1
|
Lopes CR, Cunha RA. Impact of coffee intake on human aging: Epidemiology and cellular mechanisms. Ageing Res Rev 2024; 102:102581. [PMID: 39557300 DOI: 10.1016/j.arr.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The conception of coffee consumption has undergone a profound modification, evolving from a noxious habit into a safe lifestyle actually preserving human health. The last 20 years also provided strikingly consistent epidemiological evidence showing that the regular consumption of moderate doses of coffee attenuates all-cause mortality, an effect observed in over 50 studies in different geographic regions and different ethnicities. Coffee intake attenuates the major causes of mortality, dampening cardiovascular-, cerebrovascular-, cancer- and respiratory diseases-associated mortality, as well as some of the major causes of functional deterioration in the elderly such as loss of memory, depression and frailty. The amplitude of the benefit seems discrete (17 % reduction) but nonetheless corresponds to an average increase in healthspan of 1.8 years of lifetime. This review explores evidence from studies in humans and human tissues supporting an ability of coffee and of its main components (caffeine and chlorogenic acids) to preserve the main biological mechanisms responsible for the aging process, namely genomic instability, macromolecular damage, metabolic and proteostatic impairments with particularly robust effects on the control of stress adaptation and inflammation and unclear effects on stem cells and regeneration. Further studies are required to detail these mechanistic benefits in aged individuals, which may offer new insights into understanding of the biology of aging and the development of new senostatic strategies. Additionally, the safety of this lifestyle factor in the elderly prompts a renewed attention to recommending the maintenance of coffee consumption throughout life as a healthy lifestyle and to further exploring who gets the greater benefit with what schedules of which particular types and doses of coffee.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal; MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, Portugal; Centro de Medicina Digital P5, Escola de Medicina da Universidade do Minho, Braga, Portugal.
| |
Collapse
|
2
|
Buelna-Chontal M. Coffee: Fuel for Your Day or Foe for Your Arteries. Antioxidants (Basel) 2024; 13:1455. [PMID: 39765784 PMCID: PMC11672806 DOI: 10.3390/antiox13121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis, a major cause of cardiovascular diseases, is influenced by modifiable factors such as adiposity and blood cholesterol. Diet is crucial in these areas, particularly regarding antioxidant, inflammatory, and obesity effects. Coffee, a globally popular stimulant beverage, has garnered significant attention for its potential impact on cardiovascular diseases. Recent insights reinforce the need to re-examine the relationship between coffee consumption and atherosclerosis progression. Coffee's complex composition includes polyphenols, renowned for their antioxidant and anti-inflammatory properties as well as potential weight-reducing effects. In addition, studies have demonstrated that certain coffee compounds such as chlorogenic acid, caffeic, p-coumaric, and ferulic acid can prevent atherogenesis by preventing the oxidation of low-density lipoproteins. Conversely, diterpenes, found in some coffee brews, can elevate cholesterol levels, posing a risk to coronary health. Notably, coffee intake has been shown to influence gut microbiota diversity, potentially contributing to anti-obesity effects. This review explores the insights from preclinical and clinical studies investigating the potential mechanisms through which coffee consumption may reduce the risk of atherosclerosis-highlighting the potential benefits of moderate filtered coffee consumption and the potential risks associated with excessive coffee consumption. Understanding this relationship is crucial for informing public health recommendations and guiding future research.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chavez, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Di Pietrantonio D, Pace Palitti V, Cichelli A, Tacconelli S. Protective Effect of Caffeine and Chlorogenic Acids of Coffee in Liver Disease. Foods 2024; 13:2280. [PMID: 39063364 PMCID: PMC11276147 DOI: 10.3390/foods13142280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per day) is safe and beneficial to human health, revealing protective effects against numerous chronic metabolic diseases such as diabetes, cardiovascular, neurodegenerative, and hepatic diseases. This review focuses on two of coffee's main bioactive compounds, i.e., caffeine and chlorogenic acids, and their effects on the progression of chronic liver diseases, demonstrating that regular coffee consumption correlates with a lower risk of the development and progression of non-alcoholic steatohepatitis, viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. In particular, this review analyzes caffeine and chlorogenic acid from a pharmacological point of view and explores the molecular mechanism through which these compounds are responsible for the protective role of coffee. Both bioactive compounds, therefore, have antifibrotic effects on hepatic stellate cells and hepatocytes, induce a decrease in connective tissue growth factor, stimulate increased apoptosis with anti-cancer effects, and promote a major inhibition of focal adhesion kinase, actin, and protocollagen synthesis. In conclusion, coffee shows many beneficial effects, and experimental data in favor of coffee consumption in patients with liver diseases are encouraging, but further prospective studies are needed to demonstrate its preventive and therapeutic role in chronic liver diseases.
Collapse
Affiliation(s)
- Daniela Di Pietrantonio
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Valeria Pace Palitti
- Internal Medicine and Hepatology Unit, Azienda Sanitaria Locale, Via R. Paolini 47, 65125 Pescara, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
4
|
Wang M, Guo W, Chen JF. Caffeine: a potential mechanism for anti-obesity. Purinergic Signal 2024:10.1007/s11302-024-10022-1. [PMID: 38802651 DOI: 10.1007/s11302-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.
Collapse
Affiliation(s)
- Meng Wang
- International Joint Research Center on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
6
|
Uner B, Macit Celebi MS. Anti-obesity effects of chlorogenic acid and caffeine- lipid nanoparticles through PPAR-γ/C/EBP-ɑ pathways. Int J Obes (Lond) 2023; 47:1108-1119. [PMID: 37596386 DOI: 10.1038/s41366-023-01365-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Obesity is considered one of the most crucial health problems of the century. Therefore, reducing obesity is critically important. Caffeine (CF) and chlorogenic acid (CLA), which are substantial components in green bean coffee which maximize thermogenesis in brown adipose tissue. In our study, we have prepared CF, CLA, and CF + CLA loaded-solid lipid nanoparticles (SLN) since the SLNs are cost-effective, tissue-localized, and highly stable. The central composite design model was preferred to select the optimized formulation. UHPLC was used for quantification related to the CF and CLA amounts. The high-pressure homogenization (HPH) method was used while SLN formulations were prepared in the presence of poloxamer® 407 (surfactant) and Compritol® 888 ATO (solid lipid). The nanoparticles were characterized, followed by the utilization of 3T3-F442A cell lines for the evaluation of the adipogenesis activity of the formulations. Then, rt-PCR and ELISA studies of adipogenic markers were conducted. After optimal formulations were selected with an average of 110.2 ± 0.1 nm, CF (1 mM) + CLA (0.5 mM)-loaded SLN formulation has been proven significantly effective by using PPAR-γ/C/EBP-a pathways. In a nutshell, our study has shown that CF + CLA loaded-SLN has been affected 45.8% times more than regular extracted coffee (p < 0.05) on the adipocyte cells.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St Louis, St. Louis, MO, USA.
| | | |
Collapse
|
7
|
Uner B, Macit Celebi MS. Anti-obesity effects of chlorogenic acid and caffeine- lipid nanoparticles through PPAR-γ/C/EBP-ɑ pathways. Int J Obes (Lond) 2023; 47:1108-1119. [DOI: 16.https:/doi.org/10.1038/s41366-023-01365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 03/30/2025]
|
8
|
Costa MSD, Pontes KSDS, Guedes MR, Barreto Silva MI, Klein MRST. Association of habitual coffee consumption with obesity, sarcopenia, bone mineral density and cardiovascular risk factors: A two-year follow-up study in kidney transplant recipients. Clin Nutr 2023; 42:1889-1900. [PMID: 37625318 DOI: 10.1016/j.clnu.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND & AIMS Recent evidence suggests that moderate coffee intake is associated with multiple health benefits, including lower risk of obesity, sarcopenia and cardiovascular disease (CVD) in the general population. However, to date, no study has evaluated these associations in kidney transplant recipients (KTR). The aim of the present study was to evaluate the association of habitual coffee consumption with obesity, sarcopenia, bone mineral density and CVD risk factors in KTR. METHODS This prospective 2 years-follow-up study included 170 KTR (59% men) aged 49.5 (42.0-57.0) years. At baseline participants were submitted to the following evaluations: clinical, laboratorial, dietary intake (including coffee), muscle strength, anthropometric and body composition by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). After two years 163 KTR were re-evaluated by anthropometry, BIA and muscle strength. Sarcopenia was defined according to EWGSOP2. Risk factors for CVD were hypertension, diabetes mellitus, dyslipidemia, metabolic syndrome and hyperhomcysteinemia. Participants were stratified according to coffee intake: 0 or 1 time/day (Gr0-1) and 2 or 3 times/day (Gr2-3). RESULTS The median coffee consumption was 200 (150-250)mL/day and 112 (71-155)mL/1000 kcal/day. At baseline, Gr2-3 vs. Gr0-1 exhibited significantly higher values of waist circumference, waist-to-height ratio (WHtR) and presented a higher odds ratio for central obesity according to WHtR (2.68; 95%CI:1.19-6.02; p = 0.02) after adjustment for confounders. Coffee consumption (mL/1000 kcal/day) showed, even after adjustment for confounders, (1) a positive association with all parameters of body adiposity (anthropometry, BIA and DXA) and (2) a negative association with muscle quality index. After two years, coffee intake (mL/1000 kcal/day) at baseline presented a positive correlation with changes in fat mass (kg) by BIA (r = 0.22, p = 0.01) after adjustment for confounders. CONCLUSION This study suggests that in KTR, higher coffee consumption is associated with increased adiposity, specially, central adiposity and lower muscle quality, but is not related with the other evaluated parameters.
Collapse
Affiliation(s)
- Mariana Silva da Costa
- Post Graduation Program in Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Karine Scanci da Silva Pontes
- Post-Graduation Program in Clinical and Experimental Pathophysiology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Marcella Rodrigues Guedes
- Post-Graduation Program in Clinical and Experimental Pathophysiology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Maria Inês Barreto Silva
- Department of Applied Nutrition, Nutrition Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil; Department of Applied Nutrition, Nutrition School, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, Division of Human Nutrition, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
9
|
Green Coffee Bean Extract Potentially Ameliorates Liver Injury due to HFD/STZ-Induced Diabetes in Rats. J Food Biochem 2023. [DOI: 10.1155/2023/1500032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The goal of the current study was to examine the therapeutic potential of green coffee bean extract (GCBE) in the treatment of diabetic hepatic damage induced by high-fat diet (HFD) and streptozotocin (STZ) administration. The novelty of this study lies in constructing a newly stabilized in vivo obese diabetic animal model in rats using HFD/STZ for investigating the dose-dependent effect of two commonly used doses of GCBE in hepatoprotection against oxidative stress-induced hepatic damage by measuring many parameters that have not been carried out previously in other studies. GCBE that was used in this study was a hot water extract of green coffee beans with a concentration of 0.1 g ml−1. Male albino rats were given a single dose of STZ (35 mg kg−1), and HFD to induce diabetes mellitus (DM). For 28 days, two separate doses of GCBE 50 mg kg−1 and 100 mg kg−1 were administered orally to diabetic animals. Leptin, liver enzymes, oxidative stress parameters, inflammatory parameters, fasting plasma glucose (FPG), fasting plasma insulin (FPI), and lipid profile levels were examined. Real-time PCR and ELISA were used to quantitatively detect the mRNAs of the genes involved in the insulin signaling pathway, the genes involved in glucose metabolism, and the amounts of proteins. The levels of FPG, lipid profile, liver enzymes, inflammatory markers, and leptin in the HFD/STZ diabetic group revealed a considerable spike, while they considerably decreased after GCBE treatment in a dose-dependent manner. After GCBE treatment, the diabetic group showed a significant rise in the antioxidant markers glutathione, superoxide dismutase, and catalase, as well as a decrease in malondialdehyde and nitric oxide levels. The liver changes caused by HFD/STZ were entirely reversed by GCBE, and most intriguingly, in a dose-dependent manner. We concluded that GCBE can repair the hepatic oxidative damage caused by HFD and STZ by reversing all the previously measured parameters and improving the insulin signaling pathways. GCBE demonstrated strong antifree radical activity and significantly protected cells from oxidative damage caused by HFD/STZ.
Collapse
|
10
|
Simental-Mendía LE, Simental-Mendía M, Ríos-Mier M. Effects of Coffee Supplementation on Homocysteine and Leptin Levels: A Systematic Review and Meta-analysis of Clinical Trials. Curr Pharm Des 2023; 29:30-36. [PMID: 36515040 DOI: 10.2174/1381612829666221213101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND It has been reported that the consumption of antioxidant foods and beverages may benefit the development of cardiovascular risk factors. However, the impact of coffee consumption on some of these factors, such as homocysteine and leptin is controversial. Some clinical trials have suggested that coffee administration increases plasma total homocysteine levels, while others have found no significant changes in leptin concentrations. OBJECTIVE This study aimed to assess the effects of coffee supplementation on homocysteine and leptin concentrations in a meta-analysis of clinical trials. METHODS PubMed, Web of Science, Scopus, ClinicalTrials.gov, and Google Scholar databases were searched from inception to September 29, 2021. A fixed-effects model and the generic inverse variance weighting method were used for meta-analysis. RESULTS The meta-analysis demonstrated that coffee administration significantly increases homocysteine levels (WMD: 0.55 μmol/L, 95% CI: 0.17, 0.93, p = 0.005, I2 = 0%) but has no significant changes in leptin concentrations (WMD: 1.34 ng/mL, 95% CI: -0.78, 3.45, p = 0.21, I2 = 0%). Additionally, the sensitivity analysis was robust for both homocysteine and leptin levels. CONCLUSION The results of the present meta-analysis revealed that coffee supplementation raises serum homocysteine concentrations but has no effect on circulating leptin levels.
Collapse
Affiliation(s)
- Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Delegación Durango, México
| | - Mario Simental-Mendía
- Department of Orthopedics and Traumatology, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Mayela Ríos-Mier
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Delegación Durango, México
| |
Collapse
|
11
|
Bahmannia M, Azizzade M, Heydari S, Nasrollahzadeh J, Rabiei S, Naja F, Sheikhi Mobarakeh Z, Hejazi J, Hejazi E. Effects of decaffeinated green coffee extract supplementation on anthropometric indices, blood glucose, leptin, adiponectin and neuropeptide Y (NPY) in breast cancer survivors: a randomized clinical trial. Food Funct 2022; 13:10347-10356. [PMID: 36134465 DOI: 10.1039/d2fo00983h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective: This study aimed to evaluate the effects of decaffeinated green coffee extract (DGCE) supplementation on anthropometric indices, blood glucose, leptin, adiponectin, and neuropeptide Y (NPY) in breast cancer survivors with obesity. Method: A total of 44 breast cancer survivors with obesity aged between 18 and 70 years and with a mean body mass index (BMI) of 31.62 ± 4.97 kg m-2 participated in this double-blind randomized clinical trial. Eligible patients were randomized to the intervention (n = 22) and control (n = 22) groups. They received two 400 mg capsules of DGCE or two identical placebos daily for 12 weeks. Serum concentrations of leptin, adiponectin, NPY, fasting blood sugar, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were measured at the baseline and after completion of the intervention. Also, weight, waist circumference, fat percentage, muscle percentage, and visceral fat were measured. Results: There were no significant differences in terms of changes of anthropometric indices and concentrations of leptin, adiponectin, NPY, and blood sugar between the two studied groups. Conclusion: Supplementation with DGCE in breast cancer survivors with obesity had no significant effect on anthropometric indices and blood glucose, leptin, adiponectin, and NPY levels.
Collapse
Affiliation(s)
- Mahsa Bahmannia
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Azizzade
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Heydari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samira Rabiei
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farah Naja
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Zahra Sheikhi Mobarakeh
- Quality of life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Iran.
| | - Jalal Hejazi
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
13
|
Ruan D, Dai Z, Fouad AM, Zhang Y, Li C, Wang S, Huang X, Li K, Sun Y, You J, Zheng C. Effects of dietary sunflower meal supplementation on productive performance, antioxidative capacity, lipid metabolism, and gut microbiota in laying ducks. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
14
|
Barrea L, Pugliese G, Frias-Toral E, El Ghoch M, Castellucci B, Chapela SP, Carignano MDLA, Laudisio D, Savastano S, Colao A, Muscogiuri G. Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit Rev Food Sci Nutr 2021; 63:1238-1261. [PMID: 34455881 DOI: 10.1080/10408398.2021.1963207] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coffee is one of the most popular beverages worldwide; however, its impact on health outcomes and adverse effects is not fully understood. The current review aims to establish an update about the benefits of coffee consumption on health outcomes highlighting its side effects, and finally coming up with an attempt to provide some recommendations on its doses. A literature review using the PubMed/Medline database was carried out and the data were summarized by applying a narrative approach using the available evidence based on the literature. The main findings were the following: first, coffee may contribute to the prevention of inflammatory and oxidative stress-related diseases, such as obesity, metabolic syndrome and type 2 diabetes; second, coffee consumption seems to be associated with a lower incidence of several types of cancer and with a reduction in the risk of all-cause mortality; finally, the consumption of up to 400 mg/day (1-4 cups per day) of caffeine is safe. However, the time gap between coffee consumption and some drugs should be taken into account in order to avoid interaction. However, most of the data were based on cross-sectional or/and observational studies highlighting an association of coffee intake and health outcomes; thus, randomized controlled studies are needed in order to identify a causality link.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, isola F2, 80143 Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon
| | - Bianca Castellucci
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Sebastián Pablo Chapela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- Hospital Británico de Buenos Aires, Departamento de Terapia Intensiva, Buenos Aires, Argentina
| | | | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
15
|
Kong L, Xu M, Qiu Y, Liao M, Zhang Q, Yang L, Zheng G. Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J Food Biochem 2021; 45:e13795. [PMID: 34036605 DOI: 10.1111/jfbc.13795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a complex disease spreading in the world. In our previous studies, chlorogenic acid (CGA) and caffeine had ever been reported to reduce the body weight gain and fat accumulation in mice. This study investigated the anti-obesity effect of CGA and caffeine on 3T3-L1 cells. According to triglyceride (TG) assay and Oil-Red O staining, 40 μg/ml CGA and 160 μg/ml caffeine reduced TG content. Moreover, CGA + caffeine inhibited the mRNA expression of major adipogenic markers, PPAR-γ2, and C/EBPα in the metaphase and anaphase stages of differentiation induction (Day 2 and 4). CGA + caffeine improved P-AMPK/AMPK accompanied by decreasing the expression of GPDH and FAS to depress the lipid synthesis, increasing the mRNA expression of ACO and CAT to promote fatty acid oxidation and up-regulated the expression of hydrolysis-related enzyme adipose TG lipase (ATGL) and P-HSL/HSL. Furthermore, CGA + caffeine improved the expression of Glut4 which promoted the glucose transport. Taken together, these data demonstrated CGA + caffeine inhibited 3T3-L1 cells differentiation in the middle and late stages and reduced the fat accumulation through AMPK pathway by regulating the fat metabolism-related enzyme in 3T3-L1 cells to attenuates adipogenesis. PRACTICAL APPLICATIONS: The aim of this study was to elucidate the potential role of chlorogenic acid and caffeine in the treatment of obesity.
Collapse
Affiliation(s)
- Li Kong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Meng Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yangyang Qiu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Mingfu Liao
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| |
Collapse
|
16
|
He X, Zheng S, Sheng Y, Miao T, Xu J, Xu W, Huang K, Zhao C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:631-637. [PMID: 32683698 DOI: 10.1002/jsfa.10675] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chlorogenic acid is a type of phenolic acid found in many plants. Chlorogenic acid has an anti-obesity effect with an unclear mechanism. The present study aimed to investigate the regulatory effect of chlorogenic acid on energy balance in high-fat diet (HFD) induced obese C57BL/6J mice administrated 100 mg kg-1 chlorogenic acid for 13 weeks. RESULTS The consumption of chlorogenic acid ameliorated HFD induced obesity. Chlorogenic acid did not change the physical activity but significantly decreased food intake and increased body temperature, thermal dissipation and brown adipose tissue activity. Moreover, chlorogenic acid improved glucose tolerance but had a moderate impact on other blood indices. Additionally, chlorogenic acid failed to restore the microbiota change associated with HFD induced obesity, but modified the gut bacterial composition in a unique way. CONCLUSION Supplementation with chlorogenic acid can improve HFD induced obesity and associated glucose intolerance mainly via regulating food intake and energy expenditure. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shujuan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Special Food Research Center, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Jilin, China
| |
Collapse
|
17
|
Yang L, Zhu Y, Zhong S, Zheng G. Astilbin lowers the effective caffeine dose for decreasing lipid accumulation via activating AMPK in high-fat diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:573-581. [PMID: 32673411 DOI: 10.1002/jsfa.10669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Caffeine has an anti-obesity effect, although chronic excessive caffeine consumption also causes caffeinism, which is marked by increased anxiety or depression, amongst other symptoms. The present study aimed to investigate whether the addition of flavonoids such as astilbin can reduce the caffeine dose needed to inhibit obesity. RESULTS ICR mice (n = 80) were fed with normal diet, high-fat diet (HFD), HFD supplemented with astilbin, caffeine, or astilbin + caffeine for 12 weeks. When diets supplemented with astilbin, 0.3 g kg-1 diet caffeine had the same effect as 0.6 g kg-1 diet caffeine alone, and 0.6 g kg-1 diet caffeine combined with astilbin most effectively inhibited HFD-induced obesity. Astilbin improved the anti-obesity effects of caffeine on lipid accumulation via the activation of AMP-activated protein kinase α (AMPKα). (i) Activated AMPKα decreased lipid biosynthesis by suppressing the activity or mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase, sterol regulatory element binding protein 1c and its target gene fatty acid synthase. (ii) Activated AMPKα also up-regulated lipolysis by enhancing the expression of adipose triglyceride lipase and increasing the phosphorylation of hormone-sensitive lipase. (iii) Finally, activated AMPKα increased carnitine acyltransferase and acyl-CoA oxidase activities, which further promoted fatty acid β-oxidation. CONCLUSION The results obtained in the present study indicate that astilbin may decrease the effective dose of caffeine needed for an anti-obesity effect and also suggest that it suppresses fat accumulation via the activation of AMPK. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yanping Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shusheng Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Wang D, Tian L, Lv H, Pang Z, Li D, Yao Z, Wang S. Chlorogenic acid prevents acute myocardial infarction in rats by reducing inflammatory damage and oxidative stress. Biomed Pharmacother 2020; 132:110773. [PMID: 33022535 DOI: 10.1016/j.biopha.2020.110773] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have suggested that the prevention of myocardial infarction (MI) through diet is very important and that the intake of polyphenol-rich foods can improve cardiovascular health. In this study, adult male SD rats were randomly divided into 2 groups. The chlorogenic acid (CGA) group (n = 18) was administered 100 mg/kg/day CGA by gavage, and the control (CON) group (n = 18) was given the equivalent volume of water for 4 weeks. A model of MI was established by ligating the left anterior descending (LAD) coronary artery, which was monitored by an electrocardiogram (ECG). Blood samples were analyzed by enzyme-linked immunosorbent assays and biochemical experiments 24 h after the operation. In addition, histopathological analysis was performed to assess the size and severity of the infarct area. The administration of CGA before MI minimized weight gain and was associated with decreased postoperative mortality. CGA moderated the coronary artery ligation-induced changes observed by ECG and decreased the plasma levels of the myocardial markers. In the histopathological analysis, CGA notably reduced infarct size and decreased myocardial injury and fibrosis. Furthermore, CGA significantly reduced the levels of pro-inflammatory factors, and this reduction was accompanied by an upregulation of anti-inflammatory cytokines and an increase in antioxidant enzyme activities. This study indicated that CGA improved the survival rate after MI and demonstrated that CGA had a protective effect on MI by reducing the inflammatory response and exerting antioxidant activity.
Collapse
Affiliation(s)
- Di Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuyang Tian
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhihua Pang
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Dong Li
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Tanaka M, Kanazashi M, Kondo H, Ishihara A, Fujino H. Licorice flavonoid oil supplementation promotes a reduction of visceral fat in exercised rats. J Sports Med Phys Fitness 2020; 61:480-488. [PMID: 33000933 DOI: 10.23736/s0022-4707.20.11260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The beneficial effect of exercise combined with licorice flavonoid oil supplementation on visceral fat was investigated. METHODS Male Sprague-Dawley rats were divided into 4 groups: control, exercise (Ex), control with licorice flavonoid oil supplementation (LFO), and exercise with licorice flavonoid oil supplementation (ExLFO) groups. The rats in the Ex and ExLFO groups ran on a treadmill (20-degree incline at 20 m/min for 30 min/day) 5 times a week for 7 weeks, and those in the LFO and ExLFO groups were orally administered with licorice flavonoid oil daily using a feeding needle. RESULTS Exercise or licorice flavonoid oil supplementation resulted in the reduction of the visceral fat mass and adipocyte size, respectively. In addition, exercise combined with licorice flavonoid oil supplementation more effectively decreased both measures. Exercise alone increased the β-hydroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS) activities in the soleus and plantaris muscles, and licorice flavonoid oil supplementation alone increased the hepatic carnitine palmitoyl transferase-2 (CPT-2) activity. Furthermore, the combination of exercise and licorice flavonoid oil supplementation enhanced the both muscular β-HAD and CS activities, and hepatic CPT-2 activity. CONCLUSIONS These results suggest that exercise combined with licorice flavonoid oil supplementation may be effective to decrease visceral adipose tissue via enhancing skeletomuscular and hepatic fatty acids oxidative capacity.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, Okayama, Japan
| | - Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara, Japan
| | - Hiroyo Kondo
- Department of Food Sciences and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan -
| |
Collapse
|
20
|
Zhong Y, Ding Y, Li L, Ge M, Ban G, Yang H, Dai J, Zhang L. Effects and Mechanism of Chlorogenic Acid on Weight Loss. Curr Pharm Biotechnol 2020; 21:1099-1106. [PMID: 32188382 DOI: 10.2174/1389201021666200318124922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
Background:
Chlorogenic Acid (CA) has diverse, recognized health effects.
Objective:
This study aimed to explore the effects of CA on fat reduction and the underlying mechanism
of these effects.
Materials and Methods:
First, we established a Monosodium Glutamate (MSG)-induced obesity
mouse model and subjected the mice to 4 weeks of CA gavage. Then, we established an oleic acidinduced
model of human fatty liver in HepG2 cells, and administered a CA intervention to the cells for
48 h. Finally, we used Oil red O staining, biochemical detection kits, RT-PCR and Western blot analysis
to evaluate the effects of CA on fat reduction and on related pathways.
Results:
The CA treatment could reduce fat accumulation in the liver and reduce blood lipid levels. In
addition, CA decreased the mRNA and protein levels of peroxisome proliferator-activated receptor
gamma, coactivator 1 α (PGC-1α) and Uncoupling Protein 1 (UCP1) in the MSG-induced obesity
mouse model and the oleic acid-induced HepG2 cells.
Conclusion:
Based on the above results, we deduced that CA could reduce body weight and fat deposition
in vitro and in vivo and that the mechanism may be related to the PGC-1α/UCP-1 pathway. CA
can be developed as a drug to lower blood lipids and to treat obesity.
Collapse
Affiliation(s)
- Yanchun Zhong
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yueling Ding
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Laiqing Li
- Department of Research, Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, 510663, China
| | - Meina Ge
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guangguo Ban
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongxia Yang
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jun Dai
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Licheng Zhang
- Department of Oncology, Southern Hospital District of Weihai Municipal Hospital, Huancui District, 264200, Weihai, China
| |
Collapse
|
21
|
Nikpayam O, Faghfouri AH, Tavakoli-Rouzbehani OM, Jalali SM, Najafi M, Sohrab G. The effect of green coffee extract supplementation on lipid profile: A systematic review of clinical trial and in-vivo studies. Diabetes Metab Syndr 2020; 14:1521-1528. [PMID: 32799074 DOI: 10.1016/j.dsx.2020.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Dyslipidemia is an important and common risk factor for cardiovascular disease and increases the risk of mortality. Green coffee extract (GCE) contains bioactive polyphenols, especially Chlorogenic acid (CGA), that due to the antioxidant characteristic, have a desirable effect on metabolic factors. This review conducted to focus on the effect of GCE on lipid profiles. METHODS PubMed, Scopus, and web of science were searched until November 2019. All clinical studies and in-vivo studies that provide sufficient information about outcomes include to this review. RESULTS Out of 3270 studies obtained in our searching, only 32 articles were eligible for analysis. Five double-blind, randomized clinical trial studies, two Cross-over studies, one Quasi-experimental study, and twenty animal studies were included in this systematic review-all articles evaluated according to the checklist of aim and inclusion and exclusion criteria. Generally, the results of the included studies showed there is controversy about the effect of GCE and CGA on lipid profile improvement. CONCLUSIONS Although, a higher dosage of GCE and administration of CGA with longer duration leads to better results. However, investigating the effectiveness and safety dosage as a lipid-lowering agent needs further studies with differential dosage and periods.
Collapse
Affiliation(s)
- Omid Nikpayam
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Mohammad Tavakoli-Rouzbehani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed-Mostafa Jalali
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Najafi
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Zakłos-Szyda M, Pietrzyk N, Szustak M, Podsędek A. Viburnum opulus L. Juice Phenolics Inhibit Mouse 3T3-L1 Cells Adipogenesis and Pancreatic Lipase Activity. Nutrients 2020; 12:nu12072003. [PMID: 32640537 PMCID: PMC7400830 DOI: 10.3390/nu12072003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Viburnum opulus L. fruit is a rich source of phenolic compounds that may be involved in the prevention of metabolic diseases. The purpose of this study was to determine the effects of Viburnum opulus fresh juice (FJ) and juice purified by solid-phase extraction (PJ) on the adipogenesis process with murine 3T3-L1 preadipocyte cell line and pancreatic lipase activity in triolein emulsion, as well as their phenolic profiles by UPLC/Q-TOF-MS. Decrease of lipids and triacylglycerol accumulation in differentiated 3T3-L1 cells were in concordance with downregulation of the expression of peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPβ/α), and sterol regulatory element-binding protein 1c (SREBP-1c). Furthermore, regulation of PPARγ-mediated β-lactamase expression by V. opulus components in reporter gene assay, as well as their binding affinity to ligand-binding domain of PPARγ, were tested. In addition, the levels of enzymes involved in lipid metabolism, like fatty acid synthase (FAS) or acetyl-CoA carboxylase (ACC), were decreased, along with inflammatory cytokines, like tumor necrosis factorα (TNFα), interleukin-6 (Il-6) and leptin. Moreover, FJ and PJ were able to inhibit pancreatic lipase, which potentially could reduce the fat absorption from the intestinal lumen and the storage of body fat in the adipose tissues. Thirty-two phenolic compounds with chlorogenic acid as the dominant compound were identified in PJ which revealed significant biological activity. These data contribute to elucidate V. opulus juice phenolic compounds’ molecular mechanism in adipogenesis regulation in 3T3-L1 cells and dietary fat lipolysis.
Collapse
|
23
|
Hussein MM, Samy M, Arisha AH, Saadeldin IM, Alshammari GM. Anti-obesity effects of individual or combination treatment with Spirulina platensis and green coffee bean aqueous extracts in high-fat diet-induced obese rats. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1781698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mohamed M.A. Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha Samy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Islam M. Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food science and nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Sapio L, Salzillo A, Illiano M, Ragone A, Spina A, Chiosi E, Pacifico S, Catauro M, Naviglio S. Chlorogenic acid activates ERK1/2 and inhibits proliferation of osteosarcoma cells. J Cell Physiol 2020; 235:3741-3752. [PMID: 31602671 DOI: 10.1002/jcp.29269] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Osteosarcoma (OS) is a very aggressive metastatic pediatric and adolescent tumor. Due to its recurrent development of chemotherapy resistance, clinical outcome for OS patients remains poor. Therefore, discovering more effective anticancer agents is needed. Chlorogenic acid (CGA) is a phenolic compound contained in plant-related products that modulates many cellular functions and inhibits cell proliferation in several cancer types. However, few evidence is available in OS. Here, we investigate the effects of CGA in U2OS, Saos-2, and MG-63 OS cells. By multiple approaches, we demonstrate that CGA acts as anticancer molecule affecting the cell cycle and provoking cell growth inhibition mainly by apoptosis induction. We also provide evidence that CGA strongly activates extracellular-signal-regulated kinase1/2 (ERK1/2). Strikingly, ERK1/2 inhibitor PD98059 sensitizes the cells to CGA. Altogether, our data enforce the evidence of the anticancer activity mediated by CGA and provide the rationale for the development of innovative therapeutic strategies in OS cure.
Collapse
Affiliation(s)
- Luigi Sapio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Salzillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Illiano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Ragone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annamaria Spina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emilio Chiosi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Severina Pacifico
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", Aversa, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Pan N, Bhatti MZ, Zhang H, Ni B, Fan X, Chen J. The Encystment-Related MicroRNAs and Its Regulation Molecular Mechanism in Pseudourostyla cristata Revealed by High Throughput Small RNA Sequencing. Int J Mol Sci 2020; 21:ijms21072309. [PMID: 32225121 PMCID: PMC7177753 DOI: 10.3390/ijms21072309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) regulate the expression of target genes in diverse cellular processes and play important roles in different physiological processes. However, little is known about the microRNAome (miRNAome) during encystment of ciliated protozoa. In the current study, we first investigated the differentially expressed miRNAs and relative signaling pathways participating in the transformation of vegetative cells into dormant cysts of Pseudourostyla cristata (P. cristata). A total of 1608 known miRNAs were found in the two libraries. There were 165 miRNAs with 1217 target miRNAs. The total number of differential miRNAs screened between vegetative cells and dormant cysts databases were 449 with p < 0.05 and |log2 fold changes| > 1. Among them, the upregulated and downregulated miRNAs were 243 and 206, respectively. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that some of the differentially expressed miRNAs were mainly associated with oxidative phosphorylation, two-component system, and biosynthesis of amino acids. Combining with our bioinformatics analyzes, some differentially expressed miRNAs including miR-143, miR-23b-3p, miR-28, and miR-744-5p participates in the encystment of P. cristata. Based on these findings, we propose a hypothetical signaling network of miRNAs regulating or promoting P. cristata encystment. This study shed new lights on the regulatory mechanisms of miRNAs in encystment of ciliated protozoa.
Collapse
Affiliation(s)
- Nan Pan
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
| | - Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; (M.Z.B.); (H.Z.)
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Haiyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; (M.Z.B.); (H.Z.)
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
- Correspondence: ;
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China; (N.P.); (B.N.)
- Correspondence: ;
| |
Collapse
|
26
|
Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:71-88. [PMID: 32089239 DOI: 10.1016/bs.apha.2019.12.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlorogenic acid is a widely distributed natural compound with many important pharmacological effects, which are found in a variety of plants. It is also an important secondary metabolite in plants. As a natural plant extract from a wide range of sources, in vitro and in vivo studies have found that the main pharmacological effects of chlorogenic acid are antioxidant, antiinflammatory, antibacterial, antiviral, hypoglycemic, lipid lowering, anticardiovascular, antimutagenic, anticancer, immunomodulatory, etc. Therefore it may play an important role in promoting human health. For example, it can provide new ideas and new ways for the prevention and treatment of cardiovascular disease, cancer, diabetes, and other chronic diseases, but the specific mechanism of action is unclear. Due to the difficulty of extraction and purification, poor stability, poor solubility, low absolute bioavailability of oral administration, the possibility of allergies caused by injection, and so on, there are difficulties in its medicinal research and development. The further study of chlorogenic acid will provide an important theoretical basis for its rational use.
Collapse
Affiliation(s)
- Mingsan Miao
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Liling Xiang
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
27
|
Zapata FJ, Rebollo-Hernanz M, Novakofski JE, Nakamura MT, Gonzalez de Mejia E. Caffeine, but not other phytochemicals, in mate tea (Ilex paraguariensis St. Hilaire) attenuates high-fat-high-sucrose-diet-driven lipogenesis and body fat accumulation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
28
|
Effects of timing of acute catechin-rich green tea ingestion on postprandial glucose metabolism in healthy men. J Nutr Biochem 2019; 73:108221. [PMID: 31522082 DOI: 10.1016/j.jnutbio.2019.108221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023]
Abstract
Green tea polyphenols, particularly catechins, decrease fasting and postprandial glucose. However, no studies have compared the timing of green tea ingestion on glucose metabolism and changes in catechin concentrations. Here, we examined the effects of timing of acute catechin-rich green tea ingestion on postprandial glucose metabolism in young men. Seventeen healthy young men completed four trials involving blood collection in a fasting state and at 30, 60, 120, and 180 min after meal consumption in a random order: 1) morning placebo trial (09:00 h; MP trial), 2) evening placebo trial (17:00 h; EP trial), 3) morning catechin-rich green tea trial (09:00 h; MGT trial), and 4) evening catechin-rich green tea trial (17:00 h; EGT trial). The concentrations of glucose at 120 min (P=.031) and 180 min (P=.013) after meal intake were significantly higher in the MGT trials than in the MP trials. Additionally, the concentration of glucose was significantly lower in EGT trials than in the EP trials at 60 min (P=.014). Moreover, the concentrations of glucose-dependent insulinotropic polypeptide were significantly lower in the green tea trials than in the placebo trials at 30 min (morning: P=.010, evening: P=.006) and 60 min (morning: P=.001, evening: P=.006) after meal intake in both the morning and evening trials. Our study demonstrated that acute ingestion of catechin-rich green tea in the evening reduced postprandial plasma glucose concentrations.
Collapse
|
29
|
Mechanisms of action of coffee bioactive components on lipid metabolism. Food Sci Biotechnol 2019; 28:1287-1296. [PMID: 31695927 DOI: 10.1007/s10068-019-00662-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Coffee consumption is associated with reduced risk of metabolic syndrome, obesity and diabetes, which may be related to the effects of coffee and its bioactive components on lipid metabolism. Coffee contains caffeine, a known neuromodulator that acts as an adenosine receptor antagonist, as well as other components, such as chlorogenic acids, trigonelline, cafestol and kahweol. Thus, this review discusses the up-to-date knowledge of mechanisms of action of coffee and its bioactive compounds on lipid metabolism. Although there is evidence that coffee and/or its bioactive compounds regulate transcription factors (e.g. peroxisome proliferator-activated receptors and sterol regulatory element binding proteins) and enzymes (e.g. AMP-activated protein kinase) involved in lipogenesis, lipid uptake, transport, fatty acid β-oxidation and/or lipolysis, needs for the understanding of coffee and its effects on lipid metabolism in humans remain to be answered.
Collapse
|
30
|
Hang D, Kværner AS, Ma W, Hu Y, Tabung FK, Nan H, Hu Z, Shen H, Mucci LA, Chan AT, Giovannucci EL, Song M. Coffee consumption and plasma biomarkers of metabolic and inflammatory pathways in US health professionals. Am J Clin Nutr 2019; 109:635-647. [PMID: 30834441 PMCID: PMC6408210 DOI: 10.1093/ajcn/nqy295] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Coffee consumption has been linked to lower risk of various health outcomes. However, the biological pathways mediating the associations remain poorly understood. OBJECTIVES The aim of this study was to assess the association between coffee consumption and concentrations of plasma biomarkers in key metabolic and inflammatory pathways underlying common chronic diseases. METHODS We investigated the associations of total, caffeinated, and decaffeinated coffee consumption with 14 plasma biomarkers, including C-peptide, insulin-like growth factor 1 (IGF-1), IGF binding protein (IGFBP) 1, IGFBP-3, estrone, total and free estradiol, total and free testosterone, sex hormone-binding globulin (SHBG), total adiponectin, high-molecular-weight (HMW) adiponectin, leptin, C-reactive protein (CRP), interleukin 6 (IL-6), and soluble tumor necrosis factor receptor 2 (sTNFR-2). Data were derived from 2 cohorts of 15,551 women (Nurses' Health Study) and 7397 men (Health Professionals Follow-Up Study), who provided detailed dietary data before blood draw and were free of diabetes, cardiovascular disease, or cancer at the time of blood draw. Multivariable linear regression was used to calculate the percentage difference of biomarker concentrations comparing coffee drinkers with nondrinkers, after adjusting for a variety of demographic, clinical, and lifestyle factors. RESULTS Compared with nondrinkers, participants who drank ≥4 cups of total coffee/d had lower concentrations of C-peptide (-8.7%), IGFBP-3 (-2.2%), estrone (-6.4%), total estradiol (-5.7%), free estradiol (-8.1%), leptin (-6.4%), CRP (-16.6%), IL-6 (-8.1%), and sTNFR-2 (-5.8%) and higher concentrations of SHBG (5.0%), total testosterone (7.3% in women and 5.3% in men), total adiponectin (9.3%), and HMW adiponectin (17.2%). The results were largely similar for caffeinated and decaffeinated coffee. CONCLUSION Our data indicate that coffee consumption is associated with favorable profiles of numerous biomarkers in key metabolic and inflammatory pathways. This trial was registered at clinicaltrials.gov as NCT03419455.
Collapse
Affiliation(s)
- Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA
| | - Ane Sørlie Kværner
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yang Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA
| | - Fred K Tabung
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, and Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| | - Andrew T Chan
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA,Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Mingyang Song
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA,Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA,Address correspondence to MS (e-mail: )
| |
Collapse
|
31
|
Xu M, Yang L, Zhu Y, Liao M, Chu L, Li X, Lin L, Zheng G. Collaborative effects of chlorogenic acid and caffeine on lipid metabolismviathe AMPKα-LXRα/SREBP-1c pathway in high-fat diet-induced obese mice. Food Funct 2019; 10:7489-7497. [DOI: 10.1039/c9fo00502a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The combination of CGA and caffeine exhibits anti-obesity effects and regulates lipid metabolismviathe AMPKα-LXRα/SREBP-1c signaling pathway in mice with high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Meng Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang
- China
| | - Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang
- China
| | - Yanping Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang
- China
| | - Mingfu Liao
- School of Foreign Languages
- Jiangxi Agricultural University
- Nanchang
- China
| | - Lulu Chu
- Jiangxi Key Laboratory of Natural Product and Functional Food
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang
- China
| | - Xin Li
- Jiangxi Key Laboratory of Natural Product and Functional Food
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang
- China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang
- China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang
- China
| |
Collapse
|
32
|
Chlorogenic Acid Functions as a Novel Agonist of PPAR γ2 during the Differentiation of Mouse 3T3-L1 Preadipocytes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8594767. [PMID: 30627576 PMCID: PMC6304673 DOI: 10.1155/2018/8594767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Rosiglitazone (RG) is a well-known activator of peroxisome proliferator-activated receptor-gamma (PPARγ) and used to treat hyperglycemia and type 2 diabetes; however, its clinical application has been confounded by adverse side effects. Here, we assessed the roles of chlorogenic acid (CGA), a phenolic secondary metabolite found in many fruits and vegetables, on the differentiation and lipolysis of mouse 3T3-L1 preadipocytes. The results showed that CGA promoted differentiation in vitro according to oil red O staining and quantitative polymerase chain reaction assays. As a potential molecular mechanism, CGA downregulated mRNA levels of the adipocyte differentiation-inhibitor gene Pref1 and upregulated those of major adipogenic transcriptional factors (Cebpb and Srebp1). Additionally, CGA upregulated the expression of the differentiation-related transcriptional factor PPARγ2 at both the mRNA and protein levels. However, following CGA intervention, the accumulation of intracellular triacylglycerides following preadipocyte differentiation was significantly lower than that in the RG group. Consistent with this, our data indicated that CGA treatment significantly upregulated the expression of lipogenic pathway-related genes Plin and Srebp1 during the differentiation stage, although the influence of CGA was weaker than that of RG. Notably, CGA upregulated the expression of the lipolysis-related gene Hsl, whereas it did not increase the expression of the lipid synthesis-related gene Dgat1. These results demonstrated that CGA might function as a potential PPARγ agonist similar to RG; however, the impact of CGA on lipolysis in 3T3-L1 preadipocytes differed from that of RG.
Collapse
|
33
|
De Luca S, Ciotoli E, Biancolillo A, Bucci R, Magrì AD, Marini F. Simultaneous quantification of caffeine and chlorogenic acid in coffee green beans and varietal classification of the samples by HPLC-DAD coupled with chemometrics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28748-28759. [PMID: 29430598 DOI: 10.1007/s11356-018-1379-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
A chromatographic procedure (HPLC-DAD) using a relatively rapid gradient has been combined with a chemometric curve deconvolution method, multivariate curve resolution-alternating least squares (MCR-ALS), in order to quantify caffeine and chlorogenic acid in green coffee beans. Despite that the HPLC analysis (at these specific operating conditions) presents some coeluting peaks, MCR-ALS allowed their resolution and, consequently, the creation of a calibration curve to be used for the quantification of the analytes of interest; this procedure led to a high accuracy in the quantification of caffeine and chlorogenic acid present in the samples. In a second part of this study, the possibility of classifying the green coffee beans on the basis of their cultivar (Arabica or Robusta), by partial least squares discriminant analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA), has been explored. SIMCA resulted in 100% of sensitivity and specificity for the Arabica class, while for the Robusta, it reached 66.7% of sensitivity and 100% of specificity, or 100% of sensitivity and 100% of specificity, depending on the extraction procedure followed prior to the chromatographic analysis; PLS-DA achieved 100% of correct classification independently of the procedure used for the extraction.
Collapse
Affiliation(s)
- Silvia De Luca
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Eleonora Ciotoli
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Alessandra Biancolillo
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Remo Bucci
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Andrea D Magrì
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy.
- Department of Food Science, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
34
|
Munteanu C, Rosioru C, Tarba C, Lang C. Long-term consumption of energy drinks induces biochemical and ultrastructural alterations in the heart muscle. Anatol J Cardiol 2018; 19:326-323. [PMID: 29724975 PMCID: PMC6280269 DOI: 10.14744/anatoljcardiol.2018.90094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Energy drinks (EDs) target young and active individuals and they are being marketed as enhancers of energy, concentration, and physical and cognitive performance. Their long-term consumption raises serious health concerns related to cardiovascular events. Here we investigate the effects of long-term Red Bull® consumption and its combination with alcohol on certain biochemical parameters and the ultrastructure of the myocardium. METHODS Male Wistar rats were categorized into four groups and given different treatments via oral administration. The Control (C) group received tap water, the Red Bull (RB) group received 1.5 ml/100 g body weight of Red Bull, the ethanol group (E) received 0.486 mg/100 g body weight of ethanol, and the Red Bull and ethanol (RBE) received a combination of the two beverages for 30 days. In the last 6 days of the experiment, the animals were tested for their physical performance by conducting a weight-loaded forced swim test. Immediately after swimming exhaustion, the animals were sacrificed under anesthesia and samples of the heart muscle were harvested for ultrastructural and biochemical analyses. RESULTS Our results showed a significant increase in the heart glucose and glycogen concentrations in the RB and RBE groups. Total cholesterol concentration significantly decreased in the RBE and RB groups. Total protein concentration and ALT and AST activities increased in all groups. The biochemical changes were accompanied by ultrastructural alterations. CONCLUSION Based on these results, we recommend that athletes and active persons should avoid the long-term consumption of the Red Bull ED and, particularly, its combination with alcohol.
Collapse
Affiliation(s)
| | | | | | - Camelia Lang
- Department of Molecular Biology and Biotechnology, Babes-Bolyai University; Cluj-Napoca-Romania.
| |
Collapse
|
35
|
Cornelis MC, Gustafsson S, Ärnlöv J, Elmståhl S, Söderberg S, Sundström J, Michaëlsson K, Lind L, Ingelsson E. Targeted proteomic analysis of habitual coffee consumption. J Intern Med 2018; 283:200-211. [PMID: 29044854 DOI: 10.1111/joim.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Coffee drinking has been implicated in mortality and a variety of diseases but potential mechanisms underlying these associations are unclear. Large-scale systems epidemiological approaches may offer novel insights to mechanisms underlying associations of coffee with health. OBJECTIVE We performed an analysis of known and novel protein markers linked to cardiovascular disease and their association with habitual coffee intake in the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS, n = 816) and followed up top proteins in the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 635) and EpiHealth (n = 2418). METHODS In PIVUS and ULSAM, coffee intake was measured by 7-day dietary records whilst a computer-based food frequency questionnaire was used in EpiHealth. Levels of up to 80 proteins were assessed in plasma by a proximity extension assay. RESULTS Four protein-coffee associations adjusted for age, sex, smoking and BMI, met statistical significance in PIVUS (FDR < 5%, P < 2.31 × 10-3 ): leptin (LEP), chitinase-3-like protein 1 (CHI3L), tumour necrosis factor (TNF) receptor 6 and TNF-related apoptosis-inducing ligand. The inverse association between coffee intake and LEP replicated in ULSAM (β, -0.042 SD per cup of coffee, P = 0.028) and EpiHealth (β, -0.025 SD per time of coffee, P = 0.004). The negative coffee-CHI3L association replicated in EpiHealth (β, -0.07, P = 1.15 × 10-7 ), but not in ULSAM (β, -0.034, P = 0.16). CONCLUSIONS The current study supports an inverse association between coffee intake and plasma LEP and CHI3L1 levels. The coffee-CHI3L1 association is novel and warrants further investigation given links between CHI3L1 and health conditions that are also potentially influenced by coffee.
Collapse
Affiliation(s)
- M C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | - S Elmståhl
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - S Söderberg
- Department of Public Health and Clinical Medicine, Cardiology, Umeå University, Umeå, Sweden
| | - J Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden.,Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - K Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - L Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - E Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Guo S, Zhao Z, Liu L, Li Z, Shen J. Comparative Transcriptome Analyses Uncover Key Candidate Genes Mediating Flight Capacity in Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) (Diptera: Tephritidae). Int J Mol Sci 2018; 19:E396. [PMID: 29385681 PMCID: PMC5855618 DOI: 10.3390/ijms19020396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 11/16/2022] Open
Abstract
Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactroceradorsalis Hendel and Bactroceracorrecta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta. RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor (EGFR), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects.
Collapse
Affiliation(s)
- Shaokun Guo
- Key Laboratory of Ministry of Agriculture for Monitoring and Green Management of Crop Pests, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Zihua Zhao
- Key Laboratory of Ministry of Agriculture for Monitoring and Green Management of Crop Pests, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Lijun Liu
- Key Laboratory of Ministry of Agriculture for Monitoring and Green Management of Crop Pests, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Zhihong Li
- Key Laboratory of Ministry of Agriculture for Monitoring and Green Management of Crop Pests, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jie Shen
- Key Laboratory of Ministry of Agriculture for Monitoring and Green Management of Crop Pests, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Calil Brondani J, Reginato FZ, da Silva Brum E, de Souza Vencato M, Lima Lhamas C, Viana C, da Rocha MIUM, de Freitas Bauermann L, Manfron MP. Evaluation of acute and subacute toxicity of hydroethanolic extract of Dolichandra unguis-cati L. leaves in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:147-153. [PMID: 28288826 DOI: 10.1016/j.jep.2017.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dolichandra unguis-cati L. is a native climbing plant of Brazil, popularly known as "unha de gato". It has been traditionally used mainly as an antipyretic, anti-inflammatory and anti-tumor agent, yet little toxicological information is found in the literature. AIM OF THE STUDY To identify the chemical composition of the hydroethanolic extract obtained from the leaves of Dolichandra uniguis-cati and to evaluate the acute and subacute toxicity in male and female rats, in order to assess the safety profile of this plant. MATERIALS AND METHODS In the acute study, a single dose (2000mg/kg) of the extract was orally administered to male and female rats. In the subacute study, the extract was orally administered to male and female rats at doses 100, 200 and 400mg/kg for 28 days. Behavioral changes, catalase and tbars evaluations, biochemical, hematological and histopathological analysis were determined. The extract' chemical composition was accessed through UHPLC/MS. RESULTS Chlorogenic acid, caffeic acid, ferulic acid, vanillinic acid, p-coumaric acid, rosmarinic acid, trans-cinnamic acid, luteolin, apigenin, quercitrin and quercetin were identified in the extract. In the acute treatment, the extract was classified as safe (category 5), according to the OECD guide. In relation to the subacute study, females showed a reduction in AST (100, 200 and 400mg/kg), ALT (200mg/kg) and BUN (100 and 200mg/kg) levels, while male rats 400mg/kg presented an increase in AST levels. The Chol dosage significantly decreased in female rats in a dose-dependent manner, whereas for male rats this parameter showed no statistically significant reductions. No behavioral and histopathological changes were recorded. CONCLUSIONS Our results indicate that the hydroethanolic extract of Dolichandra unguis-cati leaves did not present relevant toxic effects when administered orally to male and female rats. The extract also showed a potential hypocholesterolemic activity.
Collapse
Affiliation(s)
- Juliana Calil Brondani
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Fernanda Ziegler Reginato
- Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne da Silva Brum
- Department of Histology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marina de Souza Vencato
- Department of Histology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cibele Lima Lhamas
- Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carine Viana
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Melânia Palermo Manfron
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
38
|
Mahesh M, Bharathi M, Raja Gopal Reddy M, Pappu P, Putcha UK, Vajreswari A, Jeyakumar SM. Carrot juice ingestion attenuates high fructose-induced circulatory pro-inflammatory mediators in weanling Wistar rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1582-1591. [PMID: 27417700 DOI: 10.1002/jsfa.7906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/30/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Adipose tissue, an endocrine organ, plays a vital role not only in energy homeostasis, but also in the development and/or progression of various metabolic diseases, such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), via several factors and mechanisms, including inflammation. This study tested, whether carrot juice administration affected the adipose tissue development and its inflammatory status in a high fructose diet-induced rat model. For this purpose, male weanling Wistar rats were divided into four groups and fed either control or high fructose diet of AIN-93G composition with or without carrot juice ingestion for an 8 week period. RESULTS Administration of carrot juice did not affect the adiposity and cell size of visceral fat depot; retroperitoneal white adipose tissue (RPWAT), which was corroborated with unaltered expression of genes involved in adipogenic and lipogenic pathways. However, it significantly reduced the high fructose diet-induced elevation of plasma free fatty acid (FFA) (P ≤ 0.05), macrophage chemoattractant protein 1 (MCP1) (P ≤ 0.01) and high sensitive C-reactive protein (hsCRP) (P ≤ 0.05) levels. CONCLUSION Carrot juice administration attenuated the high fructose diet-induced elevation of levels of circulatory FFA and pro-inflammatory mediators; MCP1 and hsCRP without affecting the adiposity and cell size of visceral fat depot; RPWAT. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Malleswarapu Mahesh
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | - Munugala Bharathi
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | - Mooli Raja Gopal Reddy
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | - Pranati Pappu
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | - Uday Kumar Putcha
- Pathology Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | | | - Shanmugam M Jeyakumar
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| |
Collapse
|
39
|
Song F, Tang M, Wu Q, Shen X, Wang H, Chen H, Zhao S. Anti-adipogenic Effects of Polyphenol Extracts of Areca Flower Tea on 3T3-L1 Preadipocytes. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - MinMin Tang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - QiuSheng Wu
- College of Food Science and Technology, Huazhong Agricultural University
| | - XiaoJun Shen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - Hui Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - Hua Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - SongLin Zhao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| |
Collapse
|
40
|
Abstract
BACKGROUND/OBJECTIVES Hepatitis C virus (HCV) infection is one of the most common causes of cirrhosis. Several studies have linked caffeine consumption to a lower degree of liver fibrosis and inflammation among patients with chronic HCV infection, but the results were inconsistent. This meta-analysis was carried out with the aim of assessing the impact of caffeine consumption among HCV-infected patients. PARTICIPANTS AND METHODS A literature search was performed using MEDLINE and EMBASE from inception to January 2016. Studies that reported relative risks, odd ratios, or hazard ratios comparing the risk of advanced liver fibrosis or the risk of moderate to severe liver inflammation among HCV-infected patients who consumed caffeine on a regular basis versus those who did not were included. Pooled odds ratios (OR) and 95% confidence interval (CI) were calculated using a random-effect, generic inverse-variance method. RESULTS Five studies were included in the fibrosis analysis. The pooled OR of advanced liver fibrosis in HCV-infected patients who consumed caffeine on a regular basis versus those who did not was 0.48 (95% CI, 0.30-0.76, I=52%). Three studies were included in the inflammation analysis. The pooled OR of moderate to severe histologic inflammation among HCV-infected patients who consumed caffeine on a regular basis versus those who did not was 0.61 (95% CI, 0.35-1.04, I=43%). CONCLUSION Our study showed a decreased risk of advanced liver fibrosis and liver inflammation among HCV-infected patients who consumed caffeine on a regular basis. Whether consumption of caffeine plays a role in the management of HCV infection requires further investigations.
Collapse
|
41
|
Tovchiga OV. The influence of goutweed (Aegopodium podagraria L.) tincture and metformin on the carbohydrate and lipid metabolism in dexamethasone-treated rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:235. [PMID: 27450405 PMCID: PMC4957838 DOI: 10.1186/s12906-016-1221-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/14/2016] [Indexed: 01/26/2023]
Abstract
Background Diabetes mellitus and metabolic syndrome are the common problems of the modern society. The interest in herbal medicines increases, and often they are used in combination with conventional drugs. Aegopodium podagraria L. (goutweed) is a plant widely used in traditional medicine. Hypoglycemic effect of goutweed aerial part tincture has been previously shown in alloxan-induced diabetic mice and in rats receiving excess of fructose and hydrochlorothiazide. The effects of co-administration of the tincture with widely used antihyperglycemic drugs have not been verified. The objective of this study is to determine the efficacy of goutweed tincture and its combination with metformin using the model reproducing the pathogenetic mechanisms of the metabolic syndrome and type 2 diabetes. Methods The animals were divided into 5 groups, as follows: intact control, dexamethasone (untreated), dexamethasone + metformin, 50 mg/kg; dexamethasone + A. podagraria tincture, 1 ml/kg intragastrically; dexamethasone + metformin, 50 mg/kg intragastrically + A. podagraria tincture, 1 ml/kg intragastrically. Dexamethasone was used at a dose of 5 mg/kg subcutaneously for 5 days. Insulin tolerance test and oral glucose tolerance test were performed, triglycerides, total lipids, total and HDL cholesterol content in plasma were determined, LDL cholesterol content was calculated, glycogen content in the liver was measured. Results Goutweed tincture combined with metformin increased its effect on the basal glycemia and on the results of the short insulin test. In the oral glucose tolerance test the lowest area under glucose curve and average glycemia value were seen in animals receiving this combination. Only metformin tended toward the reduction of liver glycogen. The decrease in triglycerides and increment of HDL cholesterol content (caused by the tincture), as well as tendency towards the decrease in total lipids level (caused by metformin) were observed against a background of the investigated combination, though the ability of GW tincture to reduce LDL cholesterol content and the same tendency seen against a background of metformin were eliminated when these preparations were administered together. Conclusion It has been shown that goutweed tincture combined with the respectively low dose of metformin partially increases the efficacy of the latter in dexamethasone-treated rats. Graphical abstract Goutweed tincture combined with the respectively low dose of metformin partially increases the efficacy of the latter in dexamethasone-treated rats![]()
Collapse
|
42
|
Synergistic effects of caffeine and catechins on lipid metabolism in chronically fed mice via the AMP-activated protein kinase signaling pathway. Eur J Nutr 2016; 56:2309-2318. [DOI: 10.1007/s00394-016-1271-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/11/2016] [Indexed: 01/28/2023]
|
43
|
Brown L, Poudyal H, Panchal SK. Functional foods as potential therapeutic options for metabolic syndrome. Obes Rev 2015; 16:914-41. [PMID: 26345360 DOI: 10.1111/obr.12313] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven.
Collapse
Affiliation(s)
- L Brown
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - H Poudyal
- Department of Diabetes, Endocrinology and Nutrition, The Hakubi Centre for Advanced Research, Kyoto University, Kyoto, Japan
| | - S K Panchal
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
44
|
Hua Y, Ren SY, Guo R, Rogers O, Nair RP, Bagchi D, Swaroop A, Nair S. Furostanolic saponins from Trigonella foenum-graecum
alleviate diet-induced glucose intolerance and hepatic fat accumulation. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201500197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Sidney Y. Ren
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Rui Guo
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Olivia Rogers
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| | - Rama P. Nair
- Research & Development Division, Nutriwyo LLC; Laramie WY USA
| | - Debasis Bagchi
- Department of Pharmacological and Pharmaceutical Sciences; College of Pharmacy; University of Houston; Houston TX USA
- Research & Development Division; Cepham Inc; Piscataway NJ USA
| | - Anand Swaroop
- Research & Development Division; Cepham Inc; Piscataway NJ USA
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine; School of Pharmacy, College of Health Sciences; University of Wyoming; Laramie WY USA
| |
Collapse
|
45
|
Gu J, Jing L, Ma X, Zhang Z, Guo Q, Li Y. GC-TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats. J Nutr Biochem 2015; 26:1509-19. [PMID: 26388495 DOI: 10.1016/j.jnutbio.2015.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 01/15/2023]
Abstract
The present study aimed to explore the metabolic response of oat bran consumption in dyslipidemic rats by a high-throughput metabolomics approach. Four groups of Sprague-Dawley rats were used: N group (normal chow diet), M group (dyslipidemia induced by 4-week high-fat feeding, then normal chow diet), OL group and OH group (dyslipidemia induced, then normal chow diet supplemented with 10.8% or 43.4% naked oat bran). Intervention lasted for 12weeks. Gas chromatography quadrupole time-of-flight mass spectrometry was used to identify serum metabolite profiles. Results confirmed the effects of oat bran on improving lipidemic variables and showed distinct metabolomic profiles associated with diet intervention. A number of endogenous molecules were changed by high-fat diet and normalized following supplementation of naked oat bran. Elevated levels of serum unsaturated fatty acids including arachidonic acid (Log2Fold of change=0.70, P=.02 OH vs. M group), palmitoleic acid (Log2Fold of change=1.24, P=.02 OH vs. M group) and oleic acid (Log2Fold of change=0.66, P=.04 OH vs. M group) were detected after oat bran consumption. Furthermore, consumption of oat bran was also characterized by higher levels of methionine and S-adenosylmethionine. Pathway exploration found that most of the discriminant metabolites were involved in fatty acid biosynthesis, biosynthesis and metabolism of amino acids, microbial metabolism in diverse environments and biosynthesis of plant secondary metabolites. These results point to potential biomarkers and underlying benefit of naked oat bran in the context of diet-induced dyslipidemia and offer some insights into the mechanism exploration.
Collapse
Affiliation(s)
- Jiaojiao Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Lulu Jing
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Xiaotao Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, PR China; Department of Nutrition, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Qianying Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
46
|
In vivo anti-diabetic potential of chlorogenic acid as a consequence of synergism with other phenolic compounds? Br J Nutr 2015; 113:546-7. [PMID: 25662006 DOI: 10.1017/s0007114514004085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Zheng G, Lin L, Zhong S, Zhang Q, Li D. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice. PLoS One 2015; 10:e0122925. [PMID: 25822741 PMCID: PMC4378957 DOI: 10.1371/journal.pone.0122925] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
Abstract
In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.
Collapse
Affiliation(s)
- Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| | - Lezhen Lin
- Library of Jiangxi Agricultural University, Nanchang, China
| | - Shusheng Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Dongming Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
48
|
Effect of keishibukuryogan on genetic and dietary obesity models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:801291. [PMID: 25793003 PMCID: PMC4352422 DOI: 10.1155/2015/801291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/29/2014] [Indexed: 12/02/2022]
Abstract
Obesity has been recognized as one of the most important risk factors for a variety of chronic diseases, such as diabetes, hypertension/cardiovascular diseases, steatosis/hepatitis, and cancer. Keishibukuryogan (KBG, Gui Zhi Fu Ling Wan in Chinese) is a traditional Chinese/Japanese (Kampo) medicine that has been known to improve blood circulation and is also known for its anti-inflammatory or scavenging effect. In this study, we evaluated the effect of KBG in two distinct rodent models of obesity driven by either a genetic (SHR/NDmcr-cp rat model) or dietary (high-fat diet-induced mouse obesity model) mechanism. Although there was no significant effect on the body composition in either the SHR rat or the DIO mouse models, KBG treatment significantly decreased the serum level of leptin and liver TG level in the DIO mouse, but not in the SHR rat model. Furthermore, a lower fat deposition in liver and a smaller size of adipocytes in white adipose tissue were observed in the DIO mice treated with KBG. Importantly, we further found downregulation of genes involved in lipid metabolism in the KBG-treated liver, along with decreased liver TG and cholesterol level. Our present data experimentally support in fact that KBG can be an attractive Kampo medicine to improve obese status through a regulation of systemic leptin level and/or lipid metabolism.
Collapse
|