1
|
Liang C, Jia Y, He RT, Ding B, Yang ZD, Cao XQ, Zhang J. Wheat bran supplementation improved polystyrene degradation efficiency of Zophobas atratus larvae by alleviating intestinal injury caused by polystyrene-intake. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138148. [PMID: 40184973 DOI: 10.1016/j.jhazmat.2025.138148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Wheat bran supplementation significantly improves the polystyrene consumption capacity of Zophobas atratus larvae. However, the underlying mechanism remains unclear, limiting further advancements in degradation efficiency. This study seeks to clarify the mechanism by analyzing intestinal morphology, gut microbiota structure, gene transcription, and targeted metabolites. Specifically, histopathology results demonstrated that wheat bran supplementation alleviated polystyrene-induced intestinal injury in larvae. From a genetic perspective, genes related to annexins and tight junction proteins were upregulated in intestinal tissues. These genetic changes positively correlated with increased levels of short-chain fatty acids, eicosanoids, and beneficial bacteria (e.g., Latilactobacillus curvatus). Moreover, wheat bran supplementation alleviated gut microbiota dysbiosis, suppressed pathogenic bacteria, reduced over upregulation of NADPH oxidase activity related genes, and up-regulated genes linked to the intestinal immune system process pathway, thereby mitigating the intestinal injury. It also upregulated genes associated with the aromatase activity pathway, promoting the degradation of polystyrene and its intermediates. In summary, wheat bran supplementation enhanced the polystyrene degradation efficiency of Z. atratus larvae by upregulating genes linked to the aromatase activity pathway and mitigating intestinal injury (through modulation of intestinal gene transcription, microbiota structure, and metabolites). Our findings offer new insights into improving the efficiency of insect-mediated plastic biodegradation.
Collapse
Affiliation(s)
- Cong Liang
- College of safety and environmental engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yun Jia
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Ren-Tao He
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Bin Ding
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Zheng-da Yang
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiao-Qiang Cao
- College of safety and environmental engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jian Zhang
- College of safety and environmental engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
2
|
Frazzini S, Reggi S, Dell’Anno M, Fifi AP, Scaglia E, Ferri I, Rossi L. Chemical-functional characterization of Ascophyllum nodosum and Phymatolithon calcareum and dietary supplementation in post-weaning pigs. Front Vet Sci 2024; 11:1431091. [PMID: 39726581 PMCID: PMC11670372 DOI: 10.3389/fvets.2024.1431091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction As the livestock industry grapples with the need for sustainable land, maintaining production systems, and reducing antimicrobial resistance, the application of functional nutrition emerges as a potential solution. Aim In line with the One Health principles, this study aims to evaluate functional properties of Ascophyllum nodosum and Phymatolithon calcareum, and assess the effects of their dietary supplementation on piglets' health. Materials and methods A chemical-functional characterization was conducted before and after in vitro digestion. Total Polyphenols Content (TPC) and Total Flavonoid Content (TFC) were determined through colorimetric assays, while antioxidant activity was determined using ABTS assay, and the microdilution method was used to evaluate the antimicrobial capacity. For the in vivo trial twenty-four post-weaning pigs (28 ± 2 days, 6.89 ± 0.820 Kg) were enrolled in two homogeneous groups (n = 12/group): control group (CTRL) fed a commercial diet, and treated group (ALGAE) fed commercial diet with the addition of 1.5% of A. nodosum and 0.5% of P. calcareum for 27 days. Weekly, zootechnical performances were assessed monitoring the body weight and the individual feed intake. Fecal samples were collected to evaluate the abundance of total, lactic acid and coliform bacteria through plate counting. Serum were obtained at day 0 and day 27 to assess the antioxidant barrier. Results and discussion The chemical characterization discloses that the minerals' level remains below the maximum thresholds defined for their use in piglets nutrition. TPC was 330.42 ± 21.372 mg TAE/g of the sample and 11.45 ± 0.521 mg TAE/g of the sample for A. nodosum and P. calcareum, respectively, and a similar trend was found in the TFC evaluation (213.85 ± 20.557 and 2.71 ± 0.900 mg CE/g of sample, respectively). Our results also highlighted that polyphenols and flavonoid compounds persisted after in vitro digestion as well as the functional properties. The administration of algae in piglets diet, although it slightly affected feed efficiency in the first period of the trial, did not affect the animal growth in terms of weight and average daily gain. Microbiological analysis of feces showed similar values between the two experimental groups over 27 days. A significantly higher serum antioxidant barrier was registered in ALGAE compared to CTRL group at day 27 (363.26 ± 16.241 vs. 230.69 ± 32.078 HClO/mL, p < 0.05). Conclusion In conclusion, the supplementation with A. nodosum and P. calcareum could be considered a promising dietary strategy to enhance the oxidative barrier in weaned piglets.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | | | - Elena Scaglia
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Brescia, Italy
| | - Irene Ferri
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| |
Collapse
|
3
|
Fu J, Zhao J, Shang H. Functions and mechanisms of nonstarch polysaccharides in monogastric animal production. Int J Biol Macromol 2024; 281:136488. [PMID: 39393723 DOI: 10.1016/j.ijbiomac.2024.136488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
As natural active ingredients, polysaccharides are a class of biological macromolecules that are ubiquitous in living organisms and have antibacterial, antioxidant, antitumor and intestinal flora-regulating functions. Nonstarch polysaccharides (NSPs) are an important class of polysaccharides that include both soluble and insoluble nonstarch polysaccharides. As green feed additives, NSPs play important roles in promoting immunity and disease resistance in the body, regulating the intestinal microbial balance and improving the quality of animal products. NSPs regulate cell signal transduction mainly via interactions between short-chain fatty acids and G protein-coupled receptors and inhibiting the histone deacetylation pathway to protect the intestinal barrier in animals. In this paper, the composition, physiological functions, and molecular mechanisms of the gut protective effects of NSPs are reviewed to provide a reference for the application of NSPs in monogastric animal production.
Collapse
Affiliation(s)
- Jia Fu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Ribeiro DM, Luise D, Costa M, Carvalho DFP, Martins CF, Correa F, Pinho M, Mirzapour-Kouhdasht A, Garcia-Vaquero M, Mourato MP, Trevisi P, de Almeida AM, Freire JPB, Prates JAM. Impact of dietary Laminaria digitata with alginate lyase or carbohydrase mixture on nutrient digestibility and gut health of weaned piglets. Animal 2024; 18:101189. [PMID: 38850575 DOI: 10.1016/j.animal.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
Laminaria digitata is a brown seaweed rich in prebiotic polysaccharides, mainly laminarin, but its alginate-rich cell wall could compromise nutrient access. Carbohydrase supplementation, such as individual alginate lyase and carbohydrases mixture (Rovabio® Excel AP), could enhance nutrient digestibility and prebiotic potential. This study aimed to evaluate the effect of these enzymes on nutrient digestibility and gut health of weaned piglets fed with 10% L. digitata. Diets did not affect growth performance (P > 0.05). The majority of the feed fractions had similar digestibility across all diets, but the supplementation of alginate lyase increased hemicellulose digestibility by 3.3% compared to the control group (P = 0.047). Additionally, we observed that algal zinc was more readily available compared to the control group, even without enzymatic supplementation (P < 0.001). However, the increased digestibility of some minerals, such as potassium, raises concerns about potential mineral imbalance. Seaweed groups had a higher abundance of beneficial bacteria in colon contents, such as Prevotella, Oscillospira and Catenisphaera. Furthermore, the addition of alginate lyase led to a lower pH in the colon (P < 0.001) and caecum (P < 0.001) of piglets, which is possibly a result of released fermentable laminarin, and is consistent with the higher proportion of butyric acid found in these intestinal compartments. L. digitata is a putative supplement to enhance piglet gut health due to its prebiotic polysaccharides. Alginate lyase supplementation further improves nutrient digestibility and prebiotic potential. These results suggest the potential use of L. digitata and these enzymatic supplements in commercial piglet-feeding practices.
Collapse
Affiliation(s)
- D M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - D Luise
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Viale G. Fanin 46, Bologna, Italy
| | - M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - D F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - C F Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - F Correa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Viale G. Fanin 46, Bologna, Italy
| | - M Pinho
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - A Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M P Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - P Trevisi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Viale G. Fanin 46, Bologna, Italy
| | - A M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - J P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Higher Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - J A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal.
| |
Collapse
|
5
|
Homer B, Barekatain R, Petrovski KR, Plush KJ, Dwan C, D’Souza DN, Verma PJ, Kirkwood RN, Tucker BS. Preweaning Purified Fucoidan Drench: Effects on Growth, Immune Response, and Intestinal Morphology in Weaned Piglets. Animals (Basel) 2024; 14:1472. [PMID: 38791689 PMCID: PMC11117201 DOI: 10.3390/ani14101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Weaning stress imposes considerable physiological challenges on piglets, often manifesting in intestinal disturbances, such as inflammation and compromised barrier function, ultimately affecting growth and health outcomes. While conventional interventions, including antimicrobials, have effectively mitigated these sequelae, concerns surrounding antimicrobial resistance necessitate the exploration of alternatives. Fucoidan, derived from brown seaweed, offers promise due to its antioxidant and anti-inflammatory effects. Previous research has been limited to the in-feed supplementation of partially purified fucoidan extracted from brown seaweed. The focus of the present study is assessing the effect of a preweaning drench with highly purified (85%) fucoidan on piglet growth, immune response, and intestinal morphology post-weaning. Forty-eight male piglets at 17 ± 3 days of age (5.67 ± 0.16 kg) were assigned to a saline (control), fucoidan, or antimicrobial group, receiving treatment as a single 18 mL oral drench three days before weaning. Monitoring for seven days post-weaning included body weight measurements, blood sample collection for the inflammatory protein assay, and small intestine morphological analysis. The findings revealed that the preweaning fucoidan drench did not elicit adverse effects on piglets. However, neither fucoidan nor antimicrobial drenches significantly enhanced growth parameters, immune markers, or intestinal morphology compared to that of the control-treated piglets (p > 0.05). The lack of response may be attributed to the high health status of the experimental cohort and the limitation of a single dosage. Future research should consider a more challenging production setting to evaluate the viability and optimal application of fucoidan as an antimicrobial alternative in the pig industry.
Collapse
Affiliation(s)
- Bonnie Homer
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Kiro R. Petrovski
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | | | - Corinna Dwan
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia
| | | | - Paul J. Verma
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Roy N. Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Bryony S. Tucker
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
6
|
Bonde CS, Mejer H, Myhill LJ, Zhu L, Jensen P, Büdeyri Gökgöz N, Krych L, Nielsen DS, Skovgaard K, Thamsborg SM, Williams AR. Dietary seaweed (Saccharina latissima) supplementation in pigs induces localized immunomodulatory effects and minor gut microbiota changes during intestinal helminth infection. Sci Rep 2023; 13:21931. [PMID: 38081984 PMCID: PMC10713666 DOI: 10.1038/s41598-023-49082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Brown seaweeds have a rich bioactive content known to modulate biological processes, including the mucosal immune response and microbiota function, and may therefore have the potential to control enteric pathogens. Here, we tested if dietary seaweed (Saccharina latissima) supplementation could modulate pig gut health with a specific focus on parasitic helminth burdens, gut microbiota composition, and host immune response during a five week feeding period in pigs co-infected with the helminths Ascaris suum and Oesophagostomum dentatum. We found that inclusion of fermented S. latissima (Fer-SL) at 8% of the diet increased gut microbiota α-diversity with higher relative abundances of Firmicutes, Tenericutes, Verrucomicrobia, Spirochaetes and Elusimicrobia, and lower abundance of Prevotella copri. In the absence of helminth infection, transcription of immune-related genes in the intestine was only moderately influenced by dietary seaweed. However, Fer-SL modulated the transcriptional response to infection in a site-specific manner in the gut, with an attenuation of infection-induced gene expression in the jejunum and an amplification of gene expression in the colon. Effects on systemic immune parameters (e.g. blood lymphocyte populations) were limited, indicating the effects of Fer-SL were mainly localized to the intestinal tissues. Despite previously documented in vitro anti-parasitic activity against pig helminths, Fer-SL inclusion did not significantly affect parasite egg excretion or worm establishment. Collectively, our results show that although Fer-SL inclusion did not reduce parasite burdens, it may modify the gut environment during enteric parasite infection, which encourages continued investigations into the use of seaweeds or related products as novel tools to improve gut health.
Collapse
Affiliation(s)
- Charlotte Smith Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Penille Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
7
|
Khairinisa MA, Latarissa IR, Athaya NS, Charlie V, Musyaffa HA, Prasedya ES, Puspitasari IM. Potential Application of Marine Algae and Their Bioactive Metabolites in Brain Disease Treatment: Pharmacognosy and Pharmacology Insights for Therapeutic Advances. Brain Sci 2023; 13:1686. [PMID: 38137134 PMCID: PMC10741471 DOI: 10.3390/brainsci13121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Seaweeds, also known as edible marine algae, are an abundant source of phytosterols, carotenoids, and polysaccharides, among other bioactive substances. Studies conducted in the past few decades have demonstrated that substances derived from seaweed may be able to pass through the blood-brain barrier and act as neuroprotectants. According to preliminary clinical research, seaweed may also help prevent or lessen the symptoms of cerebrovascular illnesses by reducing mental fatigue, preventing endothelial damage to the vascular wall of brain vessels, and regulating internal pressure. They have the ability to control neurotransmitter levels, lessen neuroinflammation, lessen oxidative stress, and prevent the development of amyloid plaques. This review aims to understand the application potential of marine algae and their influence on brain development, highlighting the nutritional value of this "superfood" and providing current knowledge on the molecular mechanisms in the brain associated with their dietary introduction.
Collapse
Affiliation(s)
- Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Nadiyah Salma Athaya
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Vandie Charlie
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Hanif Azhar Musyaffa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia;
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83126, Indonesia
| | - Irma Melyani Puspitasari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
8
|
Ribeiro DM, Leclercq CC, Charton SAB, Costa MM, Carvalho DFP, Cocco E, Sergeant K, Renaut J, Freire JPB, Prates JAM, de Almeida AM. Enhanced ileum function in weaned piglets via Laminaria digitata and alginate lyase dietary inclusion: A combined proteomics and metabolomics analysis. J Proteomics 2023; 289:105013. [PMID: 37775079 DOI: 10.1016/j.jprot.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Laminaria digitata, a brown seaweed with prebiotic properties, can potentially enhance the resilience of weaned piglets to nutritional distress. However, their cell wall polysaccharides elude digestion by monogastric animals' endogenous enzymes. In vitro studies suggest alginate lyase's ability to degrade such polysaccharides. This study aimed to assess the impact of a 10% dietary inclusion of L. digitata and alginate lyase supplementation on the ileum proteome and metabolome, adopting a hypothesis-generating approach. Findings indicated that control piglets escalated glucose usage as an enteric energy source, as evidenced by the increased abundance of PKLR and PCK2 proteins and decreased tissue glucose concentration. Additionally, the inclusion of seaweed fostered a rise in proteins linked to enhanced enterocyte structural integrity (ACTBL2, CRMP1, FLII, EML2 and MYLK), elevated peptidase activity (NAALADL1 and CAPNS1), and heightened anti-inflammatory activity (C3), underscoring improved intestinal function. In addition, seaweed-fed piglets showed a reduced abundance of proteins related to apoptosis (ERN2) and proteolysis (DPP4). Alginate lyase supplementation appeared to amplify the initial effects of seaweed-only feeding, by boosting the number of differential proteins within the same pathways. This amplification is potentially due to increased intracellular nutrient availability, making a compelling case for further exploration of this dietary approach. SIGNIFICANCE: Pig production used to rely heavily on antibiotics and zinc oxide to deal with post-weaning stress in a cost-effective way. Their negative repercussions on public health and the environment have motivated heavy restrictions, and a consequent search for alternative feed ingredients/supplements. One of such alternatives is Laminaria digitata, a brown seaweed whose prebiotic components that can help weaned piglets deal with nutritional stress, by improving their gut health and immune status. However, their recalcitrant cell walls have antinutritional properties, for which alginate lyase supplementation is a possible solution. By evaluating ileal metabolism as influenced by dietary seaweed and enzyme supplementation, we aim at discovering how the weaned piglet adapts to them and what are their effects on this important segment of the digestive system.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Céline C Leclercq
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Emmanuelle Cocco
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Kjell Sergeant
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
9
|
Guerrero-Wyss M, Yans C, Boscán-González A, Duran P, Parra-Soto S, Angarita L. Durvillaea antarctica: A Seaweed for Enhancing Immune and Cardiometabolic Health and Gut Microbiota Composition Modulation. Int J Mol Sci 2023; 24:10779. [PMID: 37445955 DOI: 10.3390/ijms241310779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Durvillaea antarctica is the seaweed that is the most consumed by the Chilean population. It is recognized worldwide for its high nutritional value in protein, vitamins, minerals, and dietary fiber. This is a narrative review in which an extensive search of the literature was performed to establish the immunomodulator, cardiometabolic, and gut microbiota composition modulation effect of Durvillaea antarctica. Several studies have shown the potential of Durvillaea antarctica to function as prebiotics and to positively modulate the gut microbiota, which is related to anti-obesity, anti-inflammatory, anticancer, lipid-lowering, and hypoglycemic effects. The quantity of Bacteroides was negatively correlated with that of inflammatory monocytes and positively correlated with the levels of several gut metabolites. Seaweed-derived polysaccharides modulate the quantity and diversity of beneficial intestinal microbiota, decreasing phenol and p-cresol, which are related to intestinal diseases and the loss of intestinal function. Additionally, a beneficial metabolic effect related to this seaweed was observed, mainly promoting the decrease in the glycemic levels, lower cholesterol levels and cardiovascular risk. Consuming Durvillaea antarctica has a positive impact on the immune system, and its bioactive compounds provide beneficial effects on glycemic control and other metabolic parameters.
Collapse
Affiliation(s)
- Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
| | - Caroline Yans
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Puerto Montt 5480000, Chile
| | - Arturo Boscán-González
- Facultad de Medicina, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Solange Parra-Soto
- Departamento de Nutrición y Salud Pública, Facultad Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
10
|
He Y, Xu M, Lu S, Zou W, Wang Y, Fakhar-E-Alam Kulyar M, Iqbal M, Li K. Seaweed polysaccharides treatment alleviates injury of inflammatory responses and gut barrier in LPS-induced mice. Microb Pathog 2023; 180:106159. [PMID: 37201636 DOI: 10.1016/j.micpath.2023.106159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Gastrointestinal (GI) disease is a common digestive tract disease effects health of millions of human globally each year, thus the role of intestinal microflora had been emphasized. Seaweed polysaccharides featured a wide range of pharmacological activities, such as antioxidant activity and pharmacological action, but whether they can alleviate the dysbiosis of gut microbial ecology caused by lipopolysaccharide (LPS) exposure has not been well conducted. In this study, we investigated the effects of different concentration of seaweed polysaccharides on LPS-induced intestinal disorder by using microscope and 16S rRNA high-throughput sequencing. Histopathological results indicated that the intestinal structure in the LPS-induced group was damaged. Furthermore, LPS exposure not only reduced the intestinal microbial diversity in mice but also induced momentous transformation in its composition, including a significantly increased in some pathogenic bacteria (Helicobacter, Citrobacter and Mucispirillum) and decreased in several beneficial bacteria (Firmicutes, Lactobacillus, Akkermansia and Parabacteroides). Nonetheless, seaweed polysaccharide administration could recover the gut microbial dysbiosis and the loss of gut microbial diversity induced by LPS exposure. In summary, seaweed polysaccharides were effective against LPS-induced intestinal damage in mice via the modulation of intestinal microecology.
Collapse
Affiliation(s)
- Yuanyuan He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Zou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 61100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
11
|
Wang L, Wang C, Peng Y, Zhang Y, Liu Y, Liu Y, Yin Y. Research progress on anti-stress nutrition strategies in swine. ANIMAL NUTRITION 2023; 13:342-360. [DOI: 10.1016/j.aninu.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
12
|
In Vitro Evaluation of Brown Seaweed Laminaria spp. as a Source of Antibacterial and Prebiotic Extracts That Could Modulate the Gastrointestinal Microbiota of Weaned Pigs. Animals (Basel) 2023; 13:ani13050823. [PMID: 36899679 PMCID: PMC10000092 DOI: 10.3390/ani13050823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Laminaria spp. and their extracts have preventative potential as dietary supplements during weaning in pigs. The first objective of this study was to evaluate increasing concentrations of four whole seaweed biomass samples from two different Laminaria species harvested in two different months in a weaned pig faecal batch fermentation assay. Particularly, February and November whole seaweed biomass samples of L. hyperborea (LHWB-F and LHWB-N) and L. digitata (LDWB-F and LDWB-N) were used. In the next part of the study, the increasing concentrations of four extracts produced from L. hyperborea (LHE1-4) and L. digitata (LDE1-4) were evaluated in individual pure-culture growth assays using a panel of beneficial and pathogenic bacterial strains (second objective). The LHE1-4 and LDE1-4 were obtained using different combinations of temperature, incubation time and volume of solvent within a hydrothermal-assisted extraction methodology (E1-4). In the batch fermentation assay, the L. hyperborea biomass samples, LHWB-F and LHWB-N, lowered Bifidobacterium spp. counts compared to the L. digitata biomass samples, LDWB-F and LDWB-N (p < 0.05). LHWB-F and LDWB-N reduced Enterobacteriaceae counts (p < 0.05). LHWB-F and LDWB-F were selected as the most and least promising sources of antibacterial extracts from which to produce LHE1-4 and LDE1-4. In the pure-culture growth assays, E1- and E4-produced extracts were predominantly associated with antibacterial and bifidogenic activities, respectively. LHE1 reduced both Salmonella Typhimurium and Enterotoxigenic Escherichia coli with LDE1 having a similar effect on both of these pathogenic strains, albeit to a lesser extent (p < 0.05). Both LHE1 and LDE1 reduced B. thermophilum counts (p < 0.05). LDE4 exhibited strong bifidogenic activity (p < 0.05), whereas LHE4 increased Bifidobacterium thermophilum and Lactiplantibacillus plantarum counts (p < 0.05). In conclusion, antibacterial and bifidogenic extracts of Laminaria spp. were identified in vitro with the potential to alleviate gastrointestinal dysbiosis in newly weaned pigs.
Collapse
|
13
|
Bartkiene E, Tolpeznikaite E, Klupsaite D, Starkute V, Bartkevics V, Skrastina A, Pavlenko R, Mockus E, Lele V, Batkeviciute G, Budrikyte A, Janulyte R, Jomantaite I, Kybartaite A, Knystautaite K, Valionyte A, Ruibys R, Rocha JM. Bio-Converted Spirulina for Nutraceutical Chewing Candy Formulations Rich in L-Glutamic and Gamma-Aminobutyric Acids. Microorganisms 2023; 11:microorganisms11020441. [PMID: 36838408 PMCID: PMC9959499 DOI: 10.3390/microorganisms11020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
This study aimed at evaluating changes of microalgae Spirulina during its fermentation with Lactiplantibacillus plantarum No. 122 strain, and further at incorporating Spirulina bio-converted for nutraceuticals rich in L-glutamic (L-Glu) and gamma-aminobutyric acids (GABA) into sucrose-free chewing candy (gummy) preparations. Fermented Spirulina had higher b* (yellowness) coordinates than untreated (non-fermented), and fermentation duration (24 and 48 h) had a statistically significant effect on colour coordinates. The highest contents of L-glutamic and gamma-aminobutyric acids (4062 and 228.6 mg/kg, respectively) were found in 24 and 48 h-fermented Spirulina, respectively. Fermentation increased the content of saturated fatty acids and omega-3 in Spirulina, while monounsaturated fatty acids and omega-6 were reduced. The addition of fermented Spirulina (FSp) significantly affected hardness, decreased lightness and yellowness, and increased the greenness of chewing candies. All chewing candy samples (with xylitol) prepared with 3 and 5 g of FSp and 0.2 µL of Citrus paradise essential oil received the highest scores for overall acceptability, and the highest intensity (0.052) of emotion "happy" was elicited by the sample group containing xylitol, agar, ascorbic acid, 3 g of FSp, and 0.1 µL of Mentha spicata essential oil. As an outcome of this research, one may conclude that fermented Spirulina has significant potential as an innovative ingredient in the production of healthier sucrose-free nutraceutical chewing candies.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-601-35837
| | - Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Anna Skrastina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gabija Batkeviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ausrine Budrikyte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rusne Janulyte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ieva Jomantaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Auguste Kybartaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Karolina Knystautaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aiste Valionyte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, 44307 Kaunas, Lithuania
| | - João Miguel Rocha
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering (DEQ), Faculty of Engineering, University of Porto (FEUP), Rua Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
14
|
Jayapala HPS, Lim SY. N-3 Polyunsaturated Fatty Acids and Gut Microbiota. Comb Chem High Throughput Screen 2023; 26:892-905. [PMID: 35786331 DOI: 10.2174/1386207325666220701121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
For several decades, studies have reported that n-3 polyunsaturated fatty acids (PUFAs) play a beneficial role in cardiovascular, immune, cognitive, visual, mental and metabolic health. The mammalian intestine is colonized by microbiota, including bacteria, archaea, viruses, protozoans, and fungi. The composition of the gut microbiota is influenced by long-term dietary habits, disease-associated dysbiosis, and the use of antibiotics. Accumulating evidence suggests a relationship between n-3 PUFAs and the gut microbiota. N-3 PUFAs can alter the diversity and abundance of the gut microbiome, and gut microbiota can also affect the metabolism and absorption of n-3 PUFAs. Changes in the populations of certain gut microbiota can lead to negative effects on inflammation, obesity, and metabolic diseases. An imbalanced consumption of n-3/n-6 PUFAs may lead to gut microbial dysbiosis, in particular, a significant increase in the ratio of Firmicutes to Bacteroidetes, which eventually results in being overweight and obesity. N-3 PUFA deficiency disrupts the microbiota community in metabolic disorders. In addition, accumulating evidence indicates that the interplay between n-3 PUFAs, gut microbiota, and immune reactions helps to maintain the integrity of the intestinal wall and interacts with host immune cells. Supplementation with n-3 PUFAs may be an effective therapeutic measure to restore gut microbiota homeostasis and correct metabolic disturbances associated with modern chronic diseases. In particular, marine extracts from seaweed contain a considerable dry weight of lipids, including n-3 PUFAs such as eicosapentaenoic acid (EPA, C20: 5) and docosahexaenoic acid (DHA, C22: 6). This review describes how gut microbiota function in intestinal health, how n-3 PUFAs interact with the gut microbiota, and the potential of n-3 PUFAs to influence the gut-brain axis, acting through gut microbiota composition.
Collapse
Affiliation(s)
| | - Sun Young Lim
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan, 49112, Korea
| |
Collapse
|
15
|
Michalak I, Tiwari R, Dhawan M, Alagawany M, Farag MR, Sharun K, Emran TB, Dhama K. Antioxidant effects of seaweeds and their active compounds on animal health and production - a review. Vet Q 2022; 42:48-67. [PMID: 35363108 PMCID: PMC9004519 DOI: 10.1080/01652176.2022.2061744] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Natural antioxidants applied as feed additives can improve not only animals' health and overall performance but also increase their resistance to environmental stress such as heat stress, bad housing conditions, diseases, etc. Marine organisms, for example seaweeds - red, brown, and green macroalgae contain a plethora of biologically active substances, including phenolic compounds, polysaccharides, pigments, vitamins, micro- and macroelements, and proteins known for their antioxidant activity, which can help in the maintenance of appropriate redox status in animals and show pleiotropic effects for enhancing good health, and productivity. The dysregulated production of free radicals is a marked characteristic of several clinical conditions, and antioxidant machinery plays a pivotal role in scavenging the excessive free radicals, thereby preventing and treating infections in animals. Supplementation of seaweeds to animal diet can boost antioxidant activity, immunity, and the gut environment. Dietary supplementation of seaweeds can also enhance meat quality due to the deposition of marine-derived antioxidant components in muscles. The use of natural antioxidants in the meat industry is a practical approach to minimize or prevent lipid oxidation. However, overconsumption of seaweeds, especially brown macroalgae, should be avoided because of their high iodine content. An important point to consider when including seaweeds in animal feed is their variable composition which depends on the species, habitat, location, harvest time, growing conditions such as nutrient concentration in water, light intensity, temperature, etc. This review highlights the beneficial applications of seaweeds and their extracted compounds, which have antioxidant properties as feed additives and impact animal health and production.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
16
|
Ji Y, Jin D, Qi J, Wang X, Zhang C, An P, Luo Y, Luo J. Fucoidan Protects against Doxorubicin-Induced Cardiotoxicity by Reducing Oxidative Stress and Preventing Mitochondrial Function Injury. Int J Mol Sci 2022; 23:10685. [PMID: 36142635 PMCID: PMC9504360 DOI: 10.3390/ijms231810685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (DOXO) is a potent chemotherapeutic drug widely used to treat various cancers. However, its clinical application is limited due to serious adverse effects on dose-dependent cardiotoxicity. Although the underlying mechanism has not been fully clarified, DOXO-induced cardiotoxicity has been mainly attributed to the accumulation of reactive oxygen species (ROS) in cardiomyocytes. Fucoidan, as a kind of sulphated polysaccharide existing in numerous brown seaweed, has potent anti-oxidant, immune-regulatory, anti-tumor, anti-coagulate and anti-viral activities. Here, we explore the potential protective role and mechanism of fucoidan in DOXO-induced cardiotoxicity in mice. Our results show that oral fucoidan supplement exerts potent protective effects against DOXO-induced cardiotoxicity by reducing oxidative stress and preventing mitochondrial function injury. The improved effect of fucoidan on DOXO-induced cardiotoxicity was evaluated by echocardiography, cardiac myocytes size and cardiac fibrosis analysis, and the expression of genes related to cardiac dysfunction and remodeling. Fucoidan reduced the ROS content and the MDA levels but enhanced the activity of antioxidant enzymes GSH-PX and SOD in the mouse serum in a DOXO-induced cardiotoxicity model. In addition, fucoidan also increased the ATP production capacity and restored the levels of a mitochondrial respiratory chain complex in heart tissue. Collectively, this study highlights fucoidan as a potential polysaccharide for protecting against DOXO-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Yuting Ji
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jingyi Qi
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xuan Wang
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Peng An
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Al-Soufi S, García J, Muíños A, López-Alonso M. Marine Macroalgae in Rabbit Nutrition—A Valuable Feed in Sustainable Farming. Animals (Basel) 2022; 12:ani12182346. [PMID: 36139209 PMCID: PMC9495136 DOI: 10.3390/ani12182346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Commercial rabbit farming has faced critical challenges in the last few years, during which the ban on the prophylactic use of antibiotics in animal feed has added to the weakness of the production system and a decrease in consumption of rabbit meat. Considering the potential role of macroalgae as an alternative to the use of antibiotics in animal nutrition, this review paper aims to evaluate the use of macroalgae in rabbit farming. It specifically focuses on how macroalgae can be used sustainably to improve rabbit health as an economically viable alternative that could help guarantee the future of this high-value sector. Abstract The rabbit meat industry has faced critical challenges in the last few years, during which the ban on the prophylactic use of antibiotics in animal feed has added to the weakness of the production system and a decrease in consumption of rabbit meat. This review paper highlights the potential value of macroalgae in the rabbit farming sector as an alternative to the use of antibiotics to improve rabbit health. In line with sustainable agriculture programmes, the use of seaweed in rabbit nutrition may improve gut health according to the One Health approach, whereby consumers and the environment could receive tangible benefits. The inclusion of algae in animal feed has experimentally proven to help to reduce intestinal dysbiosis. However, further studies evaluating the prebiotic effects of algal components on gut health and also identifying the compounds directly responsible for the antimicrobial, antiviral, antioxidative and anti-inflammatory properties of algae are still needed. Furthermore, the inclusion of marine algae in rabbit food could potentially become a commercial marketing strategy that could attract new consumers who are concerned about environmental sustainability and who are looking for different, high-quality foods.
Collapse
Affiliation(s)
- Sabela Al-Soufi
- Departmento de Patoloxía Animal, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Correspondence:
| | - Javier García
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, C/Senda del Rey 18, 28040 Madrid, Spain
| | | | - Marta López-Alonso
- Departmento de Patoloxía Animal, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
18
|
Bondar A, Macari V, Rudic V, Pistol G, Putin V, Rotaru A, Chiriac T, Solcan G, Solcan C. Effects of ZooBioR2 product as feed supplement in laying hens on the morphofunctional state of intestinal mucosa. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Spirulina platensis is a microalga with biological activity used to produce nutritional supplements rich in proteins, essential fatty acids, vitamins, and minerals. The current study aims to prove the impact of the product ZooBioR2 (obtained from Spirulina platensis) on health, and on the histology of duodenum, jejunum, ileum, and cecum in laying hens. The experiment was performed in duplicate on 5 groups of hens (14 birds/group), one control and four experimental, in which the feed was supplemented with ZooBioR2 in different doses (5.0; 10.0; 15.0; 20.0mg active substance/kg of fodder). Inclusion of the supplement in the diet have determined a significant decrease of height of intestinal villi, the depth of the crypts and the thickness of muscular layer of mucosa in the experimental groups receiving 15.0 and 20.0mg/kg. The decrease of crypts depth is an indicator of a higher rate of turn-over of epithelial tissue. The morphological changes of intestinal mucosa could be involved in a better digestibility of the fodder.
Collapse
Affiliation(s)
- A. Bondar
- University of Life Sciences, Romania
| | - V. Macari
- State Agrarian University from Moldova, Moldova
| | - V. Rudic
- Sciences Academy from Moldova, Moldova
| | - G. Pistol
- State Agrarian University from Moldova, Moldova
| | - V. Putin
- State Agrarian University from Moldova, Moldova
| | - A. Rotaru
- State Agrarian University from Moldova, Moldova
| | | | - G. Solcan
- University of Life Sciences, Romania
| | - C. Solcan
- University of Life Sciences, Romania
| |
Collapse
|
19
|
Yang W, Chen J, Guo G, Wang S, Peng S, Gao Z, Zhao Z, Lan R, Yin F. The Effects of Fucoidan Dietary Supplementation on Growth Performance, Serum Antioxidant Capacity, Immune Function Indices and Intestinal Morphology in Weaned Kids. Animals (Basel) 2022; 12:ani12050574. [PMID: 35268143 PMCID: PMC8909077 DOI: 10.3390/ani12050574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to evaluate the effects of fucoidan dietary supplementation on growth performance, organs’ relative weight, serum anti-oxidation markers, immune function indices and intestinal morphology in weaned kids. A total of 60 2-month-old weaned castrated male kids (Chuanzhong black goat) were used for this 30-day experiment and randomly allocated to four groups. The control group (CON) fed a basal diet, while the other three groups were provided with the same diet further supplemented with fucoidan at 0.1%, 0.3% or 0.5%, namely, F1, F2 and F3 groups, respectively. The results indicated that dietary fucoidan supplementation significantly increased (p < 0.05) the activity of catalase (CAT) when compared to the CON group on day 15. Moreover, the addition of fucoidan at 0.3% and 0.5% significantly increased (p < 0.05) the activities of glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD). On day 30, dietary fucoidan supplementation significantly reduced (p < 0.05) the feed conversion rate (FCR), contents of tumor necrosis-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), while it significantly increased (p < 0.05) the activity of total superoxide dismutase (T-SOD), the content of immunoglobulin G (IgG) and the villus height (VH) of the duodenum. Moreover, dietary 0.3% and 0.5% fucoidan supplementation significantly increased (p < 0.05) the villus height (VH) of the jejunum and ileum and significantly reduced (p < 0.05) the crypt depth (CD) of ileum. In conclusion, dietary fucoidan had positive effects on growth performance, serum anti-oxidation, immune function and intestinal morphology of weaned kids.
Collapse
|
20
|
Li Z, Zhu Q, Azad MAK, Li H, Huang P, Kong X. The Impacts of Dietary Fermented Mao-tai Lees on Growth Performance, Plasma Metabolites, and Intestinal Microbiota and Metabolites of Weaned Piglets. Front Microbiol 2021; 12:778555. [PMID: 34912318 PMCID: PMC8667599 DOI: 10.3389/fmicb.2021.778555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
This study investigated the effects of dietary supplementation with fermented Mao-tai lees (FML) on growth performance, plasma metabolites, and intestinal microbiota and metabolites of weaned piglets. A total of 128 Duroc×Landrace×Yorkshire piglets (28-days old) were randomly assigned to one of four groups, feeding a basal diet (control group), a basal diet supplemented with 2, 4 or 6% FML, respectively, for 42days. The results showed that dietary 4% FML supplementation had higher (p<0.05) average daily gain (ADG) and plasma triglyceride concentration during days 1–14 of the trial than the other FML supplemented groups. In addition, dietary 2 and 4% FML supplementation increased (p<0.05) the ADG during days 15–28 of the trial and plasma total protein concentration on day 42 of the trial compared with the 6% FML supplement. The plasma concentrations of arginine, ethanolamine, histidine, isoleucine, lysine, methionine, proline, taurine, threonine, and tyrosine were increased (p<0.05) in the 4% FML group compared with the other three groups on day 14 of the trial. Dietary supplementation with 2–6% FML decreased (p<0.05) the plasma urea nitrogen concentration on day 14 of the trial and the abundance of Escherichia coli in the colon, and dietary 2 and 4% FML supplementation decreased (p<0.05) the abundance of sulfate-reducing bacteria compared with the control group. In the intestinal contents, a higher concentration of FML (6%) supplementation decreased (p<0.05) the colonic acetate concentration compared with the control and 2% FML groups, while 4% FML supplementation increased (p<0.05) the colonic cadaverine concentration compared with the other three groups. In conclusion, dietary 4% FML supplementation might contribute to the increased amino acids metabolism without affecting the growth performance of weaned piglets. Moreover, dietary 2 and 4% FML supplementation were also beneficial to intestinal health via decreasing the abundances of specific pathogens and increasing the concentrations of microbial metabolites in the gut, which provides the theoretical basis and data support for the application of FML in pigs.
Collapse
Affiliation(s)
- Zhihua Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huawei Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Pan Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
21
|
Samarasinghe MB, Sehested J, Weisbjerg MR, van der Heide ME, Nørgaard JV, Vestergaard M, Hernández-Castellano LE. Feeding milk supplemented with Ulva sp., Ascophyllum nodosum, or Saccharina latissima to preweaning dairy calves: Effects on growth, gut microbiota, gut histomorphology, and short-chain fatty acids in digesta. J Dairy Sci 2021; 104:12117-12126. [PMID: 34454759 DOI: 10.3168/jds.2021-20680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging knowledge shows the importance of preweaning nutrition on programming the gastrointestinal microbiome and development of the gut barrier function. The aim of this study was to assess the effects of supplementing cow milk with either intact dried Ulva sp., Ascophyllum nodosum, or Saccharina latissima on growth performance and several gut health parameters of preweaning dairy calves. Forty male Holstein calves were selected based on birth weight (41 ± 4 kg) and plasma Brix percentage (≥8.7%) at d 2 of life. From d 2 to d 42 of life, the control calves (n = 10) were fed with cow milk (8 L/d) without seaweed supplementation, and the experimental calves were fed with cow milk (8 L/d) supplemented with either Ulva sp. (n = 10), A. nodosum (n = 10), or S. latissima (n = 10) at a concentration of 50 g/8 L of cow milk per day (i.e., 5% on a dry matter basis). Calves were weighed every week, and body weight gain and calf starter intake were monitored weekly. At d 42 ± 3 of life, calves were slaughtered. The organ weights and digesta pH from the reticulorumen, mid- and end small intestine, and mid-colon were recorded. A tissue sample (5 cm) collected from the mid-small intestine was analyzed for histomorphology. Digesta from the mid-small intestine and mid-colon were analyzed for lactobacilli, Escherichia coli, and Enterobacteriaceae, and short-chain fatty acid profile. Weight gain of the calves was not affected by seaweed supplementation. Proportional organ weights were not affected by seaweed supplementation except for reticulorumen weight, which was higher in calves fed Ulva sp. Both the mid-small intestinal and mid-colonic digesta populations of lactobacilli, Enterobacteriaceae, and E. coli, as well as the mid-small intestinal histomorphology in seaweed-supplemented calves were not different from control calves. However, acetic acid proportion in mid-colonic digesta was increased in calves fed Ulva sp. and A. nodosum, whereas butyric acid proportion was decreased compared with the control calves. Digesta pH in mid- and end small intestine and mid-colon were not affected, whereas ruminal pH was increased in calves fed Ulva sp. compared with the control calves. In conclusion, intact dried seaweed supplementation did not improve the growth or selected gut health parameters (i.e., histomorphology, digesta pH, bacteria, and short-chain fatty acids) in preweaning Holstein calves.
Collapse
Affiliation(s)
- M B Samarasinghe
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark.
| | - J Sehested
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M R Weisbjerg
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M E van der Heide
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - J V Nørgaard
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M Vestergaard
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - L E Hernández-Castellano
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark; Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain.
| |
Collapse
|
22
|
A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material. SUSTAINABILITY 2021. [DOI: 10.3390/su13116174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sustainable development is an integrated approach to tackle ongoing global challenges such as resource depletion, environmental degradation, and climate change. However, a paradigm shift from a fossil-based economy to a bio-based economy must accomplish the circularity principles in order to be sustainable as a solution. The exploration of new feedstock possibilities has potential to unlock the bio-based economy’s true potential, wherein a cascading approach would maximize value creation. Seaweed has distinctive chemical properties, a fast growth rate, and other promising benefits beyond its application as food, making it a suitable candidate to substitute fossil-based products. Economic and environmental aspects can make seaweed a lucrative business; however, seasonal variation, cultivation, harvesting, and product development challenges have yet not been considered. Therefore, a clear forward path is needed to consider all aspects, which would lead to the commercialization of financially viable seaweed-based bioproducts. In this article, seaweed’s capability and probable functionality to aid the bio-based economy are systematically discussed. The possible biorefinery approaches, along with its environmental and economic aspects of sustainability, are also dealt with. Ultimately, the developmental process, by-product promotion, financial assistance, and social acceptance approach are summarized, which is essential when considering seaweed-based products’ feasibility. Besides keeping feedstock and innovative technologies at the center of bio-economy transformation, it is imperative to follow sustainable-led management practices to meet sustainable development goals.
Collapse
|
23
|
Corino C, Di Giancamillo A, Modina SC, Rossi R. Prebiotic Effects of Seaweed Polysaccharides in Pigs. Animals (Basel) 2021; 11:1573. [PMID: 34072221 PMCID: PMC8229765 DOI: 10.3390/ani11061573] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
To ensure environmental sustainability, according to the European Green Deal and to boost the One Health concept, it is essential to improve animals' health and adopt sustainable and natural feed ingredients. Over the past decade, prebiotics have been used as an alternative approach in order to reduce the use of antimicrobials, by positively affecting the gut microbiota and decreasing the onset of several enteric diseases in pig. However, dietary supplementation with seaweed polysaccharides as prebiotics has gained attention in recent years. Seaweeds or marine macroalgae contain several polysaccharides: laminarin, fucoidan, and alginates are found in brown seaweeds, carrageenan in red seaweeds, and ulvan in green seaweeds. The present review focuses on studies evaluating dietary seaweed polysaccharide supplementation in pig used as prebiotics to positively modulate gut health and microbiota composition.
Collapse
Affiliation(s)
| | | | | | - Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.); (S.C.M.)
| |
Collapse
|
24
|
Sorrenti V, Castagna DA, Fortinguerra S, Buriani A, Scapagnini G, Willcox DC. Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Mar Drugs 2021; 19:293. [PMID: 34067317 PMCID: PMC8224803 DOI: 10.3390/md19060293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Spirulina microalgae contain a plethora of nutrient and non-nutrient molecules providing brain health benefits. Numerous in vivo evidence has provided support for the brain health potential of spirulina, highlighting antioxidant, anti-inflammatory, and neuroprotective mechanisms. Preliminary clinical studies have also suggested that spirulina can help to reduce mental fatigue, protect the vascular wall of brain vessels from endothelial damage and regulate internal pressure, thus contributing to the prevention and/or mitigating of cerebrovascular conditions. Furthermore, the use of spirulina in malnourished children appears to ameliorate motor, language, and cognitive skills, suggesting a reinforcing role in developmental mechanisms. Evidence of the central effect of spirulina on appetite regulation has also been shown. This review aims to understand the applicative potential of spirulina microalgae in the prevention and mitigation of brain disorders, highlighting the nutritional value of this "superfood", and providing the current knowledge on relevant molecular mechanisms in the brain associated with its dietary introduction.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | | | | | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Donald Craig Willcox
- Department of Human Welfare, Okinawa International University, Ginowan 901-2701, Japan;
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
| |
Collapse
|
25
|
Naiel MA, Alagawany M, Patra AK, El-Kholy AI, Amer MS, Abd El-Hack ME. Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production. AQUACULTURE 2021; 534:736186. [DOI: 10.1016/j.aquaculture.2020.736186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Purcell-Meyerink D, Packer MA, Wheeler TT, Hayes M. Aquaculture Production of the Brown Seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals. Molecules 2021; 26:1306. [PMID: 33671085 PMCID: PMC7957606 DOI: 10.3390/molecules26051306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Seaweeds have a long history of use as food, as flavouring agents, and find use in traditional folk medicine. Seaweed products range from food, feed, and dietary supplements to pharmaceuticals, and from bioenergy intermediates to materials. At present, 98% of the seaweed required by the seaweed industry is provided by five genera and only ten species. The two brown kelp seaweeds Laminaria digitata, a native Irish species, and Macrocystis pyrifera, a native New Zealand species, are not included in these eleven species, although they have been used as dietary supplements and as animal and fish feed. The properties associated with the polysaccharides and proteins from these two species have resulted in increased interest in them, enabling their use as functional foods. Improvements and optimisations in aquaculture methods and bioproduct extractions are essential to realise the commercial potential of these seaweeds. Recent advances in optimising these processes are outlined in this review, as well as potential future applications of L. digitata and, to a greater extent, M. pyrifera which, to date, has been predominately only wild-harvested. These include bio-refinery processing to produce ingredients for nutricosmetics, functional foods, cosmeceuticals, and bioplastics. Areas that currently limit the commercial potential of these two species are highlighted.
Collapse
Affiliation(s)
| | | | | | - Maria Hayes
- Food BioSciences, Teagasc, Ashtown, Dublin 15, Ireland
| |
Collapse
|
27
|
Sony NM, Hossain MS, Ishikawa M, Koshio S, Yokoyama S. Efficacy of mozuku fucoidan in alternative protein-based diet to improve growth, health performance, and stress resistance of juvenile red sea bream, Pagrus major. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2437-2455. [PMID: 33033967 DOI: 10.1007/s10695-020-00881-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
We evaluated the efficacy of mozuku fucoidan supplementation to alternative dietary proteins used in fish meal (FM) replacement to enhance growth, immunity, and stress resistance of Pagrus major. Seven isonitrogenous (45% protein) experimental diets were formulated where diet 1 (D1) was FM-based control diet. Diets 2 to 7 were formulated by replacing 25, 50, and 75% of FM protein with soy protein isolate (SPI) protein, and each replacement level was supplemented without or with fucoidan at 0.4% for diet groups D2 (FM25), D3 (FM25Fu), D4 (FM50), D5 (FM50Fu), D6 (FM75), and D7(FM75Fu), respectively. Each diet was randomly allocated to triplicate groups of fish (4.1 g) for 56 days. Significantly higher weight gain and specific growth rate were observed in fish fed FM50Fu diet group, and it was not differed (P > 0.05) with fish fed FM25Fu diet group. FM-based control diet showed intermediate value, and it was not differed (P > 0.05) with or without fucoidan-supplemented ≤ 50% FM replacement groups and FM75Fu diet group. Significantly lower growth performances were observed in FM75 diet group. At each replacement level, fucoidan-supplemented groups showed nonsignificant improvement of feed utilization performances. Fish fed fucoidan-supplemented diets showed best condition of oxidative and freshwater stress resistance. Lysozyme activity, NBT, and peroxidase activity showed higher (P > 0.05) values in fucoidan-supplemented groups compared with the non-supplemented groups. Catalase activity was significantly lower in FM75Fu diet group. Catalase activity is significantly influenced by the interaction effects of fucoidan and FM replacement level. In conclusion, fucoidan supplementation could increase the efficiency of utilizing SPI (≥ 75%) without any adverse effects on red sea bream performance.
Collapse
Affiliation(s)
- Nadia Mahjabin Sony
- The Graduate School of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0065, Japan
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0056, Japan
| | - Md Sakhawat Hossain
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0056, Japan.
- Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, -3100, Sylhet, Bangladesh.
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID, 83332, USA.
| | - Manabu Ishikawa
- The Graduate School of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0065, Japan
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0056, Japan
| | - Shunsuke Koshio
- The Graduate School of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0065, Japan
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0056, Japan
| | - Saichiro Yokoyama
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima, 890-0056, Japan
| |
Collapse
|
28
|
Mohammadigheisar M, Shouldice VL, Sands JS, Lepp D, Diarra MS, Kiarie EG. Growth performance, breast yield, gastrointestinal ecology and plasma biochemical profile in broiler chickens fed multiple doses of a blend of red, brown and green seaweeds. Br Poult Sci 2020; 61:590-598. [PMID: 32508147 DOI: 10.1080/00071668.2020.1774512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1. A total of 864 d old (male) Ross × Ross 708 broiler chicks were allocated to 48 floor pens (12 pens/treatment and 18 birds/pen) to investigate dose-response of a blend of seaweeds (SB) on growth performance, breast yield, jejunal histomorphology, microbial metabolites and community and plasma biochemical profile. 2. A maize-soybean meal diet was formulated with 0, 5, 10 or 20 g/kg of SB. Diets were formulated for a three-phase feeding programme (starter: d 0-10, grower: d 11-24, and finisher: d 25-42) and met or exceeded Aviagen nutrient specifications. Diets were allocated to pens (n = 12) balanced for body weight (BW). Birds had free access to feed and water, BW and feed intake (FI) were monitored by phase. One bird per pen was randomly selected on d 42, bled for plasma, and samples for intestinal tissue and caecal digesta were taken. Microbial DNA was extracted and submitted for microbial community profile using the Illumina Miseq® platform. 3. In the starter phase, SB linearly (P ≤ 0.01) improved BW, body weight gain (BWG), and FCR. However, the improvement was quadratic, such that there was no further improvement beyond 5 g/kg SB inclusion. Growth performance response to SB in the grower phase was similar to the starter phase, with the exception of FCR (P > 0.05). Overall, from d 0-42, a linear and quadratic (P < 0.01) response was observed for final BW (d 42), whereby birds fed 5, 10 and 20 g/kg SB were heavier than control by 166, 183 and 180 g, respectively. A quadratic (P = 0.03) effect was observed for breast yield in response to SB. There was a quadratic reduction (P < 0.05) in gamma-glutamyl transferase (GGT) and a linear increase in glutamate dehydrogenase (GDH) in response to SB. Supplemental SB linearly reduced (P ≤ 0.04) the relative abundance of phylum Bacteroidetes and Proteobacteria, and increased the abundance of phylum Firmicutes (linearly; P = 0.02) and Actinobacteria (quadratically; P = 0.03). 4. The data indicated that the optimal inclusion for SB was between 5 and 10 g/kg for improved growth performance and breast yield. However, increased abundance of Firmicutes and actinobacteria in the caecal digesta suggested that the higher doses enhanced prebiotic effects of seaweed components.
Collapse
Affiliation(s)
- M Mohammadigheisar
- Department of Animal Biosciences, University of Guelph , Guelph, ON, Canada
| | - V L Shouldice
- Department of Animal Biosciences, University of Guelph , Guelph, ON, Canada
| | - J S Sands
- Ocean Harvest Technology, Technical Services , Milltown, Ireland
| | - D Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , Guelph, ON, Canada
| | - M S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , Guelph, ON, Canada
| | - E G Kiarie
- Department of Animal Biosciences, University of Guelph , Guelph, ON, Canada
| |
Collapse
|
29
|
Satessa GD, Tamez-Hidalgo P, Kjærulff S, Vargas-Bello-Pérez E, Dhakal R, Nielsen MO. Effects of Increasing Doses of Lactobacillus Pre-Fermented Rapeseed Product with or without Inclusion of Macroalgae Product on Weaner Piglet Performance and Intestinal Development. Animals (Basel) 2020; 10:E559. [PMID: 32230825 PMCID: PMC7222423 DOI: 10.3390/ani10040559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effects of increasing doses of pre-fermented rapeseed meal (FRM) without or with inclusion of the brown macroalgae Ascophyllum nodosum (AN) on weaner piglets' performance and gut development. Ten days pre-weaning, standardized litters were randomly assigned to one of nine isoenergetic and isoproteic diets comprising (on DM basis): no supplement (negative control, NC), 2500 ppm ZnO (positive control, PC), 8, 10, 12, 15 or 25% FRM, and 10% FRM plus 0.6 or 1.0% AN. Fifty piglets receiving the same pre-weaning diets were weaned at 28 days of age and transferred to one pen, where they continued on the pre-weaning diet until day 92. At 41 days, six piglets per treatment were sacrificed for blood and intestinal samplings. The average daily gain was at least sustained at any dose of FRM (increased at 8% FRM, 28-41 days) from 18-41 days similar to PC but unaffected by inclusion of AN. The percentage of piglets that completed the experiment was increased by FRM compared to NC, despite detection of diarrhea symptoms. FRM showed quadratic dose-response effects on colon and mid-jejunum crypts depth, and enterocyte and mid-jejunum villus heights with optimum development at 8% or 10% FRM, respectively, but this was abolished when AN was also added. In conclusion, FRM sustained piglet growth performance and intestinal development similar to ZnO with an optimum inclusion level of 8-10% of dietary DM.
Collapse
Affiliation(s)
- Gizaw Dabessa Satessa
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | | | - Søren Kjærulff
- Fermentationexperts A/S, Vorbassevej 12, DK-6622 Copenhagen, Denmark (S.K.)
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | - Rajan Dhakal
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | - Mette Olaf Nielsen
- Department of Animal Sciences, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
30
|
Vigors S, O’Doherty JV, Rattigan R, McDonnell MJ, Rajauria G, Sweeney T. Effect of a Laminarin Rich Macroalgal Extract on the Caecal and Colonic Microbiota in the Post-Weaned Pig. Mar Drugs 2020; 18:md18030157. [PMID: 32168972 PMCID: PMC7143854 DOI: 10.3390/md18030157] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Dietary supplementation with 300 ppm of a laminarin rich macroalgal extract reduces post-weaning intestinal dysfunction in pigs. A comprehensive analysis of the impact of laminarin on the intestinal microbiome during this period is essential to inform on the mode of action of this bioactivity. The objective of this study was to evaluate the effects of supplementing the diet of newly weaned pigs with 300 ppm of a laminarin rich extract, on animal performance, volatile fatty acids, and the intestinal microbiota using 16S rRNA gene sequencing. Pigs fed the laminarin-supplemented diet had higher average daily feed intake, growth rate, and body weight compared to pigs fed the control diet (p < 0.05). Pigs fed the laminarin-supplemented diet had reduced abundance of OTUs assigned to Enterobacteriaceae and increased abundance of OTUs assigned to the genus Prevotella (p < 0.05) compared to pigs fed the control diet. Enterobacteriaceae had negative relationships (p < 0.05) with average daily feed intake (ADFI), average daily gain (ADG), and butyric acid concentrations. In contrast, Prevotellaceae were positively correlated (p < 0.05) with ADFI, ADG, total VFA, acetic, propionic, butyric acids, and negatively correlated with isovaleric acid. Hence supplementation with a laminarin enriched extract potentially improves performance during the post-weaning period by promoting the proliferation of bacterial taxa such as Prevotella that favourably enhance nutrient digestion while reducing the load of potentially pathogenic bacterial taxa including Enterobacteriaceae.
Collapse
Affiliation(s)
- Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland; (S.V.); (R.R.); (M.J.M.); (G.R.)
| | - John V O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland; (S.V.); (R.R.); (M.J.M.); (G.R.)
- Correspondence: ; Tel.: +3531-716-7128
| | - Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland; (S.V.); (R.R.); (M.J.M.); (G.R.)
| | - Mary J McDonnell
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland; (S.V.); (R.R.); (M.J.M.); (G.R.)
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland; (S.V.); (R.R.); (M.J.M.); (G.R.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Ireland;
| |
Collapse
|
31
|
Satessa GD, Tamez-Hidalgo P, Hui Y, Cieplak T, Krych L, Kjærulff S, Brunsgaard G, Nielsen DS, Nielsen MO. Impact of Dietary Supplementation of Lactic Acid Bacteria Fermented Rapeseed with or without Macroalgae on Performance and Health of Piglets Following Omission of Medicinal Zinc from Weaner Diets. Animals (Basel) 2020; 10:E137. [PMID: 31952154 PMCID: PMC7023219 DOI: 10.3390/ani10010137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/24/2022] Open
Abstract
The feeding of medicinal zinc oxide (ZnO) to weaner piglets will be phased out after 2022 in Europe, leaving pig producers without options to manage post-weaning disorders. This study assessed whether rapeseed meal, fermented alone (FRM) or co-fermented with a single (Ascophylum nodosum; FRMA), or two (A. nodossum and Saccharina latissima; FRMAS) brown macroalagae species, could improve weaner piglet performance and stimulate intestinal development as well as maturation of gut microbiota in the absence of in-feed zinc. Weaned piglets (n = 1240) were fed, during 28-85 days of age, a basal diet with no additives (negative control; NC), 2500 ppm in-feed ZnO (positive control; PC), FRM, FRMA or FRMAS. Piglets fed FRM and FRMA had a similar or numerically improved, respectively, production performance compared to PC piglets. Jejunal villus development was stimulated over NC in PC, FRM and FRMAS (gender-specific). FRM enhanced colon mucosal development and reduced signs of intestinal inflammation. All fermented feeds and PC induced similar changes in the composition and diversity of colon microbiota compared to NC. In conclusion, piglet performance, intestinal development and health indicators were sustained or numerically improved when in-feed zinc was replaced by FRM.
Collapse
Affiliation(s)
- Gizaw D. Satessa
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark;
| | - Paulina Tamez-Hidalgo
- Fermentationexperts A/S, Vorbassevej 12, 6622 Copenhagen, Denmark; (P.T.-H.); (S.K.); (G.B.)
| | - Yan Hui
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Tomasz Cieplak
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Søren Kjærulff
- Fermentationexperts A/S, Vorbassevej 12, 6622 Copenhagen, Denmark; (P.T.-H.); (S.K.); (G.B.)
| | - Grete Brunsgaard
- Fermentationexperts A/S, Vorbassevej 12, 6622 Copenhagen, Denmark; (P.T.-H.); (S.K.); (G.B.)
| | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Mette O. Nielsen
- Department of Animal Sciences, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
32
|
Corino C, Modina SC, Di Giancamillo A, Chiapparini S, Rossi R. Seaweeds in Pig Nutrition. Animals (Basel) 2019; 9:E1126. [PMID: 31842324 PMCID: PMC6940929 DOI: 10.3390/ani9121126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/23/2023] Open
Abstract
Seaweeds are macroalgae, with different sizes, colors and composition. They consist of brown algae, red algae and green algae, which all have a different chemical composition and bioactive molecule content. The polysaccharides, laminarin and fucoidan are commonly present in brown seaweeds, ulvans are found in green seaweeds and, red algae contain a large amount of carrageenans. These bioactive compounds may have several positive effects on health in livestock. In order to reduce the antimicrobials used in livestock, research has recently focused on finding natural and sustainable molecules that boost animal performance and health. The present study thus summarizes research on the dietary integration of seaweeds in swine. In particular the influence on growth performance, nutrients digestibility, prebiotic, antioxidant, anti-inflammatory, and immunomodulatory activities were considered. The review highlights that brown seaweeds seem to be a promising dietary intervention in pigs in order to boost the immune system, antioxidant status and gut health. Data on the use of green seaweeds as a dietary supplementation seems to be lacking at present and merit further investigation.
Collapse
Affiliation(s)
- Carlo Corino
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Silvia Clotilde Modina
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Alessia Di Giancamillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Sara Chiapparini
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| |
Collapse
|
33
|
Chen J, Long L, Jiang Q, Kang B, Li Y, Yin J. Effects of dietary supplementation of Lycium barbarum polysaccharides on growth performance, immune status, antioxidant capacity and selected microbial populations of weaned piglets. J Anim Physiol Anim Nutr (Berl) 2019; 104:1106-1115. [PMID: 31746060 DOI: 10.1111/jpn.13247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) are a complex mixture of highly branched and partially characterised polysaccharides and proteoglycans extracted from the goji berry. This mixture has great potential as a novel feed supplement for pigs. Two trials were conducted to evaluate the effects of supplementation with LBPs on the growth performance, immune status, antioxidant capacity and selected intestinal microbial populations in weaned piglets. In trial 1, a total of 400 weaned piglets [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 6.34 ± 0.16 kg (21 days of age) were divided into five groups and fed a basal diet (control group) or a basal diet containing 1,000, 2,000, 4,000 or 6,000 mg/kg LBPs (supplemented at the expense of corn). Supplementation with 4,000 or 6,000 mg/kg LBPs for 2 weeks significantly increased the average daily gain (ADG) and average daily feed intake (ADFI) of the pigs compared with the control group (p < .05). In trial 2, thirty-two 21-days-old weaned piglets (BW: 6.33 ± 0.11 kg) were allotted to a control group (fed with a basal diet) or an experimental group (basal diet containing 4,000 mg/kg LBPs). The experiment lasted for 14 days. Pigs fed LBP diets exhibited an increased ADG and ADFI, and a decreased diarrhoeal incidence compared with those fed the basal diets (p < .05). Supplementation with LBPs increased the serum IgG and IgM levels (p < .05). Dietary LBPs effectively promoted antioxidant defence properties through enhancing the activities of serum, liver superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), in addition to decreasing the malondialdehyde (MDA) content (p < .05). The addition of LBPs increased the amounts of Bacteroidetes in the ileum and caecum and the caecal contents of Lactobacillus spp. and Bifidobacterium spp. (p < .05), while decreased the populations of Escherichia coli and Firmicutes in the ileum and caecum (p < .05) compared with the control group. Our results suggest that dietary supplementation with LBPs can enhance growth performance, immune status and antioxidant capacity, and improve the intestinal microbial populations of weaned piglets.
Collapse
Affiliation(s)
- Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lina Long
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Qian Jiang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Baoju Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
34
|
Kibria S, Kim IH. Impacts of dietary microalgae (Schizochytrium JB5) on growth performance, blood profiles, apparent total tract digestibility, and ileal nutrient digestibility in weaning pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6084-6088. [PMID: 31233215 DOI: 10.1002/jsfa.9886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Microalgae can serve as an alternative to animal feed additives or supplements in the diet of weaning pigs, to increase their potential and performance. Two experiments were conducted with three dietary treatments: CON (basal diet), MA1 (basal diet + 0.5% microalgae), and MA2 (basal diet + 1.0% microalgae). In Experiment 1, 150 crossbred weaning pigs were used in a 5-week experiment. In Experiment 2, 15 cannulated barrows were used. The objective of this study was to determine the effects of dietary supplementation of Schizochytrium microalgae on growth performance, blood profiles, apparent total tract digestibility, and ileal nutrient digestibility in weaning pigs. RESULTS In Experiment 1, pigs fed with MA2 had higher growth (P < 0.05) than pigs fed with MA1 from day 8 to day 21 but the experimental result showed no significant effects (P > 0.05) on growth performance, white blood cell, total cholesterol, and triglyceride among the treatments. However, lymphocytes (%) of pigs fed with MA1 and MA2 diets were significantly higher (P < 0.05) than those of pigs fed with a CON diet at day 35. In Experiment 2, the apparent total tract digestibility and ileal nutrient digestibility of dry matter and nitrogen were higher (P < 0.05) in pigs fed with MA1 and MA2 than in those fed with a CON diet. CONCLUSION Dietary microalgae supplementation had more dramatic and beneficial effects on nutrient digestibility than a CON diet. It also increased lymphocyte concentration but had no significant effect on growth performance in weaning pigs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sumya Kibria
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
35
|
Shi H, Kim SH, Kim IH. Effect of dietary inclusion of fermented sea mustard by-product on growth performance, blood profiles, and meat quality in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4304-4308. [PMID: 30828811 DOI: 10.1002/jsfa.9663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/07/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sea mustards are traditionally consumed as human food in many Asian countries. However, owing to the large consumption of seaweed, there are a substantial number of by-products produced during processing. These by-products after fermentation can provide a good alternative nutrient source for broilers and serve as a recycled resource reducing the environmental pollution of the seaweed industry. Therefore, an experiment was conducted to evaluate the effect of fermented sea mustard by-product (FSM) supplementation on growth performance, nutrient digestibility, excreta microflora, blood profiles, relative organ weight, and meat quality in broilers. The treatments were: control (CON), basal diet; FSM, CON +2 g kg-1 FSM. RESULTS During days 1 to 35, with the supplementation of 2 g kg-1 FSM, body weight gain (BWG) increased (P < 0.05), whereas the feed conversion ratio (FCR) decreased (P < 0.05). On day 35, with the supplementation of 2 g kg-1 FSM, excreta Lactobacillus counts increased (P < 0.05), and the excreta Escherichia coli counts decreased (P < 0.05). There were no significant effects (P > 0.05) on nutrient digestibility, blood profile, relative organ weight, and breast meat quality of broilers fed with FSM diets. CONCLUSION Dietary supplementation of 2 g kg-1 FSM can improve growth performance, and shifted excreta microflora by increasing the proliferation of Lactobacillus counts and by decreasing E. coli counts. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Shi
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Seung Hee Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
36
|
McDonnell RP, O' Doherty JV, Earley B, Clarke AM, Kenny DA. Effect of supplementation with n-3 polyunsaturated fatty acids and/or β-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J Anim Sci Biotechnol 2019; 10:7. [PMID: 30719285 PMCID: PMC6350401 DOI: 10.1186/s40104-019-0317-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022] Open
Abstract
Background Previous research in both calves and other species has suggested n-3 polyunsaturated fatty acids (PUFA) and β-glucans may have positive effects on immune function. This experiment measured performance, behaviour, metabolite and immunological responses to pre-weaning supplementation of dairy bull calves with n-3 PUFA in the form of fish oil and β-glucans derived from seaweed extract. 44 Holstein Friesian bull calves, aged 13.7 ± 2.5 d and weighing 48.0 ± 5.8 kg were artificially reared using an electronic feeding system. Each calf was offered 5 L (120 g/L) per day of milk replacer (MR) and assigned to one of four treatments included in the MR, (1) Control (CON); (2) 40 g n-3 PUFA per day (FO); (3) 1 g β-glucans per day (GL) and (4) 40 g n-3 PUFA per day & 1 g/d β-glucans (FOGL) in a 2 × 2 factorial design. Milk replacer and concentrate was offered from d 0–62 (pre-weaning), while concentrate provision continued for a further 31 d post-weaning period. Individual daily feed intake and feeding behaviour was recorded throughout, while bodyweight and blood analyte data were collected at regular intervals. Results Overall mean concentrate DMI from d 0–93 was 1.39, 1.27, 1.00 and 0.72 kg/d for CON, FO, GL and FOGL calves, respectively (SEM = 0.037; P < 0.0001). Calves supplemented with GL were significantly lighter (P < 0.0001) at both weaning (d 62) and turnout to pasture (d 93) than un-supplemented calves, with a similar effect (P < 0.0001) evident for calves receiving FO compared to un-supplemented contemporaries. Supplementation with GL reduced the number of unrewarded visits where milk was not consumed (P < 0.0001) while supplementation with FO increased mean drinking speed (P < 0.0001). Supplementation with GL resulted in greater concentrations of haptoglobin (P = 0.034), greater serum osmolality (P = 0.021) and lower lymphocyte levels (P = 0.027). In addition, cells from GL supplemented calves exhibited a lower response than un-supplemented contemporaries to both Phytohaemagglutinin A stimulated IFN-γ (P = 0.019) and Concanavalin A stimulated IFN-γ (P = 0.012) following in vitro challenges. Conclusions Pre-weaning supplementation of bull calves with either n-3 PUFA or β-glucan resulted in reduced voluntary feed intake of concentrate and consequently poorer pre-weaning calf performance. There was no evidence for any beneficial effect of either supplementation strategy on calves’ immune responses.
Collapse
Affiliation(s)
- Ruairi P McDonnell
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Present address: GippsDairy, 71 Korumburra-Warragul Road, Warragul, VIC 3820 Australia
| | - John V O' Doherty
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bernadette Earley
- Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| | - Anne Marie Clarke
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Kenny
- 1School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
37
|
Øverland M, Mydland LT, Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:13-24. [PMID: 29797494 PMCID: PMC6585948 DOI: 10.1002/jsfa.9143] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 05/05/2023]
Abstract
Marine macroalgae are considered as promising sustainable alternatives to conventional terrestrial animal feed resources. The advantages include high growth rate, potential cultivation in saltwater, and no occupation of arable land. Macroalgae are broadly classified as brown (Phaeophyta), red (Rhodophyta) and green (Chlorophyta) algae, and are a diverse group of marine organisms. The nutritional value of macroalgae is highly variable. The protein and essential amino acid content can be low, especially in brown species, and indigestible polysaccharides adversely affect the energy value. Optimal use of macroalgae in feeds requires suitable processing, and biorefinery approaches may increase protein content and improve nutrient availability. Macroalgae are rich in unique bioactive components and there is a growing interest in the potentially beneficial health effects of compounds such as laminarin and fucoidan in different macroalgal and macroalgal products. This review summarizes current literature on different aspects of the use of macroalgae as sources of protein and health-promoting bioactive compounds in feed for monogastric animal species. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Margareth Øverland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Liv T Mydland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Anders Skrede
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| |
Collapse
|
38
|
Garcia-Vaquero M, Rajauria G, Tiwari B, Sweeney T, O'Doherty J. Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction. Mar Drugs 2018; 16:E257. [PMID: 30061548 PMCID: PMC6117709 DOI: 10.3390/md16080257] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022] Open
Abstract
The objectives of this study were to employ response surface methodology (RSM) to investigate and optimize the effect of ultrasound-assisted extraction (UAE) variables, temperature, time and amplitude on the yields of polysaccharides (fucose and total glucans) and antioxidant activities (ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity (DPPH)) from Laminariadigitata, and to explore the suitability of applying the optimum UAE conditions for L.digitata to other brown macroalgae (L.hyperborea and Ascophyllumnodosum). The RSM with three-factor, four-level Box-Behnken Design (BBD) was used to study and optimize the extraction variables. A second order polynomial model fitted well to the experimental data with R² values of 0.79, 0.66, 0.64, 0.73 for fucose, total glucans, FRAP and DPPH, respectively. The UAE parameters studied had a significant influence on the levels of fucose, FRAP and DPPH. The optimised UAE conditions (temperature = 76 °C, time = 10 min and amplitude = 100%) achieved yields of fucose (1060.7 ± 70.6 mg/100 g dried seaweed (ds)), total glucans (968.6 ± 13.3 mg/100 g ds), FRAP (8.7 ± 0.5 µM trolox/mg freeze-dried extract (fde)) and DPPH (11.0 ± 0.2%) in L.digitata. Polysaccharide rich extracts were also attained from L.hyperborea and A. nodosum with variable results when utilizing the optimum UAE conditions for L.digitata.
Collapse
Affiliation(s)
- Marco Garcia-Vaquero
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Lyons Research Farm, Celbridge, Co., Kildare W23 ENY2, Ireland.
| | - Brijesh Tiwari
- Department of Food Biosciences, TEAGASC, Food Research Centre, Ashtown, Dublin 15, KN3K, Ireland.
| | - Torres Sweeney
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John O'Doherty
- School of Agriculture and Food Science, University College Dublin, Lyons Research Farm, Celbridge, Co., Kildare W23 ENY2, Ireland.
| |
Collapse
|
39
|
Velten S, Neumann C, Bleyer M, Gruber-Dujardin E, Hanuszewska M, Przybylska-Gornowicz B, Liebert F. Effects of 50 Percent Substitution of Soybean Meal by Alternative Proteins from <i>Hermetia illucens</i> or Spirulina platensis in Meat-Type Chicken Diets with Graded Amino Acid Supply. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ojas.2018.82009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Centella MH, Arévalo-Gallegos A, Parra-Saldivar R, Iqbal HM. Marine-derived bioactive compounds for value-added applications in bio- and non-bio sectors. JOURNAL OF CLEANER PRODUCTION 2017; 168:1559-1565. [DOI: 10.1016/j.jclepro.2017.05.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Sweeney T, Meredith H, Vigors S, McDonnell MJ, Ryan M, Thornton K, O’Doherty JV. Extracts of laminarin and laminarin/fucoidan from the marine macroalgal species Laminaria digitata improved growth rate and intestinal structure in young chicks, but does not influence Campylobacter jejuni colonisation. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Bonfim-Mendonça PDS, Capoci IRG, Tobaldini-Valerio FK, Negri M, Svidzinski TIE. Overview of β-Glucans from Laminaria spp.: Immunomodulation Properties and Applications on Biologic Models. Int J Mol Sci 2017; 18:E1629. [PMID: 28878139 PMCID: PMC5618472 DOI: 10.3390/ijms18091629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Glucans are a group of glucose polymers that are found in bacteria, algae, fungi, and plants. While their properties are well known, their biochemical and solubility characteristics vary considerably, and glucans obtained from different sources can have different applications. Research has described the bioactivity of β-glucans extracted from the algae of the Laminaria genus, including in vivo and in vitro studies assessing pro- and anti-inflammatory cytokines, vaccine production, inhibition of cell proliferation, and anti- and pro-oxidant activity. Thus, the objective of this article was to review the potential application of β-glucans from Laminaria spp. in terms of their immunomodulatory properties, microorganism host interaction, anti-cancer activity and vaccine development.
Collapse
Affiliation(s)
- Patrícia de Souza Bonfim-Mendonça
- Graduate Program in Health Sciences, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Isis Regina Grenier Capoci
- Graduate Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Flávia Kelly Tobaldini-Valerio
- Graduate Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Melyssa Negri
- Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | | |
Collapse
|
43
|
Okolie CL, C. K. Rajendran SR, Udenigwe CC, Aryee ANA, Mason B. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J Food Biochem 2017. [DOI: 10.1111/jfbc.12392] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chigozie Louis Okolie
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Truro Nova Scotia Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
| | - Subin R. C. K. Rajendran
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Truro Nova Scotia Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences; University of Ottawa, Ottawa; Ontario Canada
| | - Alberta N. A. Aryee
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
- College of Agriculture & Related Sciences; Delaware State University; Dover Delaware
| | - Beth Mason
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University, Sydney; Nova Scotia Canada
| |
Collapse
|
44
|
Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017; 6:E33. [PMID: 28445408 PMCID: PMC5447909 DOI: 10.3390/foods6050033] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited "crops". Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined.
Collapse
Affiliation(s)
- Stephen Bleakley
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
- School of Biological Sciences, College of Sciences and Health and Environment, Sustainability and Health Institute, Dublin Institute of Technology, Kevin Street, Dublin D08 NF82, Ireland.
| | - Maria Hayes
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
45
|
Novoa-Garrido M, Rebours C, Aanensen L, Torp T, Lind V, Steinshamn H. Effect of seaweed on gastrointestinal microbiota isolated from Norwegian White sheep. ACTA AGR SCAND A-AN 2017. [DOI: 10.1080/09064702.2017.1310287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M. Novoa-Garrido
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - C. Rebours
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
- Møreforsking Ålesund AS, Ålesund, Norway
| | - L. Aanensen
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - T. Torp
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - V. Lind
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - H. Steinshamn
- NIBIO – Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
46
|
Maiorano G, Stadnicka K, Tavaniello S, Abiuso C, Bogucka J, Bednarczyk M. In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult Sci 2017; 96:511-518. [PMID: 27664196 DOI: 10.3382/ps/pew311] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/29/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to examine the effect of in ovo injection of 2 different prebiotics, DiNovo (DN; Laminaria spp., extract containing laminarin and fucoidan) and Bi2tos (BI; non-digestive trans-galactooligosaccharides from milk lactose digested with Bifidobacterium bifidum NCIMB 41171), on growth, slaughter traits, intramuscular fat percentage (IF) and muscle fiber diameter, and lipid oxidation of meat in chickens reared under commercial conditions, following an in ovo trial protocol. On d 12 of embryonic incubation, 350,560 Ross 308 eggs were randomly divided into 3 experimental groups and automatically injected in ovo with: physiological saline (control group), BI at dose of 3.5 mg/embryo and DN at dose of 0.88 mg/embryo. Hatched chicks (males and females) were allocated dependent on treatment group into 3 poultry houses on each farm (3 farms in total) with a stocking density of 21.2 to 21.5 chicks/m2 At 42 d of age, 14 randomly chosen birds (7 males and 7 females), per each treatment from each farm, were individually weighed and slaughtered. The results showed no significant differences of final number of chickens/chicken house, mortality, BW per treatment, stocking density (kg/m2), feed intake, feed conversion rate (FCR), and European Broiler Index among 3 experimental groups. Treatments with BI and DN were associated with slight increases (P > 0.05) in average BW and a minor improvement (P > 0.05) of FCR in BI group. Slaughtered chickens from DN and BI treated groups had significantly increase of BW, carcass weight, carcass yield, and breast muscle weight compared with the control group. IF and muscle fiber diameter were similar among groups. Males had significantly higher slaughter traits compared to females, except for breast muscle yield. The prebiotic treatments led to a higher lipid oxidation in meat, even if the detected TBA reactive substances were below the critical value recognized for meat acceptability. In conclusion, in ovo administration of prebiotics was associated with improvements in a number of parameters of relevance to commercial poultry production.
Collapse
Affiliation(s)
- Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Katarzyna Stadnicka
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, 85-064 Bydgoszcz, Poland
| | - Siria Tavaniello
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Cinzia Abiuso
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Joanna Bogucka
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, 85-064 Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, 85-064 Bydgoszcz, Poland
| |
Collapse
|
47
|
Seaweed extracts and galacto-oligosaccharides improve intestinal health in pigs following Salmonella Typhimurium challenge. Animal 2017; 11:1488-1496. [DOI: 10.1017/s1751731117000118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
O'Doherty JV, Bouwhuis MA, Sweeney T. Novel marine polysaccharides and maternal nutrition to stimulate gut health and performance in post-weaned pigs. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Post-weaning complications in piglets are characterised by a reduction in feed intake and growth, atrophy of small-intestine architecture, upregulation of intestinal inflammatory cytokines, alterations in gastrointestinal microflora, diarrhoea and heightened susceptibility to infection. Traditional measures to reduce weaning-associated intestinal dysfunction have centred on dietary inclusion of antibiotic growth promoters in weaning pig diets, or high concentrations of dietary minerals in the form of zinc oxide. However, these strategies are under scrutiny because of their role in promoting multi-drug resistant bacteria and the accumulation of minerals in the environment. Up to recently, the main focus on finding alternatives to in-feed antibiotic growth promoters has been on dietary manipulations post-weaning, through the use of feed additives in the post-weaning diet. However, there are also other strategies that could enhance the growth and health of the newly weaned pig. One of these strategies is the use of maternal nutrition to improve growth and health in her offspring. The development of the immune system begins in utero and is further developed after the colonisation of the gastrointestinal tract with microbiota during birth and post-natal life. The early establishment of this relationship is fundamental to the development and long-term maintenance of gut homeostasis. There are significant efforts being made to identify natural alternatives to support the development of the piglet gastrointestinal tract, in particular during the weaning period. Chemodiversity in nature, including microorganisms, terrestrial plants, seaweeds and marine organisms, offers a valuable source of novel bioactives. This review will discuss the development of the intestinal tract in the pig during gestation, lactation and post-weaning periods and the factors that influence intestinal health post-weaning. It will also discuss how feeding marine bioactives in both the maternal diet and the piglet diet can be used to alleviate the negative effects associated with weaning.
Collapse
|
49
|
Kong Q, Dong S, Gao J, Jiang C. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. Int J Biol Macromol 2016; 91:867-71. [PMID: 27316763 DOI: 10.1016/j.ijbiomac.2016.06.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 11/17/2022]
Abstract
In vitro fermentation of the sulfated polysaccharides from seaweeds Enteromorpha prolifera and Laminaria japonica and their prebiotic effects on human fecal microbiota were investigated in this study. The sulfated polysaccharides were fermented in vitro for 48h by human fecal cultures. When 0.8g MWCOL (polysaccharides MWCO<30kD) from L. japonica was fermented, the pH in fecal cultures decreased from 6.5 to 5.1 and the levels of short chain fatty acids, such as acetic, butyric and lactic acids all significantly increased. After 48h fermentation, 0.8g MWCOL showed good effect on modulating the gut microflora balance, because the beneficial strains (Lactobacillus and Bifidobacterium) were both significantly higher than those in control group (p<0.05). As far as we know, this is the first report that consumption of sulfated polysaccharides from E. prolifera and L. japonica is beneficial to the ecosystem of the intestinal tract by increasing the populations of probiotics and short chain fatty acids. Furthermore, our reports indicated that molecular weight of sulfated polysaccharide from marine algae is related to its prebiotic effects.
Collapse
Affiliation(s)
- Qing Kong
- School of Food Science and Engineering, Ocean University of China, Shandong 266003, China.
| | - Shiyuan Dong
- School of Food Science and Engineering, Ocean University of China, Shandong 266003, China
| | - Jian Gao
- School of Food Science and Engineering, Ocean University of China, Shandong 266003, China
| | - Chaoyu Jiang
- School of Food Science and Engineering, Ocean University of China, Shandong 266003, China
| |
Collapse
|
50
|
Sweeney T, O'Doherty JV. Marine macroalgal extracts to maintain gut homeostasis in the weaning piglet. Domest Anim Endocrinol 2016; 56 Suppl:S84-9. [PMID: 27345326 DOI: 10.1016/j.domaniend.2016.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
Abstract
The mammalian gastrointestinal tract (GIT) is a dynamic environment, where a symbiotic relationship exists between the resident microbiota and the digestive and immune systems of the host. The development of the immune system begins in-utero and is further developed after the colonization of the GIT with microbiota during birth and postnatal life. The early establishment of this relationship is fundamental to the development and long-term maintenance of gut homeostasis. Regulatory mechanisms ensure an appropriate level of immune reactivity in the gut to accommodate the presence of beneficial and dietary microorganisms, whereas allowing effective immune responses to clear pathogens. However, unfavorable alterations in the composition of the microbiota, known as dysbiosis, have been implicated in many conditions including post-weaning diarrhea in pigs. Weaning is a major critical period in pig husbandry. It involves complex dietary, social, and environmental stresses that interfere with gut development. Post-weaning complications in piglets are characterized by a reduction in-feed intake and growth, atrophy of small intestine architecture, upregulation of intestinal inflammatory cytokines, alterations in GIT microflora, diarrhea, and heightened susceptibility to infection. These challenges have been controlled with in-feed prophylactic antibiotics and dietary minerals. However, these strategies are under scrutiny because of their role in promoting multidrug resistant bacteria and the accumulation of minerals in the environment, respectively. Therefore, significant efforts are being made to identify natural alternatives to support homeostasis in the piglet GIT, in particular during the weaning period. Chemodiversity in nature; including microorganisms, terrestrial plants, seaweeds, and marine organisms, offers a valuable source for novel bioactives. In this review, we discuss the advances in our understanding of the immune mechanisms by which the dynamic interplay of the intestinal microbiota and its host normally favors a homeostatic, symbiotic relationship, and how feeding macroalgal bioactives in both the maternal diet and the piglet diet, can be used to support this symbiotic relationship in times of challenge.
Collapse
Affiliation(s)
- T Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireleand.
| | - J V O'Doherty
- School of Agriculture, University College Dublin, Belfield, Dublin 4, Ireleand
| |
Collapse
|