1
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
2
|
Zhang K, Zeng Y, Li J, Huang Y, Zhang N, Gong Y, Xiao K, Chen J, Chen T, Qiu H, Lei S, Yan F, Lang C, Duan X, Dong X. Inulin alleviates atherosclerosis through improving lipid metabolism, inflammation, and gut microbiota in ApoE-knockout mice: the short-chain is more efficacious. Front Pharmacol 2024; 15:1445528. [PMID: 39449970 PMCID: PMC11499155 DOI: 10.3389/fphar.2024.1445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Atherosclerosis (AS) is considered the underlying cause of many diseases, particularly cardiovascular and cerebrovascular diseases. Inulin, a type of fructan, has shown potential in improving atherosclerosis, although there are conflicting findings. It is hypothesized that the polymerization degree of inulin may largely influence its therapeutic effectiveness. Therefore, this study aimed to investigate the effects and mechanisms of short-chain and long-chain inulin in AS. Methods ApoE-/- mice fed a high fat diet (HFD) were used to establish an atherosclerosis model. These mice received daily oral administration of either short-chain or long-chain inulin for 12 weeks. Plasma lipid metabolism-related indices were measured using biochemical analysis, and plasma immunological indices were analyzed via ELISA. The aorta, aortic root regions, liver tissue, adipose tissue, and colon tissue were examined through various staining techniques, including ORO staining, hematoxylin and eosin staining, Alcian blue staining, and immunofluorescent or immunohistochemical assays. Microbiome analysis was conducted in the cecal content. Results The results indicated that both short-chain and long-chain inulin substantially reduced the formation of atherosclerotic plaques. Inulin also improved plasma lipid concentrations and hepatic lipid metabolism, and partially alleviated both localized (atherosclerotic lesions) and systemic inflammation. Short-chain inulin was more effective than long-chain inulin in reducing atherosclerotic plaques formation, enhancing lipid metabolism and reducing inflammation. Additionally, both types of inulin showed similar effectiveness in enhancing intestinal epithelial barrier integrity, gut microbiota composition and functionality. Conclusion These findings suggest that inulin has a protective role against atherosclerosis by enhancing lipid metabolism, reducing inflammation, and improving intestinal barrier and gut microbiota. As a dietary intervention, short-chain inulin is more effective than long-chain inulin, offering clinical implications for using inulin as a therapeutic agent for atherosclerosis.
Collapse
Affiliation(s)
- Kun Zhang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yu Zeng
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yingchun Huang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhang
- Department of General Surgery, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yue Gong
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kaihu Xiao
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Tiantian Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Haomin Qiu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Sisi Lei
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Chunhui Lang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Xudong Duan
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
3
|
Li Z, Xu Q, Huangfu N, Cui H. The effect and mechanism of inulin on atherosclerosis is mediated by the characteristic intestinal flora and metabolites. Coron Artery Dis 2024; 35:498-508. [PMID: 38767579 DOI: 10.1097/mca.0000000000001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Inflammation and hyperlipidemia can cause atherosclerosis. Prebiotic inulin has been proven to effectively reduce inflammation and blood lipid levels. Utilizing a mouse model induced by a high-fat diet, this study aimed to explore whether the characteristic intestinal flora and its metabolites mediate the effects of inulin intervention on atherosclerosis and to clarify the specific mechanism. METHODS Thirty apolipoprotein E-deficient (ApoE-/-) mice were randomly divided into three groups. They were fed with a normal diet, a high-fat diet or an inulin+high-fat diet for 16 weeks. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) in the three groups were compared. The gross aorta and aortic sinus of mice were stained with oil red O, and the area of atherosclerotic plaque was observed and compared. The diversity and structure of the mouse fecal flora were detected by sequencing the V3-V4 region of the 16S rRNA gene, and the levels of metabolites in mouse feces were assessed by gas chromatography-mass spectrometry. The plasma lipopolysaccharide (LPS) levels and aortic inflammatory factors were measured by multi-index flow cytometry (CBA). RESULTS ApoE-/- mice fed with the high-fat diet exhibited an increase of approximately 46% in the area of atherosclerotic lesions, and the levels of TC, TG and LDL-C were significantly increased ( P < 0.05) compared with levels in the normal diet group. After inulin was added to the high-fat group, the area of atherosclerotic lesions, the level of serum LPS and aortic inflammation were reduced, and the levels of TC, TG and LDL-C were decreased ( P < 0.05). Based on 16S rRNA gene detection, we found that the composition of the intestinal microbiota, such as Prevotella, and metabolites, such as L-arginine, changed significantly due to hyperlipidemia, and the dietary inulin intervention partially reversed the relevant changes. CONCLUSION Inulin can inhibit the formation of atherosclerotic plaques, which may be related to the changes in lipid metabolism, the composition of the intestinal microbial community and its metabolites, and the inhibition of the expression of related inflammatory factors. Our study identified the relationships among the characteristic intestinal microbiota, metabolites and atherosclerosis, aiming to provide a new direction for future research to delay or treat atherosclerosis by changing the composition and function of the host intestinal microbiota and metabolites.
Collapse
Affiliation(s)
| | - Qingqing Xu
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | | | | |
Collapse
|
4
|
Mao Y, Kong C, Zang T, You L, Wang L, Shen L, Ge J. Impact of the gut microbiome on atherosclerosis. MLIFE 2024; 3:167-175. [PMID: 38948150 PMCID: PMC11211673 DOI: 10.1002/mlf2.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 07/02/2024]
Abstract
Atherosclerosis is a chronic inflammatory metabolic disease with a complex pathogenesis. However, the exact details of its pathogenesis are still unclear, which limits effective clinical treatment of atherosclerosis. Recently, multiple studies have demonstrated that the gut microbiota plays a pivotal role in the onset and progression of atherosclerosis. This review discusses possible treatments for atherosclerosis using the gut microbiome as an intervention target and summarizes the role of the gut microbiome and its metabolites in the development of atherosclerosis. New strategies for the treatment of atherosclerosis are needed. This review provides clues for further research on the mechanisms of the relationship between the gut microbiota and atherosclerosis.
Collapse
Affiliation(s)
- Yuqin Mao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang HospitalFudan UniversityShanghaiChina
| | - Chao Kong
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang HospitalFudan UniversityShanghaiChina
| | - Tongtong Zang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| | - Lingsen You
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| | - Li‐Shun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang HospitalFudan UniversityShanghaiChina
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| | - Jun‐Bo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| |
Collapse
|
5
|
Chen X, Zhang H, Ren S, Ding Y, Remex NS, Bhuiyan MS, Qu J, Tang X. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases. Chin Med J (Engl) 2023; 136:2269-2284. [PMID: 37442759 PMCID: PMC10538883 DOI: 10.1097/cm9.0000000000002206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases, including heart failure, coronary artery disease, atherosclerosis, aneurysm, thrombosis, and hypertension, are a great economic burden and threat to human health and are the major cause of death worldwide. Recently, researchers have begun to appreciate the role of microbial ecosystems within the human body in contributing to metabolic and cardiovascular disorders. Accumulating evidence has demonstrated that the gut microbiota is closely associated with the occurrence and development of cardiovascular diseases. The gut microbiota functions as an endocrine organ that secretes bioactive metabolites that participate in the maintenance of cardiovascular homeostasis, and their dysfunction can directly influence the progression of cardiovascular disease. This review summarizes the current literature demonstrating the role of the gut microbiota in the development of cardiovascular diseases. We also highlight the mechanism by which well-documented gut microbiota-derived metabolites, especially trimethylamine N-oxide, short-chain fatty acids, and phenylacetylglutamine, promote or inhibit the pathogenesis of cardiovascular diseases. We also discuss the therapeutic potential of altering the gut microbiota and microbiota-derived metabolites to improve or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sichong Ren
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yangnan Ding
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Md. Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Jiahua Qu
- Department of Pathology, University of California, San Francisco, CA 94117, USA
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Bui TVA, Hwangbo H, Lai Y, Hong SB, Choi YJ, Park HJ, Ban K. The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health. Korean Circ J 2023; 53:499-518. [PMID: 37525495 PMCID: PMC10435824 DOI: 10.4070/kcj.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Hyesoo Hwangbo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Yimin Lai
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
7
|
Hutchison ER, Kasahara K, Zhang Q, Vivas EI, Cross TWL, Rey FE. Dissecting the impact of dietary fiber type on atherosclerosis in mice colonized with different gut microbial communities. NPJ Biofilms Microbiomes 2023; 9:31. [PMID: 37270570 PMCID: PMC10239454 DOI: 10.1038/s41522-023-00402-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
Dietary fiber consumption has been linked with improved cardiometabolic health, however, human studies have reported large interindividual variations in the observed benefits. We tested whether the effects of dietary fiber on atherosclerosis are influenced by the gut microbiome. We colonized germ-free ApoE-/- mice with fecal samples from three human donors (DonA, DonB, and DonC) and fed them diets supplemented with either a mix of 5 fermentable fibers (FF) or non-fermentable cellulose control (CC) diet. We found that DonA-colonized mice had reduced atherosclerosis burden with FF feeding compared to their CC-fed counterparts, whereas the type of fiber did not affect atherosclerosis in mice colonized with microbiota from the other donors. Microbial shifts associated with FF feeding in DonA mice were characterized by higher relative abundances of butyrate-producing taxa, higher butyrate levels, and enrichment of genes involved in synthesis of B vitamins. Our results suggest that atheroprotection in response to FF is not universal and is influenced by the gut microbiome.
Collapse
Affiliation(s)
- Evan R Hutchison
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Abstract
Systemic inflammation has been suggested to have a pivotal role in atherothrombosis, but the factors that trigger systemic inflammation have not been fully elucidated. Lipopolysaccharide (LPS) is a component of the membrane of Gram-negative bacteria present in the gut that can translocate into the systemic circulation, causing non-septic, low-grade endotoxaemia. Gut dysbiosis is a major determinant of low-grade endotoxaemia via dysfunction of the intestinal barrier scaffold, which is a prerequisite for LPS translocation into the systemic circulation. Experimental studies have demonstrated that LPS is present in atherosclerotic arteries but not in normal arteries. In atherosclerotic plaques, LPS promotes a pro-inflammatory status that can lead to plaque instability and thrombus formation. Low-grade endotoxaemia affects several cell types, including leukocytes, platelets and endothelial cells, leading to inflammation and clot formation. Low-grade endotoxaemia has been described in patients at risk of or with overt cardiovascular disease, in whom low-grade endotoxaemia was associated with atherosclerotic burden and its clinical sequelae. In this Review, we describe the mechanisms favouring the development of low-grade endotoxaemia, focusing on gut dysbiosis and changes in gut permeability; the plausible biological mechanisms linking low-grade endotoxaemia and atherothrombosis; the clinical studies suggesting that low-grade endotoxaemia is a risk factor for cardiovascular events; and the potential therapeutic tools to improve gut permeability and eventually eliminate low-grade endotoxaemia.
Collapse
|
9
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Johnson SA, Weir TL. Fresh Take on the Relationship between Diet, Gut Microbiota, and Atherosclerosis: A Food-Based Approach with Brussels Chicory. J Nutr 2022; 152:2181-2183. [PMID: 36054765 PMCID: PMC9535444 DOI: 10.1093/jn/nxac147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Jiang CL, Li XY, Shen WD, Pan LH, Li QM, Luo JP, Zha XQ. Bioactive polysaccharides and their potential health benefits in reducing the risks of atherosclerosis: A review. J Food Biochem 2022; 46:e14337. [PMID: 35945814 DOI: 10.1111/jfbc.14337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is a kind of lipid-driven chronic inflammatory disease of arteries and is the principal pathological basis of life-threatening cardiovascular disease events, such as strokes and heart attacks. Clinically, statins are the most commonly prescribed drugs for the treatment of atherosclerosis, but prolonged use of these drugs exhibit many adverse reactions and have limited efficacy. Polysaccharides are important natural biomacromolecules widely existing in plants, animals, microorganisms and algae. They have drawn considerable attention worldwide due to their multiple healthy functions, along with their non-toxic property. Importantly, a growing number of studies have demonstrated that bioactive polysaccharides exhibit prominent efficiency in controlling atherosclerotic risk factors like hyperlipemia, hypertension, oxidative stress, and inflammation. In recent decades, various bioactive polysaccharides with different structural features and anti-atherosclerotic potential from natural sources have been isolated, purified, and characterized. The aim of this review is to focus on the research progress of natural polysaccharides in reducing the risks of atherosclerosis based on evidence of in vitro and in vivo studies from 1966 to 2022. PRACTICAL APPLICATIONS: In the future, it is still necessary to strengthen the research on the development and mechanism of polysaccharides with anti-atherosclerotic potential. These anti-atherosclerotic polysaccharides with different structural characteristics and physiochemical properties from different sources will constitute a huge source of materials for future applications, especially in functional foods and drugs. The information summarized here may serve as useful reference materials for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Wen-Di Shen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
12
|
Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling Atherosclerosis via Selected Nutrition. Int J Mol Sci 2022; 23:8233. [PMID: 35897799 PMCID: PMC9368664 DOI: 10.3390/ijms23158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.
Collapse
Affiliation(s)
- Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Applied Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia;
| |
Collapse
|
13
|
Zhang X, Gérard P. Diet-gut microbiota interactions on cardiovascular disease. Comput Struct Biotechnol J 2022; 20:1528-1540. [PMID: 35422966 PMCID: PMC8983311 DOI: 10.1016/j.csbj.2022.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels and remain the leading cause of morbidity and mortality worldwide. Over the past decades, accumulating studies indicated that the gut microbiota, an indispensable "invisible organ", plays a vital role in human metabolism and disease states including CVD. Among many endogenous and exogenous factors that can impact gut microbial communities, the dietary nutrients emerge as an essential component of host-microbiota relationships that can be involved in CVD susceptibility. In this review, we summarize the major concepts of dietary modulation of the gut microbiota and the chief principles of the involvement of this microbiota in CVD development. We also discuss the mechanisms of diet-microbiota crosstalk that regulate CVD progression, including endotoxemia, inflammation, gut barrier dysfunction and lipid metabolism dysfunction. In addition, we describe how metabolites produced by the microbiota, including trimethylamine-N-oxide (TMAO), secondary bile acids (BAs), short chain fatty acids (SCFAs) as well as aromatic amino acids (AAAs) derived metabolites play a role in CVD pathogenesis. Finally, we present the potential dietary interventions which interacted with gut microbiota as novel preventive and therapeutic strategies for CVD management.
Collapse
Affiliation(s)
- Xufei Zhang
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
14
|
Li XL, Cui JJ, Zheng WS, Zhang JL, Li R, Ma XL, Lin M, Guo HH, Li C, Yu XY, Du P, Zhao LM, He S, Lan P, Jiang JD, Che Y, Wang LL. Bicyclol Alleviates Atherosclerosis by Manipulating Gut Microbiota. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105021. [PMID: 35088527 DOI: 10.1002/smll.202105021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Atherosclerosis (AS) is associated with high morbidity and mortality, thus imposing a growing burden on modern society. Herb-derived bicyclol (BIC) is a versatile bioactive compound that can be used to treat AS. However, its efficacy in AS is not yet described. Here, it is shown that BIC normalizes gut microflora dysbiosis induced by a high fat diet in Apoe(-/-) mice. Metagenome-wide association study analysis verifies that the modulation on carbohydrate-active enzymes and short-chain fatty acid generating genes in gut flora is among the mechanisms. The gut healthiness, especially the gut immunity and integrity, is restored by BIC intervention, leading to improved systemic immune cell dynamic and liver functions. Accordingly, the endothelial activation, macrophage infiltration, and cholesterol ester accumulation in the aortic arch are alleviated by BIC to lessen the plaque onset. Moreover, it is proved that the therapeutic effect of BIC on AS is transmissible by fecal microbiota transplantation. The current study, for the first time, demonstrates the antiatherosclerotic effects of BIC and shows that its therapeutic value can at least partially be attributed to its manipulation of gut microbiota.
Collapse
Affiliation(s)
- Xiao-Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Jin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Miao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Cong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Peng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Min Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shuwang He
- College of Pharmacy, Shandong University, Beijing, 250012, China
| | - Pei Lan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Barbero-Becerra V, Juárez-Hernández E, Chávez-Tapia NC, Uribe M. Inulin as a Clinical Therapeutic Intervention in Metabolic Associated Fatty Liver Disease. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1867997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit., Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
16
|
Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Mol Psychiatry 2020; 25:2567-2583. [PMID: 31092898 DOI: 10.1038/s41380-019-0425-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Male middle age is a transitional period where many physiological and psychological changes occur leading to cognitive and behavioural alterations, and a deterioration of brain function. However, the mechanisms underpinning such changes are unclear. The gut microbiome has been implicated as a key mediator in the communication between the gut and the brain, and in the regulation of brain homeostasis, including brain immune cell function. Thus, we tested whether targeting the gut microbiome by prebiotic supplementation may alter microglia activation and brain function in ageing. Male young adult (8 weeks) and middle-aged (10 months) C57BL/6 mice received diet enriched with a prebiotic (10% oligofructose-enriched inulin) or control chow for 14 weeks. Prebiotic supplementation differentially altered the gut microbiota profile in young and middle-aged mice with changes correlating with faecal metabolites. Functionally, this translated into a reversal of stress-induced immune priming in middle-aged mice. In addition, a reduction in ageing-induced infiltration of Ly-6Chi monocytes into the brain coupled with a reversal in ageing-related increases in a subset of activated microglia (Ly-6C+) was observed. Taken together, these data highlight a potential pathway by which targeting the gut microbiome with prebiotics can modulate the peripheral immune response and alter neuroinflammation in middle age. Our data highlight a novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function.
Collapse
|
17
|
Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci 2020; 77:2751-2769. [PMID: 32002588 PMCID: PMC7223178 DOI: 10.1007/s00018-020-03453-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerotic vascular disease (ASVD) is a chronic process, with a progressive course over many years, but it can cause acute clinical events, including acute coronary syndromes (ACS), myocardial infarction (MI) and stroke. In addition to a series of typical risk factors for atherosclerosis, like hyperlipidemia, hypertension, smoking and obesity, emerging evidence suggests that atherosclerosis is a chronic inflammatory disease, suggesting that chronic infection plays an important role in the development of atherosclerosis. Toll-like receptors (TLRs) are the most characteristic members of pattern recognition receptors (PRRs), which play an important role in innate immune mechanism. TLRs play different roles in different stages of infection of atherosclerosis-related pathogens such as Chlamydia pneumoniae (C. pneumoniae), periodontal pathogens including Porphyromonas gingivalis (P. gingivalis), Helicobacter pylori (H. pylori) and human immunodeficiency virus (HIV). Overall, activation of TLR2 and 4 seems to have a profound impact on infection-related atherosclerosis. This article reviews the role of TLRs in the process of atherosclerosis after C. pneumoniae and other infections and the current status of treatment, with a view to providing a new direction and potential therapeutic targets for the study of ASVD.
Collapse
Affiliation(s)
- Bowei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Bartolomaeus H, McParland V, Wilck N. [Gut-heart axis : How gut bacteria influence cardiovascular diseases]. Herz 2020; 45:134-141. [PMID: 32077981 DOI: 10.1007/s00059-020-04897-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The view of humans as holobionts consisting of eukaryotic host cells and associated prokaryotic organisms, has opened up a new perspective on cardiovascular pathophysiology. In particular, intestinal bacteria influence the cell and organ functions of the host. Intestinal bacteria represent a metabolically active community whose composition and function can influence cardiovascular health and disease. The interaction between the intestinal microbiota and the heart occurs via metabolites of bacterial origin, which are resorbed in the intestine and distributed via the circulation. Bacterial metabolites are produced from food components, which in turn emphasizes the importance of nutrition. Some of these metabolites, such as trimethylamine N‑oxide (TMAO), can exacerbate cardiovascular pathologies. Short-chain fatty acids (SCFA) in turn are considered to be protective metabolites. The host's immune system is an important target for these metabolites and explains much of their effects. In the future, the targeted manipulation of intestinal bacteria could help to prevent the development and progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Hendrik Bartolomaeus
- Experimental and Clinical Research Center, eine Kooperation von Charité - Universitätsmedizin Berlin und Max-Delbrück-Centrum für Molekulare Medizin, 13125, Berlin, Deutschland.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13125, Berlin, Deutschland.,DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), Partner Site Berlin, Berlin, Deutschland.,Berlin Institute of Health (BIH), Berlin, Deutschland
| | - Victoria McParland
- Experimental and Clinical Research Center, eine Kooperation von Charité - Universitätsmedizin Berlin und Max-Delbrück-Centrum für Molekulare Medizin, 13125, Berlin, Deutschland.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13125, Berlin, Deutschland
| | - Nicola Wilck
- Experimental and Clinical Research Center, eine Kooperation von Charité - Universitätsmedizin Berlin und Max-Delbrück-Centrum für Molekulare Medizin, 13125, Berlin, Deutschland. .,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13125, Berlin, Deutschland. .,DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), Partner Site Berlin, Berlin, Deutschland. .,Berlin Institute of Health (BIH), Berlin, Deutschland. .,Medizinische Klinik mit Schwerpunkt Nephrologie und Internistische Intensivmedizin, Charité - Universitätsmedizin Berlin, 13353, Berlin, Deutschland.
| |
Collapse
|
19
|
Novakovic M, Rout A, Kingsley T, Kirchoff R, Singh A, Verma V, Kant R, Chaudhary R. Role of gut microbiota in cardiovascular diseases. World J Cardiol 2020; 12:110-122. [PMID: 32431782 PMCID: PMC7215967 DOI: 10.4330/wjc.v12.i4.110] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
The human gut is colonized by a community of microbiota, primarily bacteria, that exist in a symbiotic relationship with the host. Intestinal microbiota-host interactions play a critical role in the regulation of human physiology. Deleterious changes to the composition of gut microbiota, referred to as gut dysbiosis, has been linked to the development and progression of numerous diseases, including cardiovascular disease (CVD). Imbalances in host-microbial interaction impair homeostatic mechanisms that regulate health and can activate multiple pathways leading to CVD risk factor progression. Most CVD risk factors, including aging, obesity, dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites, including trimethylamine-N-oxide and short-chain fatty acids, that may facilitate the development of CVD. This article reviews the normal function and composition of the gut microbiome, mechanisms leading to the leaky gut syndrome, its mechanistic link to CVD and potential novel therapeutic approaches aimed towards restoring gut microbiome and CVD prevention. As CVD is the leading cause of deaths globally, investigating the gut microbiota as a locus of intervention presents a novel and clinically relevant avenue for future research.
Collapse
Affiliation(s)
- Marko Novakovic
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD 21215, United States
| | - Amit Rout
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD 21215, United States
| | - Thomas Kingsley
- Department of Internal Medicine, Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Robert Kirchoff
- Department of Internal Medicine, Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Amteshwar Singh
- Department of Internal Medicine, Division of Hospital Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina/AnMed Campus, Charleston, SC 29425, United States
| | - Ravi Kant
- Division of Endocrinology, Diabetes and Nutrition, Medical University of South Carolina/Anmed Campus, Anderson, SC 29621, United States
| | - Rahul Chaudhary
- Department of Internal Medicine, Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
20
|
Le Roy T, Lécuyer E, Chassaing B, Rhimi M, Lhomme M, Boudebbouze S, Ichou F, Haro Barceló J, Huby T, Guerin M, Giral P, Maguin E, Kapel N, Gérard P, Clément K, Lesnik P. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 2019; 17:94. [PMID: 31775890 PMCID: PMC6882370 DOI: 10.1186/s12915-019-0715-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Management of blood cholesterol is a major focus of efforts to prevent cardiovascular diseases. The objective of this study was to investigate how the gut microbiota affects host cholesterol homeostasis at the organism scale. RESULTS We depleted the intestinal microbiota of hypercholesterolemic female Apoe-/- mice using broad-spectrum antibiotics. Measurement of plasma cholesterol levels as well as cholesterol synthesis and fluxes by complementary approaches showed that the intestinal microbiota strongly regulates plasma cholesterol level, hepatic cholesterol synthesis, and enterohepatic circulation. Moreover, transplant of the microbiota from humans harboring elevated plasma cholesterol levels to recipient mice induced a phenotype of high plasma cholesterol levels in association with a low hepatic cholesterol synthesis and high intestinal absorption pattern. Recipient mice phenotypes correlated with several specific bacterial phylotypes affiliated to Betaproteobacteria, Alistipes, Bacteroides, and Barnesiella taxa. CONCLUSIONS These results indicate that the intestinal microbiota determines the circulating cholesterol level and may thus represent a novel therapeutic target in the management of dyslipidemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Tiphaine Le Roy
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Emelyne Lécuyer
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Benoit Chassaing
- Neuroscience Institute and Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.,INSERM, U1016, team "Mucosal microbiota in chronic inflammatory diseases", Paris, France.,Université de Paris, Paris, France
| | - Moez Rhimi
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Samira Boudebbouze
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Farid Ichou
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Júlia Haro Barceló
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Thierry Huby
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Maryse Guerin
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Giral
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Maguin
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, Paris, France.,EA 4065 "Ecosystème intestinal, probiotiques, antibiotiques", Faculté des Sciences Pharmaceutiques et Biologiques Paris Descartes, Paris, France
| | - Philippe Gérard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Karine Clément
- Sorbonne/INSERM, UMRS 1269, Nutrition et obésités : approches systémiques (nutriOmics), Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France. .,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
21
|
Neyrinck AM, Catry E, Taminiau B, Cani PD, Bindels LB, Daube G, Dessy C, Delzenne NM. Chitin-glucan and pomegranate polyphenols improve endothelial dysfunction. Sci Rep 2019; 9:14150. [PMID: 31578395 PMCID: PMC6775069 DOI: 10.1038/s41598-019-50700-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
The vascular dysfunction is the primary event in the occurrence of cardio-vascular risk, and no treatment exists until now. We tested for the first time the hypothesis that chitin-glucan (CG) - an insoluble fibre with prebiotic properties- and polyphenol-rich pomegranate peel extract (PPE) can improve endothelial and inflammatory disorders in a mouse model of cardiovascular disease (CVD), namely by modulating the gut microbiota. Male Apolipoprotein E knock-out (ApoE-/-) mice fed a high fat (HF) diet developed a significant endothelial dysfunction attested by atherosclerotic plaques and increasing abundance of caveolin-1 in aorta. The supplementation with CG + PPE in the HF diet reduced inflammatory markers both in the liver and in the visceral adipose tissue together with a reduction of hepatic triglycerides. In addition, it increased the activating form of endothelial NO-synthase in mesenteric arteries and the heme-nitrosylated haemoglobin (Hb-NO) blood levels as compared with HF fed ApoE-/- mice, suggesting a higher capacity of mesenteric arteries to produce nitric oxide (NO). This study allows to pinpoint gut bacteria, namely Lactobacillus and Alistipes, that could be implicated in the management of endothelial and inflammatory dysfunctions associated with CVD, and to unravel the role of nutrition in the modulation of those bacteria.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Catry
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Catholic University of Louvain for Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
22
|
Hoving LR, Katiraei S, Pronk A, Heijink M, Vonk KKD, Amghar-El Bouazzaoui F, Vermeulen R, Drinkwaard L, Giera M, van Harmelen V, Willems van Dijk K. The prebiotic inulin modulates gut microbiota but does not ameliorate atherosclerosis in hypercholesterolemic APOE*3-Leiden.CETP mice. Sci Rep 2018; 8:16515. [PMID: 30409998 PMCID: PMC6224586 DOI: 10.1038/s41598-018-34970-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota have been implicated in the development of atherosclerosis and cardiovascular disease. Since the prebiotic inulin is thought to beneficially affect gut microbiota, we aimed to determine the effect of inulin supplementation on atherosclerosis development in APOE*3-Leiden.CETP (E3L.CETP) mice. Female E3L.CETP mice were fed a western-type diet containing 0.1% or 0.5% cholesterol with or without 10% inulin. The effects of inulin were determined on: microbiota composition, cecal short-chain fatty acid (SCFA) levels, plasma lipid levels, atherosclerosis development, hepatic morphology and hepatic inflammation. Inulin with 0.5% dietary cholesterol increased specific bacterial genera and elevated levels of cecal SCFAs, but did not affect plasma cholesterol levels or atherosclerosis development. Surprisingly, inulin resulted in mild hepatic inflammation as shown by increased expression of inflammation markers. However, these effects were not accompanied by increased hepatic macrophage number. Analogously, inulin induced mild steatosis and increased hepatocyte size, but did not affect hepatic triglyceride content. Inulin with 0.1% dietary cholesterol did not affect hepatic morphology, nor hepatic expression of inflammation markers. Overall, inulin did not reduce hypercholesterolemia or atherosclerosis development in E3L.CETP mice despite showing clear prebiotic activity, but resulted in manifestations of hepatic inflammation when combined with a high percentage of dietary cholesterol.
Collapse
Affiliation(s)
- Lisa R Hoving
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands.
| | - Saeed Katiraei
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | - Amanda Pronk
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | - Kelly K D Vonk
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | | | - Rosalie Vermeulen
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | - Lizette Drinkwaard
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | - Vanessa van Harmelen
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands. .,Department of Medicine, division Endocrinology, Leiden University Medical Center (LUMC), 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
23
|
Ma J, Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol 2018; 9:1082. [PMID: 30319417 PMCID: PMC6167910 DOI: 10.3389/fphar.2018.01082] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, accumulating evidence has indicated the importance of gut microbiota in maintaining human health. Gut dysbiosis is associated with the pathogenesis of a number of metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVDs). Indeed, CVD has become the leading cause of death worldwide, especially in developed countries. In this review, we mainly discuss the gut microbiota-involved mechanisms of CVD focusing on atherosclerosis and hypertension, two major risk factors for serious CVD. Then, we briefly discuss the prospects of gut microbiota-targeted therapeutic strategies for the treatment of CVD in the future.
Collapse
Affiliation(s)
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci Rep 2018; 8:13238. [PMID: 30185894 PMCID: PMC6125380 DOI: 10.1038/s41598-018-31698-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Dietary non-digestible carbohydrates are perceived to improve health via gut microbiota-dependent generation of products such as short-chain fatty acids (SCFA). In addition, SCFA are also precursors for lipid and cholesterol synthesis potentially resulting in unwanted effects on lipid metabolism. Inulin is a widely used model prebiotic dietary fiber. Inconsistent reports on the effects of inulin on cholesterol homeostasis have emerged in humans and preclinical models. To clarify this issue, the present study aimed to provide an in-depth characterization of the effects of short-chain (sc)- and long-chain (lc)- inulin on cholesterol synthesis, absorption and elimination in mice. Feeding wildtype C57BL/6J mice diets supplemented with 10% (w/w) of either sc- or lc-inulin for two weeks resulted in approximately 2.5-fold higher fecal SCFA levels (P < 0.01) compared with controls, but had no significant effects on plasma and liver lipids. Subtle shifts in fecal and plasma bile acid species were detected with beta-muricholic acid increasing significantly in plasma of the inulin fed groups (1.7-fold, P < 0.05). However, neither sc-inulin nor lc-inulin affected intestinal cholesterol absorption, mass fecal cholesterol excretion or trans-intestinal cholesterol excretion (TICE). Combined, our data demonstrate that sc- and lc-inulin have no adverse effects on cholesterol metabolism in mice despite increased generation of SCFA.
Collapse
|
25
|
Drapkina OM, Korneeva ON. [Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora]. TERAPEVT ARKH 2018. [PMID: 28635818 DOI: 10.17116/terarkh2016889135-142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The review demonstrates mechanisms in the relationship of obesity to gut microbiota, as well as possible therapeutic measures to normalize the intestinal microflora. There is evidence that the latter makes a great contribution to the pathogenesis of obesity and related diseases. Investigations have shown the role of the nature of consumed foods (fatty foods) in reducing the amount of bifidobacteria and lactobacilli, as well as the effects of bacterial lipopolysaccharides and metabolites from the intestinal microflora (trimethylamine-N-oxide, bile acids, etc.). The use of prebiotics, probiotics and ursodeoxycholic acid preparations and fecal transplantation are promising in correcting the microflora and in providing their positive effect on metabolic disturbances. Certain probiotic strains are effective in treating dyslipidemia, diabetes mellitus, obesity, and metabolic syndrome. Gut microbiota is impaired in obesity and contributes to the development of cardiovascular diseases. The control of the gut microbiota and the use of drugs altering the composition of the microflora may become a novel approach to reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- O M Drapkina
- National Research Center for Preventive Medicine, Ministry of Health of Russia, Moscow, Russia
| | - O N Korneeva
- Art-Med Therapeutic and Diagnostic Center, Moscow, Russia
| |
Collapse
|
26
|
Moss JWE, Williams JO, Ramji DP. Nutraceuticals as therapeutic agents for atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1562-1572. [PMID: 29454074 PMCID: PMC5906642 DOI: 10.1016/j.bbadis.2018.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic inflammatory disorder of medium and large arteries and an underlying cause of cardiovascular disease (CVD), is responsible for a third of all global deaths. Current treatments for CVD, such as optimized statin therapy, are associated with considerable residual risk and several side effects in some patients. The outcome of research on the identification of alternative pharmaceutical agents for the treatment of CVD has been relatively disappointing with many promising leads failing at the clinical level. Nutraceuticals, products from food sources with health benefits beyond their nutritional value, represent promising agents in the prevention of CVD or as an add-on therapy with current treatments. This review will highlight the potential of several nutraceuticals, including polyunsaturated fatty acids, flavonoids and other polyphenols, as anti-CVD therapies based on clinical and pre-clinical mechanism-based studies.
Collapse
Affiliation(s)
- Joe W E Moss
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Jessica O Williams
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
27
|
Hoving LR, de Vries MR, de Jong RCM, Katiraei S, Pronk A, Quax PHA, van Harmelen V, Willems van Dijk K. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice. Nutrients 2018; 10:nu10020172. [PMID: 29401645 PMCID: PMC5852748 DOI: 10.3390/nu10020172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
The prebiotic inulin has proven effective at lowering inflammation and plasma lipid levels. As atherosclerosis is provoked by both inflammation and hyperlipidemia, we aimed to determine the effect of inulin supplementation on atherosclerosis development in hypercholesterolemic APOE*3-Leiden (E3L) mice. Male E3L mice were fed a high-cholesterol (1%) diet, supplemented with or without 10% inulin for 5 weeks. At week 3, a non-constrictive cuff was placed around the right femoral artery to induce accelerated atherosclerosis. At week 5, vascular pathology was determined by lesion thickness, vascular remodeling, and lesion composition. Throughout the study, plasma lipids were measured and in week 5, blood monocyte subtypes were determined using flow cytometry analysis. In contrast to our hypothesis, inulin exacerbated atherosclerosis development, characterized by increased lesion formation and outward vascular remodeling. The lesions showed increased number of macrophages, smooth muscle cells, and collagen content. No effects on blood monocyte composition were found. Inulin significantly increased plasma total cholesterol levels and total cholesterol exposure. In conclusion, inulin aggravated accelerated atherosclerosis development in hypercholesterolemic E3L mice, accompanied by adverse lesion composition and outward remodeling. This process was not accompanied by differences in blood monocyte composition, suggesting that the aggravated atherosclerosis development was driven by increased plasma cholesterol.
Collapse
Affiliation(s)
- Lisa R Hoving
- Department of Human Genetics and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| | - Margreet R de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| | - Rob C M de Jong
- Department of Surgery and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| | - Saeed Katiraei
- Department of Human Genetics and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| | - Amanda Pronk
- Department of Human Genetics and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| | - Paul H A Quax
- Department of Surgery and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| | - Vanessa van Harmelen
- Department of Human Genetics and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| | - Ko Willems van Dijk
- Department of Human Genetics and Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
- Department of Medicine, Division Endocrinology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands.
| |
Collapse
|
28
|
Yang J, Zhang S, Henning SM, Lee R, Hsu M, Grojean E, Pisegna R, Ly A, Heber D, Li Z. Cholesterol-lowering effects of dietary pomegranate extract and inulin in mice fed an obesogenic diet. J Nutr Biochem 2018; 52:62-69. [DOI: 10.1016/j.jnutbio.2017.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/22/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022]
|
29
|
Catry E, Bindels LB, Tailleux A, Lestavel S, Neyrinck AM, Goossens JF, Lobysheva I, Plovier H, Essaghir A, Demoulin JB, Bouzin C, Pachikian BD, Cani PD, Staels B, Dessy C, Delzenne NM. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 2018; 67:271-283. [PMID: 28377388 PMCID: PMC5868295 DOI: 10.1136/gutjnl-2016-313316] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. DESIGN We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe-/-) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. RESULTS ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe-/- mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. CONCLUSIONS We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases.
Collapse
Affiliation(s)
- Emilie Catry
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- European Genomic Institute for Diabetes (EGID), Univ Lille, Lille, France,INSERM UMR 1011, Lille, France,Institut Pasteur de Lille, Lille, France,CHU de Lille, Lille, France
| | - Sophie Lestavel
- European Genomic Institute for Diabetes (EGID), Univ Lille, Lille, France,INSERM UMR 1011, Lille, France,Institut Pasteur de Lille, Lille, France,CHU de Lille, Lille, France
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-François Goossens
- Centre Universitaire de Mesures et d'Analyses, Univ. Lille, Lille, France,EA 7365 GRITA, Lille, France
| | - Irina Lobysheva
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Belgium
| | - Ahmed Essaghir
- Pole of Experimental Medicine, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Pole of Experimental Medicine, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Université catholique de Louvain, Brussels, Belgium
| | - Barbara D Pachikian
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Belgium
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), Univ Lille, Lille, France,INSERM UMR 1011, Lille, France,Institut Pasteur de Lille, Lille, France,CHU de Lille, Lille, France
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
30
|
He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 2017; 7:54. [PMID: 29090088 PMCID: PMC5655955 DOI: 10.1186/s13578-017-0183-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome (MS) comprises central obesity, increased plasma glucose levels, hyperlipidemia and hypertension, and its incidence is increasing due to changes in lifestyle and dietary structure in recent years. MS has been proven to be associated with an increased incidence of cardiovascular diseases and type 2 diabetes mellitus, leading to morbidity and mortality. In this manuscript, we review recent studies concerning the role of the gut microbiota in MS modulation. Manipulation of the gut microbiota through the administration of prebiotics or probiotics may assist in weight loss and reduce plasma glucose and serum lipid levels, decreasing the incidence of cardiovascular diseases and type 2 diabetes mellitus. To the best of our knowledge, short-chain fatty acids (SCFAs), bile salt hydrolase (BSH), metabolic endotoxemia and the endocannabinoid (eCB) system are essential in regulating the initiation and progression of MS through the normalization of adipogenesis and the regulation of insulin secretion, fat accumulation, energy homeostasis, and plasma cholesterol levels. Therefore, the gut microbiota may serve as a potential therapeutic target for MS. However, further studies are needed to enhance our understanding of manipulating the gut microbiota and the role of the gut microbiota in MS prevention and treatment.
Collapse
Affiliation(s)
- Mingqian He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061 Shaanxi People's Republic of China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061 Shaanxi People's Republic of China
| |
Collapse
|
31
|
Asemi Z, Aarabi MH, Hajijafari M, Alizadeh SA, Razzaghi R, Mazoochi M, Esmaillzadeh A. Effects of Synbiotic Food Consumption on Serum Minerals, Liver Enzymes, and Blood Pressure in Patients with Type 2 Diabetes: A Double-blind Randomized Cross-over Controlled Clinical Trial. Int J Prev Med 2017; 8:43. [PMID: 28656099 PMCID: PMC5474907 DOI: 10.4103/ijpvm.ijpvm_257_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This research was to examine the effects of synbiotic intake on minerals, liver enzymes, and blood pressure in patients with type 2 diabetes (T2D). METHODS This randomized, cross-over clinical trial was performed among 62 diabetic patients. Persons were randomly assigned to intake either a synbiotic (n = 62) or a control food (n = 62) for 6 weeks. A 3-week washout period was applied following which persons were crossed over to the alternate intervention arm for an additional 6 weeks. The synbiotic was consisted of Lactobacillus sporogenes (1 × 107 CFU), 0.04 g inulin (HPX) as prebiotic. Persons were asked to consume the synbiotic and control foods 27 g a day. Blood pressure was measured, and blood samples were taken at baseline and after 6-week intervention to assess calcium, magnesium, iron, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and total bilirubin. RESULTS The consumption of a synbiotic food, compared to the control food, resulted in a significant rise of calcium (0.66 vs. -0.14 mg/dL, P = 0.03) and iron (5.06 vs. -9.98 mg/dL, P = 0.03). The decrease of total bilirubin (0.08 vs. -0.04 mg/dL; P = 0.009) was also seen in the synbiotic group compared with the control group. CONCLUSIONS Overall, synbiotic in T2D patients had beneficial effects on calcium, iron, and total bilirubin concentrations.
Collapse
Affiliation(s)
- Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Aarabi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Razzaghi
- Department of Infectious Disease, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Mazoochi
- Department of Cardiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Esmaillzadeh
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Sakurai T, Sakurai A, Chen Y, Vaisman BL, Amar MJ, Pryor M, Thacker SG, Zhang X, Wang X, Zhang Y, Zhu J, Yang ZH, Freeman LA, Remaley AT. Dietary α-cyclodextrin reduces atherosclerosis and modifies gut flora in apolipoprotein E-deficient mice. Mol Nutr Food Res 2017; 61. [PMID: 28102587 DOI: 10.1002/mnfr.201600804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
SCOPE α-Cyclodextrin (α-CD), a cyclic polymer of glucose, has been shown to lower plasma cholesterol in animals and humans; however, its effect on atherosclerosis has not been previously described. METHODS AND RESULTS apoE-knockout mice were fed either low-fat diet (LFD; 5.2% fat, w/w), or Western high fat diet (21.2% fat) containing either no additions (WD), 1.5% α-CD (WDA); 1.5% β-CD (WDB); or 1.5% oligofructose-enriched inulin (WDI). Although plasma lipids were similar after 11 weeks on the WD vs. WDA diets, aortic atherosclerotic lesions were 65% less in mice on WDA compared to WD (P < 0.05), and similar to mice fed the LFD. No effect on atherosclerosis was observed for the other WD supplemented diets. By RNA-seq analysis of 16S rRNA, addition of α-CD to the WD resulted in significantly decreased cecal bacterial counts in genera Clostridium and Turicibacterium, and significantly increased Dehalobacteriaceae. At family level, Comamonadaceae significantly increased and Peptostreptococcaceae showed a negative trend. Several of these bacterial count changes correlated negatively with % atherosclerotic lesion and were associated with increased cecum weight and decreased plasma cholesterol levels. CONCLUSION Addition of α-CD to the diet of apoE-knockout mice decreases atherosclerosis and is associated with changes in the gut flora.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Akiko Sakurai
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ye Chen
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Boris L Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth G Thacker
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xue Zhang
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xujing Wang
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yubo Zhang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
|
34
|
Chan YK, El-Nezami H, Chen Y, Kinnunen K, Kirjavainen PV. Probiotic mixture VSL#3 reduce high fat diet induced vascular inflammation and atherosclerosis in ApoE(-/-) mice. AMB Express 2016; 6:61. [PMID: 27576894 PMCID: PMC5005234 DOI: 10.1186/s13568-016-0229-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis results from chronic inflammation potentially caused by translocation of bacterial components from the oro-gastrointestinal tract to circulation. Specific probiotics have anti-inflammatory effects and may reduce bacterial translocation. We thereby tested whether a probiotic mixture with documented anti-inflammatory potential could reduce atherosclerosis. ApoE−/− mice were fed high fat diet alone or with VSL#3 or a positive control treatment, telmisartan or both for 12 weeks. All treatments reduced atherosclerotic plaques significantly compared to high fat diet alone. VSL#3 significantly reduced proinflammatory adhesion molecules and risk factors of plaque rupture, reduced vascular inflammation and atherosclerosis to a comparable extent to telmisartan; and VSL#3 treated mice had the most distinctly different intestinal microbiota composition from the control groups. Combining the VSL#3 and telmisartan brought no further benefits. Our findings showed the therapeutic potential of VSL#3 in reducing atherosclerosis and vascular inflammation.
Collapse
|
35
|
Abstract
Infections have been linked to the development of cardiovascular disease and atherosclerosis. Findings from the past decade have identified microbial ecosystems residing in different habitats of the human body that contribute to metabolic and cardiovascular-related disorders. In this Review, we describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based on microbiota.
Collapse
Affiliation(s)
- Annika Lindskog Jonsson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Bruna Stråket 16, 41345 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Bruna Stråket 16, 41345 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| |
Collapse
|
36
|
Mori Y, Chiang S, Bendeck MP, Giacca A. Insulin decreases atherosclerotic plaque burden and increases plaque stability via nitric oxide synthase in apolipoprotein E-null mice. Am J Physiol Endocrinol Metab 2016; 311:E335-45. [PMID: 27221119 DOI: 10.1152/ajpendo.00320.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
It has been argued whether insulin accelerates or prevents atherosclerosis. Although results from in vitro studies have been conflicting, recent in vivo mice studies demonstrated antiatherogenic effects of insulin. Insulin is a known activator of endothelial nitric oxide synthase (NOS), leading to increased production of NO, which has potent antiatherogenic effects. We aimed to examine the role of NOS in the protective effects of insulin against atherosclerosis. Male apolipoprotein E-null mice (8 wk old) fed a high-cholesterol diet (1.25% cholesterol) were assigned to the following 12-wk treatments: control, insulin (0.05 U/day via subcutaneous pellet), N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME, via drinking water at 100 mg/l), and insulin plus l-NAME. Insulin reduced atherosclerotic plaque burden in the descending aorta by 42% compared with control (plaque area/aorta lumen area: control, 16.5 ± 1.9%; insulin, 9.6 ± 1.3%, P < 0.05). Although insulin did not decrease plaque burden in the aortic sinus, macrophage accumulation in the plaque was decreased by insulin. Furthermore, insulin increased smooth muscle actin and collagen content and decreased plaque necrosis, consistent with increased plaque stability. In addition, insulin treatment increased plasma NO levels, decreased inducible NOS staining, and tended to increase phosphorylated vasodilator-stimulated phosphoprotein staining in the plaques of the aortic sinus. All these effects of insulin were abolished by coadministration of l-NAME, whereas l-NAME alone showed no effect. Insulin also tended to increase phosphorylated endothelial NOS and total neuronal NOS staining, effects not modified by l-NAME. In conclusion, we demonstrate that insulin treatment decreases atherosclerotic plaque burden and increases plaque stability through NOS-dependent mechanisms.
Collapse
Affiliation(s)
- Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Simon Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP/ University of Toronto, Ontario, Canada; and
| | - Adria Giacca
- Department of Physiology and Medicine, Institute of Medical Science, Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Bahmani F, Tajadadi-Ebrahimi M, Kolahdooz F, Mazouchi M, Hadaegh H, Jamal AS, Mazroii N, Asemi S, Asemi Z. The Consumption of Synbiotic Bread Containing Lactobacillus sporogenes and Inulin Affects Nitric Oxide and Malondialdehyde in Patients with Type 2 Diabetes Mellitus: Randomized, Double-Blind, Placebo-Controlled Trial. J Am Coll Nutr 2016; 35:506-513. [PMID: 26430929 DOI: 10.1080/07315724.2015.1032443] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To our knowledge, no reports are available indicating the effects of synbiotic bread consumption on nitric oxide (NO), biomarkers of oxidative stress, and liver enzymes among patients with type 2 diabetes mellitus (T2DM). This study was performed to determine the effects of the daily consumption of synbiotic bread on NO, biomarkers of oxidative stress, and liver enzymes in patients with T2DM. METHODS This randomized, double-blind, placebo-controlled trial was performed among 81 patients with diabetes, aged 35-70 years old. After a 2-week run-in period, patients were randomly divided into 3 groups: group A (n = 27) received synbiotic bread containing viable and the heat-resistant probiotic Lactobacillus sporogenes (1 × 108 CFU) and 0.07 g inulin per 1 g, group B (n = 27) received probiotic bread containing Lactobacillus sporogenes (1 × 108 CFU), and group C (n = 27) received control bread for 8 weeks. Patients were asked to consume the synbiotic, probiotic, or control breads 3 times a day in 40 g packages for a total of 120 g/day. Fasting blood samples were taken at baseline and after an 8-week intervention for quantificationof related markers. RESULTS After 8 weeks, the consumption of synbiotic bread compared to the probiotic and control breads resulted in a significant rise in plasma NO (40.6 ± 34.4 vs 18.5 ± 36.2 and -0.8 ± 24.5 µmol/L, respectively, p < 0.001) and a significant reduction in malondialdehyde (MDA) levels (-0.7 ± 0.7 vs 0.6 ± 1.7 and 0.5 ± 1.5 µmol/L, respectively, p = 0.001). We did not find any significant effect of the synbiotic bread consumption on plasma total antioxidant capacity (TAC), plasma glutathione (GSH), catalase, serum liver enzymes, calcium, iron, magnesium levels, and blood pressure compared to the probiotic and control breads. CONCLUSION In conclusion, consumption of the synbiotic bread for 8 weeks among patients with T2DM had beneficial effects on plasma NO and MDA levels; however, it did not affect plasma TAC, GSH, catalase levels, serum liver enzymes, calcium, iron, magnesium levels, and blood pressure.
Collapse
Affiliation(s)
- Fereashteh Bahmani
- a Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , IRAN
| | | | | | - Marjan Mazouchi
- a Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , IRAN
| | - Haleh Hadaegh
- c Department of Research and Development of Sahar Bread Company , Tehran , IRAN
| | - Atefeh-Sadat Jamal
- a Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , IRAN
| | - Navid Mazroii
- a Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , IRAN
| | - Shiva Asemi
- a Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , IRAN
| | - Zatolla Asemi
- a Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , IRAN
| |
Collapse
|
38
|
Bali V, Panesar PS, Bera MB, Panesar R. Fructo-oligosaccharides: Production, Purification and Potential Applications. Crit Rev Food Sci Nutr 2016; 55:1475-90. [PMID: 24915337 DOI: 10.1080/10408398.2012.694084] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nutritional and therapeutic benefits of prebiotics have attracted the keen interest of consumers and food processing industry for their use as food ingredients. Fructo-oligosaccharides (FOS), new alternative sweeteners, constitute 1-kestose, nystose, and 1-beta-fructofuranosyl nystose produced from sucrose by the action of fructosyltransferase from plants, bacteria, yeast, and fungi. FOS has low caloric values, non-cariogenic properties, and help gut absorption of ions, decrease levels of lipids and cholesterol and bifidus-stimulating functionality. The purified linear fructose oligomers are added to various food products like cookies, yoghurt, infant milk products, desserts, and beverages due to their potential health benefits. This review is focused on the various aspects of biotechnological production, purification and potential applications of fructo-oligosaccharides.
Collapse
Affiliation(s)
- Vandana Bali
- a Biotechnology Research Laboratory, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology , Longowal 148106 , Punjab , India
| | | | | | | |
Collapse
|
39
|
Shimizu H, Hagio M, Iwaya H, Tsuneki I, Lee JY, Fukiya S, Yokota A, Miyazaki H, Hara H, Ishizuka S. Deoxycholic acid is involved in the proliferation and migration of vascular smooth muscle cells. J Nutr Sci Vitaminol (Tokyo) 2016; 60:450-4. [PMID: 25866311 DOI: 10.3177/jnsv.60.450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Obesity is increasingly becoming associated with increased risk of atherosclerosis. Serum levels of the bile acid deoxycholic acid (DCA) are elevated in mice with obesity induced by a high-fat (HF) diet. Therefore, we investigated the influence of DCA on the functions of vascular smooth muscle cells (VSMCs) because the initiation and progression of atherosclerosis are associated with VSMC proliferation and migration. DCA induced c-jun N-terminal kinase (JNK) activation whereas a JNK inhibitor prevented DCA-induced VSMC proliferation and migration. Based on these findings, we examined whether DCA promotes the expression of platelet-derived growth factor β-receptor (PDGFRβ) that has a c-Jun binding site in its promoter region. The mRNA and protein expression levels of PDGFRβ were upregulated in VSMCs after a 24- and 48-h incubation with DCA, respectively. The effects of PDGF such as proliferation and migration of VSMCs were promoted after a 48-h incubation with DCA despite the absence of DCA during PDGF stimulation. These findings suggest that elevated serum concentrations of DCA are involved in the pathogenesis of atherosclerosis in HF-induced obesity.
Collapse
Affiliation(s)
- Hidehisa Shimizu
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Petrovsky N, Cooper PD. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 2015; 33:5920-6. [PMID: 26407920 PMCID: PMC4639457 DOI: 10.1016/j.vaccine.2015.09.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
There is an ongoing need for new adjuvants to facilitate development of vaccines against HIV, tuberculosis, malaria and cancer, amongst many others. Unfortunately, the most potent adjuvants are often associated with toxicity and safety issues. Inulin, a plant-derived polysaccharide, has no immunological activity in its native soluble form but when crystallized into a stable microcrystalline particulate from (delta inulin) acquires potent adjuvant activity. Delta inulin has been shown to enhance humoral and cellular immune responses against a broad range of co-administered viral, bacterial, parasitic and toxin antigens. Inulin normally crystallizes as large heterogeneous particles with a broad size distribution and variable solubility temperatures. To ensure reproducible delta inulin particles with a consistent size distribution and temperature of solubility, a current Good Manufacturing Practice (cGMP) process was designed to produce Advax™ adjuvant. In its cCMP form, Advax™ adjuvant has proved successful in human trials of vaccines against seasonal and pandemic influenza, hepatitis B and insect sting anaphylaxis, enhancing antibody and T-cell responses while being safe and well tolerated. Advax™ adjuvant represents a novel human adjuvant that enhances both humoral and cellular immunity. This review describes the discovery and development of Advax™ adjuvant and research into its unique mechanism of action.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre and Flinders University, Adelaide 5042, Australia.
| | - Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2061, Australia
| |
Collapse
|
41
|
Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: an update for current perspectives and future challenges. Br J Nutr 2015; 114:1993-2015. [PMID: 26443321 DOI: 10.1017/s0007114515003864] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and prebiotics, mainly commercialised as food ingredients and also as supplements, are considered highly profitable niche markets. However, in recent years, the food industry has suffered from a series of health claim restrictions on probiotics and prebiotics in many parts of the world, including those made by the European Food Safety Authority. Therefore, we reviewed the core benefits of probiotic and prebiotic consumption on health. A number of studies have examined the prevention and/or management of intestinal infections, respiratory tract infections, CVD, osteoporosis, urogenital infections, cavities, periodontal disease and halitosis, allergic reactions, inflammatory bowel disease and irritable bowel syndrome and Helicobacter pylori gastric infections. In fact, a deeper understanding of the mechanisms involved in human microbiota and immune system modulation by probiotics and prebiotics relies on continuous efforts to establish suitable biomarkers of health and diseases risk factors for the design of clinical trials required for health claim approval. In spite of the promising results, the performance of large, long-term, well-planned, well-aligned clinical studies is crucial to provide more reliability and a more solid basis for the outcomes achieved and to support the potential use of probiotics and prebiotics in clinical practice.
Collapse
|
42
|
Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr Polym 2015; 119:85-100. [DOI: 10.1016/j.carbpol.2014.11.029] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/24/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022]
|
43
|
Han KH, Tsuchihira H, Nakamura Y, Shimada KI, Ohba K, Aritsuka T, Uchino H, Kikuchi H, Fukushima M. Inulin-type fructans with different degrees of polymerization improve lipid metabolism but not glucose metabolism in rats fed a high-fat diet under energy restriction. Dig Dis Sci 2013; 58:2177-86. [PMID: 23606109 DOI: 10.1007/s10620-013-2631-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inulin-type fructan ameliorates metabolic diseases associated with obesity in animals. However, relatively little information is available on the comparative effects of inulins with different degree of polymerization (DP) on the lipid or glucose metabolism. AIM The objective of this study was to investigate the effect of inulins with various DP on metabolic disorders associated with obesity in rats fed a high-fat diet under food restriction. METHODS Rats were fed a high-fat diet supplemented with 5 % inulin-GR (Raftiline GR), inulin-Tokachi (Tokachi), or inulin-HP (Raftiline HP) without cellulose for 28 days at normal energy intakes or 14.5 % energy restriction. RESULTS Under food restriction, the dietary inulin-Tokachi (mean DP 15) and -HP (mean DP 24), but not -GR (mean DP 10), reduced (p < 0.05) the serum cholesterol and triglyceride levels, and liver triglyceride concentration in rats, compared to the control diet. The cecal neutral steroid, bile acid, and propionate concentrations in the Tokachi and HP groups were higher (p < 0.05) than in the CONT group, and the cecal Bifidobacterium count in the Tokachi group was higher (p < 0.05) than in the other groups. CONCLUSIONS Findings suggest that, depending on DP, dietary supplementation with inulin (DP 15 or DP 24) in rats fed a high-fat diet, regardless of food intake, positively modulates lipid metabolism and fecal microbiota but not glucose metabolism.
Collapse
Affiliation(s)
- Kyu-Ho Han
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Effect of fructooligosaccharides and galactooligosaccharides on the folate production of some folate-producing bacteria in media cultures or milk. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2012.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Fåk F, Bäckhed F. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice. PLoS One 2012; 7:e46837. [PMID: 23056479 PMCID: PMC3467285 DOI: 10.1371/journal.pone.0046837] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate whether the specific strains of Lactobacillus reuteri modulates the metabolic syndrome in Apoe−/− mice. Methods 8 week-old Apoe−/− mice were subdivided into four groups who received either L. reuteri ATCC PTA 4659 (ATCC), DSM 17938 (DSM), L6798, or no bacterial supplement in the drinking water for 12 weeks. The mice were fed a high-fat Western diet with 0.2% cholesterol and body weights were monitored weekly. At the end of the study, oral glucose and insulin tolerance tests were conducted. In addition, adipose and liver weights were recorded along with analyses of mRNA expression of ileal Angiopoietin-like protein 4 (Angptl4), the macrophage marker F4/80 encoded by the gene Emr1 and liver Acetyl-CoA carboxylase 1 (Acc1), Fatty acid synthase (Fas) and Carnitine palmitoyltransferase 1a (Cpt1a). Atherosclerosis was assessed in the aortic root region of the heart. Results and Conclusions Mice receiving L. reuteri ATCC gained significantly less body weight than the control mice, whereas the L6798 mice gained significantly more. Adipose and liver weights were also reduced in the ATCC group. Serum insulin levels were lower in the ATCC group, but no significant effects were observed in the glucose or insulin tolerance tests. Lipogenic genes in the liver were not altered by any of the bacterial treatments, however, increased expression of Cpt1a was found in the ATCC group, indicating increased β-oxidation. Correspondingly, the liver trended towards having lower fat content. There were no effects on inflammatory markers, blood cholesterol or atherosclerosis. In conclusion, the probiotic L. reuteri strain ATCC PTA 4659 partly prevented diet-induced obesity, possibly via a previously unknown mechanism of inducing liver expression of Cpt1a.
Collapse
Affiliation(s)
- Frida Fåk
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|
46
|
Guo Z, Liu XM, Zhang QX, Tian FW, Zhang H, Zhang HP, Chen W. Effects of inulin on the plasma lipid profile of normolipidemic and hyperlipidemic subjects: a meta-analysis of randomized controlled trials. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
The role of probiotics and natural bioactive compounds in modulation of the common molecular pathways in pathogenesis of atherosclerosis and cancer. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-011-0155-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Beneficial effects of fructo-oligosaccharides supplementation on fecal bifidobacteria and index of peroxidation status in constipated nursing-home residents—A placebo-controlled, diet-controlled trial. Nutrition 2011; 27:323-8. [DOI: 10.1016/j.nut.2010.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/29/2009] [Accepted: 02/15/2010] [Indexed: 11/19/2022]
|
49
|
Abstract
The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.
Collapse
|
50
|
Caesar R, Fåk F, Bäckhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med 2010; 268:320-8. [PMID: 21050286 DOI: 10.1111/j.1365-2796.2010.02270.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies have revealed a close relationship between inflammatory and metabolic pathways, and inflammation is now recognized to have a major role in obesity and metabolic diseases such as insulin resistance and atherosclerosis. The human body is home to a large number of distinct microbial communities, with the densest population in the distal gut (the gut microbiota). Bacteria have long been known to activate inflammatory pathways, and recent data demonstrate that the gut microbiota may affect lipid metabolism and function as an environmental factor that influences the development of obesity and related diseases. Here, we review how the gut microbiota may affect metabolic diseases by activating the innate immune system.
Collapse
Affiliation(s)
- R Caesar
- Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|