1
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Durbagula S, Korlimarla A, Ravikumar G, Valiya Parambath S, Kaku SM, Visweswariah AM. Prenatal epigenetic factors are predisposing for neurodevelopmental disorders—Considering placenta as a model. Birth Defects Res 2022; 114:1324-1342. [DOI: 10.1002/bdr2.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Srividhya Durbagula
- St. John's Medical College Bangalore India
- St. John's Research Institute Bangalore India
| | - Aruna Korlimarla
- St. John's Research Institute Bangalore India
- Department of Research Sri Shankara Cancer Hospital and Research Center Bangalore India
| | | | - Snijesh Valiya Parambath
- St. John's Medical College Bangalore India
- Department of Molecular Medicine St. John's Research Institute Bangalore India
| | - Sowmyashree Mayur Kaku
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| | - Ashok Mysore Visweswariah
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| |
Collapse
|
3
|
Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B, Bae Y. DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet 2022; 31:2820-2830. [PMID: 35377455 PMCID: PMC9402238 DOI: 10.1093/hmg/ddac078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function mutations in DDRGK1 have been shown to cause Shohat type spondyloepimetaphyseal dysplasia (SEMD). In zebrafish, loss of function of ddrgk1 leads to defects in early cartilage development. Ddrgk1-/- mice show delayed mesenchymal condensation in the limb buds and early embryonic lethality. Mechanistically, Ddrgk1 interacts with Sox9 and reduces ubiquitin-mediated proteasomal degradation of Sox9 protein. To investigate the cartilage-specific role of DDRGK1, conditional knockout mice were generated by intercrossing Prx1-Cre transgenic mice with Ddrgkfl/fl mice to delete its expression in limb mesenchymal cells. Mutant mice showed progressive severe shortening of the limbs and joint abnormalities. The growth plate showed disorganization with shortened proliferative zone and enlarged hypertrophic zone. In correlation with these findings, Sox9 and Col2a1 protein levels were decreased, while Col10a1 expression was expanded. These data demonstrate the importance of Ddrgk1 during growth plate development. In contrast, deletion of Ddrgk1 with the osteoblast-specific Osteocalcin-Cre and Leptin receptor-Cre lines did not show bone phenotypes, suggesting that the effect on limb development is cartilage-specific. To evaluate the role of DDRGK1 in cartilage postnatal homeostasis, inducible Agc1-CreERT2; Ddrgklfl/fl mice were generated. Mice in which Ddrgk1 was deleted at 3 months of age showed disorganized growth plate, with significant reduction in proteoglycan deposition. These data demonstrate a postnatal requirement for Ddrgk1 in maintaining normal growth plate morphology. Together, these findings highlight the physiological role of Ddrgk1 in the development and maintenance of the growth plate cartilage. Furthermore, these genetic mouse models recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD.
Collapse
Affiliation(s)
- Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adetutu T Egunsula
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhiyin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Colldén G, Caron E, Bouret SG. Neonatal leptin antagonism improves metabolic programming of postnatally overnourished mice. Int J Obes (Lond) 2022; 46:1138-1144. [PMID: 35173277 DOI: 10.1038/s41366-022-01093-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Alteration of the perinatal nutritional environment is an important risk factor for the development of metabolic diseases in later life. The hormone leptin plays a critical role in growth and development. Previous studies reported that postnatal overnutrition increases leptin secretion during the pre-weaning period. However, a direct link between leptin, neonatal overnutrition, and lifelong metabolic regulation has not been investigated. METHODS We used the small litter mouse model combined with neonatal leptin antagonist injections to examine whether attenuating leptin during early life improves lifelong metabolic regulation in postnatally overnourished mice. RESULTS Postnatally overnourished mice displayed rapid weight gain during lactation and remained overweight as adults. These mice also showed increased adiposity and perturbations in glucose homeostasis in adulthood. Neonatal administration of a leptin antagonist normalized fat mass and insulin sensitivity in postnatally overnourished mice. These metabolic improvements were associated with enhanced sensitivity of hypothalamic neurons to leptin. CONCLUSIONS Early postnatal overnutrition causes metabolic alterations that can be permanently attenuated with the administration of a leptin antagonist during a restricted developmental window.
Collapse
Affiliation(s)
- Gustav Colldén
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1,000 Days for Health, Lille, 59000, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1,000 Days for Health, Lille, 59000, France
| | - Sebastien G Bouret
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1,000 Days for Health, Lille, 59000, France.
| |
Collapse
|
5
|
LeDuc CA, Skowronski AA, Rosenbaum M. The Role of Leptin in the Development of Energy Homeostatic Systems and the Maintenance of Body Weight. Front Physiol 2021; 12:789519. [PMID: 34955895 PMCID: PMC8703217 DOI: 10.3389/fphys.2021.789519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
LEP is a pleiotropic gene and the actions of leptin extend well beyond simply acting as the signal of the size of adipose tissue stores originally proposed. This is a discussion of the multi-system interactions of leptin with the development of the neural systems regulating energy stores, and the subsequent maintenance of energy stores throughout the lifespan. The prenatal, perinatal, and later postnatal effects of leptin on systems regulating body energy stores and on the energy stores themselves are heavily influenced by the nutritional environment which leptin exposure occurs. This review discusses the prenatal and perinatal roles of leptin in establishing the neuronal circuitry and other systems relevant to the adiposity set-point (or “threshold”) and the role of leptin in maintaining weight homeostasis in adulthood. Therapeutic manipulation of the intrauterine environment, use of leptin sensitizing agents, and identification of specific cohorts who may be more responsive to leptin or other means of activating the leptin signaling pathway are ripe areas for future research.
Collapse
Affiliation(s)
- Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
7
|
De Blasio MJ, Lanham SA, Blache D, Oreffo ROC, Fowden AL, Forhead AJ. Sex- and bone-specific responses in bone structure to exogenous leptin and leptin receptor antagonism in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 2018; 314:R781-R790. [PMID: 29443548 DOI: 10.1152/ajpregu.00351.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Widespread expression of leptin and its receptor in developing cartilage and bone suggests that leptin may regulate bone growth and development in the fetus. Using microcomputed tomography, this study investigated the effects of exogenous leptin and leptin receptor antagonism on aspects of bone structure in the sheep fetus during late gestation. From 125 to 130 days of gestation (term ~145 days), chronically catheterized singleton sheep fetuses were infused intravenously for 5 days with either saline (0.9% saline, n = 13), recombinant ovine leptin at two doses (0.6 mg·kg-1·day-1 LEP1, n = 10 or 1.4 mg·kg-1·day-1 LEP2, n = 7), or recombinant superactive ovine leptin receptor antagonist (4.6 mg·kg-1·day-1 SOLA, n = 6). No significant differences in plasma insulin-like growth factor-I, osteocalcin, calcium, inorganic phosphate, or alkaline phosphatase were observed between treatment groups. Total femur midshaft diameter and metatarsal lumen diameter were narrower in male fetuses treated with exogenous leptin. In a fixed length of femur midshaft, total and bone volumes were reduced by the higher dose of leptin; nonbone space volume was lower in both groups of leptin-treated fetuses. Leptin infusion caused increments in femur porosity and connectivity density, and vertebral trabecular thickness. Leptin receptor antagonism decreased trabecular spacing and increased trabecular number, degree of anisotrophy, and connectivity density in the lumbar vertebrae. The increase in vertebral porosity observed following leptin receptor antagonism was greater in the malecompared with female, fetuses. Therefore, leptin may have a role in the growth and development of the fetal skeleton, dependent on the concentration of leptin, sex of the fetus, and bone type examined.
Collapse
Affiliation(s)
- Miles J De Blasio
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Stuart A Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton , Southampton , United Kingdom
| | - Dominique Blache
- School of Animal Biology, University of Western Australia , Crawley , Australia
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton , Southampton , United Kingdom
| | - Abigail L Fowden
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Alison J Forhead
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom.,Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , United Kingdom
| |
Collapse
|
8
|
Abstract
Our understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted. © 2017 American Physiological Society. Compr Physiol 7:1359-1406, 2017.
Collapse
Affiliation(s)
- Craig Beall
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Lydia Hanna
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| |
Collapse
|
9
|
Exercise during pregnancy and its impact on mothers and offspring in humans and mice. J Dev Orig Health Dis 2017; 9:63-76. [DOI: 10.1017/s2040174417000617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise during pregnancy has beneficial effects on maternal and offspring’s health in humans and mice. The underlying mechanisms remain unclear. This comparative study aimed to determine the long-term effects of an exercise program on metabolism, weight gain, body composition and changes in hormones [insulin, leptin, brain-derived neurotrophic factor (BDNF)]. Pregnant women (n=34) and mouse dams (n=44) were subjected to an exercise program compared with matched controls (period I). Follow-up in the offspring was performed over 6 months in humans, corresponding to postnatal day (P) 21 in mice (period II). Half of the mouse offspring was challenged with a high-fat diet (HFD) for 6 weeks between P70 and P112 (period III). In period I, exercise during pregnancy led to 6% lower fat content, 40% lower leptin levels and an increase of 50% BDNF levels in humans compared with controls, which was not observed in mice. After period II in humans and mice, offspring body weight did not differ from that of the controls. Further differences were observed in period III. Offspring of exercising mouse dams had significantly lower fat mass and leptin levels compared with controls. In addition, at P112, BDNF levels in offspring were significantly higher from exercising mothers while this effect was completely blunted by HFD feeding. In this study, we found comparable effects on maternal and offspring’s weight gain in humans and mice but different effects in insulin, leptin and BDNF. The long-term potential protective effects of exercise on biomarkers should be examined in human studies.
Collapse
|
10
|
Croizier S, Prevot V, Bouret SG. Leptin Controls Parasympathetic Wiring of the Pancreas during Embryonic Life. Cell Rep 2016; 15:36-44. [PMID: 27052164 DOI: 10.1016/j.celrep.2016.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/05/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022] Open
Abstract
The autonomic nervous system plays a critical role in glucose metabolism through both its sympathetic and parasympathetic branches, but the mechanisms that underlie the development of the autonomic innervation of the pancreas remain poorly understood. Here, we report that cholinergic innervation of pancreatic islets develops during mid-gestation under the influence of leptin. Leptin-deficient mice display a greater cholinergic innervation of pancreatic islets beginning in embryonic life, and this increase persists into adulthood. Remarkably, a single intracerebroventricular injection of leptin in embryos caused a permanent reduction in parasympathetic innervation of pancreatic β cells and long-term impairments in glucose homeostasis. These developmental effects of leptin involve a direct inhibitory effect on the outgrowth of preganglionic axons from the hindbrain. These studies reveal an unanticipated regulatory role of leptin on the parasympathetic nervous system during embryonic development and may have important implications for our understanding of the early mechanisms that contribute to diabetes.
Collapse
Affiliation(s)
- Sophie Croizier
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Vincent Prevot
- INSERM, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille 59045, France
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; INSERM, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille 59045, France.
| |
Collapse
|
11
|
Review: Endocrine regulation of placental phenotype. Placenta 2015; 36 Suppl 1:S50-9. [DOI: 10.1016/j.placenta.2014.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022]
|
12
|
Briffa JF, McAinch AJ, Romano T, Wlodek ME, Hryciw DH. Leptin in pregnancy and development: a contributor to adulthood disease? Am J Physiol Endocrinol Metab 2015; 308:E335-50. [PMID: 25516549 DOI: 10.1152/ajpendo.00312.2014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging research has highlighted the importance of leptin in fetal growth and development independent of its essential role in the maintenance of hunger and satiety through the modulation of neuropeptide Y and proopiomelanocortin neurons. Alterations in maternal-placental-fetal leptin exchange may modify the development of the fetus and contribute to the increased risk of developing disease in adulthood. In addition, leptin also plays an important role in reproductive functions, with plasma leptin concentrations rising in pregnant women, peaking during the third trimester. Elevated plasma leptin concentrations occur at the completion of organogenesis, and research in animal models has demonstrated that leptin is involved in the development and maturation of a number of organs, including the heart, brain, kidneys, and pancreas. Elevated maternal plasma leptin is associated with maternal obesity, and reduced fetal plasma leptin is correlated with intrauterine growth restriction. Alterations in plasma leptin during development may be associated with an increased risk of developing a number of adulthood diseases, including cardiovascular, metabolic, and renal diseases via altered fetal development and organogenesis. Importantly, research has shown that leptin antagonism after birth significantly reduces maturation of numerous organs. Conversely, restoration of the leptin deficiency after birth in growth-restricted animals restores the offspring's body weight and improves organogenesis. Therefore, leptin appears to play a major role in organogenesis, which may adversely affect the risk of developing a number of diseases in adulthood. Therefore, greater understanding of the role of leptin during development may assist in the prevention and treatment of a number of disease states that occur in adulthood.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St. Albans, Australia; and
| | - Tania Romano
- Department of Human Biosciences, Latrobe University, Bundoora, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Deanne H Hryciw
- Department of Physiology, University of Melbourne, Parkville, Australia;
| |
Collapse
|
13
|
Maternal high-fat diet and obesity compromise fetal hematopoiesis. Mol Metab 2014; 4:25-38. [PMID: 25685687 PMCID: PMC4314531 DOI: 10.1016/j.molmet.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high-fat diet (HFD) exposure, an established mechanism of adult disease in several organ systems. We previously reported substantial losses in offspring liver size with prenatal HFD. As the liver is the main hematopoietic organ in the fetus, we asked whether the developmental expansion of the hematopoietic stem and progenitor cell (HSPC) pool is compromised by prenatal HFD and/or maternal obesity. METHODS We used quantitative assays, progenitor colony formation, flow cytometry, transplantation, and gene expression assays with a series of dietary manipulations to test the effects of gestational high-fat diet and maternal obesity on the day 14.5 fetal liver hematopoietic system. RESULTS Maternal obesity, particularly when paired with gestational HFD, restricts physiological expansion of fetal HSPCs while promoting the opposing cell fate of differentiation. Importantly, these effects are only partially ameliorated by gestational dietary adjustments for obese dams. Competitive transplantation reveals compromised repopulation and myeloid-biased differentiation of HFD-programmed HSPCs to be a niche-dependent defect, apparent in HFD-conditioned male recipients. Fetal HSPC deficiencies coincide with perturbations in genes regulating metabolism, immune and inflammatory processes, and stress response, along with downregulation of genes critical for hematopoietic stem cell self-renewal and activation of pathways regulating cell migration. CONCLUSIONS Our data reveal a previously unrecognized susceptibility to nutritional and metabolic developmental programming in the fetal HSPC compartment, which is a partially reversible and microenvironment-dependent defect perturbing stem and progenitor cell expansion and hematopoietic lineage commitment.
Collapse
|
14
|
Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi EJ. Comparative endocrinology of leptin: assessing function in a phylogenetic context. Gen Comp Endocrinol 2014; 203:146-57. [PMID: 24525452 PMCID: PMC4128956 DOI: 10.1016/j.ygcen.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans.
Collapse
Affiliation(s)
- Richard L Londraville
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA.
| | - Yazmin Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Robert J Duff
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Qin Liu
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
15
|
Mazzucco MB, Higa R, Capobianco E, Kurtz M, Jawerbaum A, White V. Saturated fat-rich diet increases fetal lipids and modulates LPL and leptin receptor expression in rat placentas. J Endocrinol 2013; 217:303-15. [PMID: 23482704 DOI: 10.1530/joe-13-0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metabolic alterations in obese and overweight mothers impact the placenta and the fetus, leading to anomalies in fetal growth and lipid accretion. The primary aim of the study was to examine the effect of a saturated fat-rich diet (FD) on growth, lipid accretion, and lipases, leptin and leptin receptor (ObR) expression in the placenta and fetal liver. We also aimed to find a role for fetal leptin in the modulation of placental and fetal liver lipase and ObR expression. Six-week-old rats were fed with a standard rat chow (control) or a 25% FD for 7 weeks until mating and during pregnancy. Also, in a group of control rats, fetuses were injected with leptin on days 19, 20, and 21 of pregnancy. On day 21, we assessed lipidemia, insulinemia, and leptinemia in mothers and fetuses. In the placenta and fetal liver, lipid concentration was assessed by thin layer chromatography (TLC) and the gene expression of lipoprotein lipase (LPL), endothelial lipase, insulin receptor (Insr), leptin, and ObR by RT-PCR. The FD induced hypertriglyceridemia and hyperleptinemia (P<0.01) in mothers and fetuses, an increase in maternal (P<0.05) and fetal weight (P<0.01), overaccumulation of lipids in fetal liver (P<0.01), and enhanced leptin expression in the placenta and fetal liver (P<0.05). Placental expression of IR and LPL was increased (P<0.05), and ObR decreased (P<0.05) in the FD group. Fetal administration of leptin induced the placental and fetal liver downregulation of ObR (P<0.05) and upregulation of LPL expression (P<0.05). The FD led to increased fetal lipid levels, which may result from high maternal lipid availability and fetal leptin effects.
Collapse
Affiliation(s)
- M B Mazzucco
- Laboratory of Reproduction and Metabolism, School of Medicine, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, University of Buenos Aires, Paraguay 2155 17th floor CABA 1121, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Bartel C, Tichy A, Walter I. Characterization of foamy epithelial surface cells in the canine endometrium. Anat Histol Embryol 2013; 43:165-81. [PMID: 23617756 DOI: 10.1111/ahe.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/01/2013] [Indexed: 11/27/2022]
Abstract
In mature bitches, endometrial epithelial surface cells modify function and corresponding morphology during the oestrous cycle. During late metoestrous, endometrial epithelial surface cells frequently accumulate fat and thereby adopt a foamy morphology. This cyclic appearance of foamy endometrial epithelial cells (fEECs) seems to be physiological in the dog, whereas in other species, it indicates pathological changes. Function of these fEECs has not been identified until now. Therefore, the aim of the study was to characterize the fEECs by means of transmission electron microscopy and immunohistochemistry. Different manifestations of fEECs were observed and analysed with regard to proliferative activity and presence of different epithelial adhesion molecules including PLEKHA7, β-catenin and E-cadherin. PLEKHA7 was restricted to the apical regions of the fEECs, whereas E-cadherin and β-catenin were demonstrated basolateral. The immunohistochemical detection of steroid hormone receptors demonstrated the responsiveness of the fEECs to steroid hormones. Intense progesterone receptor expression was observed in the fEECs indicating a high responsiveness to this hormone. Considering a potential function of the fEECs, we hypothesized that leptin, a hormone produced by other lipid-accumulating cells and described to be involved in reproduction, in particular during implantation, might also originate from the fEECs which was confirmed by immunohistochemical methods. Moreover, leptin receptor was found in fEECs indicating the fEECs as both, source and target for leptin. Therefore, we conclude that fEECs in the canine uterus have a potential role in early pregnancy events and that the different observed manifestations might simply reflect the variations of signs of pseudopregnancy among bitches.
Collapse
Affiliation(s)
- C Bartel
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Veterinaerplatz 1, A - 1210, Vienna, Austria
| | | | | |
Collapse
|
17
|
Siawrys G, Smolinska N. Direct in vitro effect of LH and steroids on leptin gene expression and leptin secretion by porcine luteal cells during the mid-luteal phase of the estrous cycle. Reprod Biol 2012; 12:317-23. [DOI: 10.1016/j.repbio.2012.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/20/2012] [Indexed: 10/27/2022]
|
18
|
Schlitt JM, Schulz LC. The source of leptin, but not leptin depletion in response to food restriction, changes during early pregnancy in mice. Endocrine 2012; 41:227-35. [PMID: 22042484 PMCID: PMC3291745 DOI: 10.1007/s12020-011-9548-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
Maternal food restriction during pregnancy results in adverse consequences for offspring, including obesity and cardiovascular disease. Early pregnancy is a critical period for this programming effect. Leptin is a regulator of energy homeostasis that also affects placental and fetal development. As food restriction results in decreased serum leptin levels, at least in non-pregnant animals, leptin depletion may be one mechanism by which food restriction affects development. The objective of this study was to test whether moderate food restriction affects serum leptin concentrations during the first half of pregnancy. We found that restriction to 50% of ad libitum consumption levels resulted in a significant decrease in serum leptin concentrations in both pregnant and non-pregnant female mice. There was no significant difference in serum leptin concentrations between non-pregnant females and at pregnancy day 11.5 when fed ad libitum. However, there was a difference in the source of leptin during pregnancy, with greater production in visceral fat in pregnant mice, and greater production in subcutaneous fat in non-pregnant mice. Leptin concentrations were dependent on time of day and time of sampling relative to feeding, particularly in restricted mice. There was a significant difference in serum leptin concentrations between fed and restricted mice when they were fed and sampled in afternoon, but not when they were fed and sampled in morning. We conclude that food restriction results in a significant decrease in leptin concentration during the first half of pregnancy in mice, but that detection of this relationship is subject to experimental design considerations.
Collapse
Affiliation(s)
| | - Laura C. Schulz
- Corresponding author ADDRESS: Dept. of Obstetrics, Gynecology and Women’s Health, University of Missouri, N625 Health Sciences Center, 1 Hospital Drive, Columbia, MO 65212, , Phone: (573)-884-1408, Fax (573)882-9010
| |
Collapse
|
19
|
Nüsken KD, Schneider H, Plank C, Trollmann R, Nüsken E, Rascher W, Dötsch J. Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight. Endocrinology 2011; 152:1327-35. [PMID: 21266509 DOI: 10.1210/en.2010-1116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low birth weight and intrauterine growth restriction (IUGR) can be caused by numerous different conditions. In many experimental settings, however, these different causes are not accounted for. This study aimed at comparing the impact of two frequent causes of IUGR (low utero-placental blood flow vs. malnutrition) on fetal programming of gene expression. We studied offspring of dams treated by uterine artery ligation or sham operation compared with untreated controls and offspring of dams that were fed either a low protein or normal protein diet. After Cesarean section at term, placental and fetal hepatic expression of key "metabolic" and "vasoregulative" genes was investigated by quantitative RT-PCR. Ligation neonates showed IUGR, reduced expression of placental leptin, placental and hepatic IGF-I, hepatic inducible nitric oxide synthase, and increased expression of placental IGF binding protein 1, hepatic IGF-II receptor and erythropoietin (EPO). Low protein offspring also showed IUGR but increased expression of placental leptin; IGF-I; placental and hepatic inducible nitric oxide synthase; hepatic insulin, IGF-I, and IGF-II receptors; and reduced expression of placental IGF binding protein 1, IGF-II, leptin-receptor type A, placental and hepatic leptin receptor type B, and EPO. Expression was independent of sex, birth weight, fetal intrauterine position, and EPO expression. In conclusion, the impact of IUGR on fetal and placental gene expression depends on the cause of low birth weight. Therefore, morbidity after IUGR should be analyzed referring to its pathophysiological cause rather than referring to low birth weight itself. Fetal hypoxia as estimated by hepatic EPO expression does not seem to be a key regulator of transcriptional activity in our models.
Collapse
Affiliation(s)
- Kai-Dietrich Nüsken
- Department of Pediatrics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Denver RJ, Bonett RM, Boorse GC. Evolution of leptin structure and function. Neuroendocrinology 2011; 94:21-38. [PMID: 21677426 DOI: 10.1159/000328435] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/11/2011] [Indexed: 12/15/2022]
Abstract
Leptin, the protein product of the obese(ob or Lep) gene, is a hormone synthesized by adipocytes that signals available energy reserves to the brain, and thereby influences development, growth, metabolism and reproduction. In mammals, leptin functions as an adiposity signal: circulating leptin fluctuates in proportion to fat mass, and it acts on the hypothalamus to suppress food intake. Orthologs of mammalian Lep genes were recently isolated from several fish and two amphibian species, and here we report the identification of two Lep genes in a reptile, the lizard Anolis carolinensis. While vertebrate leptins show large divergence in their primary amino acid sequence, they form similar tertiary structures, and may have similar potencies when tested in vitro on heterologous leptin receptors (LepRs). Leptin binds to LepRs on the plasma membrane, activating several intracellular signaling pathways. Vertebrate LepRs signal via the Janus kinase (Jak) and signal transducer and activator of transcription (STAT) pathway. Three tyrosine residues located within the LepR cytoplasmic domain are phosphorylated by Jak2 and are required for activation of SH2-containing tyrosine phosphatase-2, STAT5 and STAT3 signaling. These tyrosines are conserved from fishes to mammals, demonstrating their critical role in signaling by the LepR. Leptin is anorexigenic in representatives of all vertebrate classes, suggesting that its role in energy balance is ancient and has been evolutionarily conserved. In addition to its integral role as a regulator of appetite and energy balance, leptin exerts pleiotropic actions in development, physiology and behavior.
Collapse
Affiliation(s)
- Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA. rdenver @ umich.edu
| | | | | |
Collapse
|
21
|
Horner KC, Troadec JD, Blanchard MP, Dallaporta M, Pio J. Receptors for leptin in the otic labyrinth and the cochlear-vestibular nerve of guinea pig are modified in hormone-induced anorexia. Hear Res 2010; 270:48-55. [PMID: 20875846 DOI: 10.1016/j.heares.2010.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 01/13/2023]
Abstract
Metabolic syndromic inner ear pathology is a recognized condition in clinical practice but the possible causes remain controversial. We have previously reported that chronically-implanted estrogen implants in guinea pig results in hyperprolactinemia and hearing loss together with otic bone dysmorphology. The animals also present with anorexia. The hormone leptin has major roles in the regulation of satiety as well as bone metabolism and so we hypothesized that leptin might contribute to pathology of the otic labyrinth. We employed immunohistochemistry to investigate leptin receptor (ObR) expression. In control animals, ObR immunolabeling was not detected in the bone of the otic capsule but immunolabeling was observed in the cochlear-vestibular nerve. The labeling was associated with the astrocytic glial dome area, which marks the transition between central and peripheral parts of the nerve. In estrogen-treated animals, positive-ObR immunolabeling was observed in osteoblasts in new bone of the otic capsule and the ObR labeling was reduced in the cochlear-vestibular nerve compared to controls. The data provide evidence that leptin may target the labyrinth - affecting the bone and the nerve - and so could contribute to ongoing protection of the inner ear. Leptin disturbance might contribute to metabolic syndromes involving the audiovestibular system.
Collapse
Affiliation(s)
- Kathleen C Horner
- CRN2M-Dept Physiologie Neurovégétative, Université Paul Cézanne, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France.
| | | | | | | | | |
Collapse
|
22
|
Bouret SG. Neurodevelopmental actions of leptin. Brain Res 2010; 1350:2-9. [PMID: 20399755 DOI: 10.1016/j.brainres.2010.04.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 12/18/2022]
Abstract
Leptin is well known as an important hormone in the central control of feeding behavior. During development, fetuses and newborns are exposed to leptin and recent evidence has shown that leptin receptors are widespread throughout the developing brain. Accordingly, leptin affects brain development during both pre- and postnatal life. The actions of leptin in the developing brain are generally permanent and range from the establishment of hypothalamic circuits to plasticity in cortical pathways. The cellular events mediated by leptin include the following: neurogenesis, axon growth, and synaptogenesis. Nutritional manipulation of leptin secretion during perinatal life has generated considerable concern, and the developing brain appears to be a particularly sensitive target for these environmental changes.
Collapse
Affiliation(s)
- Sebastien G Bouret
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
23
|
Smolinska N, Kaminski T, Siawrys G, Przala J. Leptin gene and protein expression in the ovary during the oestrous cycle and early pregnancy in pigs. Reprod Domest Anim 2009; 45:e174-83. [PMID: 19930136 DOI: 10.1111/j.1439-0531.2009.01542.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leptin, the product of the obese gene, is the hormone originally identified in adipocytes. It is involved in the control of satiety and energy metabolism. More recent observations suggest that leptin plays an important role in reproduction. Leptin mRNA and protein have been found in the human and the murine ovary. However, the expression of leptin in the porcine ovary has not been examined. Therefore, the aim of the present work was to compare the expression levels of porcine leptin mRNA by semiquantitative RT-PCR and in situ hybridization, as well as leptin protein by Western blotting in the corpus luteum (CL) and ovarian stroma (OS) during mid- and late-luteal phase of the oestrous cycle as well as during days 14-16 and 30-32 of pregnancy. Leptin gene and protein expression in CL was increased on days 14-16 of the cycle compared with pregnant animals. Leptin gene expression in OS was higher during the late-luteal phase of the cycle than on days 30-32 after conception. However, comparison of leptin protein expression in OS between days 14-16 of the cycle and days 30-32 of pregnancy indicates a higher protein expression during pregnancy. Moreover, leptin gene expression was higher in porcine CL and OS on days 14-16 of pregnancy in comparison to days 30-32. Contrary to leptin mRNA expression, a higher leptin protein expression was observed on days 30-32 compared with days 14-16 after conception. In summary, the present study provides the first evidence that leptin mRNA and protein occur in porcine ovary and vary during the oestrous cycle and pregnancy. Moreover, the obtained results indicate that also locally synthesized leptin may participate in the control of pig reproduction by exercising its action at the ovarian level.
Collapse
Affiliation(s)
- N Smolinska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | | |
Collapse
|
24
|
Zhang XY, Jing BB, Wang DH. Cold exposure does not decrease serum leptin concentration, but increases energy intake and thermogenic capacity in pregnant Brandt's voles (Lasiopodomys brandtii). ZOOLOGY 2009; 112:206-16. [DOI: 10.1016/j.zool.2008.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 08/21/2008] [Accepted: 09/03/2008] [Indexed: 01/24/2023]
|
25
|
Forhead AJ, Fowden AL. The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol 2009; 587:1145-52. [PMID: 19188249 PMCID: PMC2674987 DOI: 10.1113/jphysiol.2008.167072] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/27/2009] [Indexed: 01/16/2023] Open
Abstract
In adult animals, leptin is an adipose-derived hormone that is important primarily in the regulation of energy balance during short- and long-term changes in nutritional state. Expression of leptin and its receptors is widespread in fetal and placental tissues, although the role of leptin as a nutritional signal in utero is unclear. Before birth, leptin concentration correlates with several indices of fetal growth, and may be an endocrine marker of fetal size and energy stores in the control of metabolism and maturation of fetal tissues. In addition, leptin synthesis and plasma concentration can be modified by insulin, glucocorticoids, thyroid hormones and oxygen availability in utero, and therefore, leptin may be part of the hormonal response to changes in the intrauterine environment. Evidence is emerging to show that leptin has actions before birth that are tissue-specific and may occur in critical periods of development. Some of these actions are involved in the growth and development of the fetus and others have long-term consequences for the control of energy balance in adult life.
Collapse
Affiliation(s)
- Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
26
|
Smolinska N, Kaminski T, Siawrys G, Przala J. Long form of leptin receptor gene and protein expression in the porcine trophoblast and uterine tissues during early pregnancy and the oestrous cycle. Anim Reprod Sci 2008; 113:125-36. [PMID: 18619745 DOI: 10.1016/j.anireprosci.2008.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/27/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
Leptin, the product of the OB gene, is a 16-kDa polypeptide of 146 amino acid residues produced mainly by adipocytes that regulates metabolism and reproduction. The actions of leptin are mediated mainly via the long form of the leptin receptor (OB-Rb). The identification of leptin and OB-Rb mRNAs and proteins in human and mouse endometrium, and placental trophoblast suggests that leptin may be involved in the implantation process. Thus, the aim of this study was to compare the expression levels of porcine OB-Rb mRNA and protein in the endometrium and myometrium during mid- and late-luteal phases of the oestrous cycle (days 10-12 and 14-16, respectively) as well as during two stages of pregnancy respondent to the beginning of the implantation process (days 14-16) and the post-implantation period (days 30-32), and in trophoblast during both periods of pregnancy. OB-Rb gene expression in endometrium during the examined stages of pregnancy and the mid- and late-luteal phases of the cycle was at the same level. In contrast, in myometrium leptin receptor gene expression decreased on days 14-16 of pregnancy compared to both phases of the cycle, and on days 30-32 of pregnancy in relation to late-luteal phase. OB-Rb protein expression in the tissues was lower during the examined stages of pregnancy in comparison to the mid- and late-luteal phases of the cycle. In trophoblast, OB-Rb mRNA and protein expression was higher on days 30-32 than during days 14-16 of pregnancy. In conclusion, our results might suggest that leptin can participate in the control of pig reproduction by exercising its action at the uterine and trophoblast level and have a direct effect on these organ during both the luteal phase of the cycle and early pregnancy. Moreover, changes in OB-Rb gene and protein expression in tissues of pig reproductive tract strongly suggest that their sensitivity to leptin varies throughout luteal phase of the cycle and early pregnancy.
Collapse
Affiliation(s)
- Nina Smolinska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn-Kortowo 10-719, Poland.
| | | | | | | |
Collapse
|
27
|
Abstract
The adipose-derived hormone leptin primarily acts in the hypothalamus to decrease appetite and increase energy expenditure, thereby maintaining body fat levels around a set point. Pregnancy is a physiological state where this feedback mechanism is not beneficial. Successful reproductive efforts are highly demanding on the resources of the mother; thus, it is imperative that the maternal body can increase energy stores without restraint. Food intake, fat mass and serum leptin concentrations increase during pregnancy in the rat, suggesting that the feedback loop between adipose tissue and appetite is disrupted and a state of leptin resistance exists. In support of this, there is an attenuation of the satiety response to exogenous leptin administration in pregnant rats. This state of leptin resistance is associated with impaired activation of the leptin-induced Janus activating kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway in the ventromedial nucleus of the hypothalamus (VMH) and arcuate nucleus, and reduced expression of leptin receptor mRNA in the VMH. Furthermore, pregnant rats do not show a satiety response to exogenous alpha-melanocyte stimulating hormone. This model offers the possibility of examining how hypothalamic leptin signalling can be modified in response to changes in physiological conditions.
Collapse
Affiliation(s)
- S R Ladyman
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
28
|
Fetal responses during placental malaria modify the risk of low birth weight. Infect Immun 2008; 76:1527-34. [PMID: 18212078 DOI: 10.1128/iai.00964-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammation during placental malaria (PM) is associated with low birth weight (LBW), especially during the first pregnancy, but the relative contribution of maternal or fetal factors that mediate this effect remains unclear and the role of gamma interferon (IFN-gamma) has been controversial. We examined the relationship of maternal and cord plasma levels of IFN-gamma, tumor necrosis factor alpha, interleukin-10, ferritin, and leptin to birth weight for Tanzanian women delivering in an area where there is a high rate of malaria transmission. The placental levels of inflammatory cytokines, including IFN-gamma, increased significantly during PM in primigravid and multigravid women but not in secundigravid women. PM also increased maternal peripheral levels of all inflammatory markers except IFN-gamma but had strikingly little effect on cord levels of these proteins. In a multivariate analysis, placental IFN-gamma was negatively associated (P = 0.01) and cord ferritin was positively associated (P < 0.0001) with birth weight in infected (PM-positive [PM+]) first-time mothers. This relationship was not observed in other mothers, consistent with the epidemiology of PM and disease. Cord leptin had a strong positive relationship with birth weight in offspring of PM-negative women (P = 0.02 to P < 0.0001) but not in offspring of PM+ women (all differences were not significant) in the three gravidity groups. The results confirmed that placental IFN-gamma is related to LBW due to PM during first pregnancies and suggest that fetal ferritin plays a protective role. Because fetal cells are a source of placental IFN-gamma and cord ferritin, the fetal response to PM may modify the risk of LBW.
Collapse
|
29
|
Trayhurn P. Recent highly cited articles in theBritish Journal of Nutrition(includingSupplements): An update. Br J Nutr 2007; 92:1-3. [PMID: 15230982 DOI: 10.1079/bjn20041184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paul Trayhurn
- Liverpool Centre for Nutritional Genomics, School of Clinical Sciences, University of Liverpool, Liverpool L69 3GA,
| |
Collapse
|
30
|
Akcakus M, Kurtoglu S, Koklu E, Kula M, Koklu S. The relationship between birth weight leptin and bone mineral status in newborn infants. Neonatology 2007; 91:101-6. [PMID: 17344659 DOI: 10.1159/000097126] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 04/19/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND The positive relationship between fat mass, bone mass and leptin has been shown in fetal mouse cartilage/bone. It has been shown that umbilical venous leptin predicts both the size of the neonatal skeleton and its estimated volumetric mineral density. AIMS This study investigates how birth weight and bone mineralization correlate with leptin levels. In addition, we aimed to determine the predictive value of anthropometrics measurements and gender on variability in bone mineral status. METHODS Umbilical cord venous blood samples were obtained at the delivery from 100 term newborn infants. Forty of the newborn infants had birth weights appropriate for gestational age (AGA), 30 were small for gestational age (SGA) and 30 were large for gestational age (LGA). Data were acquired using the whole body dual energy X-ray obsorptiometry scanner in the first 24 h after birth. RESULTS Leptin concentrations were higher in LGA (36.6 +/-12.0 ng/ml; p < 0.0001), but lower in SGA (11.7 +/- 5.6 ng/ml; p < 0.001) than in AGA infants (20.3 +/- 7.6 ng/ml). Whole body bone mineral density and whole body bone mineral content were higher in LGA babies (0.442 +/- 0.025 g/cm(2), 71.6 +/- 9.0 g, p < 0.01, p < 0.001, respectively) but lower in SGA (0.381 +/- 0.027 g/cm(2), 29.1 +/- 9.1 g, p < 0.001, p < 0.001, respectively) than in AGA babies (0.426 +/- 0.022 g/cm(2), 53.7 +/- 9.6 g, respectively). The percentage of whole body bone mineral content was lower in SGA (1.3 +/- 0.3) than in AGA (1.6 +/- 0.2, p < 0.001) and LGA (1.7 +/- 0.2, p < 0.001). In stepwise linear regression analyses models; leptin is not found related to the bone indices. CONCLUSION Our study does not provide support for the hypothesis that leptin may play a major role in the regulation of bone metabolism in the developing skeleton.
Collapse
Affiliation(s)
- Mustafa Akcakus
- Department of Pediatrics, School of Medicine, Erciyes University, Kayseri, Turkey.
| | | | | | | | | |
Collapse
|
31
|
Schulz LC, Townsend K, Kunz TH, Widmaier EP. Inhibition of trophoblast invasiveness in vitro by immunoneutralization of leptin in the bat, Myotis lucifugus (Chiroptera). Gen Comp Endocrinol 2007; 150:59-65. [PMID: 16938297 DOI: 10.1016/j.ygcen.2006.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/06/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
In addition to effects on metabolism and appetite, leptin is a reproductive hormone produced and secreted by the placenta of many, but not all mammalian species. In mice, in which the placenta does not secrete leptin, exogenously added leptin stimulates invasiveness of early (but not late)-gestation trophoblast cells. We report a similar phenomenon occurs in Myotis lucifugus (little brown myotis), a species in which the placenta synthesizes and secretes leptin. Immunoneutralization of endogenously secreted leptin from cultured M. lucifugus trophoblast cells inhibited the ability of these cells to invade a matrigel matrix. The effect was not due to an inhibitory effect of the antibody on cell proliferation, nor was it a non-specific effect of antibody administration. Cell invasion was significantly reduced in untreated cells obtained from late-gestation placentas, and the antibody had no effect at that time. This occurred despite continued expression throughout gestation of the long (OBRb) and short (OBRa) isoforms of leptin receptor mRNA. This study suggests that an important function of leptin during pregnancy is an effect on trophoblast cell invasiveness, at a time when the placenta is becoming established. That this occurs in two phylogenetically unrelated and distant species, regardless of whether the placenta is a source of secreted leptin, suggests that this is a highly conserved reproductive action of leptin.
Collapse
Affiliation(s)
- Laura C Schulz
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
32
|
Srivastava RK, Krishna A. Adiposity associated rise in leptin impairs ovarian activity during winter dormancy in Vespertilionid bat, Scotophilus heathi. Reproduction 2007; 133:165-76. [PMID: 17244743 DOI: 10.1530/rep.1.01019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the study was to evaluate the seasonal variation in serum leptin levels in a natural population of the female bat,Scotophilus heathiand their relationship to the changes in the body mass, serum insulin level, and ovarian activity. Circulating leptin level varied significantly over the season and correlated positively with the changes in body mass, and circulating insulin and androstenedione (A4) levels. Circulating leptin concentrations showed two peaks; one coincides with the maximum fat accumulation prior to winter dormancy, whereas the second shorter peak coincides with late pregnancy. Thein vivostudy inS. heathishowed that the increased circulating leptin level during winter dormancy coincides with the decreased expression of ovarian steroidogenic acute regulatory (StAR) protein, and low circulating estradiol (E2) level. At the same time, increased circulating leptin level coincides with increased expression of ovarian insulin receptor and high circulating A4 level. The low circulating leptin level during preovulatory period coincides with the increase in StAR protein but decrease in insulin receptor protein. Thein vitrostudy confirmed thein vivoobservations of inhibitory effect of leptin on LH induced StAR expression and E2production, whereas the stimulatory effect of leptin (high dose) on LH induced expression of insulin receptor protein and A4 production. However, pharmacological dose of leptin produced inhibitory effect on the expression of insulin receptor protein. The results of the present study thus suggest that high circulating leptin level during winter dormancy promotes adiposity and impairs ovarian activity by suppressing StAR-mediated E2production as well as by enhancing insulin receptor-mediated A4 synthesis thereby contributing anovulatory condition of delayed ovulation inS. heathi.
Collapse
|
33
|
Crespi EJ, Denver RJ. Leptin (ob gene) of the South African clawed frog Xenopus laevis. Proc Natl Acad Sci U S A 2006; 103:10092-7. [PMID: 16782821 PMCID: PMC1502511 DOI: 10.1073/pnas.0507519103] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leptin, the protein product of the obese (ob) gene, is a type-I cytokine hormone secreted by fat that is integral to food intake regulation and influences almost every physiological system in juvenile and adult mammals. Since the identification of leptin in the mouse in 1994, biologists have searched for orthologous genes in other species with limited success. In this article, we report the identification and functional characterization of leptin and leptin receptor (LR) in Xenopus. Despite low amino acid sequence similarity to mammalian leptins ( approximately 35%) the frog protein has a nearly identical predicted tertiary structure and can activate the frog and mouse LRs in vitro. We showed that recombinant frog leptin (rxLeptin) is a potent anorexigen in frogs, as it is in mammals, but this response does not develop until midprometamorphosis. However, during early prometamorphosis, exogenous rxLeptin induced growth and development of the hind limb, where LR mRNA is expressed. The rxLeptin also stimulated cell proliferation in cultured hind limbs from early prometamorphic tadpoles, as measured by [(3)H]thymidine uptake. These findings are evidence that leptin can influence limb growth and differentiation during early development. Furthermore, the isolation and characterization of leptin and its receptor in a nonamniote provides an essential foundation for elucidating the structural and functional evolution of this important hormone.
Collapse
Affiliation(s)
- Erica J. Crespi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048
| | - Robert J. Denver
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Abstract
Leptin influences satiety, adiposity, and metabolism and is associated with mechanisms regulating puberty onset, fertility, and pregnancy in various species. Maternal hyperleptinemia is a hallmark of mammalian pregnancy, although both the roles of leptin and the mechanisms regulating its synthesis appear to be taxa specific. In pregnant humans and nonhuman primates, leptin is produced by both maternal and fetal adipose tissues, as well as by the placental trophoblast. Specific receptors in the uterine endometrium, trophoblast, and fetus facilitate direct effects of the polypeptide on implantation, placental endocrine function, and conceptus development. A soluble isoform of the receptor may be responsible for inducing maternal leptin resistance during pregnancy and/or may facilitate the transplacental passage of leptin for the purpose of directly regulating fetal development. The steroid hormones are linked to the regulation of leptin and the leptin receptor and probably interact with other pregnancy-specific, serum-borne factors to regulate leptin dynamics during pregnancy. In addition to its effects on normal conceptus development, leptin is linked to mechanisms affecting a diverse array of pregnancy-specific pathologies that include preeclampsia, gestational diabetes, and intrauterine growth restriction. Association with these anomalies and with mechanisms pointing to a fetal origin for a range of conditions affecting the individual's health in adult life, such as obesity, diabetes mellitus, and cardiovascular disease, reiterate the need for continued research dedicated to elucidating leptin's roles and regulation throughout gestation.
Collapse
Affiliation(s)
- Michael C Henson
- Department of Obstetrics and Gynecology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA.
| | | |
Collapse
|
35
|
Terroni PL, Anthony FW, Hanson MA, Cagampang FRA. Expression of agouti-related peptide, neuropeptide Y, pro-opiomelanocortin and the leptin receptor isoforms in fetal mouse brain from pregnant dams on a protein-restricted diet. ACTA ACUST UNITED AC 2005; 140:111-5. [PMID: 16099070 DOI: 10.1016/j.molbrainres.2005.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/28/2005] [Accepted: 07/06/2005] [Indexed: 11/22/2022]
Abstract
Expression of agouti-related peptide, neuropeptide Y, pro-opiomelanocortin and leptin receptor isoforms were found in fetal mouse brain at embryonic day 12 (E12). Levels of expression for these genes were altered in brains of E12 fetuses from pregnant dams on a protein-restricted diet, suggesting that the fetal brain is responsive to changes in maternal nutrition prior to birth.
Collapse
Affiliation(s)
- Paul L Terroni
- Centre for Developmental Origins of Health and Disease, University of Southampton, School of Medicine, Princess Anne Hospital, Level F mailpoint 887, Coxford Road, Southampton, UK
| | | | | | | |
Collapse
|
36
|
Yoon SJ, Cha KY, Lee KA. Leptin receptors are down-regulated in uterine implantation sites compared to interimplantation sites. Mol Cell Endocrinol 2005; 232:27-35. [PMID: 15737466 DOI: 10.1016/j.mce.2005.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 12/31/2004] [Accepted: 01/02/2005] [Indexed: 10/25/2022]
Abstract
Leptin is a circulating hormone that plays an important role in the regulation of metabolism, obesity, and reproduction. Leptin binds to its receptors on the cell membrane and is involved in the activation of STAT3. Recently, endometrium was suggested to be a novel target for leptin recently. We, therefore, examined the expression of leptin, leptin receptors, and STAT3 in the mouse uterus (implantation and interimplantation sites) to investigate the role of the leptin system during the early implantation period. Leptin mRNA was not detected in mouse uterine tissues or blastocysts, although adipose tissue, the positive control, showed a strong signal. Both of the receptor splice variants were expressed in the uterus and blastocysts, but the mRNA level was much lower in implantation sites compared to interimplantation sites. The mRNA expression of leptin receptors was determined to be higher in stromal cells than in the luminal epithelium using laser capture microdissection (LCM) analysis. Using immunohistochemistry, leptin was detected as a strong signal in the luminal epithelium and embryo, whereas the receptor was detected in subepithelial stromal cells rather than the luminal epithelium. As leptin itself was not detected by RT-PCR, the immunohistologically detected leptin may originate elsewhere, such as in adipose tissue. The differential expression of leptin receptors in implantation sites compared to interimplantation sites suggests that the leptin/leptin receptor system may be a delicate regulator of the implantation process.
Collapse
Affiliation(s)
- Se-Jin Yoon
- Infertility Medical Center, CHA General Hospital, 606-5 Yeoksam-1-dong, Kangnam-gu, Seoul 135-081, Republic of Korea
| | | | | |
Collapse
|
37
|
Malik NM, Carter ND, Wilson CA, Scaramuzzi RJ, Stock MJ, Murray JF. Leptin expression in the fetus and placenta during mouse pregnancy. Placenta 2005; 26:47-52. [PMID: 15664410 DOI: 10.1016/j.placenta.2004.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 11/22/2022]
Abstract
During pregnancy, leptin concentrations in the maternal circulation are elevated in both humans and rodents but decrease to pre-pregnancy levels at birth, suggesting a role for leptin in the maintenance of pregnancy. Synthesis of leptin by the human placenta is established but whether the murine placenta synthesizes leptin remains controversial. The aims of this study were to determine (a) if the mouse wild-type placenta expresses the ob gene using Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and (b) whether the mouse fetus and placenta contribute to the significant increase of leptin in the maternal circulation during pregnancy. The mouse placenta did not express the ob gene at a level that could be readily detected using RT-PCR. Moreover, both maternal gain in weight and undetectable concentrations of leptin in sera in leptin-deficient ob/ob mothers bearing heterozygote (ob/+) fetuses suggested that the mouse fetus and placenta do not make a significant contribution to the dramatic increase in maternal plasma concentrations of leptin during late gestation. It is therefore concluded that neither fetal- nor placental-derived leptin modulates maternal weight gain during pregnancy.
Collapse
Affiliation(s)
- N M Malik
- Department of Basic Medical Sciences, St Georges Hospital Medical School, London SW17 0RE, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Richards MP, Poch SM. Molecular cloning and expression of the turkey leptin receptor gene. Comp Biochem Physiol B Biochem Mol Biol 2004; 136:833-47. [PMID: 14662306 DOI: 10.1016/s1096-4959(03)00260-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cDNA encoding the long form of the turkey (Meleagris gallopavo) leptin receptor (LEPR) was cloned and sequenced. Turkey LEPR showed greater than 90% sequence identity at both the nucleotide and amino acid level with chicken LEPR. The LEPR gene (long form) encodes a protein of 1147 amino acids that has features similar to other LEPRs including: a signal peptide, a single transmembrane domain, and specific conserved motifs defining putative leptin-binding and signal transduction regions of the protein. In addition, a LEPR gene-related protein (LEPR-GRP) mRNA transcript was also identified and a portion of the corresponding cDNA containing the complete coding region was sequenced. The turkey LEPR-GRP gene encodes a 14-kDa (131 amino acids) protein that is distinct from LEPR. LEPR gene expression was quantified relative to beta-actin in total RNA samples isolated from various tissues of 3-week-old turkey poults. Expression of LEPR was highest in brain, spleen and lung tissue with lower levels of expression in kidney, pancreas, duodenum, liver, fat and breast muscle. In developing turkey embryos, expression of LEPR was highest in brain tissue throughout incubation (days 14-28). Expression of LEPR in embryonic liver tissue peaked at day 16 and then declined toward hatching (day 28). Yolk sac expression of LEPR declined from day 14 to day 20 and then increased toward hatching. Our findings clearly demonstrate the expression of LEPR and LEPR-GRP in different tissues during embryonic and post-hatch development. In conclusion, this is the first report to identify and characterize LEPR and LEPR-GRP gene homologues in the domestic turkey.
Collapse
Affiliation(s)
- Mark P Richards
- United States Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, 10300 Baltimore Avenue, Building 200, Room 206, BARC-East Beltsville, MD 20705-2350, USA.
| | | |
Collapse
|
39
|
Veselský L, Holán V, Dostál J, Zelezná B. Boar seminal immunosuppressive fraction attenuates the leptin concentration and restores the thymus mass during pregnancy in mice. Reproduction 2004; 127:581-5. [PMID: 15129013 DOI: 10.1530/rep.1.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunosuppressive fraction (ISF) of boar seminal vesicle fluid was recently demonstrated to inhibit production of T helper (Th)1 cytokines and enhance production of Th2 cytokines. The present study shows the effect of the ISF on leptin concentrations in blood plasma and adipose tissue in mice during pregnancy. The ISF effect on thymus weight during pregnancy is also demonstrated. The leptin concentration in blood plasma and adipose tissue increased and remained high in the latter half of pregnancy. ISF treatment at the beginning of pregnancy significantly lowered the leptin concentration both in blood plasma and adipose tissue of pregnant mice. Thymus involution has been described previously in pregnant mice. ISF treatment compensated for the loss of thymus mass during the whole pregnancy in the ISF-treated mice. The treatment of pregnant mice with ISF did not affect pregnancy and litter size.
Collapse
Affiliation(s)
- L Veselský
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 166 37 Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
40
|
White V, González E, Capobianco E, Pustovrh C, Soñez C, Romanini MC, Jawerbaum A. Modulatory effect of leptin on nitric oxide production and lipid metabolism in term placental tissues from control and streptozotocin-induced diabetic rats. Reprod Fertil Dev 2004. [DOI: 10.1071/rd03095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leptin production by placental tissues contributes to its circulating levels and functions. The diabetic pathology induces alterations in leptin levels. In the present study, leptin levels were evaluated in placental tissue from control and neonatal streptozotocin-induced (n-STZ) diabetic rats during late gestation. The effects of leptin levels on the generation of nitric oxide (NO), prostaglandin (PG) E2 production and lipid metabolism were examined. Leptin levels were diminished in placentas from n-STZ diabetic rats compared with controls (P < 0.01). These differences were also evident when leptin was evaluated immunohistochemically. Addition of leptin (1 nm) in vitro enhanced NO production in control (66%) and diabetic placentas (134%) by stimulating NO synthase activity (by 38% and 54%, respectively). The addition of leptin increased PGE2 production in placentas from control (173%) and diabetic rats (83%) and produced a 50% decrease in placental lipid levels (phospholipids, triacylglycerides, cholesterol and cholesteryl ester) without involving a reduction in de novo lipid synthesis. These data indicate that leptin enhances the production of placental NO and PGE2, vasoactive agents that modify placental blood flow, and that leptin stimulates placental lipid metabolism, probably generating more lipids for transfer to the fetus. In the diabetic rat, placental leptin was reduced, probably as a response to the maternal environment to locally regulate the transfer of nutrients to the developing fetus.
Collapse
|
41
|
Zhao J, Kunz TH, Tumba N, Schulz LC, Li C, Reeves M, Widmaier EP. Comparative analysis of expression and secretion of placental leptin in mammals. Am J Physiol Regul Integr Comp Physiol 2003; 285:R438-46. [PMID: 12702488 DOI: 10.1152/ajpregu.00776.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased plasma level of leptin appears to be a ubiquitous feature of pregnant mammals. The mechanisms by which leptin levels are increased may be species specific, however, with some species upregulating adipose leptin production and others expressing leptin in the placenta. Placental leptin expression was examined in representative species of the two most abundant mammalian orders, Rodentia and Chiroptera, and in cultured human choriocarcinoma (BeWo) cells. Leptin mRNA was expressed in BeWo cells and in placentas of Myotis lucifugus (little brown bat), Eptesicus fuscus (big brown bat), and Rattus norvegicus (laboratory rat), but not the common laboratory mouse Mus musculus. cAMP stimulated secretion of leptin from BeWo cells and also stimulated leptin mRNA expression in the cells. In addition to adipose and placental tissue, leptin transcript in M. lucifugus was detectable in heart, spleen, and liver, but not in lung, brain, and kidney. Hepatic expression was also observed in E. fuscus, but not in mice or rats, and did not appear to result from hepatic fat deposition. Leptin cDNA was cloned and sequenced from M. lucifugus placenta and shared up to 95% homology with other mammalian leptin cDNAs. It is concluded that 1) placental leptin expression and secretion are species-specific traits, 2) placental leptin production represents one of three major mechanisms for achieving high circulating maternal leptin levels during pregnancy, the others being upregulation of adipose leptin production and production of circulating leptin-binding proteins, and 3) hepatic leptin expression in pregnant insectivorous bats may be an adaptation resulting from the presence of extremely low amounts of subcutaneous fat during pregnancy and lactation in these species.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Smith JT, Waddell BJ. Leptin distribution and metabolism in the pregnant rat: transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids. Endocrinology 2003; 144:3024-30. [PMID: 12810558 DOI: 10.1210/en.2003-0145] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin is essential for the establishment of pregnancy and appears to promote fetal growth, but the mechanisms regulating fetal leptin exposure remain unclear. In rodents, indirect evidence suggests that fetal leptin is partly derived from the maternal circulation via transplacental passage. Indeed, the placenta expresses mRNA for Ob-Ra, one of the short forms of the leptin receptor (Ob-R(S)) important in leptin transport, and this expression increases markedly in late pregnancy. Therefore, we determined the transplacental passage of maternal leptin to the fetus in the rat and whether this transport increases near term in association with a rise in placental expression of Ob-R(S) protein. Because of the proposed role of leptin in promoting fetal growth, we also assessed the effect of glucocorticoid-induced fetal growth retardation on placental leptin transport. Anesthetized rats received a constant infusion of (125)I-leptin via a jugular cannula before and at d 16 and 22 of pregnancy (term = d 23); plasma samples were obtained at 10, 20, 40, 60, 80, and 100 min, and fetuses and placentas were collected at the time of the final sample. The metabolic clearance rate of leptin fell (P < 0.01) from 3.08 +/- 0.23 ml/min per kg in nonpregnant rats to 2.36 +/- 0.13 ml/min per kg by d 22. Transplacental passage of (125)I-leptin, estimated from its concentration in the whole fetus relative to maternal plasma, increased 10-fold (P < 0.005) between d 16 and d 22 of pregnancy. Over this same period, Ob-R(S) protein expression in the placental labyrinth zone increased by almost 2-fold. Transplacental leptin passage was reduced (P < 0.05) by 77% after maternal dexamethasone treatment, whereas suppression of endogenous glucocorticoid synthesis (by metyrapone) increased (P < 0.05) the transfer of maternal leptin to the fetus by 55%. These data show that transplacental passage of maternal leptin is a significant source of fetal leptin and increases markedly during late pregnancy. Consistent with the proposed role of leptin as a fetal growth factor, transplacental leptin passage is reduced in association with glucocorticoid-induced fetal growth retardation.
Collapse
Affiliation(s)
- Jeremy T Smith
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
43
|
|
44
|
|
45
|
Smith JT, Waddell BJ. Leptin Receptor Expression in the Rat Placenta: Changes in Ob-Ra, Ob-Rb, and Ob-Re with Gestational Age and Suppression by Glucocorticoids1. Biol Reprod 2002; 67:1204-10. [PMID: 12297537 DOI: 10.1095/biolreprod67.4.1204] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Leptin, the hormone product of the ob gene, has recently been implicated as an important player in the complex hormonal control of fetal growth. Leptin actions are mediated via the long isoform of its receptor (Ob-Rb), while shorter isoforms may serve as transporters of leptin through physiological barriers (Ob-Ra) or as leptin-binding proteins in plasma (Ob-Re). Placental expression of these receptor isoforms could thus mediate leptin actions within the placenta or regulate transport of maternal, placental, and fetal leptin. In the present study, we show by real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) that Ob-Ra, Ob-Rb, and Ob-Re mRNAs are dynamically expressed in the functionally distinct basal and labyrinth zones of the rat placenta during the period of maximal fetal growth (i.e., from Day 16 to Day 22 of pregnancy; term = Day 23). Western blot analyses confirmed placental expression of the Ob-Rb protein, and immunolocalization was most prominent in trophoblast and vascular tissues of the labyrinth zone. Ob-Ra and Ob-Re mRNA expression increased markedly (P < 0.01) from Day 16 to Day 22 in the labyrinth but not in the basal zone, whereas Ob-Rb mRNA and protein remained relatively stable. Because glucocorticoids inhibit feto-placental growth, placental leptin receptor (Ob-R) expression was also measured after manipulation of feto-placental glucocorticoid exposure. Maternal treatment with dexamethasone reduced (P < 0.05) placental expression of Ob-Rb mRNA and protein, whereas metyrapone (an inhibitor of glucocorticoid synthesis) stimulated (P < 0.01) placental expression of mRNAs encoding all three Ob-R isoforms. Dexamethasone and carbenoxolone (an inhibitor of the enzyme 11beta-hydroxysteroid dehydrogenase) also markedly reduced (P < 0.01) fetal but not maternal plasma leptin concentrations, consistent with inhibition of transplacental passage of maternal leptin. In conclusion, our data indicate that placental expression of Ob-Ra, Ob-Rb, and Ob-Re is likely to mediate leptin action and transport in the fetus and placenta. The effects of glucocorticoid manipulations on placental expression of these isoforms suggest that glucocorticoid-induced feto-placental growth retardation could be mediated, in part, via inhibition of leptin action or transport in the placenta.
Collapse
Affiliation(s)
- Jeremy T Smith
- School of Anatomy and Human Biology and The Western Australian Institute for Medical Research, The University of Western Australia, Crawley, Perth, Australia
| | | |
Collapse
|
46
|
Ebenbichler CF, Kaser S, Laimer M, Wolf HJ, Patsch JR, Illsley NP. Polar expression and phosphorylation of human leptin receptor isoforms in paired, syncytial, microvillous and basal membranes from human term placenta. Placenta 2002; 23:516-21. [PMID: 12137750 DOI: 10.1053/plac.2002.0836] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hormone leptin (OB) and its receptor (OB-R) are key homeostatic regulators of mammalian body weight. Two predominant isoforms of OB-R are expressed by alternative splicing: the long form, OB-RL, with full signalling capacity is highly expressed in the hypothalamus and the short, signalling-defective form, OB-Rs, is ubiquitously expressed. In a previous study we detected expression of OB-RL and OB-Rs in human syncytiotrophoblast cells using in situ hybridization and immunohistochemistry (Bodner et al., 1999). The aim of this study was to investigate leptin receptor isoform expression and phosphorylation in paired, syncytial, microvillous and basal membranes from human term placenta by Western blot analysis. Both the OB-RL and the OB-Rs isoforms were detected in the syncytial membrane preparations. The OB-RL isoform was observed exclusively in microvillous membranes, whereas the OB-Rs isoform was found in both microvillous and basal membrane preparations. No significant differences were observed between syncytial membranes from normal and type 1 diabetic pregnancies. To test the phosphorylation capacity of the OB-R isoforms, microvillous and basal membrane vesicles loaded with ATP were stimulated with leptin and the phosphorylation status of the OB-R at the tyrosine 985 (Y985) was determined. A single band at the molecular weight corresponding to the molecular weight of the OB-RL isoform was detected exclusively in the ATP-loaded microvillous vesicles. We conclude that the long form OB-RL is expressed exclusively in the microvillous membrane of the syncytiotrophoblast and is capable of being phosphorylated, suggesting that it has signal transduction capacity.
Collapse
|
47
|
Ehrhardt RA, Bell AW, Boisclair YR. Spatial and developmental regulation of leptin in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1628-35. [PMID: 12010744 DOI: 10.1152/ajpregu.00750.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the biology of leptin during prenatal life, the developmental and spatial regulation of leptin was studied in ovine fetuses. Fetal plasma leptin increased steadily between days 40 and 143 postcoitus (PC), but it was unrelated to fetal weight or placental weight at day 135 PC. Leptin gene expression was detected in fetal brain and liver during most of gestation and in fetal adipose tissue after day 100 PC. At day 130 PC, expression in fetal perirenal adipose tissue was approximately 10% of maternal expression. In contrast, leptin gene expression was never detected in the placenta and other uteroplacental tissues. When ewes were fed 55% of requirements between days 122 and 135 PC, fetal plasma leptin remained constant despite acute reduction in maternal concentration. We conclude that fetal plasma leptin originates mostly from nonadipose tissue in early pregnancy and, in addition, from fetal adipose tissue near term. The role of fetal plasma leptin remains uncertain given the lack of nutritional regulation and association with fetal growth.
Collapse
Affiliation(s)
- Richard A Ehrhardt
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
48
|
Forhead AJ, Thomas L, Crabtree J, Hoggard N, Gardner DS, Giussani DA, Fowden AL. Plasma leptin concentration in fetal sheep during late gestation: ontogeny and effect of glucocorticoids. Endocrinology 2002; 143:1166-73. [PMID: 11897668 DOI: 10.1210/endo.143.4.8762] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ontogeny and developmental control of plasma leptin concentration in the fetus are poorly understood. The present study investigated plasma leptin concentration in chronically catheterized sheep fetuses near term, and in neonatal and adult sheep. The effect of glucocorticoids on plasma leptin in utero was examined by fetal adrenalectomy and exogenous cortisol or dexamethasone infusion. In intact, untreated fetuses studied between 130 and 140 d (term, 145 +/- 2 d), plasma leptin concentration increased in association with the prepartum cortisol surge. Positive relationships were observed between plasma leptin in utero and both gestational age and plasma cortisol. Plasma leptin was also inversely correlated with fetal p(a)O(2). The ontogenic rise in plasma leptin was abolished by fetal adrenalectomy. In intact fetuses at 123-127 d, plasma leptin was increased by infusions of cortisol (3-5 mg kg(-1)d(-1), +127 +/- 21%) for 5 d and dexamethasone (45-60 microg kg(-1)d(-1), +268 +/- 61%) for 2 d. However, the cortisol-induced rise in plasma leptin was transient; by the fifth day of infusion, plasma leptin was restored to within the baseline range. These findings show that, in the sheep fetus, an intact adrenal gland is required for the normal ontogenic rise in plasma leptin near term. Furthermore, fetal treatment with exogenous and endogenous glucocorticoids increases circulating leptin concentration in utero.
Collapse
Affiliation(s)
- A J Forhead
- Department of Physiology, University of Cambridge, Cambridge CB2 3EG, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
49
|
Antipatis C, Ashworth CJ, Riley SC, Hannah L, Hoggard N, Lea RG. Vitamin A deficiency during rat pregnancy alters placental TNF-alpha signalling and apoptosis. Am J Reprod Immunol 2002; 47:151-8. [PMID: 12069200 DOI: 10.1034/j.1600-0897.2002.1o049.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM Vitamin A is important for immune function and deficiency is associated with adverse pregnancy outcome. In the rat, vitamin A deficiency reduces both foetal number and neonatal survival. The role of the placenta is uncertain. The effects of maternal vitamin A deficiency on placental cytokines and apoptosis have been investigated. METHOD OF STUDY Pregnant rats were fed either control or vitamin A free (VAF) diets (n = 4/group) from 8 weeks prior to and throughout pregnancy. Day 20 placentas from viable foetuses were examined for immunoexpression of (a) cytokines: tumour necrosis factor-alpha (TNF-alpha), TNFR1 receptor (p55), leptin and leptin receptor, (b) apoptosis: TdT-mediated dUTP nick end-labelling (TUNEL) positive cells, bax and bcl-2. RESULTS Placentas from VAF rats, but not controls, exhibited an infiltrate of neutrophils positive for TNF-alpha and leptin. The number of TNFR1 (p55) and TUNEL positive trophoblast cells was increased specifically in areas of neutrophil infiltration. Trophoblast giant cells in VAF placentas exhibited reduced bax but no change in bcl-2. CONCLUSIONS Maternal vitamin A deficiency is associated with abnormal placental apoptosis induced by neutrophil derived TNF-alpha acting through the TNFR1 (p55) and/or a change in the bcl-2/bax ratio in the trophoblast giant cells. These changes may underlie the effects of vitamin A deficiency on foetal development.
Collapse
|
50
|
Gambling L, Charania Z, Hannah L, Antipatis C, Lea RG, McArdle HJ. Effect of iron deficiency on placental cytokine expression and fetal growth in the pregnant rat. Biol Reprod 2002; 66:516-23. [PMID: 11804970 DOI: 10.1095/biolreprod66.2.516] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Iron deficiency anemia is the most common nutritional disorder in the world. Anemia is especially serious during pregnancy, with deleterious consequences for both the mother and her developing fetus. We have developed a model to investigate the mechanisms whereby fetal growth and development are affected by maternal anemia. Weanling rats were fed a control or iron-deficient diet before and throughout pregnancy and were killed at Day 21. Dams on the deficient diet had lower hematocrits, serum iron concentrations, and liver iron levels. Similar results were recorded in the fetus, except that the degree of deficiency was markedly less, indicating compensation by the placenta. No effect was observed on maternal weight or the number and viability of fetuses. The fetuses from iron-deficient dams, however, were smaller than controls, with higher placental:fetal ratios and relatively smaller livers. Iron deficiency increased levels of tumor necrosis factor alpha (TNFalpha) only in the trophoblast giant cells of the placenta. In contrast, levels of type 1 TNFalpha receptor increased significantly in giant cells, labyrinth, cytotrophoblast, and fetal vessels. Leptin levels increased significantly in labyrinth and marginally (P = 0.054) in trophoblast giant cells. No change was observed in leptin receptor levels in any region of the placentas from iron-deficient dams. The data show that iron deficiency not only has direct effects on iron levels and metabolism but also on other regulators of growth and development, such as placental cytokines, and that these changes may, in part at least, explain the deleterious consequences of maternal iron deficiency during pregnancy.
Collapse
Affiliation(s)
- Lorraine Gambling
- The Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, United Kingdom
| | | | | | | | | | | |
Collapse
|