uncover key features of Dio3os activation in BAT to prevent intergenerational obesity and metabolic dysfunctions. Maternal obesity predisposes offspring to obesity and metabolic disorders through incompletely understood mechanisms. Here the authors report that Dio3os is an imprinted long-coding RNA that modulates brown adipose tissue development and obesity resistance in the offspring.
Collapse
|
30
|
Comarella AP, Vilagellin D, Bufalo NE, Euflauzino JF, de Souza Teixeira E, Miklos ABPP, Dos Santos RB, Romaldini JH, Ward LS. The polymorphic inheritance of DIO2 rs225014 may predict body weight variation after Graves' disease treatment. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 64:787-795. [PMID: 33049131 PMCID: PMC10528618 DOI: 10.20945/2359-3997000000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We aimed to investigate the role of DIO2 polymorphisms rs225014 and rs12885300 in Graves' disease patients, mainly for controlling body weight following treatment. METHODS We genotyped 280 GD patients by the time of diagnosis and 297 healthy control individuals using a TaqMan SNP Genotyping technique. We followed up 141 patients for 18.94 ± 6.59 months after treatment. RESULTS There was no relationship between the investigated polymorphisms with susceptibility to GD and gain or loss of weight after GD treatment. However, the polymorphic inheritance (CC+CT genotype) of DIO2 rs225014 was associated with a lower body weight variation after GD treatment (4.26 ± 6.25 kg) when compared to wild type TT genotype (6.34 ± 7.26 kg; p = 0.0456 adjusted for the follow-up time). This data was confirmed by a multivariate analysis (p = 0.0138) along with a longer follow-up period (p = 0.0228), older age (p = 0.0306), treatment with radioiodine (p-value = 0.0080) and polymorphic inheritance of DIO2 rs12885300 (p = 0.0306). CONCLUSION We suggest that DIO2 rs225014 genotyping may have an auxiliary role in predicting the post-treatment weight behavior of GD patients.
Collapse
Affiliation(s)
- Ana Paula Comarella
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil,
| | - Danilo Vilagellin
- Endocrinologia e Metabolismo, Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Natassia Elena Bufalo
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Jessica Ferreira Euflauzino
- Endocrinologia e Metabolismo, Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Elisangela de Souza Teixeira
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | | | - Roberto Bernardo Dos Santos
- Endocrinologia e Metabolismo, Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - João H Romaldini
- Endocrinologia e Metabolismo, Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brasil
| | - Laura S Ward
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| |
Collapse
|
31
|
Snyder MM, Yue F, Zhang L, Shang R, Qiu J, Chen J, Kim KH, Peng Y, Oprescu SN, Donkin SS, Bi P, Kuang S. LETMD1 is required for mitochondrial structure and thermogenic function of brown adipocytes. FASEB J 2021; 35:e21965. [PMID: 34669999 DOI: 10.1096/fj.202100597r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/15/2023]
Abstract
Obesity and metabolic disorders caused by energy surplus pose an increasing concern within the global population. Brown adipose tissue (BAT) dissipates energy through mitochondrial non-shivering thermogenesis, thus representing a powerful agent against obesity. Here we explore the novel role of a mitochondrial outer membrane protein, LETM1-domain containing 1 (LETMD1), in BAT. We generated a knockout (Letmd1KO ) mouse model and analyzed BAT morphology, function and gene expression under various physiological conditions. While the Letmd1KO mice are born normally and have normal morphology and body weight, they lose multilocular brown adipocytes completely and have diminished mitochondrial abundance, DNA copy number, cristae structure, and thermogenic gene expression in the intrascapular BAT, associated with elevated reactive oxidative stress. In consequence, the Letmd1KO mice fail to maintain body temperature in response to acute cold exposure without food and become hypothermic within 4 h. Although the cold-exposed Letmd1KO mice can maintain body temperature in the presence of food, they cannot upregulate expression of uncoupling protein 1 (UCP1) and convert white to beige adipocytes, nor can they respond to adrenergic stimulation. These results demonstrate that LETMD1 is essential for mitochondrial structure and function, and thermogenesis of brown adipocytes.
Collapse
Affiliation(s)
- Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Lijia Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ying Peng
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
32
|
Leung Kwan KK, Wong TY, Wu QY, Xia Dong TT, Lam H, Keung Tsim KW. Mass spectrometry-based multi-omics analysis reveals the thermogenetic regulation of herbal medicine in rat model of yeast-induced fever. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114382. [PMID: 34197959 DOI: 10.1016/j.jep.2021.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the principle of traditional Chinese medicine (TCM), clinical usage is based on drug attributes of the herbal medicine. The cold and hot properties of TCM are classified accordingly to their pharmacological effects, such as temperature change. Herbal medicine has been used as food supplements in our daily life, and the thermogenetic regulation is one of their primary applications. However, the underlying mechanism of "cold" or "hot" stimulating effect of herbal medicine has not been fully identified. AIM OF THE STUDY Thermogenetic regulation and classification of herbal medicine of hot/cold herbs were determined by rat model of yeast-induced fever. MATERIALS AND METHODS Here, a novel method in classifying and characterizing cold- and hot-herbal medicines was established by analyses of mass spectrometry (MS)-based metabolomics and lipidomics from the serum of herbal extract-treated rats. The yeast-induced inflammatory rats were used as the model system, which were subjected to the treatments of cold- or hot-herbal medicine. RESULTS The multi-omics approach identified the clustering of metabolites from cold and hot herb-treated rat serum by using partial least squares discriminant analysis (PLS-DA), and which subsequently identified that the 8-h treatment was the metabolic perturbation point of herb-mediated thermogenesis. Meanwhile, the levels of identified metabolites in the serum, i.e. lysoPE, lysoPC and carnitine, showed a positive relationship with the regulation of body temperature; while the levels of amino acid, fatty acid and bile acid were contrary correlated with the temperature change. In addition, the differential expressed metabolites were subjected to pathway enrichment and network analyses in revealing the possible action mechanism of herbal medicines in relating to thermogenetic regulation. CONCLUSION The developed MS-based omics provides a new insight in characterizing the properties of cold/hot herbal medicine.
Collapse
Affiliation(s)
- Kenneth Kin Leung Kwan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Qi Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Ting Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Karl Wah Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
33
|
Francis CE, Allee L, Nguyen H, Grindstaff RD, Miller CN, Rayalam S. Endocrine disrupting chemicals: Friend or foe to brown and beige adipose tissue? Toxicology 2021; 463:152972. [PMID: 34606950 DOI: 10.1016/j.tox.2021.152972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
The effects of Endocrine Disrupting Chemicals (EDCs) on the current obesity epidemic is a growing field of interest. Numerous EDCs have shown the potential to alter energy metabolism, which may increase the risk of obesity, in part, through direct actions on adipose tissue. While white adipose tissue has historically been the primary focus of this work, evidence of the EDC-induced disruption of brown and beige adipose tissues continues to build. Both brown and beige fat are thermogenic adipose depots rich in mitochondria that dispense heat when activated. Due to these properties, brown and beige fat are implicated in metabolic diseases such as obesity, diabetes, and cachexia. This review delves into the current literature of different EDCs, including bisphenols, dioxins, air pollutants, phthalates, and phytochemicals. The possible implications that these EDCs have on thermogenic adipose tissues are covered. This review also introduces the possibility of using brown and beige fat as a therapeutic target organ by taking advantage of some of the properties of EDCs. Collectively, we provide a comprehensive discussion of the evidence of EDC disruption in white, brown, and beige fat and highlight gaps worthy of further exploration.
Collapse
Affiliation(s)
| | - Logan Allee
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA
| | - Helen Nguyen
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel D Grindstaff
- Neuroendocrine Toxicology Brach, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Colette N Miller
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA.
| |
Collapse
|
34
|
Salau VF, Erukainure OL, Olofinsan KA, Ijomone OM, Msomi NZ, Islam MS. Vanillin modulates activities linked to dysmetabolism in psoas muscle of diabetic rats. Sci Rep 2021; 11:18724. [PMID: 34548565 PMCID: PMC8455626 DOI: 10.1038/s41598-021-98158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscles are important in glucose metabolism and are affected in type 2 diabetes (T2D) and its complications. This study investigated the effect of vanillin on redox imbalance, cholinergic and purinergic dysfunction, and glucose-lipid dysmetabolism in muscles of rats with T2D. Male albino rats (Sprague-Dawley strain) were fed 10% fructose ad libitum for 2 weeks before intraperitoneally injecting them with 40 mg/kg streptozotocin to induce T2D. Low (150 mg/kg bodyweight (BW)) and high (300 mg/kg BW) doses of vanillin were orally administered to diabetic rats. Untreated diabetic rats and normal rats made up the diabetic control (DC) and normal control (NC) groups, respectively. The standard antidiabetic drug was metformin. The rats were humanely put to sleep after 5 weeks of treatment and their psoas muscles were harvested. There was suppression in the levels of glutathione, activities of SOD, catalase, ENTPDase, 5'Nucleotidase and glycogen levels on T2D induction. This was accompanied by concomitantly elevated levels of malondialdehyde, serum creatine kinase-MB, nitric oxide, acetylcholinesterase, ATPase, amylase, lipase, glucose-6-phosphatase (G6Pase), fructose-1,6-biphophastase (FBPase) and glycogen phosphorylase activities. T2D induction further resulted in the inactivation of fatty acid biosynthesis, glycerolipid metabolism, fatty acid elongation in mitochondria and fatty acid metabolism pathways. There were close to normal and significant reversals in these activities and levels, with concomitant reactivation of the deactivated pathways following treatment with vanillin, which compared favorably with the standard drug (metformin). Vanillin also significantly increased muscle glucose uptake ex vivo. The results suggest the therapeutic effect of vanillin against muscle dysmetabolism in T2D as portrayed by its ability to mitigate redox imbalance, inflammation, cholinergic and purinergic dysfunctions, while modulating glucose-lipid metabolic switch and maintaining muscle histology.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Kolawole A Olofinsan
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Omamuyovwi M Ijomone
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Nontokozo Z Msomi
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
35
|
Dilworth L, Facey A, Omoruyi F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int J Mol Sci 2021; 22:ijms22147644. [PMID: 34299261 PMCID: PMC8305176 DOI: 10.3390/ijms22147644] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many approaches have been used in the effective management of type 2 diabetes mellitus. A recent paradigm shift has focused on the role of adipose tissues in the development and treatment of the disease. Brown adipose tissues (BAT) and white adipose tissues (WAT) are the two main types of adipose tissues with beige subsets more recently identified. They play key roles in communication and insulin sensitivity. However, WAT has been shown to contribute significantly to endocrine function. WAT produces hormones and cytokines, collectively called adipocytokines, such as leptin and adiponectin. These adipocytokines have been proven to vary in conditions, such as metabolic dysfunction, type 2 diabetes, or inflammation. The regulation of fat storage, energy metabolism, satiety, and insulin release are all features of adipose tissues. As such, they are indicators that may provide insights on the development of metabolic dysfunction or type 2 diabetes and can be considered routes for therapeutic considerations. The essential roles of adipocytokines vis-a-vis satiety, appetite, regulation of fat storage and energy, glucose tolerance, and insulin release, solidifies adipose tissue role in the development and pathogenesis of diabetes mellitus and the complications associated with the disease.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Aldeam Facey
- Mona Academy of Sport, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Correspondence:
| |
Collapse
|
36
|
Erukainure OL, Salau VF, Atolani O, Ravichandran R, Banerjee P, Preissner R, Koorbanally NA, Islam MS. L-leucine stimulation of glucose uptake and utilization involves modulation of glucose - lipid metabolic switch and improved bioenergetic homeostasis in isolated rat psoas muscle ex vivo. Amino Acids 2021; 53:1135-1151. [PMID: 34152488 DOI: 10.1007/s00726-021-03021-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
The antidiabetic effect of l-leucine has been attributed to its modulatory effect on glucose uptake and lipid metabolism in muscles. However, there is a dearth on its effect on glucose metabolism in muscles. Thus, the present study investigated the effect of l-leucine - stimulated glucose uptake on glucose metabolism, dysregulated lipid metabolic pathways, redox and bioenergetic homeostasis, and proteolysis in isolated psoas muscle from Sprague Dawley male rats. Isolated psoas muscles were incubated with l-leucine (30-240 μg/mL) in the presence of 11.1 mMol glucose at 37 ˚C for 2 h. Muscles incubated in only glucose served as the control, while muscles not incubated in l-leucine and/or glucose served as the normal control. Metformin (6.04 mM) was used as the standard antidiabetic drug. Incubation with l-leucine caused a significant increase in muscle glucose uptake, with an elevation of glutathione levels, superoxide dismutase, catalase, E-NTPDase and 5'nucleotidase activities. It also led to the depletion of malondialdehyde and nitric oxide levels, ATPase, chymotrypsin, acetylcholinesterase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and lipase activities. There was an alteration in lipid metabolites, with concomitant activation of glycerolipid metabolism, fatty acid metabolism, and fatty acid elongation in mitochondria in the glucose-incubated muscle (negative control). Incubation with l-leucine reversed these alterations, and concomitantly deactivated the pathways. These results indicate that l-leucine-enhanced muscle glucose uptake involves improved redox and bioenergetic homeostasis, with concomitant suppressed proteolytic, glycogenolytic and gluconeogenetic activities, while modulating glucose - lipid metabolic switch.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | | | - Rahul Ravichandran
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Priyanka Banerjee
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Robert Preissner
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
37
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
38
|
Nikanorova AA, Barashkov NA, Pshennikova VG, Nakhodkin SS, Gotovtsev NN, Romanov GP, Solovyev AV, Kuzmina SS, Sazonov NN, Fedorova SA. The Role of Nonshivering Thermogenesis Genes on Leptin Levels Regulation in Residents of the Coldest Region of Siberia. Int J Mol Sci 2021; 22:ijms22094657. [PMID: 33925025 PMCID: PMC8124869 DOI: 10.3390/ijms22094657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Leptin plays an important role in thermoregulation and is possibly associated with the microevolutionary processes of human adaptation to a cold climate. In this study, based on the Yakut population (n = 281 individuals) living in the coldest region of Siberia (t°minimum -71.2 °C), we analyze the serum leptin levels and data of 14 single nucleotide polymorphisms (SNPs) of 10 genes (UCP1, UCP2, UCP3, FNDC5, PPARGC1A, CIDEA, PTGS2, TRPV1, LEPR, BDNF) that are possibly involved in nonshivering thermogenesis processes. Our results demonstrate that from 14 studied SNPs of 10 genes, 2 SNPs (the TT rs3811787 genotype of the UCP1 gene and the GG rs6265 genotype of the BDNF gene) were associated with the elevated leptin levels in Yakut females (p < 0.05). Furthermore, of these two SNPs, the rs3811787 of the UCP1 gene demonstrated more indications of natural selection for cold climate adaptation. The prevalence gradient of the T-allele (rs3811787) of UCP1 increased from the south to the north across Eurasia, along the shore of the Arctic Ocean. Thereby, our study suggests the potential involvement of the UCP1 gene in the leptin-mediated thermoregulation mechanism, while the distribution of its allelic variants is probably related to human adaptation to a cold climate.
Collapse
Affiliation(s)
- Alena A. Nikanorova
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, 677010 Yakutsk, Sakha Republic (Yakutia), Russia; (A.A.N.); (V.G.P.); (N.N.G.); (G.P.R.); (A.V.S.)
| | - Nikolay A. Barashkov
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, 677010 Yakutsk, Sakha Republic (Yakutia), Russia; (A.A.N.); (V.G.P.); (N.N.G.); (G.P.R.); (A.V.S.)
- Correspondence:
| | - Vera G. Pshennikova
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, 677010 Yakutsk, Sakha Republic (Yakutia), Russia; (A.A.N.); (V.G.P.); (N.N.G.); (G.P.R.); (A.V.S.)
| | - Sergey S. Nakhodkin
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Sakha Republic (Yakutia), Russia; (S.S.N.); (S.S.K.); (N.N.S.); (S.A.F.)
| | - Nyurgun N. Gotovtsev
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, 677010 Yakutsk, Sakha Republic (Yakutia), Russia; (A.A.N.); (V.G.P.); (N.N.G.); (G.P.R.); (A.V.S.)
| | - Georgii P. Romanov
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, 677010 Yakutsk, Sakha Republic (Yakutia), Russia; (A.A.N.); (V.G.P.); (N.N.G.); (G.P.R.); (A.V.S.)
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Sakha Republic (Yakutia), Russia; (S.S.N.); (S.S.K.); (N.N.S.); (S.A.F.)
| | - Aisen V. Solovyev
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, 677010 Yakutsk, Sakha Republic (Yakutia), Russia; (A.A.N.); (V.G.P.); (N.N.G.); (G.P.R.); (A.V.S.)
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Sakha Republic (Yakutia), Russia; (S.S.N.); (S.S.K.); (N.N.S.); (S.A.F.)
| | - Sargylana S. Kuzmina
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Sakha Republic (Yakutia), Russia; (S.S.N.); (S.S.K.); (N.N.S.); (S.A.F.)
| | - Nikolay N. Sazonov
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Sakha Republic (Yakutia), Russia; (S.S.N.); (S.S.K.); (N.N.S.); (S.A.F.)
| | - Sardana A. Fedorova
- Laboratory of Molecular Biology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Sakha Republic (Yakutia), Russia; (S.S.N.); (S.S.K.); (N.N.S.); (S.A.F.)
| |
Collapse
|
39
|
The Unity of Redox and Structural Remodeling of Brown Adipose Tissue in Hypothyroidism. Antioxidants (Basel) 2021; 10:antiox10040591. [PMID: 33921249 PMCID: PMC8068806 DOI: 10.3390/antiox10040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Brown adipose tissue (BAT) is important for maintaining whole-body metabolic and energy homeostasis. However, the effects of hypothyroidism, one of the most common diseases worldwide, which increases the risk of several metabolic disorders, on BAT redox and metabolic homeostasis remain mostly unknown. We aimed to investigate the dynamics of protein expression, enzyme activity, and localization of antioxidant defense (AD) enzymes in rat interscapular BAT upon induction of hypothyroidism by antithyroid drug methimazole for 7, 15, and 21 days. Our results showed an increased protein expression of CuZn- and Mn-superoxide dismutase, catalase, glutamyl-cysteine ligase, thioredoxin, total glutathione content, and activity of catalase and thioredoxin reductase in hypothyroid rats, compared to euthyroid control. Concomitant with the increase in AD, newly established nuclear, mitochondrial, and peroxisomal localization of AD enzymes was found. Hypothyroidism also potentiated associations between mitochondria, peroxisomes, and lipid bodies, creating specific structural-functional units. Moreover, hypothyroidism induced protein expression and nuclear translocation of a master regulator of redox-metabolic homeostasis, nuclear factor erythroid 2-related factor 2 (Nrf2), and an increased amount of 4-hydroxynonenal (4-HNE) protein adducts. The results indicate that spatiotemporal overlap in the remodeling of AD is orchestrated by Nrf2, implicating the role of 4-HNE in this process and suggesting the potential mechanism of redox-structural remodeling during BAT adaptation in hypothyroidism.
Collapse
|
40
|
Volke L, Krause K. Effect of Thyroid Hormones on Adipose Tissue Flexibility. Eur Thyroid J 2021; 10:1-9. [PMID: 33777816 PMCID: PMC7983599 DOI: 10.1159/000508483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The recruitment and activation of energy-consuming brown adipocytes is currently considered as potential therapeutic approach to combat obesity. Thyroid hormones (TH) significantly contribute to full thermogenic capacity of brown adipocytes. A number of recent studies suggest that TH also induce the recruitment of brown adipocytes in white adipose depots, a process known as browning. In this review, we will summarize underlying mechanisms by which TH mediate brown adipose tissue activity and white adipose tissue browning. Furthermore, we will discuss the relevance of TH-induced white adipose tissue browning for thermoregulation.
Collapse
Affiliation(s)
- Lisa Volke
- Medical Department III-Endocrinology, Nephrology, and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Medical Department III-Endocrinology, Nephrology, and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
- *Kerstin Krause, Department of Medicine, University of Leipzig, Liebigstrasse 21, DE–04103 Leipzig (Germany),
| |
Collapse
|
41
|
Yokoya M, Terada A. Regional Differences in Height, Weight, and Body Composition may Result from Photoperiodic Responses: An Ecological Analysis of Japanese Children and Adolescents. J Circadian Rhythms 2021; 19:3. [PMID: 33664773 PMCID: PMC7908924 DOI: 10.5334/jcr.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
This ecological study examined whether geographical differences in the physique of Japanese children and adolescents can be explained from the perspective of photoperiodicity induced by effective day length (light duration exceeding a certain threshold of illuminance) using prefecture-level anatomical data and Mesh Climatic Data. Multiple regression analysis for height prediction demonstrated that when controlled by weight, effective day lengths of the longest and shortest months were inversely correlated with height distribution. Conversely, for weight prediction, when controlled by height, the effective day lengths of the longest and shortest months were positively correlated with weight distribution. The regression coefficients were greater for the effective day length of the shortest month in both height and weight prediction. This phenomenon where the same two explanatory variables are negatively correlated with height and positively correlated with weight in a significant manner is rare, and there may be no physiological interpretation of this phenomenon other than one based on changes in thyroid hormone signaling. These distribution characteristics are common to the photoperiodicity by which seasonal breeding vertebrates reciprocally switch thyroid hormone signaling according to prior photoperiodic history through epigenetic functions. From these perspectives, thyroid hormone signaling in a certain region was assumed to be activated in summer according to the prior shorter winter day length and inactivated in winter according to the prior longer summer day length. Regarding the prevalence of obesity, the coexistence of longer summer and winter day lengths was thought to set body composition to be short and fat in early adolescence.
Collapse
Affiliation(s)
- Masana Yokoya
- Shimonoseki Junior College, Shimonoseki, Yamaguchi 750-8508, Japan
| | - Aki Terada
- Shimonoseki Junior College, Shimonoseki, Yamaguchi 750-8508, Japan
| |
Collapse
|
42
|
Sentis SC, Oelkrug R, Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr Connect 2021; 10:R106-R115. [PMID: 33491659 PMCID: PMC7983518 DOI: 10.1530/ec-20-0562] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
A normal thyroid status is crucial for body temperature homeostasis, as thyroid hormone regulates both heat loss and conservation as well as heat production in the thermogenic tissues. Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and an important target of thyroid hormone action. Thyroid hormone not only regulates the tissue's sensitivity to sympathetic stimulation by norepinephrine but also the expression of uncoupling protein 1, the key driver of BAT thermogenesis. Vice versa, sympathetic stimulation of BAT triggers the expression of deiodinase type II, an enzyme that enhances local thyroid hormone availability and signaling. This review summarizes the current knowledge on how thyroid hormone controls BAT thermogenesis, aiming to dissect the direct actions of the hormone in BAT and its indirect actions via the CNS, browning of white adipose tissue or heat loss over body surfaces. Of particular relevance is the apparent dose dependency of the observed effects, as we find that minor or moderate changes in thyroid hormone levels often have different effects as compared to high pharmacological doses. Moreover, we conclude that the more recent findings require a reevaluation of older studies, as key aspects such as heat loss or central BAT activation may not have received the necessary attention during the interpretation of these early findings. Finally, we provide a list of what we believe are the most relevant questions in the field that to date are still enigmatic and require further studies.
Collapse
Affiliation(s)
- Sarah Christine Sentis
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Correspondence should be addressed to J Mittag:
| |
Collapse
|
43
|
Soundarrajan M, Deng J, Kwasny M, Rubert NC, Nelson PC, El-Seoud DA, Landsberg L, Neff LM. Activated brown adipose tissue and its relationship to adiposity and metabolic markers: an exploratory study. Adipocyte 2020; 9:87-95. [PMID: 32043413 PMCID: PMC7039639 DOI: 10.1080/21623945.2020.1724740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: To explore relationships between PET/CT characteristics of cold-activated brown adipose tissue (BAT), measures of adiposity and metabolic markers.Methods: We conducted a post-hoc analysis of a study which utilized PET/CT to characterize BAT. 25 men ages 18-24 (BMI 19.4 to 35.9 kg/m2) were studied. Fasting blood samples were collected. Body composition was measured using DXA. An individualized cooling protocol was utilized to activate BAT prior to imaging with PET/CT.Results: There was an inverse relationship between fasting serum glucose and BAT volume (r = -0.40, p = 0.048). A marginally significant inverse relationship was also noted between fasting glucose and total BAT activity (r = -0.40, p = 0.05). In addition, a positive correlation was observed between serum FGF21 and SUVmax (r = 0.51, p = 0.01). No significant correlations were noted for measures of BAT activity or volume and other indicators of adiposity or glucose metabolism.Conclusions: The presence of active BAT may be associated with lower fasting glucose in young men. BAT activity may also be correlated with levels of FGF21, suggesting that BAT may lower glucose levels via an FGF21 dependent pathway. Further studies are needed to clarify mechanisms by which BAT may impact glucose metabolism.
Collapse
Affiliation(s)
- Malini Soundarrajan
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jie Deng
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mary Kwasny
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas C. Rubert
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Paige C. Nelson
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Dalya A. El-Seoud
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lewis Landsberg
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa M. Neff
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
44
|
Lugo Leija HA, Velickovic K, Bloor I, Sacks H, Symonds ME, Sottile V. Cold-induced beigeing of stem cell-derived adipocytes is not fully reversible after return to normothermia. J Cell Mol Med 2020; 24:11434-11444. [PMID: 32902117 PMCID: PMC7576274 DOI: 10.1111/jcmm.15749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023] Open
Abstract
Beige adipocytes possess the morphological and biochemical characteristics of brown adipocytes, including the mitochondrial uncoupling protein (UCP)1. Mesenchymal stem cells (MSCs) are somatic multipotent progenitors which differentiate into lipid-laden adipocytes. Induction of MSC adipogenesis under hypothermic culture conditions (ie 32°C) promotes the appearance of a beige adipogenic phenotype, but the stability of this phenotypic switch after cells are returned to normothermic conditions of 37°C has not been fully examined. Here, cells transferred from 32°C to 37°C retained their multilocular beige-like morphology and exhibited an intermediate gene expression profile, with both beige-like and white adipocyte characteristics while maintaining UCP1 protein expression. Metabolic profile analysis indicated that the bioenergetic status of cells initially differentiated at 32°C adapted post-transfer to 37°C, showing an increase in mitochondrial respiration and glycolysis. The ability of the transferred cells to respond under stress conditions (eg carbonyl cyanide-4-phenylhydrazone (FCCP) treatment) demonstrated higher functional capacity of enzymes involved in the electron transport chain and capability to supply substrate to the mitochondria. Overall, MSC-derived adipocytes incubated at 32°C were able to remain metabolically active and retain brown-like features after 3 weeks of acclimatization at 37°C, indicating these phenotypic characteristics acquired in response to environmental conditions are not fully reversible.
Collapse
Affiliation(s)
| | - Ksenija Velickovic
- Wolfson STEM CentreSchool of MedicineThe University of NottinghamNottinghamUK
| | - Ian Bloor
- The Early Life Research UnitDivision of Child Health, Obstetrics and GynaecologyThe University of NottinghamNottinghamUK
| | - Harold Sacks
- VA Endocrinology and Diabetes DivisionDepartment of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Michael E. Symonds
- The Early Life Research UnitDivision of Child Health, Obstetrics and GynaecologyThe University of NottinghamNottinghamUK
- Nottingham Digestive Disease Centre and Biomedical Research CentreSchool of MedicineThe University of NottinghamNottinghamUK
| | - Virginie Sottile
- Wolfson STEM CentreSchool of MedicineThe University of NottinghamNottinghamUK
- Department of Molecular MedicineThe University of PaviaPaviaItaly
| |
Collapse
|
45
|
Uzawa H, Kohno D, Koga T, Sasaki T, Fukunaka A, Okuno T, Jo-Watanabe A, Kazuno S, Miyatsuka T, Kitamura T, Fujitani Y, Watada H, Saeki K, Yokomizo T. Leukotriene A 4 hydrolase deficiency protects mice from diet-induced obesity by increasing energy expenditure through neuroendocrine axis. FASEB J 2020; 34:13949-13958. [PMID: 32844470 DOI: 10.1096/fj.202001148r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Obesity is a health problem worldwide, and brown adipose tissue (BAT) is important for energy expenditure. Here, we explored the role of leukotriene A4 hydrolase (LTA4 H), a key enzyme in the synthesis of the lipid mediator leukotriene B4 (LTB4 ), in diet-induced obesity. LTA4 H-deficient (LTA4 H-KO) mice fed a high-fat diet (HFD) showed a lean phenotype, and bone-marrow transplantation studies revealed that LTA4 H-deficiency in non-hematopoietic cells was responsible for this lean phenotype. LTA4 H-KO mice exhibited greater energy expenditure, but similar food intake and fecal energy loss. LTA4 H-KO BAT showed higher expression of thermogenesis-related genes. In addition, the plasma thyroid-stimulating hormone and thyroid hormone concentrations, as well as HFD-induced catecholamine secretion, were higher in LTA4 H-KO mice. In contrast, LTB4 receptor (BLT1)-deficient mice did not show a lean phenotype, implying that the phenotype of LTA4 H-KO mice is independent of the LTB4 /BLT1 axis. These results indicate that LTA4 H mediates the diet-induced obesity by reducing catecholamine and thyroid hormone secretion.
Collapse
Affiliation(s)
- Hirotsugu Uzawa
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tsutomu Sasaki
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
47
|
Teixeira PDFDS, dos Santos PB, Pazos-Moura CC. The role of thyroid hormone in metabolism and metabolic syndrome. Ther Adv Endocrinol Metab 2020; 11:2042018820917869. [PMID: 32489580 PMCID: PMC7238803 DOI: 10.1177/2042018820917869] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome (MetS) and thyroid dysfunction are common in clinical practice. The objectives of this review are to discuss some proposed mechanisms by which thyroid dysfunctions may lead to MetS, to describe the bidirectional relationship between thyroid hormones (THs) and adiposity and finally, to resume a list of recent studies in humans that evaluated possible associations between thyroid hormone status and MetS or its clinical components. Not solely THs, but also its metabolites regulate metabolic rate, influencing adiposity. The mechanisms enrolled are related to its direct effect on adenosine triphosphate (ATP) utilization, uncoupling synthesis of ATP, mitochondrial biogenesis, and its inotropic and chronotropic effects. THs also act controlling core body temperature, appetite, and sympathetic activity. In a bidirectional way, thyroid function is affected by adiposity. Leptin is one of the hallmarks, but the pro-inflammatory cytokines and also insulin resistance impact thyroid function and perhaps its structure. MetS development and weight gain have been positively associated with thyroid-stimulating hormone (TSH) in several studies. Adverse glucose metabolism may be related to hyperthyroidism, but also to reduction of thyroid function or higher serum TSH, as do abnormal serum triglyceride levels. Hypo- and hyperthyroidism have been related to higher blood pressure (BP), that may be consequence of genomic or nongenomic action of THs on the vasculature and in the heart. In summary, the interaction between THs and components of MetS is complex and not fully understood. More longitudinal studies controlling each of all confounding variables that interact with endpoints or exposure factors are still necessary.
Collapse
Affiliation(s)
- Patrícia de Fátima dos Santos Teixeira
- Endocrine Clinic, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Rocco, 255 – Cidade Universitária, Rio de Janeiro, RJ 21941-617, Brazil
| | - Patrícia Borges dos Santos
- Research Fellow, Medicine School, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrinologist, Instituto Estadual de Endocrinologia Luiz Capriglione, Rio de Janeiro, Brazil
| | | |
Collapse
|
48
|
Xia B, Shi XC, Xie BC, Zhu MQ, Chen Y, Chu XY, Cai GH, Liu M, Yang SZ, Mitchell GA, Pang WJ, Wu JW. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biol 2020; 18:e3000688. [PMID: 32218572 PMCID: PMC7141696 DOI: 10.1371/journal.pbio.3000688] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 04/08/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications.
Collapse
Affiliation(s)
- Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao Cai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guo He Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Grant A. Mitchell
- Division of Medical Genetics, Department of Paediatrics, Université de Montréal and Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Wei Jun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Junker D, Syväri J, Weidlich D, Holzapfel C, Drabsch T, Waschulzik B, Rummeny EJ, Hauner H, Karampinos DC. Investigation of the Relationship between MR-Based Supraclavicular Fat Fraction and Thyroid Hormones. Obes Facts 2020; 13:331-343. [PMID: 32564012 PMCID: PMC7445585 DOI: 10.1159/000507294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Brown adipose tissue (BAT) plays a potential role in energy and glucose metabolism in humans. Thyroid hormones (TH) are main regulators of BAT development and function. However, it remains unknown how the magnetic resonance (MR)-based proton density fat fraction (PDFF) of supraclavicular adipose tissue used as a surrogate marker for BAT presence relates to TH. Therefore, the purpose of this analysis was to investigate the relationship between supraclavicular PDFF and serum levels of TH. METHODS In total, 96 adult volunteers from a large cross-sectional study who underwent additional MR examination of the neck and pelvis were included in this analysis. Segmented PDFF maps of the supraclavicular and gluteal subcutaneous adipose tissue were generated. Delta PDFF was calculated as the difference between gluteal and supraclavicular PDFF and grouped as high (≥12%) or low (<12%) based on the median and the clinical rationale of a high versus low probability of BAT being present. Thyroid-stimulating hormone (mIU/L), free triiodothyronine (FT3, pg/mL) and free thyroxine (FT4, ng/dL) levels were determined in blood samples. Body mass index (BMI) was calculated as weight (kg)/height (m)2. Statistical analyses included the use of paired samples ttest, simple linear regression analysis and a multivariable linear regression analysis. RESULTS The median age of the subjects (77% female) was 33 years, BMI ranged from 17.2 to 43.1 kg/m2. Supraclavicular and gluteal PDFF differed significantly (76.5 ± 4.8 vs. 89.4 ± 3.5 %, p < 0.01). Supraclavicular PDFF was associated with FT3 in subjects with high delta PDFF (R2 = 0.17, p < 0.01), with higher FT3 being associated with lower supraclavicular PDFF (y = 85.2 + -3.6 x). In a multivariable linear regression analysis considering further potential prognostic factors, the interaction between the delta PDFF group and FT3 remained a predictor for supraclavicular PDFF (B = -4.65, p < 0.01). DISCUSSION/CONCLUSIONS Supraclavicular PDFF corresponds to the presence of BAT. In the present analysis, supraclavicular PDFF is correlated with FT3 in subjects with high delta PDFF. Therefore, the present findings suggest that biologically active T3 may be involved in the development of supraclavicular BAT.
Collapse
Affiliation(s)
- Daniela Junker
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany,
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Theresa Drabsch
- Institute for Nutritional Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Birgit Waschulzik
- Institute of Medical Informatics, Statistics and Epidemiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Else Kroener-Fresenius-Center of Nutritional Medicine, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
50
|
Abstract
AbstractThyroid hormones are essential for the full thermogenic capacity of brown adipose
tissue. The thermogenic response of brown adipocytes to thyroid hormones is
resulting from the synergistic interaction of thyroid hormones with the
sympathetic nervous system. In recent years, evidence has been provided that
thyroid hormones also induce the browning of white adipose tissues. This review
will provide a brief overview about the recent findings regarding the effects of
thyroid hormones on adipose tissue thermogenesis including central and
peripheral regulation of white adipose tissue browning.
Collapse
Affiliation(s)
- Kerstin Krause
- Department of Endocrinology and Nephrology, University Hospital
Leipzig, Leipzig, Germany
| |
Collapse
|