1
|
Barbhuiya RI, Wroblewski C, Ravikumar SP, Kaur G, Routray W, Subramanian J, Elsayed A, Singh A. Upcycling of industrial pea starch by rapid spray nanoprecipitation to develop plant-derived oil encapsulated starch nanoparticles for potential agricultural applications. Carbohydr Polym 2024; 346:122618. [PMID: 39245527 DOI: 10.1016/j.carbpol.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Starch is one of the natural encapsulant materials widely used in food, pharmaceutical and cosmetic industries. Starch with high amylose content (above 40 %, w/w) is prone to form single helices V-type allomorph with a hydrophilic outer surface and a hydrophobic inner cavity making them suitable for encapsulation of hydrophobic compounds such as essential oils, fatty acids, and vitamins. Pea starch obtained from pea protein processing industries have a high amylose content (40 %, w/w) rendering them unsuitable for direct food applications as ingredients. Therefore, in this study, an in-house spraying procedure was used to synthesize nanoparticles using pea starch, to encapsulate neem oil, a natural antimicrobial compound obtained from neem plant (Azadirachta indica) seed. The synthesis of the oil-encapsulated starch nanoparticles (OESNP) was optimized using a Box-Behnken experimental design to study the influence of the processing parameters such as the initial starch concentration, homogenization speed, duration of homogenization, sample injection rate, and quantity of antisolvent (ethanol). The optimized sample showed an 80-90 % encapsulation efficiency and particle size of <500 nm. The spherical OESNPs also demonstrated sustained release of the oil compared to free oil when dispersed in water. X-ray diffraction analysis revealed the coexistence of C-type and V-type polymorphs in the loaded and unloaded nanoparticles. It is concluded that the synthesized OESNPs with controlled release hold the potential to utilize industrial pea starch waste for the delivery of natural pesticides in agriculture.
Collapse
Affiliation(s)
| | | | | | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India
| | | | - Abdallah Elsayed
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
2
|
Fadairo AA, Wong PK, Ip WF, Ghadikolaei MA, Cai Z, Ng KW, Lian ZD. Impact of neem oil biodiesel blends on physical and chemical properties of particulate matter emitted from diesel engines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124972. [PMID: 39293660 DOI: 10.1016/j.envpol.2024.124972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The global searchlight for sustainable alternative fuels to reduce emissions produced from the combustion of fossil fuels illuminates biofuels owing to their matching properties with fossil fuels. This is the impetus for this study which systematically examines the impact of neem biodiesel (NB) blends with pure diesel on the physical and chemical properties of particulate matter (PM) from diesel engines. Pure diesel (B0) and four fuel blends, namely, B5, B10, B15 and B20 are examined. The impact of NB blends on the physical and chemical properties of PM is studied using a single-cylinder, 4-stroke diesel engine. The PM captured directly from the diesel engine at two standard engine speeds is analyzed by physical microscopy techniques and chemical analyses. Comparing the results of gaseous emissions for B0 with those of B20, it is found that B20 decreases CO by 9.6% and 19.3% at low and high engine speeds, respectively, but increases NOX. Regarding PM emission, in comparison to B0, B20 decreases particle sizes from 59.4 ± 8.5 nm to 42.8 ± 4.2 nm and 63.3 ± 8.1 nm to 43.7 ± 5.2 nm; opacities from 15.9% to 9.3% and 21.1%-11.4%; carbon contents from 66.53% to 44.53% and 72.53%-61.99%; and total carbon concentrations (total organic carbon and total inorganic carbon) from 3.6120 mg/L to 1.8435 mg/L and 2.5970 mg/L to 1.6002 mg/L at low and high engine speeds, respectively. Furthermore, B20 increases the unused oxygen content from 14.07% to 21.47% and 16.82%-18.42%; oxygen reactivity from 1.80 ± 0.08 to 2.75 ± 0.18 and 1.10 ± 0.20 to 1.35 ± 0.06; and volatile substances by 68.4% and 57.1% at low and high engine speeds, respectively. This study demonstrates that NB could be a potential alternative fuel for diesel engines regarding PM emissions, where B20 blend has the highest impact on PM properties, but it needs additional NOx mitigation strategies.
Collapse
Affiliation(s)
- Adebayo Afolabi Fadairo
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau, China; Department of Mechanical Engineering, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau, China.
| | - Weng Fai Ip
- Department of Physics and Chemistry, University of Macau, Taipa, Macau, China
| | | | - Zhe Cai
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau, China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China
| | - Zhen Dong Lian
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China
| |
Collapse
|
3
|
Kumari GS, Andugulapati SB, Ramalingam V, Suresh Babu K. Synthesis of epoxyazadiradione-thiazole hybrid derivatives and evaluation of their cytotoxic activities. Nat Prod Res 2024:1-6. [PMID: 39555584 DOI: 10.1080/14786419.2024.2429130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
In an attempt to develop natural product-based anticancer agents, a series of novel epoxyazadiradione-thiazole hybrids (6a-j) were synthesised and evaluated for their anticancer activity. All the synthesised derivatives were assessed for in vitro cytotoxic activity against a panel of human cancer and normal cell lines and the results showed that most of the compounds exhibited significant cytotoxic activity against cancer cells and as well some of the compounds showed less cytotoxicity against normal cells. In particular, compound 4 showed potent cytotoxic activity against tongue cancer cell lines. In consideration of the potent activity, the compound 4 was further assessed for cell cycle analysis and the results showed that the compound arrests the cell cycle progression at the G0/G1 phase in the tongue cancer cell lines. Consequently, the annexin V/PI staining assay demonstrated that compound 4 induced early apoptosis against tongue cancer. Taken together, the results inferred that the epoxyazadiradione is promising anticancer candidate for developing novel anticancer drugs against tongue cancer.
Collapse
Affiliation(s)
- Gaja Swarna Kumari
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - K Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
4
|
Saha O, Siddiquee NH, Akter R, Sarker N, Bristi UP, Sultana KF, Remon SMLR, Sultana A, Shishir TA, Rahaman MM, Ahmed F, Hossen F, Amin MR, Akter MS. Antiviral Activity, Pharmacoinformatics, Molecular Docking, and Dynamics Studies of Azadirachta indica Against Nipah Virus by Targeting Envelope Glycoprotein: Emerging Strategies for Developing Antiviral Treatment. Bioinform Biol Insights 2024; 18:11779322241264145. [PMID: 39072258 PMCID: PMC11283663 DOI: 10.1177/11779322241264145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
The Nipah virus (NiV) belongs to the Henipavirus genus is a serious public health concern causing numerous outbreaks with higher fatality rate. Unfortunately, there is no effective medication available for NiV. To investigate possible inhibitors of NiV infection, we used in silico techniques to discover treatment candidates in this work. As there are not any approved treatments for NiV infection, the NiV-enveloped attachment glycoprotein was set as target for our study, which is responsible for binding to and entering host cells. Our in silico drug design approach included molecular docking, post-docking molecular mechanism generalised born surface area (MM-GBSA), absorption, distribution, metabolism, excretion/toxicity (ADME/T), and molecular dynamics (MD) simulations. We retrieved 418 phytochemicals associated with the neem plant (Azadirachta indica) from the IMPPAT database, and molecular docking was used to ascertain the compounds' binding strength. The top 3 phytochemicals with binding affinities of -7.118, -7.074, and -6.894 kcal/mol for CIDs 5280343, 9064, and 5280863, respectively, were selected for additional study based on molecular docking. The post-docking MM-GBSA of those 3 compounds was -47.56, -47.3, and -43.15 kcal/mol, respectively. As evidence of their efficacy and safety, all the chosen drugs had favorable toxicological and pharmacokinetic (Pk) qualities. We also performed MD simulations to confirm the stability of the ligand-protein complex structures and determine whether the selected compounds are stable at the protein binding site. All 3 phytochemicals, Quercetin (CID: 5280343), Cianidanol (CID: 9064), and Kaempferol (CID: 5280863), appeared to have outstanding binding stability to the target protein than control ribavirin, according to the molecular docking, MM-GBSA, and MD simulation outcomes. Overall, this work offers a viable approach to developing novel medications for treating NiV infection.
Collapse
Affiliation(s)
- Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rahima Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nikkon Sarker
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Uditi Paul Bristi
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - SM Lutfor Rahman Remon
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Afroza Sultana
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Ruhul Amin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mir Salma Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Sindhusha VB, Rajasekar A. Formulation of Neem and Echinacea Gel for Oral Health Along With the Evaluation of Antimicrobial, Cytotoxic, Anti-inflammatory, and Free Radical Scavenging Activity: An In Vitro Study. Cureus 2024; 16:e63631. [PMID: 39092399 PMCID: PMC11291991 DOI: 10.7759/cureus.63631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Herbs have been used in medical practice for centuries and continue to play a significant role in modern complementary and alternative medicine. Phytochemicals in these herbs possess strong antioxidant and anti-inflammatory properties, which are beneficial in targeting oral health issues, such as dental plaque, gingivitis, and oral microbial infections. As research progresses, the challenge remains to translate these natural compounds into safe, effective, and accessible treatments for a wide range of diseases. Aim The aim of this research was to formulate the neem and echinacea gel along with the evaluation of antimicrobial, anti-inflammatory, free-radical scavenging activity, and cytotoxic potential. Materials and methods The neem and echinacea gel was prepared using a concentrated powdered mixture of neem and echinacea (5 grams each) to which 100 ml of distilled water was added, and the mixture was boiled for 30 minutes at 60°C. The 10 ml concentrate was mixed with 20 ml of a carbopol and carboxymethyl cellulose (CMC) mixture and mixed thoroughly, which resulted in neem and echinacea gel. Then, the antimicrobial, anti-inflammatory, cytotoxic potential, and free-radical scavenging activity of the gel were evaluated. The data obtained were statistically analyzed with the help of a paired t-test, where a p-value of less than 0.05 was considered statistically significant. Results The antimicrobial assay showed that neem and echinacea gel at the concentration of 100 micrograms showed a greater zone of inhibition against Staphylococcus aureus (3.15 ± 0.26), Streptococcus mutans (2.48 ± 0.45), Enterococcus faecalis (2.89 ± 0.15), and Candida albicans (4.28 ± 0.87). The cytotoxic test revealed that even at an 80 µg concentration of the extract, more than 70% of the nauplii were vital, which indicated that the gel was not cytotoxic. The highest anti-inflammatory activity (78.39 ± 1.82) of the gel was seen at 50 micrograms when compared with diclofenac sodium (73.16 ± 1.80). The free radical scavenging activity showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance of the neem and echinacea extract was highest at 50 micrograms. Conclusion The combination of neem and echinacea extract-based gel possessed high antimicrobial and anti-inflammatory activity when compared with standard drugs, such as amoxicillin and diclofenac sodium. The antioxidant activity of the gel was equal to butylated hydroxytoluene (BHT), and also the gel has a low cytotoxic potential even at its higher concentrations. Hence, the gel can be used as a natural remedy with minimal side effects, making it a valuable alternative to chemical agents.
Collapse
Affiliation(s)
- Vyshnavi B Sindhusha
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Thamizharasan A, Aishwarya M, Mohan V, Krishnamoorthi S, Gajalakshmi S. Assessment of microbial flora and pesticidal effect of vermicast generated from Azadirachta indica (neem) for developing a biofertilizer-cum-pesticide as a single package. Microb Pathog 2024; 192:106690. [PMID: 38759935 DOI: 10.1016/j.micpath.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.
Collapse
Affiliation(s)
- A Thamizharasan
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - M Aishwarya
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - V Mohan
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Krishnamoorthi
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Gajalakshmi
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
7
|
El-Beltagi HS, Ragab M, Osman A, El-Masry RA, Alwutayd KM, Althagafi H, Alqahtani LS, Alazragi RS, Alhajri AS, El-Saber MM. Biosynthesis of zinc oxide nanoparticles via neem extract and their anticancer and antibacterial activities. PeerJ 2024; 12:e17588. [PMID: 38948224 PMCID: PMC11212640 DOI: 10.7717/peerj.17588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Marwa Ragab
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ragab A. El-Masry
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hind Althagafi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Reem S. Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahlam Saleh Alhajri
- Food Science and Nutrition Department, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud M. El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
8
|
Johnson J, Shanmugam R, Manigandan P. Characterization and Biomedical Applications of Green-Synthesized Selenium Nanoparticles Using Tridax procumbens Stem Extract. Cureus 2024; 16:e63535. [PMID: 39086773 PMCID: PMC11290476 DOI: 10.7759/cureus.63535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
Background Selenium nanoparticles (SeNPs) are one of the metal nanoparticles that have been widely utilized for their anti-microbial, anti-oxidant, anti-inflammatory activities, and other biomedical applications. Tridax procumbens (TP) stem extract is a promising herb species rich in flavonoids, tannins, alkaloids, phytosterols, and hydroxycinnamates, which play a major role in wound healing applications. Aim The study aims to synthesize SeNPs using TP stem extract, characterizations, and its biomedical applications. Materials and methods SeNPs were synthesized using TP stem extract. The green synthesis of SeNPs was confirmed by ultraviolet-visible (UV-vis) spectra analysis. The synthesized SeNPs were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The agar well diffusion method was utilized to evaluate the anti-bacterial properties of the green synthesized SeNPs using TP stem extract. The anti-oxidant effect of SeNPs was tested using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing anti-oxidant power assay (FRAP), and hydroxyl radical scavenging assay (H₂O₂). The anti-inflammatory effect was investigated using the bovine serum albumin assay and egg albumin denaturation method, and the cytotoxic effect of the green synthesized SeNPs was tested using the brine shrimp lethality (BSL) assay. Results The green synthesis of SeNPs was confirmed using different types of analysis techniques. The characterizations were done by UV-visible spectroscopy analysis, exhibiting a maximum peak at the range of 330 nm. SEM analysis revealed the shape of the nanoparticle to be hexagonal. The agar well diffusion method exhibited the anti-bacterial efficacy of SeNPs against wound microorganisms with a zone of inhibition of 14.6 mm for Escherichia coli (E. coli), 15.8 mm for Staphylococcus aureus (S. aureus), and 15.4 mm for Pseudomonas aeruginosa (P. aeruginosa). The TP stem-mediated SeNPs showed potential effects in anti-oxidant, anti-inflammatory, and cytotoxic activity, which shows very little toxicity. Conclusion Overall, the green synthesis of TP-stem-mediated SeNPs has great potential in biomedical applications. Thus, the synthesized SeNPs exhibit significant anti-bacterial efficacy against wound pathogens. The TP stem-mediated SeNPs showed potential effects in anti-oxidant, anti-inflammatory, and cytotoxic activity, which shows low toxicity. Furthermore, the green-synthesized SeNPs can be utilized in therapeutic management.
Collapse
Affiliation(s)
- Jayapriya Johnson
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Pradeep Manigandan
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
9
|
Shaheen S, Khalid S, Aaliya K, Gul A, Hafeez A, Armaghan M, Almarhoon ZM, Calina D, Khan K, Sharifi-Rad J. Insights into Nimbolide molecular crosstalk and its anticancer properties. Med Oncol 2024; 41:158. [PMID: 38761317 DOI: 10.1007/s12032-024-02379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 05/20/2024]
Abstract
Nimbolide, one of the main ingredients constituent of Azadirachta indica (neem) leaf extract, has garnered attention for its potential as an anticancer agent. Its efficacy against various cancers and chemopreventive action has been demonstrated through numerous in vivo and in vitro studies. This updated review aims to comprehensively explore the chemopreventive and anticancer properties of nimbolide, emphasizing its molecular mechanisms of action and potential therapeutic applications in oncology. The review synthesizes evidence from various studies that examine nimbolide's roles in apoptosis induction, anti-proliferation, cell death, metastasis inhibition, angiogenesis suppression, and modulation of carcinogen-metabolizing enzymes. Nimbolide exhibits multifaceted anticancer activities, including the modulation of multiple cell signaling pathways related to inflammation, invasion, survival, growth, metastasis, and angiogenesis. However, its pharmacological development is still in the early stages, mainly due to limited pharmacokinetic and comprehensive long-term toxicological studies. Nimbolide shows promising anticancer and chemopreventive properties, but there is need for systematic preclinical pharmacokinetic and toxicological research. Such studies are essential for establishing safe dosage ranges for first-in-human clinical trials and further advancing nimbolide's development as a therapeutic agent against various cancers. The review highlights the potential of nimbolide in cancer treatment and underscores the importance of rigorous preclinical evaluation to realize its full therapeutic potential.
Collapse
Affiliation(s)
- Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Sana Khalid
- Department of Botany, Lahore College for Women University, Jail Road, Lahore, Pakistan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Khadija Aaliya
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ambreen Gul
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Amna Hafeez
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | | |
Collapse
|
10
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
11
|
Nagini S, Palrasu M, Bishayee A. Limonoids from neem (Azadirachta indica A. Juss.) are potential anticancer drug candidates. Med Res Rev 2024; 44:457-496. [PMID: 37589457 DOI: 10.1002/med.21988] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Manikandan Palrasu
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
12
|
Zaman R, Ravichandran V, Tan CK. Role of dietary supplements in the continuous battle against COVID-19. Phytother Res 2024; 38:1071-1088. [PMID: 38168043 DOI: 10.1002/ptr.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A sudden outbreak of the COVID-19 pandemic was a big blow to the world community on every level. Created by a novel coronavirus, SARS-CoV-2, which was previously unknown to the human immune system. The expert opinion almost immediately united on the fact that the most effective way of fighting the pandemic would be by building immunity artificially via a mass immunization program. However, it took about a year for the approval of the first vaccine against COVID-19. In the meantime, a big part of the general population started adapting nutritious diet plans and dietary supplements to boost natural immunity as a potential prophylactic strategy against SARS-CoV-2 infection. Whether they originate from mainstream medicine, such as synthetic supplements, or traditional herbal remedies in the form of single or poly-herbs, these supplements may comprise various components that exhibit immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial characteristics. There is a substantial body of predictions and expert opinions suggesting that enhancing one's diet with dietary supplements containing additional nutrients and bioactive compounds like vitamins, minerals, amino acids, fatty acids, phytochemicals, and probiotics can enhance the immune system's ability to develop resistance against COVID-19, although none of them have any conclusive evidence nor officially recommended by World Health Organization (WHO). The current review critically acclaims the gap between public perception-based preference and real evidence-based study to weigh the actual benefit of dietary supplements in relation to COVID-19 prevention and management.
Collapse
Affiliation(s)
- Rahela Zaman
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vignesh Ravichandran
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chung Keat Tan
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Maafoh C, Onyedibe K. Alternative first-line malaria treatment. Ann Afr Med 2024; 23:5-12. [PMID: 38358164 PMCID: PMC10922181 DOI: 10.4103/aam.aam_35_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/21/2023] [Indexed: 02/16/2024] Open
Abstract
Malaria is a disease affecting millions of people, especially in Africa, Asia, and South America, and has become a substantial economic burden. Because malaria is contracted through the bite of a mosquito vector, it is very challenging to prevent. Bed nets and insect repellents are used in some homes; others do not have or use them even when available. Thus, treatment measures are crucial to controlling this disease. Artemisinin-based combination therapy (ACT) is currently the first-line treatment for malaria. ACT has been used for decades, but recently, there has been evidence of potential resistance. This threat of resistance has led to the search for possible alternatives to ACT. In sub-Saharan Africa, Azadirachta indica, or simply neem, is a plant used to treat a variety of ailments, including malaria. Neem is effective against one of the more deadly malaria parasites Plasmodium falciparum. Reports show that neem inhibits microgametogenesis of P. falciparum and interferes with the parasite's ookinete development. Although there is substantial in vitro research on the biological activity of A. indica (neem), there is limited in vivo research. Herein, we discuss the in vivo effects of neem on malaria parasites. With A. indica, the future of malaria treatment is promising, especially for high-risk patients, but further research and clinical trials are required to confirm its biological activity.
Collapse
Affiliation(s)
- Cassandra Maafoh
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | - Kenneth Onyedibe
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| |
Collapse
|
14
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Scheau AE, Savulescu-Fiedler I, Caruntu A, Badarau IA, Caruntu C, Scheau C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci 2023; 24:16299. [PMID: 38003488 PMCID: PMC10671393 DOI: 10.3390/ijms242216299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Kaempferol and its derivatives are flavonoids found in various plants, and a considerable number of these have been used in various medical applications worldwide. Kaempferol and its compounds have well-known antioxidant, anti-inflammatory and antimicrobial properties among other health benefits. However, the antiviral properties of kaempferol are notable, and there is a significant number of experimental studies on this topic. Kaempferol compounds were effective against DNA viruses such as hepatitis B virus, viruses of the alphaherpesvirinae family, African swine fever virus, and pseudorabies virus; they were also effective against RNA viruses, namely feline SARS coronavirus, dengue fever virus, Japanese encephalitis virus, influenza virus, enterovirus 71, poliovirus, respiratory syncytial virus, human immunodeficiency virus, calicivirus, and chikungunya virus. On the other hand, no effectiveness against murine norovirus and hepatitis A virus could be determined. The antiviral action mechanisms of kaempferol compounds are various, such as the inhibition of viral polymerases and of viral attachment and entry into host cells. Future research should be focused on further elucidating the antiviral properties of kaempferol compounds from different plants and assessing their potential use to complement the action of antiviral drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
15
|
Dave N, Iqbal A, Patel M, Kant T, Yadav VK, Sahoo DK, Patel A. Deciphering the key pathway for triterpenoid biosynthesis in Azadirachta indica A. Juss.: a comprehensive review of omics studies in nature's pharmacy. FRONTIERS IN PLANT SCIENCE 2023; 14:1256091. [PMID: 38023910 PMCID: PMC10664250 DOI: 10.3389/fpls.2023.1256091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Since ancient times, Azadirachta indica, or Neem, has been a well-known species of plant that produces a broad range of bioactive terpenoid chemicals that are involved in a variety of biological functions. Understanding the molecular mechanisms that are responsible for the biosynthesis and control of terpenoid synthesis is majorly dependent on successfully identifying the genes that are involved in their production. This review provides an overview of the recent developments concerning the identification of genes in A. indica that are responsible for the production of terpenoids. Numerous candidate genes encoding enzymes that are involved in the terpenoid biosynthesis pathway have been found through the use of transcriptomic and genomic techniques. These candidate genes include those that are responsible for the precursor synthesis, cyclization, and modification of terpenoid molecules. In addition, cutting-edge omics technologies, such as metabolomics and proteomics, have helped to shed light on the intricate regulatory networks that govern terpenoid biosynthesis. These networks are responsible for the production of terpenoids. The identification and characterization of genes involved in terpenoid biosynthesis in A. indica presents potential opportunities for genetic engineering and metabolic engineering strategies targeted at boosting terpenoid production as well as discovering novel bioactive chemicals.
Collapse
Affiliation(s)
- Nitish Dave
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Atif Iqbal
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Tarun Kant
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Genetics and Tree Improvement Division, Arid Forest Research Institute, Jodhpur, India
| |
Collapse
|
16
|
Nath R, Baishya S, Nath D, Nahar L, Sarker SD, Choudhury MD, Talukdar AD. Identifying druggable targets from active constituents of Azadirachta indica A. Juss. for non-small cell lung cancer using network pharmacology and validation through molecular docking. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:855-868. [PMID: 37337376 DOI: 10.1002/pca.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Azadirachta indica A. Juss. is a well-known medicinal plant that has been used traditionally to cure various ailments in every corner of the globe. There are many in vitro and in vivo experimental evidences in connection with the bioactivity of the extracts of this plant. Lung cancer is the deadliest form of cancer and contributes to the most cancer related deaths. The mode of action of anticancer components of this plant is still to be established explicitly. OBJECTIVE The objective of this study is to identify druggable targets of active constituents of A. indica A. Juss. for non-small cell lung cancer (NSCLC) using network pharmacology and validation of activity through molecular docking analysis. METHODOLOGY Targets of all the active phytochemicals from A. indica were predicted and genes related to NSCLC were retrieved. A protein-protein interaction (PPI) network of the overlapping genes were prepared. Various databases and servers were employed to analyse the disease pathway enrichment analysis of the clustered genes. Validation of the gene/protein activity was achieved by performing molecular docking, and ADMET profiling of selected phytocompounds was performed. RESULT Gene networking revealed three key target genes as EGFR, BRAF and PIK3CA against NSCLC by the active components of A. indica. Molecular docking and ADMET analysis further validated that desacetylnimbin, nimbandiol, nimbin, nimbinene, nimbolide, salannin and vepinin are the best suited anti- NSCLC among all the phytocompounds present in this plant. CONCLUSION The present study has provided a better understanding of the pharmacological effects of active components from A. indica and its potential therapeutic effect on NSCLC.
Collapse
Affiliation(s)
- Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Somorita Baishya
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepa Nath
- Department of Botany, Guru Charan College, Silchar, Assam, India
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Satyajit D Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
17
|
Priya PS, Kumar RS, Gawwad MRA, Alarjani KM, Elshikhe MS, Namasivayam SKR, Arockiaraj J. Azadiradione (AZD) neem biomass derived limonoid: extraction, characterization, and potential biological activities with special reference to anti-microbial and anti-cancer activities. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 158:405-416. [DOI: 10.1016/j.sajb.2023.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
18
|
Frazier EA, Patil RP, Mane CB, Sanaei D, Asiri F, Seo SS, Sharifan H. Environmental exposure and nanotoxicity of titanium dioxide nanoparticles in irrigation water with the flavonoid luteolin. RSC Adv 2023; 13:14110-14118. [PMID: 37179991 PMCID: PMC10170238 DOI: 10.1039/d3ra01712e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Different concentrations of titanium oxide nanoparticles (TiO2NPs) have been frequently reported in treated wastewater used for the irrigation of crops. Luteolin is a susceptive anticancer flavonoid in many crops and rare medicinal plants that can be affected by exposure to TiO2NPs. This study investigates the potential transformation of pure luteolin in exposure to TiO2NP-containing water. In an in vitro system, three replicates of 5 mg L-1 of pure luteolin were exposed to TiO2NPs (0, 25, 50, 100 ppm). After 48 h exposure, the samples were extensively analyzed by Raman spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and dynamic light scattering (DLS). A positive correlation was found between TiO2NPs concentrations and the structural alteration of luteolin content, where over 20% of luteolin structure was allegedly altered in the presence of 100 ppm TiO2NPs. The increase of NPs diameter (∼70 nm) and dominant peaks in Raman spectra revealed that luteolin was adsorbed onto the TiO2NPs surface. Further, the second-order derivative analysis confirmed the transformation of luteolin upon exposure to TiO2NPs. This study provides fundamental insight into agricultural safety measures when exposed to air or water-borne TiO2NPs.
Collapse
Affiliation(s)
| | - Rajendra P Patil
- Department of Chemistry, M. H. Shinde Mahavidyalaya Tisangi-416206 MH India
| | - Chandrakant B Mane
- Department of Chemistry, Shri Vijaysinha Yadav College of Arts and Science Peth Vadgaon MH India
| | - Daryoush Sanaei
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences Tehran Iran
| | - Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research P.O. Box 24885 Safat 13109 Kuwait
| | - Seong S Seo
- Department of Natural Sciences, Albany State University Albany GA USA
| | | |
Collapse
|
19
|
Kalachaveedu M, Senthil R, Azhagiyamanavalan S, Ravi R, Meenakshisundaram H, Dharmarajan A. Traditional medicine herbs as natural product matrices in cancer chemoprevention: A trans pharmacological perspective (scoping review). Phytother Res 2023; 37:1539-1573. [PMID: 36788644 DOI: 10.1002/ptr.7747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 10/20/2022] [Accepted: 12/18/2022] [Indexed: 02/16/2023]
Abstract
Emerging evidence on molecular biology related to tumors, inflammation, and immunity, highlights their architectural commonality shifting cancer treatment paradigms toward more economical prevention than treatment. Statistical surveys reveal exponentially growing herbal drug supplementation in cancer worldwide as vast pre-clinical and clinical data unravel their multi-mechanistic pharmacology. The integrative oncological approach calls for more "holistic" principles to be amalgamated into cancer care. New cancer drug development from herbs need not be limited by the archetypal 'RCT-Standardization' bottlenecks. Based on comprehensive literature scoping as per Prisma-ScR guidelines, we herein concurrently reviewed evidence-based research reports of selected Indian Traditional Medicine (ITM) herbs of anticancer repute in parallel with their holistic therapeutics; a rationalistic exploration of ITM's scientific genre. Their synergy effect on cancer revisited using a trans-pharmacological approach validates ITM's seemingly simplistic health/disease equation model, showing a fresh new avenue for re-purposing whole herbal drug complexes in cancer management. Herbal drugs as per ITM are natural matrices whose dynamics of interaction in the etiopathology of cancer are conceptually and mechanistically integrative. Lateral perspective to the same as laid out in this review holds the key to their effectual development as more tangible cancer chemopreventives/new drug targets/leads if not as new pharmacological tools.
Collapse
Affiliation(s)
- Mangathayaru Kalachaveedu
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Reshma Senthil
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sowndarya Azhagiyamanavalan
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Ramnarayanan Ravi
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Arunasalam Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
20
|
Husain N, Uddin Q, Kazmi MH, Khalid M. A non-inferiority randomized controlled clinical trial comparing Unani formulations and PUVAsol in non-segmental vitiligo. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:250-257. [PMID: 34162019 DOI: 10.1515/jcim-2021-0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Greco-Arab medicine is an ancient system of medicine with greater treasure on therapeutics of vitiligo. The trial Unani formulations have not been scientifically explored for their safety and efficacy, but have been repeatedly prescribed by the great Unani physicians in the management of Baraṣ (vitiligo). Hence, these interventions were selected for the trial. METHODS In this randomized, controlled, open-label clinical trial, 82 participants with non-segmental vitiligo aged 18-40 years were block randomized to either receive Unani interventions or control for 16 weeks. Out of 82 participants, 42 were randomized to the Unani group and 40 were randomized to the control group. The primary outcome measure was change in vitiligo area scoring index (VASI), which was assessed on weeks 4, 8, 12 and 16. The secondary outcome measures included the patient's global assessment on VAS and investigator's global assessment based on photographic evaluation at baseline and after the treatment. Safety parameters included hemogram, LFTs, RFTs, CXR, ECG, urine, and stool examinations, which were evaluated at baseline and after the treatment. RESULTS The per-protocol analysis was done on 30 participants in each group and the response in Unani group was not inferior to those receiving control group. The mean ± SD of vitiligo area scoring index (VASI) decreased from 4.09 ± 2.87 and 5.50 ± 5.73 at baseline to 3.13 ± 2.20 and 4.29 ± 4.95 at the end of the trial in both the Unani and control groups respectively. CONCLUSIONS The study inferred that both the interventions are equally effective and well-tolerated in patients with non-segmental vitiligo.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Moalajat, Luqman Unani Medical College Hospital & Research Center, Bijapur, Karnataka, India
| | - Qamar Uddin
- National Research Institute of Unani Medicine for Skin Disorders, Hyderabad, India
| | | | - Mohd Khalid
- Department of Moalajat, Luqman Unani Medical College Hospital & Research Center, Bijapur, Karnataka, India
| |
Collapse
|
21
|
Faloye KO, Adesida SA, Oguntimehin SA, Adewole AH, Omoyeni OB, Fajobi SJ, Ugwo JP, Asiyanbola ID, Bamimore VO, Fakola EG, Oladiran OJ, Spiteller M. LC-MS Analysis, Computational Investigation, and Antimalarial Studies of Azadirachta indica Fruit. Bioinform Biol Insights 2023; 17:11779322231154966. [PMID: 36860650 PMCID: PMC9969453 DOI: 10.1177/11779322231154966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/17/2023] [Indexed: 03/03/2023] Open
Abstract
Malaria is a deadly disease that continues to pose a threat to children and maternal well-being. This study was designed to identify the chemical constituents in the ethanolic fruit extract of Azadirachta indica, elucidate the pharmacological potentials of identified phytochemicals through the density functional theory method and carry out the antimalarial activity of extract using chemosuppression and curative models. The liquid chromatography-mass spectrometry (LC-MS) analysis of the ethanolic extract was carried out, followed by the density functional theory studies of the identified phytochemicals using B3LYP and 6-31G (d, p) basis set. The antimalarial assays were performed using the chemosuppression (4 days) and curative models. The LC-MS fingerprint of the extract led to the identification of desacetylnimbinolide, nimbidiol, O-methylazadironolide, nimbidic acid, and desfurano-6α-hydroxyazadiradione. Also, the frontier molecular orbital properties, molecular electrostatic potential, and dipole moment studies revealed the identified phytochemicals as possible antimalarial agents. The ethanolic extract of A indica fruit gave 83% suppression at 800 mg/kg, while 84% parasitaemia clearance was obtained in the curative study. The study provided information about the phytochemicals and background pharmacological evidences of the antimalarial ethnomedicinal claim of A indica fruit. Thus, isolation and structure elucidation of the identified phytochemicals from the active ethanolic extract and extensive antimalarial studies towards the discovery of new therapeutic agents is recommended for further studies.
Collapse
Affiliation(s)
- Kolade O Faloye
- Department of Chemistry, Faculty of
Science, Obafemi Awolowo University, Ile-Ife, Nigeria,Kolade O Faloye, Department of Chemistry,
Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | - Stephen A Adesida
- Department of Pharmacognosy, Faculty of
Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Samuel A Oguntimehin
- Department of Pharmacognosy, Faculty of
Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Adetola H Adewole
- Department of Chemistry, University of
Pretoria, Pretoria, South Africa
| | - Olajide B Omoyeni
- Department of Chemistry, Faculty of
Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Sunday J Fajobi
- Department of Pharmacology, Faculty of
Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jeremiah P Ugwo
- Department of Chemistry, School of
Science, Federal College of Education, Okene, Nigeria
| | - Isaac D Asiyanbola
- Department of Chemistry, School of
Science, Federal College of Education, Okene, Nigeria
| | - Victoria O Bamimore
- Department of Botany, Faculty of
Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Emmanuel G Fakola
- Department of Chemistry, Faculty of
Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olayemi J Oladiran
- Department of Pharmacognosy, Faculty of
Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Michael Spiteller
- Institute of Environmental Research
(INFU), Department of Chemistry and Chemical Biology, TU Dortmund, Dortmund,
Germany
| |
Collapse
|
22
|
Abou-El-Naga I, Younis S, Radwan K. Molluscicidal effect of green synthesized silver nanoparticles using Azadirachta indica on Biomphalaria alexandrina snails and Schistosoma mansoni cercariae. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.367688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
Elmi A, Mohamed AS, Said S, Bationo R. A Comparison Study of Medicinal Plants Used Against SARS-CoV-2 and Those Recommended Against Malaria in Africa. ETHNOPHARMACOLOGY AND DRUG DISCOVERY FOR COVID-19: ANTI-SARS-COV-2 AGENTS FROM HERBAL MEDICINES AND NATURAL PRODUCTS 2023:549-573. [DOI: 10.1007/978-981-99-3664-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Phytochemical-assisted Synthesis of Titania Nanoparticles using Azadirachta indica Leaf Extract as Photocatalyst in the Photodegradation of Methyl Orange. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.4.15581.683-698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The biosynthesis procedure for nanomaterial preparation is a promising alternative due to its simplicity and environmental friendliness. In this work, TiO2 NPs were biosynthesized using the aqueous leaf extract of Azadirachta indica. The influence of the extract volumes, solvents, and acetic acid on the properties of TiO2 NPs was studied. Phytochemical screening and ATR-FTIR spectrum confirmed the presence of phenolic compounds in the leaf extract. XRD patterns showed that the samples were mainly in the anatase phase. However, for the water-based samples and when 1 and 2 mL of extract volumes were used, anatase/brookite mixture was observed. FESEM images displayed almost spherical and agglomerated NPs. UV-Vis-NIR studies showed that the samples’ bandgaps values are within the range of anatase TiO2. The photocatalytic activity of the TiO2 NPs was evaluated in the photodegradation of methyl orange (MO) under UV light irradiation. The water-based sample synthesized using 2 mL of the extract achieved 98.62% of MO degradation within 270 min and demonstrated the highest pseudo-first-order photodegradation kinetic constant of 0.0147 min-1. These results indicate that the use of the plant-based biosynthesis method with water as the solvent successfully produced TiO2 NPs with good physicochemical properties and photocatalytic activity in the photodegradation of organic dye. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
25
|
Sharma N, Saszet K, Szabó T, Karajz D, Szilágyi IM, Garg S, Pap Z, Hernadi K. Demonstration of effectiveness: plant extracts in the tuning of BiOX photocatalysts' activity. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Ouerfelli M, Metón I, Codina-Torrella I, Almajano MP. Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227772. [PMID: 36431873 PMCID: PMC9698279 DOI: 10.3390/molecules27227772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The present study aims to identify and quantify the phenolic compounds of Azadirachta indica leaf extract using HPLC-MS and to evaluate the antioxidant, antibacterial (against different Gram-positive and negative bacteria) and in vitro anti-proliferative activities of this extract (against breast, human liver and cervix adenocarcinoma-derived cells). The application of this extract as a natural antioxidant for food preservation was also tested on oil-in-water food emulsions for the first time in the present work in order to determine the use of Azadirachta indica leaves as a natural additive to preserve the food against lipid oxidation and rancidity. The results obtained revealed that 50%-aqueous ethanol leaf extract showed the best extraction yield (25.14%), which was characterized by a high content in phenolic compounds and strong antioxidant activity. Moreover, this leaf extract inhibited the growth of the bacterial strains tested (Staphylococcus aureus, Escherichia coli, Salmonella paratyphi and Micrococcus luteus) and showed better anti-proliferative activity against breast and cervix adenocarcinoma-derived cells than human liver cancer cells after 48 h of treatment. Additionally, Azadirachta indica leaf extract showed almost similar effects as gallic acid solutions (0.25% and 0.5%) in preserving the oxidation of oil-in-water food emulsions and prevented the formation of secondary oxidation products (malondialdehyde) as well. The results obtained suggested that extracts of Azadirachta indica leaves are a potential source of antioxidant and antibacterial compounds and pointed to the potential of these natural extracts as therapeutic agents.
Collapse
Affiliation(s)
- Manel Ouerfelli
- Chemical Engineering Department, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Biology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Isidoro Metón
- Biochemistry and Physiology Departament, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Idoia Codina-Torrella
- Agri-Food Engineering and Biotechnology Department, Escola d’Enginyeria Agroalimentària i de Biosistemes de Bacelona (EEABB), Universitat Politècnica de Catalunya, Esteve Terrades, 8, 08860 Castelldefels, Spain
| | - María Pilar Almajano
- Chemical Engineering Department, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-016-686
| |
Collapse
|
27
|
Mangang IB, Manickam L. Insect repellent pellets - an application of botanicals against red flour beetle - their antifungal activity during storage and use as potential fumigants. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6696-6706. [PMID: 35620837 DOI: 10.1002/jsfa.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The protection of grains from insect infestation is critical during storage. Insect repellent pellets (IRPs) are a potential technique to repel insects by hindering insect movement toward the grains. The basic principle of IRPs is the use of active components found in the oils of lemongrass, eucalyptus, and neem leaves for the controlled release of fumes, thereby avoiding the need for reapplication after a few days. Here, we examined the antifungal activity, the lethal dose, and the repelling effect of IRPs against red flour beetle, Tribolium castaneum, over a 30 day period. RESULTS We observed that IRPs possessed antifungal properties and were able to repel the adults of T. castaneum. These insects ultimately died from the fumes if they manage to stay near the IRPs (LD50 = 2 and LD99 = 7 days). The active components (phenol, 2,4-di-tert-butyl-, citral, neral, geraniol, n-hexadecanoic acid) present in IRP during the initial stage were also found after a storage period of 35 days. CONCLUSION The active components present in IRPs have antifungal, repellent, and fumigant properties. The IRPs can thus be termed potent botanical insecticides and are an alternative to synthetic insecticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Irengbam Barun Mangang
- Storage Entomology Laboratory, Department of Academics and HRD, NIFTEM-T, Formerly IIFPT, Thanjavur, India
| | - Loganathan Manickam
- Storage Entomology Laboratory, Department of Academics and HRD, NIFTEM-T, Formerly IIFPT, Thanjavur, India
| |
Collapse
|
28
|
Foka FET, Manamela N, Mufamadi SM, Mufhandu HT. Potential of Azadirachta indica as a Capping Agent for Antiviral Nanoparticles against SARS-CoV-2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5714035. [PMID: 36158879 PMCID: PMC9499809 DOI: 10.1155/2022/5714035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
A rare type of pneumonia later on referred to as COVID-19 was reported in China in December 2019. Investigations revealed that this disease is caused by a coronavirus previously identified as SARS-CoV-2, and since then, it has become a global pandemic with new strains emerging rapidly as a result of genetic mutations. Various therapeutic options are being explored in order to eradicate this pandemic even though approved vaccine candidates are being currently rolled out globally. Most medicinal plant extracts have astonishing properties, and they can therefore be used in the biosynthesis of effective antiviral nanoparticles. In this systematic review, we aimed to highlight the specific attributes that make Azadirachta indica (neem plant) a suitable candidate for the biosynthesis of anti-SARS-CoV-2 nanoparticles. A systematic investigation was therefore carried out in PubMed, Scopus, Web of Science, and AJOL databases with the keywords "Nanoparticles," "Biosynthesis," "Antivirals," "SARS-CoV-2," and "Azadirachta indica." 1216 articles were retrieved by the 21st of February 2022, but we screened studies that reported data on biomedical and antimicrobial assessment of Azadirachta indica extracts. We also screened studies that were reporting nanoparticles possessing antiviral properties against SARS-C0V-2, narrowing our results to 98 reports. Herein, the SARS-CoV-2 viral structure is briefly discussed with nanoparticles of biomedical importance in the design of SARS-CoV-2 antivirals. Most importantly, we focused on the biomedical and antiviral properties of Azadirachta indica extracts that could be of importance in the design of potential anti-SARS-CoV-2 nanoformulations.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Lab, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, Private Bag, X2046 Mmabatho, South Africa
| | - Nanabi Manamela
- Department of Microbiology, Virology Lab, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, Private Bag, X2046 Mmabatho, South Africa
| | - Steven Maluta Mufamadi
- Faculty of Health Sciences, Medical School, Nelson Mandela University, Missionvale Campus, P.O. Box 77000, Gqeberha 6031, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Lab, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, Private Bag, X2046 Mmabatho, South Africa
| |
Collapse
|
29
|
Murugan R, Rajesh R, Guru A, Haridevamuthu B, Almutairi BO, Almutairi MH, Juliet A, Renganayagi S, Gopinath P, Arockiaraj J. Deacetylepoxyazadiradione Derived from Epoxyazadiradione of Neem (Azadirachta indica A. Juss) Fruits Mitigates LPS-Induced Oxidative Stress and Inflammation in Zebrafish Larvae. Chem Biodivers 2022; 19:e202200041. [PMID: 36026548 DOI: 10.1002/cbdv.202200041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022]
Abstract
Reactive oxygen species (ROS) produced by cell metabolism have a duplex role in oxidation and inflammation reactions which involve cell damage or repair responses. Excess ROS production has detrimental effects on the survival of cells. We examined the protective effect of a semi-natural compound NF2 (deacetylepoxyazadiradione), for its protective activity against free radical-mediated stress and inflammatory response to lipopolysaccharide (LPS) using zebrafish larvae. Preliminary antioxidant assays indicated an increase in scavenging of free radicals from NF2 than NF1 (Epoxyazadiradione) in a concentration-dependent manner. Cell cytotoxicity was determined using rat myoblast cell lines (L6), and more than 95 % of cell viability was obtained. Zebrafish developmental toxicity test indicated that NF2 is not toxic even at 150 μM. The percentage of ROS, lipid peroxidation, nitric oxide and apoptosis were reduced significantly in NF2 treated LPS-stressed zebrafish larvae. The reduced number of employed macrophages on NF2 treatment was observed in neutral red dye-marked macrophage localization images. Relative expression of antioxidant genes in zebrafish larvae after treatment with NF2 is significantly increased. The RT-PCR quantification of antioxidant and anti-inflammatory gene expression indicated decreased relative folds of pro-inflammatory cytokines, iNOS and increased relative folds of mitochondrial antioxidant genes (GR, GST and GPx) in LPS stressed zebrafish larvae after treatment with NF2. From the overall obtained results, it can be concluded that NF2 reduced the oxidative stress and inflammatory response by scavenging free radicals caused by LPS.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ravi Rajesh
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, Texas, 78712, USA
| | - S Renganayagi
- Department of Advanced Zoology and Biotechnology, Chellammal Women's College, Guindy, Chennai, 600 032, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Antiviral perspectives of economically important Indian medicinal plants and spices. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9422945 DOI: 10.1007/s43538-022-00099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human respiratory diseases caused by viral infections leads to morbidity. Among infectious diseases, viral infections associated with the respiratory tract remain the primary reason for global deaths due to their transmissibility. Since immemorial, traditional Indian medicinal plants, their extracts, and several phytochemicals can treat various diseases. Sources for this review paper are data derived from a peer-reviewed journal that emphasizes the economic importance of medicinal plants. Several plant-based medicines have been reported to be effective against multiple viral infections, including the Human Adenovirus, Enterovirus, Influenza virus, Hepatitis virus, etc. This review emphasizes use of the Indian medicinal plants like as Withania somnifera (Ashwagandha, Winter Cherry), Moringa oleifera (Drumstick), Ocimum tenuiflorum (Tulsi), Azadirachta indica (Neem), Curcuma longa (Turmeric), Terminalia chebula (Chebulic Myrobalan), Punica granatum (Pomegranate) and the Indian household spices (ginger, garlic and black pepper). It further describes their secondary phytoconstituents extraction procedure, mode of action and the potential application to improve clinical outcomes of neutraceuticals against various viral infections.
Collapse
|
31
|
Singh A, Chatterjee A, Rakshit S, Shanmugam G, Mohanty LM, Sarkar K. Neem Leaf Glycoprotein in immunoregulation of cancer. Hum Immunol 2022; 83:768-777. [DOI: 10.1016/j.humimm.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
|
32
|
Azadirachta indica A. Juss Fruit Mesocarp and Epicarp Extracts Induce Antimicrobial and Antiproliferative Effects against Prostate (PC-3), Breast (MCF-7), and Colorectal Adenocarcinoma (Caco-2) Cancer Cell Lines through Upregulation of Proapoptotic Genes. PLANTS 2022; 11:plants11151990. [PMID: 35956468 PMCID: PMC9370754 DOI: 10.3390/plants11151990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Effective alternative strategies and methodological approaches are critically necessary for cancer prevention and therapy. In this study, we investigated the antitumor potential of neem fruit mesocarp and epicarp extracts. The chemical composition of the derived extracts was characterized using GC–MS. Data were collected on the antimicrobial activity of the extracts in addition to the cytotoxicity effect evaluated against PC-3, MCF-7, and Caco-2 cancer cell lines, compared with the normal Vero cells. Cell-cycle arrest, apoptosis, and expression of apoptosis-related genes were assessed on PC-3 cells. Both extracts had significant antiproliferative effects on all tested cell lines in a dose-dependent manner, with the mesocarp extract being more potent. Both extracts also showed high antibacterial and antifungal activities. These results were related to the chemical constituents of the extracts identified by the GC–MS analysis. The extract of neem fruit mesocarp caused cell-cycle arrest at G2/M phase of PC-3 cells. The cytotoxicity of neem mesocarp extract is strongly correlated with the induction of apoptosis, where it caused downregulation of the antiapoptotic BCL2 gene but upregulation of the proapoptotic P53 and BAX genes. This study showed that neem fruit extract is potential anticancer material in the future.
Collapse
|
33
|
Shobana N, Prakash P, Samrot AV, Jane Cypriyana PJ, Kajal P, Sathiyasree M, Saigeetha S, Stalin Dhas T, Alex Anand D, Sabesan GS, Muthuvenkatachalam BS, Mohanty BK, Visvanathan S. Purification and Characterization of Gum-Derived Polysaccharides of Moringa oleifera and Azadirachta indica and Their Applications as Plant Stimulants and Bio-Pesticidal Agents. Molecules 2022; 27:3720. [PMID: 35744846 PMCID: PMC9230390 DOI: 10.3390/molecules27123720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Plant gums are bio-organic substances that are derived from the barks of trees. They are biodegradable and non-adverse complex polysaccharides that have been gaining usage in recent years due to a number of advantages they contribute to various applications. In this study, gum was collected from Moringa oleifera and Azadirachta indica trees, then dried and powdered. Characterizations of gum polysaccharides were performed using TLC, GC-MS, NMR, etc., and sugar molecules such as glucose and xylose were found to be present. Effects of the gums on Abelmoschus esculentus growth were observed through root growth, shoot growth, and biomass content. The exposure of the seeds to the plant gums led to bio stimulation in the growth of the plants. Poor quality soil was exposed to the gum polysaccharide, where the polysaccharide was found to improve soil quality, which was observed through soil analysis and SEM analysis of soil porosity and structure. Furthermore, the plant gums were also found to have bio-pesticidal activity against mealybugs, which showed certain interstitial damage evident through histopathological analysis.
Collapse
Affiliation(s)
- Nagarajan Shobana
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Pandurangan Prakash
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - P. J. Jane Cypriyana
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Purohit Kajal
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Mahendran Sathiyasree
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Subramanian Saigeetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - T. Stalin Dhas
- Centre for Ocean Research, MoES—Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India;
| | - D. Alex Anand
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Gokul Shankar Sabesan
- Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia; (G.S.S.); (B.K.M.)
| | | | - Basanta Kumar Mohanty
- Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia; (G.S.S.); (B.K.M.)
| | - Sridevi Visvanathan
- Faculty of Medicine, AIMST University, Batu 3 1/2, Jalan, Bukit Air Nasi, Bedong 08100, Malaysia; (B.S.M.); (S.V.)
| |
Collapse
|
34
|
Azadirachta indica (Neem) as a Potential Natural Active for Dermocosmetic and Topical Products: A Narrative Review. COSMETICS 2022. [DOI: 10.3390/cosmetics9030058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Azadirachta indica (Neem) is a large tree that is native to India and is traditionally used due to its several properties, mainly to treat skin diseases, as well as its “herbicidal” activity. Its bark, leaves, seeds, fruits and flowers are widely used in medicinal treatment due to the presence of active secondary metabolites with biological effects, mainly limonoids and tetranortriterpenoids, such as azadirachtin. Thus, A. indica was studied in a variety of conditions, such as anticancer, antiseptic, anti-inflammatory and chemopreventive agents, as well as a biopesticide. Furthermore, differentiated cell tissue in A. indica cultivation was reported to produce active metabolites for different purposes. However, only a few studies have been developed regarding its potential use in cosmetics. For instance, most studies explained the antimicrobial properties in health conditions, such as acne, dandruff and personal health care. Here, we summarized not only the most common cosmetic claims to treat acne but also mitigating other skin disorders related to inflammatory and oxidant processes in recent in vivo studies and patents to aid researchers and industrialists to select A. indica derivatives as novel cosmetic ingredients.
Collapse
|
35
|
Anti-COVID-19 Potential of Azadirachta indica (Neem) Leaf Extract. SCIENTIFIC AFRICAN 2022; 16:e01184. [PMID: 35434432 PMCID: PMC8990437 DOI: 10.1016/j.sciaf.2022.e01184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is caused by infection with the “severe acute respiratory syndrome coronavirus-2″ (i.e., SARS-CoV-2). This is an enveloped virus having a positive sense, single-stranded RNA genome; like the two earlier viruses SARS-CoV and the Middle East respiratory syndrome (MERS) virus. COVID-19 is unique in that, in the severe case, it has the propensity to affect multiple organs, leading to multiple organ distress syndrome (MODS), and causing high morbidity and mortality in the extreme case. In addition, comorbidities like age, cardiovascular disease, diabetes and its complications, obesity, are risk factors for severe COVID-19. It turns out that a most plausible, simple, single explanation for this propensity for MODS is the pivotal involvement of the vascular endothelium (VE). This is a consequence of the fact that the VE seamlessly connects all the entire vascular bed in the body, thus linking all the target organs (heart, lungs, kidney, liver, brain) and systems. Infection with SARS-CoV-2 leads to hyper-inflammation yielding uncontrolled production of a mixture of cytokines, chemokines, reactive oxygen species, nitric oxide, oxidative stress, acute phase proteins (e.g., C-reactive protein), and other pro-inflammatory substances. In the extreme case, a cytokine storm is created. Displacement of the virus bound to the VE, and/or inhibition of binding of the virus, would constitute an effective strategy for preventing COVID-19. In this regard, the acetone-water extract of the leaf of the Neem (Azadirachta indica) plant has been known to prevent the adherence of malaria parasitized red blood cells (pRBCs) to VE; prevent cytoadherence of cancer cells in metastasis; and prevent HIV from invading target T lymphocytes. We therefore hypothesize that this Neem leaf acetone-water extract will prevent the binding of SARS-CoV-2 to the VE, and therefore be an effective therapeutic formulation against COVID-19. It is therefore advocated herein that this extract be investigated through rigorous clinical trials for this purpose. It has the advantages of being (i) readily available, and renewable in favor of the populations positioned to benefit from it; (ii) simple to prepare; and (iii) devoid of any detectable toxicity.
Collapse
|
36
|
Natural plant extracts mediated expression regulation of TGF-β receptors and SMAD genes in human cancer cell lines. Mol Biol Rep 2022; 49:4171-4178. [PMID: 35301659 DOI: 10.1007/s11033-022-07250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transforming growth factor beta (TGF-β) superfamily has key role in cell proliferation which leads to tumor promoting activities at metastatic stage of cancer. Inhibition of transforming growth factor beta receptor (TGFβR) signaling pathway can provide better therapeutic strategy to control cancer. Natural products are best known for their safety, less toxic nature, antioxidant characteristics making them a promising candidate to inhibit TGFβR signaling pathway. METHODS AND RESULTS Crude methanolic extracts (CMEs) of 16 selected plants were prepared by using maceration method and subjected to phytochemical assays for identification of major phytometabolites particularly cancer chemopreventive antioxidant constituents. Total flavonoid content of all plants CME was > 0.6 mg/ml exhibiting the Cichorium intybus contains comparatively highest amount of total flavonoid content (0.53 mg/ml). Scanvenging activity of all plants was determined having IC50 ranges between 2 and 88 (µg/ml) while Moringa oleifera revealed the maximum scavenging activity (IC50 2.03 µg/ml). Comparative cytotoxicity of plant extracts was evaluated in HUH and MCF-7 cell lines using 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) colorimetric assay. The nine active plant extracts i.e. Fagonia cretica, Argemone Mexicana, Rubus fruticosus, M. oleifera, Punica granatum, Cichorium intybus, Xanthium strumarium, Carissa opaca, Cyperus rotundus were identified based on their high antiproliferative activity > 50% against cancer cell lines and subjected to relative expression studies. Modulation of TGFβ signaling molecules (i.e.TGFβR1, 2 & 3, SMAD3, SMAD5) and ubiquitous proteins i.e. SMURF1 and SMURF2 genetic expression by potent extracts was determined by RT-PCR using GAPDH (housekeeping gene) as gene of reference. CONCLUSIONS This present study revealed that CME of Fagonia cretica and Argemone mexicana significantly inhibit TGF beta mediated signaling cascade by downregulating the gene expression fold change > 1 of TGFβR 1, 2 & 3 and receptor associated complex protein SMAD3 as compared to control.
Collapse
|
37
|
Wylie MR, Windham IH, Blum FC, Wu H, Merrell DS. In vitro antibacterial activity of nimbolide against Helicobacter pylori. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114828. [PMID: 34763046 PMCID: PMC8714693 DOI: 10.1016/j.jep.2021.114828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nimbolide is one of hundreds of phytochemicals that have been identified within the neem tree (Azadirachta indica A. Juss). As an evergreen tree native to the Indian subcontinent, components of the neem tree have been used for millennia in traditional medicine to treat dental, gastrointestinal, urinary tract, and blood-related ailments, ulcers, headaches, heartburn, and diabetes. In modern times, natural oils and extracts from the neem tree have been found to have activities against a variety of microorganisms, including human pathogens. AIM OF THE STUDY Helicobacter pylori, a prevalent gastric pathogen, shows increasing levels of antibiotic resistance. Thus, there is an increasing demand for novel therapeutics to treat chronic infections. The in vitro activity of neem oil extract against H. pylori was previously characterized and found to be bactericidal. Given the numerous phytochemicals found in neem oil extract, the present study was designed to define and characterize specific compounds showing bactericidal activity against H. pylori. MATERIALS AND METHODS Azadirachtin, gedunin, and nimbolide, which are all common in neem extracts, were tested for antimicrobial activity; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for nine strains of H. pylori. The specific properties of nimbolide were further characterized against H. pylori strain G27. Bactericidal kinetics, reversibility, effectiveness at low pH, and activity under bacteriostatic conditions were examined. The hemolytic activity of nimbolide was also measured. Finally, neem oil extract and nimbolide effectiveness against H. pylori biofilms were examined in comparison to common antibiotics used to treat H. pylori infection. RESULTS Nimbolide, but not azadirachtin or gedunin, was effective against H. pylori; MICs and MBCs against the nine tested strains ranged between 1.25-5 μg/mL and 2.5-10 μg/mL, respectively. Additionally, neem oil extract and nimbolide were both effective against H. pylori biofilms. Nimbolide exhibited no significant hemolytic activity at biologically relevant concentrations. The bactericidal activity of nimbolide was time- and dose-dependent, independent of active H. pylori growth, and synergistic with low pH. Furthermore, nimbolide-mediated H. pylori cell death was irreversible after exposure to high nimbolide concentrations (80 μg/mL, after 2 h of exposure time and 40 μg/mL after 8 h of exposure). CONCLUSIONS Nimbolide has significant bactericidal activity against H. pylori, killing both free living bacterial cells as well as cells within a biofilm. Furthermore, the lack of hemolytic activity, synergistic activity at low pH and bactericidal properties even against bacteria in a state of growth arrest are all ideal pharmacological and biologically relevant properties for a potential new agent. This study underscores the potential of neem oil extract or nimbolide to be used as a future treatment for H. pylori infection.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - Ian H Windham
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - Faith C Blum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - Hannah Wu
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States.
| |
Collapse
|
38
|
Vidhya Rekha U, Anita M, Bhuminathan S, Sadhana K. Known data on the therapeutic use of Azadiracta indica (neem) for type 2 diabetes mellitus. Bioinformation 2022; 18:82-87. [PMID: 36420434 PMCID: PMC9649496 DOI: 10.6026/97320630018082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 09/19/2023] Open
Abstract
There has been growing interest for the therapeutic use of traditional herbs in the management of diabetes mellitus (DM) and its complications. Data shows the hypoglycemic activity of Azadiracta indica in diabetes. Therefore, it is of interest to document known data on the therapeutic use of Azadiracta indica (neem) for type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- U Vidhya Rekha
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600100, India
| | - M Anita
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600100, India
| | - S Bhuminathan
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai - 600100, India
| | - K Sadhana
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600100, India
| |
Collapse
|
39
|
da Silveira Vasconcelos M, de Souza TDFG, Nunes-Pinheiro DCS, da Silva Mendes FR, de Sousa FD, de Siqueira Oliveira L, de Paula PC, Gurgel DC, Silva AS, Nabavi SM, de Melo DF. Antioxidants and gastric lesions. ANTIOXIDANTS EFFECTS IN HEALTH 2022:681-718. [DOI: 10.1016/b978-0-12-819096-8.00056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
40
|
Zeb J, Tahir H, Othman A, Habeebullah TM, Sayqal A, Assaggaf HM, Ahmed OB, Sultan M, Mohiuddin S, Masood SS, Mirza AZ, Hajira B. Geo-environmental approach to assess heavy metals around auto-body refinishing shops using bio-monitors. Heliyon 2022; 8:e08809. [PMID: 35111986 PMCID: PMC8790620 DOI: 10.1016/j.heliyon.2022.e08809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 10/31/2022] Open
Abstract
The vehicular industry is looking for continuous challenges to develop the sustainability of its manufacturing, maintenance processes, and vehicle emissions due to marketability, environmental, economic, and policy concerns. The present study focuses on the impact of these processes on the environment. In Pakistan, most of the auto-body refinishing processes are carried out in an open atmosphere. The shades of Azadirachta indica (Neem Tree) are generally used for the outdoor practice of scrapping, grinding, and painting in auto-body refinishing shops of Pakistan. Azadirachta indica leaves were selected as bio-indicator. For the present work, 26 affected sites and 10 control sites were selected from Karachi city, which is the financial hub and biggest city of Pakistan. Concentrations of different metals (Fe, Co, Cd, Cr, Cu, Mn, Mo, Ni, Pb, and Zn) were determined by atomic absorption spectrophotometer. A geographic information system (GIS) is used to present the variation in concentrations within Karachi city. The only positive correlation was observed in Pb and Mn (0.750). Principal component analysis (PCA) is applied to identify the anthropogenic effect between auto-body refinishing areas and control areas. Almost all analyzed metals show higher concentration at affected sites but Pb (87.14 mg/kg), Mn (46.47 mg/kg) and Fe (146.95 mg/kg) were leading the values, as compared to their concentration at control sites, Pb (48.83 mg/kg), Mn (15.23 mg/kg) and Fe (43.07 mg/kg). All analyzed metals are frequently present in different color pigments, whereas Pb, Mn, and Fe may also come from other sources, like the anti-knocking agent, vehicular exhaust, and scraping of car surface.
Collapse
Affiliation(s)
- Jahan Zeb
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm-Al-Qura University, Saudi Arabia
| | - Hajira Tahir
- Department of Chemistry, University of Karachi, Pakistan
| | - Abdullah Othman
- Department of Environmental Engineering, Umm-Al-Qura University, 21955, Saudi Arabia
| | - Turki M Habeebullah
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm-Al-Qura University, Saudi Arabia
| | - Ali Sayqal
- Department of Chemistry, Faculty of Applied Sciences, Umm-Al-Qura University, Saudi Arabia
| | - Hamza M Assaggaf
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm-Al-Qura University, Saudi Arabia.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.,The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research at Al-Madinah Branch, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Omar B Ahmed
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm-Al-Qura University, Saudi Arabia
| | - Muhammad Sultan
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Pakistan
| | | | | | | | - Bibi Hajira
- Department of Physiology, University of Karachi, Pakistan
| |
Collapse
|
41
|
Guan P, Zhou J, Girel S, Zhu X, Schwab M, Zhang K, Wang-Müller Q, Bigler L, Nick P. Anti-microtubule activity of the traditional Chinese medicine herb Northern Ban Lan (Isatis tinctoria) leads to glucobrassicin. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2058-2074. [PMID: 34636476 DOI: 10.1111/jipb.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Traditional Chinese medicine (TCM) belongs to the most elaborate and extensive systems of plant-based healing. The herb Northern Ban Lan (Isatis tinctoria) is famous for its antiviral and anti-inflammatory activity. Although numerous components isolated from I. tinctoria have been characterized so far, their modes of action have remained unclear. Here, we show that extracts from I. tinctoria exert anti-microtubular activity. Using time-lapse microscopy in living tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cells expressing green fluorescent protein-tubulin, we use activity-guided fractionation to screen out the biologically active compounds of I. tinctoria. Among 54 fractions obtained from either leaves or roots of I. tinctoria by methanol (MeOH/H2 O 8:2), or ethyl acetate extraction, one specific methanolic root fraction was selected, because it efficiently and rapidly eliminated microtubules. By combination of further purification with ultra-high-performance liquid chromatography and high-resolution tandem mass spectrometry most of the bioactivity could be assigned to the glucosinolate compound glucobrassicin. Glucobrassicin can also affect microtubules and induce apoptosis in HeLa cells. In the light of these findings, the antiviral activity of Northern Ban Lan is discussed in the context of microtubules being hijacked by many viral pathogens for cell-to-cell spread.
Collapse
Affiliation(s)
- Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Jianning Zhou
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Sergey Girel
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Xin Zhu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Marian Schwab
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Qiyan Wang-Müller
- Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, CH-5070, Frick, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
42
|
Suresh S, Arumugham IM, Doraikannan S, Rathinavelu PK, Prabakar J, Balasubramaniam A. Comparing the Effectiveness of Herbal and Conventional Dentifrices in Reducing Dental Plaque and Gingivitis: A Systematic Review. J Int Soc Prev Community Dent 2021; 11:601-608. [PMID: 35036369 PMCID: PMC8713501 DOI: 10.4103/jispcd.jispcd_171_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/26/2021] [Accepted: 07/17/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The important cause of chronic gingivitis was proved to be dental plaque, which is a well-organized biofilm. However, self-care efforts or mechanical control of dental plaque by toothbrushing was important; these alone will not be enough to prevent gingivitis. AIM The aim of the present systematic review was to compare the effectiveness of herbal and conventional toothpastes on reduction of dental plaque and gingivitis. MATERIALS AND METHODS Data from original scientific papers published in PubMed, Cochrane, Lilacs, and Google Scholar were taken for review up to November 2020. Randomized controlled trials and clinical trials compare the effectiveness of herbal and non-herbal toothpastes on reduction of dental plaque and gingivitis. Articles published in English language only were included. References from the identified publications were manually searched to identify additional relevant articles. Seven publications fulfilled all the inclusion criteria and were finally selected for systematic review. Outcome measurements for gingivitis were gingival index and dental plaque index. RESULTS As all the studies were randomized controlled trials, level of evidence was II. Among all studies, green tea dentifrice toothpastes showed significant reduction when compared with conventional dentifrice, and ayurvedic toothpaste and Carica papaya leaf extract were also effective. CONCLUSION Herbal toothpaste seems to be powerful similar to non-herbal toothpaste; however, it is no longer extra superior to fluoride toothpaste. Further, long-term randomized studies of >6 months are needed to investigate the beneficial effects of intervention alone.
Collapse
Affiliation(s)
- Sushanthi Suresh
- Department of Public Health Dentistry, Saveetha Dental College and Hospital, Chennai, Tamil Nadu, India,Address for correspondence: Dr. Sushanthi Suresh, Department of Public Health Dentistry, Saveetha Dental College and Hospital, 162, Poonamalee High Road, Chennai 600077, India. E-mail:
| | | | - Srisakthi Doraikannan
- Department of Public Health Dentistry, Saveetha Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Pradeep Kumar Rathinavelu
- Department of Public Health Dentistry, Saveetha Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Jayashri Prabakar
- Department of Public Health Dentistry, Saveetha Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Arthi Balasubramaniam
- Department of Public Health Dentistry, Saveetha Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
43
|
Kaushik P, Ahlawat P, Singh K, Singh R. Chemical constituents, pharmacological activities, and uses of common ayurvedic medicinal plants: a future source of new drugs. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
A. Alsahli M, Anwar S, Alzahrani FM, Almatroudi A, Alfheeaid H, Khan AA, Allemailem KS, Almatroodi SA, Rahmani AH. Health Promoting Effect of Phyllanthus emblica and Azadiractha indica against Advanced Glycation End Products Formation. APPLIED SCIENCES 2021; 11:8819. [DOI: 10.3390/app11198819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress is linked with inflammation, diabetic complications, and advanced glycation end products formation. Intake of flavonoid-rich foods has been reported to have a beneficial effect on human health. The aim of this study was to verify the therapeutic potential of Phyllanthusemblica and Azadiractha indica against glycation and other oxidative stress-induced complications such as inflammation using in vitro study. Ethanol extracts of Phyllanthus emblica fruit pulp and dried leaf of Azadiractha indica were prepared to investigate in vitro anti-inflammatory and anti-glycating potentials. In a DPPH assay, the EC50 value of extract of P. emblica and A. indica was found to be 1532.36 ± 0.17 and 1380.61 ± 0.27 µg/mL, respectively. The FRAP value of P. emblica and A. indica extract was 86.6 and 32.12 µg ascorbic acid/100 mg dry weight of the extract. The maximum percentage of H2O2 scavenging activity was 71.30% and 67.38%, respectively. Extracts of P. emblica and A. indica showed maximum inhibition of heat-induced BSA denaturation by 62.42% and 53.00%, heat-induced denaturation of egg albumin, by 50.84%% and 44.31%, and heat-induced hemolysis by 54.44% and 50.21%. Both extracts (600 µg/mL) significantly reduced the browning, structural changes, aggregation, and AGEs formation. Our biophysical studies confirmed the AGEs formation was inhibiting the potential of extracts. Thus, our findings confirm that these extracts are a rich source of antioxidants and may be utilized to prevent the oxidative stress-induced destruction of biomolecules, glycation, and in the therapy of a variety of health problems, including inflammation. Further, a combination of extracts of P. emblica and A. indica may be extremely useful in preventing and treating health problems.
Collapse
Affiliation(s)
- Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faisal M. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
45
|
Dutta T, Anand U, Saha SC, Mane AB, Prasanth DA, Kandimalla R, Proćków J, Dey A. Advancing urban ethnopharmacology: a modern concept of sustainability, conservation and cross-cultural adaptations of medicinal plant lore in the urban environment. CONSERVATION PHYSIOLOGY 2021; 9:coab073. [PMID: 34548925 PMCID: PMC8448427 DOI: 10.1093/conphys/coab073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The discipline 'urban ethnopharmacology' emerged as a collection of traditional knowledge, ancient civilizations, history and folklore being circulated since generations, usage of botanical products, palaeobotany and agronomy. Non-traditional botanical knowledge increases the availability of healthcare and other essential products to the underprivileged masses. Intercultural medicine essentially involves 'practices in healthcare that bridge indigenous medicine and western medicine, where both are considered as complementary'. A unique aspect of urban ethnopharmacology is its pluricultural character. Plant medicine blossomed due to intercultural interactions and has its roots in major anthropological events of the past. Unani medicine was developed by Khalif Harun Al Rashid and Khalif Al Mansur by translating Greek and Sanskrit works. Similarly, Indo-Aryan migration led to the development of Vedic culture, which product is Ayurveda. Greek medicine reached its summit when it travelled to Egypt. In the past few decades, ethnobotanical field studies proliferated, especially in the developed countries to cope with the increasing demands of population expansion. At the same time, sacred groves continued to be an important method of conservation across several cultures even in the urban aspect. Lack of scientific research, validating the efficiency, messy applications, biopiracy and slower results are the main constrains to limit its acceptability. Access to resources and benefit sharing may be considered as a potential solution. Indigenous communities can copyright their traditional formulations and then can collaborate with companies, who have to provide the original inventors with a fair share of the profits since a significant portion of the health economy is generated by herbal medicine. Search string included the terms 'Urban' + 'Ethnopharmacology', which was searched in Google Scholar to retrieve the relevant literature. The present review aims to critically analyse the global concept of urban ethnopharmacology with the inherent plurality of the cross-cultural adaptations of medicinal plant use by urban people across the world.
Collapse
Affiliation(s)
- Tusheema Dutta
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip, West Bengal, 741302, India
| | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidyalaya, Sangli, (Affiliated to Shivaji University of Kolhapur), Maharashtra, 416308, India
| | - Dorairaj Arvind Prasanth
- Department of Microbiology, School of Biosciences, Periyar University, Salem, 636011, Tamilnadu, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, 506007, Telangana, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| |
Collapse
|
46
|
Patil SM, Shirahatti PS, V B CK, Ramu R, M N NP. Azadirachta indica A. Juss (neem) as a contraceptive: An evidence-based review on its pharmacological efficiency. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153596. [PMID: 34092456 DOI: 10.1016/j.phymed.2021.153596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Azadirachta indica A. Juss. is an Indian medicinal plant with innumerable pharmacological properties. Studies have proven that the phytochemicals from neem possess remarkable contraceptive abilities with limited knowledge on its mechanism of action. PURPOSE The present review aims to summarize the efficiency of A. indica treatment as a contraceptive. METHODS The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used. Published scientific articles on antifertility, antispermatogenic, antiovulation, hormone altering, contraceptive, and abortifacient activities of A. indica were collected from reputed Journals from 1980 to 2020 using electronic databases. Specific keywords search was completed to collect numerous articles with unique experiment design and significant results. This was followed by the selection of the requisite articles based on the criteria designed by the authors. Data extraction was based on the common research elements included in the articles. RESULTS A total of 27 studies were considered for reviewing, which included key pharmacological investigations. In the beginning, authors evaluated a number of publications on the contraceptive properties of A. indica, in which it was revealed that most of the publications were made between 2005 and 2009. All the collected articles were categorised and reviewed as antifertility, antispermatogenic, antiovulation, hormone altering, contraceptive, and abortifacient. Authors also assessed studies based on the plant parts used for pharmacological evaluations including leaves, seeds, stem-bark, and flowers. The article was primarily divided into different sections based on the previous works of authors on phytochemistry and pharmacological review articles. CONCLUSION Although A. indica is not reported with the complete alleviation of reproductive system in both male and female animal models, studies have proven its efficacy as a contraceptive. Extracts and phytochemicals from neem neither reduced the libido nor retarded the growth of secondary sexual characters, thus indicating only a temporary and reversible contraceptive activity. However, there is a dearth for clinical studies to prove the efficacy of A. indica as a herbal contraceptive.
Collapse
Affiliation(s)
- Shashank M Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | | | - Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India.
| | - Nagendra Prasad M N
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Technical Institutional Campus, Mysore, 570006, Karnataka, India
| |
Collapse
|
47
|
|
48
|
Wahab S, Ahmad I, Irfan S, Baig MH, Farouk AE, Dong JJ. Use of Natural Compounds as a Potential Therapeutic Agent Against COVID-19. Curr Pharm Des 2021; 27:1144-1152. [PMID: 33388014 DOI: 10.2174/1381612826666210101154118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
The current 2019-nCoV outbreak is becoming extremely harmful and has affected the whole world. Its control is challenging because there is no effective vaccine or drug available for coronavirus disease. The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), previously named as 2019 novel coronavirus (2019-nCoV), primarily targets the human respiratory system to lung lesions and lethal pneumonia. Natural products have always shown a crucial role in the process of drug development against various diseases. They may serve as leads for further drug development to combat emergent mutants of the coronavirus. In this review, the current status of natural compounds and their derivatives acting against different species of CoV are discussed.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Irfan
- Department of Biotechnology, Faculty of Biosciences, Integral University, Lucknow, UP, India
| | - Mohammad H Baig
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Abd-ElAziem Farouk
- Department of Biotechnology, Faculty of Science, Taif University, Al-Hawiya 888, Saudi Arabia
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| |
Collapse
|
49
|
Soulé M, Kyereh B, Kuyah S, Tougiani A, Saadou M. Azadirachta indica A. Juss. a multi-purpose tree as a leading species in carbon stocking in two Sahelian cities of Niger. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01130-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Raihan T, Azad AK, Ahmed J, Shepon MR, Dey P, Chowdhury N, Aunkor TH, Ali H, Suhani S. Extracellular metabolites of endophytic fungi from Azadirachta indica inhibit multidrug-resistant bacteria and phytopathogens. Future Microbiol 2021; 16:557-576. [PMID: 33998269 DOI: 10.2217/fmb-2020-0259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To evaluate antimicrobial activity of extracellular metabolites (EMs) of endophytic fungal isolates (EFIs) from Azadirachta indica. Materials & methods: EFIs were identified by internal transcribed spacer (ITS) sequencing. Antimicrobial activity, and minimum inhibitor concentration (MIC) and minimum bactericidal concentration (MBC) were determined using agar diffusion and microdilution method, respectively. Results: Seventeen EFIs were isolated from different organs of A. indica. Eight of them were identified based on ITS sequencing. The EMs of EFIs inhibited the growth of six multidrug-resistant (MDR) bacterial superbugs and three phytopathogenic fungi. The MDR bacterial superbugs are resistant to six commercial antibiotics of different generations but susceptible to EMs of EFIs. The MIC (0.125-1.0 μg/μl), MBC (0.5-4.0 μg/μl) and minimum fungicidal concentration (1.0-4.0 μg/μl) of the EMs from EFIs are lower enough. Conclusion: The EMs of the EFIs have promising antimicrobial activity against MDR bacteria and phytopathogenic fungi.
Collapse
Affiliation(s)
- Topu Raihan
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Abul K Azad
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh.,Louvain Institute of Biomolecular Science & Technology, Universite Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Mukhlesur R Shepon
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Prattay Dey
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Nandan Chowdhury
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Toasin H Aunkor
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Hazrat Ali
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Sabrina Suhani
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|