1
|
Taha BA, Abdulrahm ZM, Addie AJ, Haider AJ, Alkawaz AN, Yaqoob IAM, Arsad N. Advancing optical nanosensors with artificial intelligence: A powerful tool to identify disease-specific biomarkers in multi-omics profiling. Talanta 2025; 287:127693. [PMID: 39919475 DOI: 10.1016/j.talanta.2025.127693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Multi-omics profiling integrates genomic, epigenomic, transcriptomic, and proteomic data, essential for understanding complex health and disease pathways. This review highlights the transformative potential of combining optical nanosensors with artificial intelligence (AI). It is possible to identify disease-specific biomarkers using real-time and sensitive molecular interactions. These technologies are precious for genetic, epigenetic, and proteomic changes critical to disease progression and treatment response. AI improves multi-omics profiling by analyzing large, diverse data sets and common patterns traditional methods overlook. Machine learning tools Biomarkers Discovery is revolutionizing, drug resistance is being understood, and medicine is being personalized as the combination of AI and nanosensors has advanced the detection of DNA methylation and proteomic signatures and improved our understanding of cancer, cardiovascular disease and vascular disease. Despite these advances, challenges still exist. Difficulties in integrating data sets, retaining sensors, and building scalable computing tools are the biggest obstacles. It also examines various solutions with advanced AI algorithms and innovations, including fabrication in nanosensor design. Moreover, it highlights the potential of nanosensor-assisted, AI-driven multi-omics profiling to revolutionize disease diagnosis and treatment. As technology advances, these tools pave the way for faster diagnosis, more accurate treatment and improved patient outcomes, offering new hope for personalized medicine.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi, 43600, Malaysia; Alimam University College, Balad, Iraq.
| | | | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Baghdad 10070, Iraq.
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Iraq.
| | - Ali Najem Alkawaz
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Isam Ahmed M Yaqoob
- Faculty of Computer Sciences, Universiti Putra Malaysia, 43400, Selangor, Malaysia.
| | - Norhana Arsad
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi, 43600, Malaysia.
| |
Collapse
|
2
|
Alqarni M. A portable paper-based sensor for simultaneous determination of sodium and potassium ions in the human plasma matrix. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40223791 DOI: 10.1039/d5ay00234f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Accurate determination of sodium and potassium ions in biological fluids is crucial for managing various health conditions, as these electrolytes play a vital role in regulating physiological processes and maintaining overall well-being. A low-cost portable paper-based sensor has been developed for the simultaneous determination of sodium and potassium in the human plasma matrix. It comprises three electrodes on a single paper substrate: a solid-state polyvinyl butyral reference electrode, a sodium selective electrode and a potassium selective electrode. The sensor utilizes conductive functionalized multi-walled carbon nanotubes, selective ionophores and dyes to enhance sensing capabilities. It demonstrates high selectivity for sodium and potassium ions, with a linear range of 10-6 to 10-2 M and a Nernstian response (slopes of 59.08 ± 0.32 and 59.15 ± 0.28 mV per decade for sodium and potassium, respectively). The sensor provides a reproducible stable potential over 180 days and a dynamic response time of 10 s. The described paper-based sensor is an excellent tool for point-of-care analysis of sodium and potassium imbalances due to its simplicity, cost-effectiveness and disposability. It provides fast and reliable determination of sodium and potassium ions in the human plasma matrix, making it a valuable tool for managing their imbalances in clinical settings.
Collapse
Affiliation(s)
- Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
3
|
Boonkaew S, Linfield S, Ferapontova EE. High-capacitance air-brushed electrodes for capacitive label-free bioassays. Talanta 2025; 293:128118. [PMID: 40220375 DOI: 10.1016/j.talanta.2025.128118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Non-invasive assays for protein biomarkers of cancer allow both its early diagnosis and continuous treatment monitoring. Yet, accurate point-of-care (POC) diagnostic devices for cancer diagnosis and monitoring, needed in point-of-care (POC) sites and places with limited resources, are scarce, not the least, due to their high current cost or bulky equipment necessary for analysis. Here, we show that the capacitive cellulase-linked electrochemical enzyme-linked aptamer-sorbent assay (e-ELASA) on magnetic beads (MBs) performed with airbrushed graphite (Gr) electrodes accurately and economically detects HER-2/neu, the protein biomarker of some aggressive forms of cancers and target of anticancer therapy. The disposable Gr electrodes were produced by airbrushing inexpensive graphite-powder/chitosan water inks onto polyester transparency films, producing high-capacitance electrodes, whose apparent specific capacitance ranged between 3.61 and 8.88 mF cm-2 as a function of the number of sprayed layers and graphite content in inks. The five-layer electrodes produced from 1.7 g of graphite powder (per 5 mL)/0.55 % chitosan water inks outperformed manually polished spectroscopic Gr electrodes earlier used in this label-free capacitive e-ELASA, as a result of the higher capacitive changes of the former, providing the same 0.1 fM limit of detection of HER-2/neu, in both buffer and 10 % serum, yet with a three-fold higher sensitivity. The portable and low cost airbrushed electrodes/e-ELASA set-up can be used for quick and accurate regular POC monitoring of HER-2/neu, particularly, in low and middle income settings, and, in perspective, the high-capacitance airbrushed electrodes can be adapted for other type label-free capacitive bioassays.
Collapse
Affiliation(s)
- Suchanat Boonkaew
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | - Steven Linfield
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark.
| |
Collapse
|
4
|
Mak D, Meffan C, Menges J, Marchant-Ludlow R, Hashemi A, Moore CP, Dobson RCJ, Nock V. The reversible capillary field effect transistor: a capillaric element for autonomous flow switching. LAB ON A CHIP 2025; 25:1993-2003. [PMID: 39820164 DOI: 10.1039/d4lc00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
New flow control elements in capillaric circuits are key to achieving ever more complex lab-on-a-chip functionality while maintaining their autonomous and easy-to-use nature. Capillary field effect transistors valves allow for flow in channels to be restricted and cut off utilising a high pressure triggering channel and occluding air bubble. The reversible capillary field effect transistor presented here provides a new element that can restore fluid flow in closed microchannels via autonomous circuit feedback. This allows new flow switching functionality without the need for direct user input. The valve design utilises new circuitry that draws on competing capillary pressures to withdraw liquid from a reservoir connected to the valve, creating a suction pressure that removes the occluding bubble from the channel to allow flow past the valve. The resulting reopening restores flow to the closed channel and allows for enhanced autonomous control over fluid flows. This new functionality is flexible and has the potential to be applied in a wide variety of situations, as shown here by use in several extended proof of concept arrangements. Firstly, we demonstrate how to reopen one valve while closing another using the same trigger to achieve simultaneous flow switching. We then show how a single trigger can be used for the parallel reopening of multiple valves for simultaneous release of liquids. Finally, we show the reversible capillary field effect transistor used to achieve autonomous transient mixing ratios between multiple liquids utilising a series of triggering events to determine which liquid channels are open or closed as flow progresses. The functionality this valve adds to the capillaric toolbox opens up new possibilities for applications in the creation of fully automatic diagnostic capillaric devices.
Collapse
Affiliation(s)
- Daniel Mak
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Claude Meffan
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Julian Menges
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Rhys Marchant-Ludlow
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Azadeh Hashemi
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Ciaran P Moore
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Volker Nock
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
5
|
Ratinho L, Meyer N, Greive S, Cressiot B, Pelta J. Nanopore sensing of protein and peptide conformation for point-of-care applications. Nat Commun 2025; 16:3211. [PMID: 40180898 PMCID: PMC11968944 DOI: 10.1038/s41467-025-58509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
The global population's aging and growth will likely result in an increase in chronic aging-related diseases. Early diagnosis could improve the medical care and quality of life. Many diseases are linked to misfolding or conformational changes in biomarker peptides and proteins, which affect their function and binding properties. Current clinical methods struggle to detect and quantify these changes. Therefore, there is a need for sensitive conformational sensors that can detect low-concentration analytes in biofluids. Nanopore electrical detection has shown potential in sensing subtle protein and peptide conformation changes. This technique can detect single molecules label-free while distinguishing shape or physicochemical property changes. Its proven sensitivity makes nanopore sensing technology promising for ultra-sensitive, personalized point-of-care devices. We focus on the capability of nanopore sensing for detecting and quantifying conformational modifications and enantiomers in biomarker proteins and peptides and discuss this technology as a solution to future societal health challenges.
Collapse
Affiliation(s)
- Laura Ratinho
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | - Nathan Meyer
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | | | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
6
|
Dhwaj A, Roy N, Prabhakar A, Verma D. 3D printing of calcium doped Isomalt via custom-made Extruder: Facile approach for creating blood vascular like networks within tissue mimicking hydrogel matrix. Methods 2025; 239:72-84. [PMID: 40185316 DOI: 10.1016/j.ymeth.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
3D printing domain has witnessed rapid advancements with immense applications in various fields ranging from aerospace to 3D printed organs. This study describes a facile biofabrication approach for creating an Artificial blood vascular network inside the Hydrogel matrix by using Isomalt sugar (Sugar Alcohol) as a sacrificial component inside a composite-Hydrogel matrix. Conventional 3D-printers have extruder and hot-end assembly, whereas Bioprinters use pneumatic-piston, and piezoelectric-driven extrusion mechanisms. In this study, we describe the design and operation of a custom-made miniature precision lead screw-based syringe-pump extruder mechanism with integrated temperature-controlled heat-block. We are currently using this integrated setup for melt Isomalt-based 3D printing, which can be easily mounted over the Z-axis and is driven using a geared stepper motor with high torque, providing controlled extrusion of highly viscous polymers where sugar structures are used as sacrificial materials for making Artificial blood vascular like networks in the microfluidics domain within the composite Hydrogel matrix. Computational studies using COMSOL Multiphysics were performed to predict the diffusion pattern of the DMEM culture medium to estimate the rate of mass flow through a porous media. Furthermore, Cell based testing is performed using Human Adipose Derived Mesenchymal Stem Cells (HAD-MSC's) which were cultured over the vascular Hydrogel matrix perfused with culture media with defined flowrates to mimic the natural function of the Nutrient and gaseous exchange inside human tissues. The proposed can be used to produce equivalent Tissue models which could be potentially used in On-chip drug testing platforms, drug discovery and regenerative medicine domains.
Collapse
Affiliation(s)
- Amar Dhwaj
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh 211015, India
| | - Nimisha Roy
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh 211015, India
| | - Amit Prabhakar
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh 211015, India.
| | - Deepti Verma
- Allahabad University, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
7
|
Saini N, Tiwari AK, Leahy R, Thorat N, Kulkarni A. Transforming brain cancer biomarker research with patinformatics and SWOT analysis. Drug Discov Today 2025; 30:104314. [PMID: 39971181 DOI: 10.1016/j.drudis.2025.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Brain cancer heterogeneity imposes significant challenges in diagnosis, causing high mortality. The lack of timely diagnosis intensifies these challenges, underscoring the need for improved diagnostics. Recent advancements in biomarker discovery have led to biomarker detection at ultra-low concentrations via multiplexing with biosensors, offering a promising avenue for the timely detection of brain cancer. Serving as a comprehensive resource, this review highlights the crucial role of primary biomarkers in brain cancer diagnosis via integration of patinformatics and SWOT analysis, thereby facilitating timely diagnosis and informed decision making. Furthermore, we aim to outline recent advances in brain cancer prognostics and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Neha Saini
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed University), Pune 412115, India
| | - Amit Kumar Tiwari
- Symbiosis Centre for Research and Innovation, Symbiosis International (Deemed University), Pune 412115, India; Patent Department R.K. Dewan and Co., Pune 411016 Maharashtra, India
| | - Robert Leahy
- Department of Physics and Bernal Institute University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| | - Nanasaheb Thorat
- Department of Physics and Bernal Institute University of Limerick, Castletroy, Limerick V94T9PX, Ireland; Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland.
| | - Atul Kulkarni
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed University), Pune 412115, India.
| |
Collapse
|
8
|
Yeon SY, Kim Y, Kang CM, Park S, Chung TD. Aqueous power source integrated on a microfluidic chip. Proc Natl Acad Sci U S A 2025; 122:e2423610122. [PMID: 39918946 PMCID: PMC11831149 DOI: 10.1073/pnas.2423610122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The growing demand for portable sensors for point-of-care (POC) and onsite health monitoring has led to significant interest in developing suitable power sources. In this study, we developed a microfluidic chip-integrated reverse electrodialysis (μRED) system for ecofriendly power generation with monolithic operation. Leveraging its fully ionic characteristic, μRED was successfully applied to an ionic diode, thereby demonstrating its capability for seamless integration. The feasibility of operating a bipolar electrode sensor without an external power supply was demonstrated, highlighting its broad applicability in electrochemical portable sensors. μRED has great potential for future applications, including electrochemical sensors for POC diagnostics and wearable devices.
Collapse
Affiliation(s)
- Song Yi Yeon
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Yunju Kim
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon-si16229, Gyeonggi-do, Republic of Korea
| | - Sanguk Park
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Chen CH, Huang RL, Liu CC, Hong C, Chen Y, Shen CF, Cheng CM. Paper-Based procalcitonin and Interleukin-6 test strip with Spectrum-Based optical reader for enterovirus severity differentiation in children. Clin Chim Acta 2025; 565:119942. [PMID: 39214397 DOI: 10.1016/j.cca.2024.119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Infectious diseases significantly impact global health, necessitating prompt diagnosis to mitigate life-threatening sepsis risk. Identifying patients at risk of severe neurological complications from enterovirus infections is challenging due to nonspecific initial presentations. Point-of-care testing (POCT) has emerged as a transformative tool, with low-cost lateral-flow colorimetric assays showing promise in deployable POCT devices. We developed a PCT/IL-6 rapid diagnostic system integrating lateral flow assay (LFA) test strips and a portable optical spectrum reader, allowing simultaneous semi-quantitative measurement of serum PCT and IL-6 within 30 min at the point of care. The system demonstrated a strong correlation with traditional ELISA and effectively differentiated severe pediatric enterovirus cases using serum samples. IL-6 showed superior discriminatory ability over PCT in identifying patients with severe neurological complications. This novel diagnostic platform holds great potential for early sepsis recognition and infectious disease management, especially in resource-limited settings.
Collapse
Affiliation(s)
- Cheng-Han Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Rui-Ling Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
10
|
Kim SU, Kim YJ, Lee TH. Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use. BIOSENSORS 2025; 15:13. [PMID: 39852065 PMCID: PMC11763626 DOI: 10.3390/bios15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Point-of-care (POC) use is one of the essential goals of biosensing platforms. Because the increasing demand for testing cannot be met by a centralized laboratory-based strategy, rapid and frequent testing at the right time and place will be key to increasing health and safety. To date, however, there are still difficulties in developing a simple and affordable, as well as sensitive and effective, platform that enables POC use. In terms of materials, hydrogels, a unique family of water-absorbing biocompatible polymers, have emerged as promising components for the development of biosensors. Combinations of hydrogels have various additional applications, such as in hydrophilic coatings, nanoscale filtration, stimuli-responsive materials, signal enhancement, and biodegradation. In this review, we highlight the recent efforts to develop hydrogel-assisted biosensing platforms for POC use, especially focusing on polysaccharide hydrogels like agarose, alginate, chitosan, and so on. We first discuss the pros and cons of polysaccharide hydrogels in practical applications and then introduce case studies that test different formats, such as paper-based analytical devices (PADs), microfluidic devices, and independent platforms. We believe the analysis in the present review provides essential information for the development of biosensing platforms for POC use in resource-limited settings.
Collapse
Affiliation(s)
- Sang-Uk Kim
- Korea Science and Technology Holdings, Ltd., 593, Daedoek-Daero, Yuseong-Gu, Daejeon 34112, Republic of Korea
| | - Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, 4, Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Tae Hee Lee
- Department of Biomedical Laboratory Science, Daegu Health College, Chang-ui Building, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea
| |
Collapse
|
11
|
Hamidizadeh M, Martins RF, Bier FF. Point-of-Care Diagnostics Using Self-heating Elements from Smart Food Packaging: Moving Towards Instrument-Free Nucleic Acid-Based Detection. Mol Diagn Ther 2025; 29:67-80. [PMID: 39550729 PMCID: PMC11742007 DOI: 10.1007/s40291-024-00753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Compromising between accuracy and rapidity is an important issue in analytics and diagnostics, often preventing timely and appropriate reactions to disease. This issue is particularly critical for infectious diseases, where reliable and rapid diagnosis is crucial for effective treatment and easier containment, thereby reducing economic and societal impacts. Diagnostic technologies are vital in disease modeling, tracking, treatment decision making, and epidemic containment. At the point-of-care level in modern healthcare, accurate diagnostics, especially those involving genetic-level analysis and nucleic acid amplification techniques, are still needed. However, implementing these techniques in remote or non-laboratory settings poses challenges because of the need for trained personnel and specialized equipment, as all nucleic acid-based diagnostic techniques, such as polymerase chain reaction and isothermal nucleic acid amplification, require temperature cycling or elevated and stabilized temperatures. However, in smart food packaging, there are approved and commercially available methods that use temperature regulation to enable autonomous heat generation without external sources, such as chemical heaters with phase change materials. These approaches could be applied in diagnostics, facilitating point-of-care, electricity-free molecular diagnostics, especially with nucleic acid-based detection methods such as isothermal nucleic acid amplification. In this review, we explore the potential interplay between self-heating elements, isothermal nucleic acid amplification techniques, and phase change materials. This paves the way for the development of truly portable, electricity-free, point-of-care diagnostic tools, particularly advantageous for on-site detection in resource-limited remote settings and for home use.
Collapse
Affiliation(s)
- Mojdeh Hamidizadeh
- Institute of Biochemistry and Biology, Chair of Molecular Bioanalytics and Bioelectronics, University of Potsdam, Potsdam, Germany.
| | - Renata F Martins
- Institute of Molecular Diagnostics and Bioanalytics (IMDB) gGmbH, Potsdam, Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, Chair of Molecular Bioanalytics and Bioelectronics, University of Potsdam, Potsdam, Germany
- Institute of Molecular Diagnostics and Bioanalytics (IMDB) gGmbH, Potsdam, Germany
| |
Collapse
|
12
|
Messina L, Giardi MT. Recent Status on Lactate Monitoring in Sweat Using Biosensors: Can This Approach Be an Alternative to Blood Detection? BIOSENSORS 2024; 15:3. [PMID: 39852054 PMCID: PMC11763306 DOI: 10.3390/bios15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Recent studies have shown that lactate is a molecule that plays an indispensable role in various physiological cellular processes, such as energy metabolism and signal transductions related to immune and inflammatory processes. For these reasons, interest in its detection using biosensors for non-invasive analyses of sweat during sports activity and in clinical reasons assessments has increased. In this minireview, an in-depth study was carried out on biosensors that exploited using electrochemical methods and innovative nanomaterials for lactate detection in sweat. This detection of lactate by biosensors in the sweat method seems to be feasible and highly desirable. From this commentary analysis, we can conclude that the correlation between lactate concentrations in sweat and blood is not yet clear, and studies are needed to clarify some key issues essential for the future application of this technology.
Collapse
Affiliation(s)
| | - Maria Teresa Giardi
- Microsis srl, Via degli Olmetti, 8a, 00060 Formello, Italy;
- Institute of Cristallography, CNR Area of Research of Rome, 00010 Rome, Italy
| |
Collapse
|
13
|
Huang T, Li J, Chen H, Sun H, Jang DW, Alam MM, Yeung KK, Zhang Q, Xia H, Duan L, Mao C, Gao Z. Rapid miRNA detection enhanced by exponential hybridization chain reaction in graphene field-effect transistors. Biosens Bioelectron 2024; 266:116695. [PMID: 39241340 DOI: 10.1016/j.bios.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Scalable electronic devices that can detect target biomarkers from clinical samples hold great promise for point-of-care nucleic acid testing, but still cannot achieve the detection of target molecules at an attomolar range within a short timeframe (<1 h). To tackle this daunting challenge, we integrate graphene field-effect transistors (GFETs) with exponential target recycling and hybridization chain reaction (TRHCR) to detect oligonucleotides (using miRNA as a model disease biomarker), achieving a detection limit of 100 aM and reducing the sensing time by 30-fold, from 15 h to 30 min. In contrast to traditional linear TRHCR, our exponential TRHCR enables the target miRNA to initiate an autocatalytic system with exponential kinetics, significantly accelerating the reaction speed. The resulting reaction products, long-necked double-stranded polymers with a negative charge, are effectively detected by the GFET through chemical gating, leading to a shift in the Dirac voltage. Therefore, by monitoring the magnitude of this voltage shift, the target miRNA is quantified with high sensitivity. Consequently, our approach successfully detects 22-mer miRNA at concentrations as low as 100 aM in human serum samples, achieving the desired short timeframe of 30 min, which is congruent with point-of-care testing, and demonstrates superior specificity against single-base mismatched interfering oligonucleotides.
Collapse
Affiliation(s)
- Ting Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingwei Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haohan Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Honglin Sun
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dong Wook Jang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Md Masruck Alam
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kan Kan Yeung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qicheng Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China; Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, China
| | - Han Xia
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Beard J, Hunt SL, Evans A, Goenner C, Miller BL. Mimicking a Cellular Crowding Environment for Enzyme-Free Paper-Based Nucleic Acid Tests at the Point of Care. ACS Sens 2024; 9:5069-5080. [PMID: 39344686 PMCID: PMC11519906 DOI: 10.1021/acssensors.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Point of care (PoC) nucleic acid amplification tests (NAATs) are a cornerstone of public health, providing the earliest and most accurate diagnostic method for many communicable diseases in the same location where the patient receives treatment. Communicable diseases, such as human immunodeficiency virus (HIV), disproportionately impact low-resource communities where NAATs are often unobtainable due to the resource-intensive enzymes that drive the tests. Enzyme-free nucleic acid detection methods, such as hybridization chain reaction (HCR), use DNA secondary structures for self-driven amplification schemes, producing large DNA nanostructures, capable of single-molecule detection in cellulo. These thermodynamically driven DNA-based tests have struggled to penetrate the PoC diagnostic field due to their inadequate limits of detection or complex workflows. Here, we present a proof-of-concept NAAT that combines HCR-based amplification of a target nucleic acid sequence with paper-based nucleic acid filtration and enrichment capable of detecting sub-pM levels of synthetic DNA. We reconstruct the favorable hybridization conditions of an in cellulo reaction in vitro by incubating HCR in an evaporating, microvolume environment containing poly(ethylene glycol) as a crowding agent. We demonstrate that the kinetics and thermodynamics of DNA-DNA and DNA-RNA hybridization is enhanced by the dynamic evaporating environment and inclusion of crowding agents, bringing HCR closer to meeting PoC NAAT needs.
Collapse
Affiliation(s)
- Jeffrey
W. Beard
- Department
of Dermatology, University of Rochester, Rochester, New York 14627, United States
| | - Samuel L. Hunt
- Department
of Dermatology, University of Rochester, Rochester, New York 14627, United States
| | - Alexander Evans
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14627, United States
| | - Coleman Goenner
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14627, United States
| | - Benjamin L. Miller
- Department
of Dermatology, University of Rochester, Rochester, New York 14627, United States
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14627, United States
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
15
|
Shimazu KN, Bender AT, Reinhall PG, Posner JD. Vibration mixing for enhanced paper-based recombinase polymerase amplification. LAB ON A CHIP 2024; 24:4879-4891. [PMID: 39302137 PMCID: PMC11534347 DOI: 10.1039/d4lc00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Isothermal nucleic acid amplification tests (NAATs) are a vital tool for point-of-care (POC) diagnostics. These assays are well-suited for rapid, low-cost POC diagnostics for infectious diseases compared to traditional PCR tests conducted in central laboratories. There has been significant development of POC NAATs using paper-based diagnostic devices because they provide an affordable, user-friendly, and easy to store format; however, the difficulties in integrating separate liquid components, resuspending dried reagents, and achieving a low limit of detection hinder their use in commercial applications. Several studies report low assay efficiencies, poor detection output, and poorer limits of detection in porous membranes compared to traditional tube-based protocols. Recombinase polymerase amplification is a rapid, isothermal NAAT that is highly suited for POC applications, but requires viscous reaction conditions that has poor performance when amplifying in a porous paper membrane. In this work, we show that we can dramatically improve the performance of membrane-based recombinase polymerase amplification (RPA) of HIV-1 DNA and viral RNA by employing a coin cell-based vibration mixing platform. We achieve a limit of detection of 12 copies of DNA per reaction, nearly 50% reduction in time to threshold (from ∼10 minutes to ∼5 minutes), and an overall fluorescence output increase up to 16-fold when compared to unmixed experiments. This active mixing strategy enables reactions where the target and reaction cofactors are isolated from each other prior to the reaction. We also demonstrate amplification using a low-cost vibration motor for both temperature control and mixing, without the requirement of any additional heating components.
Collapse
Affiliation(s)
- Kelli N Shimazu
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Per G Reinhall
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
17
|
Fujiuchi K, Aoki N, Ohtake T, Iwashita T, Kawasaki H. Transitions in Immunoassay Leading to Next-Generation Lateral Flow Assays and Future Prospects. Biomedicines 2024; 12:2268. [PMID: 39457581 PMCID: PMC11504701 DOI: 10.3390/biomedicines12102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
In the field of clinical testing, the traditional focus has been on the development of large-scale analysis equipment designed to process high volumes of samples with fully automatic and high-sensitivity measurements. However, there has been a growing demand in recent years for the development of analytical reagents tailored to point-of-care testing (POCT), which does not necessitate a specific location or specialized operator. This trend is epitomized using the lateral flow assay (LFA), which became a cornerstone during the 2019 pandemic due to its simplicity, speed of delivering results-within about 10 min from minimal sample concentrations-and user-friendly design. LFAs, with their paper-based construction, combine cost-effectiveness with ease of disposal, addressing both budgetary and environmental concerns comprehensively. Despite their compact size, LFAs encapsulate a wealth of technological ingenuity, embodying years of research and development. Current research is dedicated to further evolving LFA technology, paving the way for the next generation of diagnostic devices. These advancements aim to redefine accessibility, empower individuals, and enhance responsiveness to public health challenges. The future of LFAs, now unfolding, promises even greater integration into routine health management and emergency responses, underscoring their critical role in the evolution of decentralized and patient-centric healthcare solutions. In this review, the historical development of LFA and several of the latest LFA technologies using catalytic amplification, surface-enhanced Raman scattering, heat detection, electron chemical detections, magnetoresistance, and detection of reflected electrons detection are introduced to inspire readers for future research and development.
Collapse
Affiliation(s)
- Koyu Fujiuchi
- NanoSuit Research Laboratory, Institute of Photonics Medicine, Division of Preeminent Bioimaging Research, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Noriko Aoki
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Tetsurou Ohtake
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
| | - Hideya Kawasaki
- NanoSuit Research Laboratory, Institute of Photonics Medicine, Division of Preeminent Bioimaging Research, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
| |
Collapse
|
18
|
Mukherjee S, Leblanc P, Poznansky MC, Sluder AE. A HABA dye-based colorimetric assay to detect unoccupied biotin binding sites in an avidin-containing fusion protein. Biotechniques 2024; 76:485-494. [PMID: 39268899 DOI: 10.1080/07366205.2024.2397288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Avidin-biotin binding, the most robust non-covalent protein-ligand interaction occurring in nature, has wide-ranging applications in biotechnology. A frequent challenge in these applications is accurately determining the number of unoccupied biotin binding sites in avidin-containing fusion proteins. We delineate a novel assay protocol in miniaturized format to quantify available biotin binding sites based on the affinity of the anionic dye 4'-hydroxyazobenzene-2-carboxylic acid for biotin binding sites within avidin. We apply this assay as a quality control assay to evaluate the number of available biotin binding sites in different fusion protein production batches. This method offers a streamlined alternative to fluorescence-based assays commonly employed to assess biotin binding, is less time-consuming than other methods and is applicable to diverse fusion proteins.
Collapse
Affiliation(s)
- Sonia Mukherjee
- Vaccine & Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pierre Leblanc
- Vaccine & Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mark C Poznansky
- Vaccine & Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ann E Sluder
- Vaccine & Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
19
|
Leung M, Zhang L, Li X, Yu HZ. Superhydrophobic Paper Strips with Embedded Agarose-Anthocyanin Mini-Discs for Point-of-Need Quantitative pH Measurements. Anal Chem 2024; 96:15808-15815. [PMID: 39300344 DOI: 10.1021/acs.analchem.4c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Commercial pH paper is a quick and simple tool for measuring a solution's acidity/basicity, but it only provides qualitative or semi-quantitative results, and the synthetic indicator dyes within can be toxic or carcinogenic. Although pH meters enable more accurate and quantitative analysis, they are less convenient to operate and are tedious to calibrate. This presents a need for an alternative pH testing method for applications where it is not easy or possible to use a pH meter, yet quantitative results are desired. We report herein the fabrication of a pH test strip made from superhydrophobic paper and agarose-anthocyanin film discs. In the proposed method, test strips are dipped into samples and then imaged with a portable scanner (or a smartphone). The color of the film is extracted with ImageJ software (or a mobile app), using the RGB color system. By generating a calibration curve relating the film color to the sample pH using standard buffer solutions, we are able to quantify the pH of beverages and other liquids with an accuracy and precision comparable to that of a pH meter. The test strips offer the same convenience as conventional pH paper, with the added capabilities of quantitation and multiplexed testing, which presents a practical tool for point-of-need pH analysis.
Collapse
Affiliation(s)
- Michelle Leung
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lingling Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Yuci, Shanxi 030600, China
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Yuci, Shanxi 030600, China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- College of Biomedical Engineering, Taiyuan University of Technology, Yuci, Shanxi 030600, China
| |
Collapse
|
20
|
Bedair A, Hamed M, Mansour FR. Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons. Electrophoresis 2024. [PMID: 39345230 DOI: 10.1002/elps.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Bhaiyya M, Panigrahi D, Rewatkar P, Haick H. Role of Machine Learning Assisted Biosensors in Point-of-Care-Testing For Clinical Decisions. ACS Sens 2024; 9:4495-4519. [PMID: 39145721 PMCID: PMC11443532 DOI: 10.1021/acssensors.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Point-of-Care-Testing (PoCT) has emerged as an essential component of modern healthcare, providing rapid, low-cost, and simple diagnostic options. The integration of Machine Learning (ML) into biosensors has ushered in a new era of innovation in the field of PoCT. This article investigates the numerous uses and transformational possibilities of ML in improving biosensors for PoCT. ML algorithms, which are capable of processing and interpreting complicated biological data, have transformed the accuracy, sensitivity, and speed of diagnostic procedures in a variety of healthcare contexts. This review explores the multifaceted applications of ML models, including classification and regression, displaying how they contribute to improving the diagnostic capabilities of biosensors. The roles of ML-assisted electrochemical sensors, lab-on-a-chip sensors, electrochemiluminescence/chemiluminescence sensors, colorimetric sensors, and wearable sensors in diagnosis are explained in detail. Given the increasingly important role of ML in biosensors for PoCT, this study serves as a valuable reference for researchers, clinicians, and policymakers interested in understanding the emerging landscape of ML in point-of-care diagnostics.
Collapse
Affiliation(s)
- Manish Bhaiyya
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 3200003, Israel
- School
of Electrical and Electronics Engineering, Ramdeobaba University, Nagpur 440013, India
| | - Debdatta Panigrahi
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Prakash Rewatkar
- Department
of Mechanical Engineering, Israel Institute
of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
22
|
Wang MW, Chen ZM, Hsieh YC, Su YK, Lin CY, Yang SM, Li BR, Chan YH. Trimodal Multiplexed Lateral Flow Test Strips Assisted with a Portable Microfluidic Centrifugation Device. Anal Chem 2024. [PMID: 39276068 PMCID: PMC11428082 DOI: 10.1021/acs.analchem.4c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
During the COVID-19 pandemic, the use of lateral flow assays (LFAs) expanded significantly, offering testing beyond traditional health care. Their appeal lies in the ease of use, affordability, and quick results. However, LFAs often have lower sensitivity and specificity compared with ELISA and PCR tests. Efforts to improve LFAs have increased detection times and complexity, limiting their use in large-scale point-of-care settings. To address this, we propose a novel approach using probes that generate multiple signals to enhance the sensitivity and selectivity. This concept also allows multiplexed LFAs to detect multiple analytes concurrently. We developed a trimodal probe that integrates fluorescence, color, and magnetism into a single nanohybrid. The strong plasmonic absorption and high fluorescence of Au nanoparticles and polymer dots enable qualitative and semiquantitative diagnosis, while the magnetic signal facilitates accurate quantitative measurements. As proof-of-concept targets, we selected CYFRA 21-1 and CA15-3, biomarkers for lung and breast cancer, respectively. This trimodal LFA demonstrated a remarkable detection limit of 0.26 ng/mL for CYFRA 21-1 and 2.8 U/mL for CA15-3. To the best of our knowledge, this is the first platform of a trimodal LFA with multiplexing ability. The platform's accuracy and reliability were validated using clinical serum samples, showing excellent consistency with electrochemiluminescence immunoassay results. This universal concept can be applied to other targets, paving the way for the next-generation LFAs.
Collapse
Affiliation(s)
- Man-Wen Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Zong-Min Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yung-Chun Hsieh
- Department of Surgery, National Taiwan University Hospital, Hsinchu Branch, Hsinchu 30010, Taiwan
| | - Yi-Kai Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Shun-Mao Yang
- Department of Surgery, National Taiwan University Hospital, Hsinchu Branch, Hsinchu 30010, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
23
|
Kshirsagar A, Politza AJ, Guan W. Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications. ACS Sens 2024; 9:4017-4027. [PMID: 39010300 PMCID: PMC11421847 DOI: 10.1021/acssensors.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
There is a significant demand for multiplexed fluorescence sensing and detection across a range of applications. Yet, the development of portable and compact multiplexable systems remains a substantial challenge. This difficulty largely stems from the inherent need for spectrum separation, which typically requires sophisticated and expensive optical components. Here, we demonstrate a compact, lens-free, and cost-effective fluorescence sensing setup that incorporates machine learning for scalable multiplexed fluorescence detection. This method utilizes low-cost optical components and a pretrained machine learning (ML) model to enable multiplexed fluorescence sensing without optical adjustments. Its multiplexing capability can be easily scaled up through updates to the machine learning model without altering the hardware. We demonstrate its real-world application in a probe-based multiplexed Loop-Mediated Isothermal Amplification (LAMP) assay designed to simultaneously detect three common respiratory viruses within a single reaction. The effectiveness of this approach highlights the system's potential for point-of-care applications that require cost-effective and scalable solutions. The machine learning-enabled multiplexed fluorescence sensing demonstrated in this work would pave the way for widespread adoption in diverse settings, from clinical laboratories to field diagnostics.
Collapse
Affiliation(s)
- Aneesh Kshirsagar
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Anthony J. Politza
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
24
|
Utzinger B, Dixit DD, Lillehoj PB. Microfluidic finger-actuated mixer for ultrasensitive electrochemical measurements of protein biomarkers for point-of-care testing. LAB ON A CHIP 2024; 24:3802-3809. [PMID: 38979726 DOI: 10.1039/d4lc00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Current diagnostic tests for high sensitivity detection of protein biomarkers involve long incubation times or require bulky/expensive instrumentation, hindering their use for point-of-care testing. Here, we report a microfluidic electrochemical immunosensor that employs a unique finger-actuated mixer for rapid, ultrasensitive measurements of protein biomarkers. Mixing was implemented during the incubation steps, which accelerated biomolecular transport and promoted immunocomplex formation, leading to enhanced analytical sensitivity and a shortened detection time. Electrochemical measurements were performed using a handheld diagnostic device consisting of a smartphone and miniature potentiostat. Proof of principle was demonstrated by using this platform for quantitative measurements of C-X-C motif chemokine ligand 9 (CXCL9), a serological biomarker for autoimmune and inflammatory diseases, which could be detected in human plasma at concentrations as low as 4.7 pg mL-1 in <25 min. The ability to rapidly detect protein biomarkers with high sensitivity in a point-of-care format makes this device a promising tool for diagnostic testing, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Benjamin Utzinger
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
25
|
Wang L, Hu Y, Jiang N, Yetisen AK. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens Bioelectron 2024; 256:116242. [PMID: 38631133 DOI: 10.1016/j.bios.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
26
|
Dou B, Wang K, Chen Y, Wang P. Programmable DNA Nanomachine Integrated with Electrochemically Controlled Atom Transfer Radical Polymerization for Antibody Detection at Picomolar Level. Anal Chem 2024; 96:10594-10600. [PMID: 38904276 DOI: 10.1021/acs.analchem.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The quantitative detection of antibodies is crucial for the diagnosis of infectious and autoimmune diseases, while the traditional methods experience high background signal noise and restricted signal gain. In this work, we have developed a highly efficient electrochemical biosensor by constructing a programmable DNA nanomachine integrated with electrochemically controlled atom transfer radical polymerization (eATRP). The sensor works by binding the target antidigoxin antibody (anti-Dig) to the epitope of the recognization probe, which then initiates the cascaded strand displacement reaction on a magnetic bead, leading to the capture of cupric oxide (CuO) nanoparticles through magnetic separation. After CuO was dissolved, the eATRP initiators were attached to the electrode based on the CuΙ-catalyzed azide-alkyne cycloaddition. The subsequent eATRP reaction results in the formation of long electroactive polymers (poly-FcMMA), producing an amplified current response for sensitive detection of anti-Dig. This method achieved a detection limit at clinically relevant picomolar concentration in human serum, offering a sensitive, convenient, and cost-effective tool for detecting various biomarkers in a wide range of applications.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Keming Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
27
|
Yong T, Kim D, Kim S. Simultaneous multiple target detection platform based on vertical flow immunoassay. J Immunol Methods 2024; 530:113690. [PMID: 38759863 DOI: 10.1016/j.jim.2024.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
In general, vertical flow assay (VFA) has a disadvantage of requiring a complex analysis process that involves manually injecting various reagents (target analyte, washing buffer, detection conjugate, etc.) sequentially. However, in this study, we have developed an innovative paper-based VFA device that replaces the complex analysis process with one-step and enables the detection of multiple targets. The fabrication process of the multi-target detection VFA device is as follows: preparation and pre-treatment of the strip materials, design of strip cartridge, design of the multiple detection VFA device, optimization experiments for strip sample flow rates, determination of device analysis time, determination of device limit of detection (LOD), multiple target signal uniformity experiment, immunoglobulin G (IgG) and C-reactive protein (CRP) antigen-antibody multiple detection experiment, and data extraction and analysis method. The use of paper-based materials enables the device to be produced at cost-effective, and cartridge production allowed for uniform array formation. IgG and CRP are used to evaluate the performance of the device as common biomarkers. The device proposed in this study is currently under research. To validate multiple target detection capability of the VFA device proposed in this study, two types of antigens-antibodies (Human IgG and Human CRP) were employed. The detection limit is 0.15 μg/mL for IgG and 0.19 μg/mL for CRP in naked eye. Furthermore, it was confirmed that there is no cross-reactivity caused by the device structure through IgG and CRP antigens. In conclusion, the VFA device proposed in this study consists of a one-step analysis process, and it has been confirmed that it can detect multiple targets simultaneously.
Collapse
Affiliation(s)
- Taek Yong
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Dami Kim
- Philmedi R&D Center, Philmedi Incorporation, 33, Sagimakgol-ro 62beon-gil, Jungwon-gu, Seongnam 13211, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea; Philmedi R&D Center, Philmedi Incorporation, 33, Sagimakgol-ro 62beon-gil, Jungwon-gu, Seongnam 13211, Republic of Korea.
| |
Collapse
|
28
|
Mourya A, Arya S, Singh A, Bajad G, Loharkar S, Shubhra, Devangan P, Mehra NK, Shukla R, Chandra R, Madan J. Gold Nanoparticles as a Tool to Detect Biomarkers in Osteoarthritis: New Insights. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/08/2024] [Indexed: 01/06/2025] Open
|
29
|
Rasekh M, Harrison S, Schobesberger S, Ertl P, Balachandran W. Reagent storage and delivery on integrated microfluidic chips for point-of-care diagnostics. Biomed Microdevices 2024; 26:28. [PMID: 38825594 DOI: 10.1007/s10544-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
Microfluidic-based point-of-care diagnostics offer several unique advantages over existing bioanalytical solutions, such as automation, miniaturisation, and integration of sensors to rapidly detect on-site specific biomarkers. It is important to highlight that a microfluidic POC system needs to perform a number of steps, including sample preparation, nucleic acid extraction, amplification, and detection. Each of these stages involves mixing and elution to go from sample to result. To address these complex sample preparation procedures, a vast number of different approaches have been developed to solve the problem of reagent storage and delivery. However, to date, no universal method has been proposed that can be applied as a working solution for all cases. Herein, both current self-contained (stored within the chip) and off-chip (stored in a separate device and brought together at the point of use) are reviewed, and their merits and limitations are discussed. This review focuses on reagent storage devices that could be integrated with microfluidic devices, discussing further issues or merits of these storage solutions in two different sections: direct on-chip storage and external storage with their application devices. Furthermore, the different microvalves and micropumps are considered to provide guidelines for designing appropriate integrated microfluidic point-of-care devices.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Sam Harrison
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Silvia Schobesberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Wamadeva Balachandran
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
30
|
Zhong J, Ge M, Gu T, Wang T, Liu Z, Bai P. Ultra-stable and highly-bright CsPbBr 3 perovskite/silica nanocomposites for miRNA detection based on digital single-nanoparticle counting. Talanta 2024; 273:125903. [PMID: 38503120 DOI: 10.1016/j.talanta.2024.125903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Single-nanoparticle counting (SNPC) based on fluorescent tag (FT) stands out for its capacity to achieve amplification-free and sensitive detection of biomarkers. The stability and luminescence of FT are important to the sensitivity and reliability of SPNC. In this work, we developed novel perovskite/silica nanocomposites by in-situ nanoconfined growth of CsPbBr3 nanocrystals inside mesoporous structure of silica nanoparticles. PbBr(OH) was formed in an alkaline-assisted reaction triggered by water on the surface of CsPbBr3 nanocrystals. The as-obtained nanocomposites, featuring dual protection from silica matrix and PbBr(OH), exhibited high absolute photoluminescence quantum yield (PLQY) of 86.5% and demonstrated outstanding PL stability confronting with water, heat, ultrasound and UV-irradiation, which is desired by SNPC-based biosensor. Thereafter, these nanocomposites were used to construct an operationally friendly SNPC assay for the amplification-free quantification of cancer-associated miRNA. Quantitative detection of miRNA could be accomplished by directly counting the number of nanocomposites using a flow cytometer in this assay. This strategy did not ask for multiple washing steps and demonstrated specific and sensitive detection of miRNA 21, which exhibited a dynamic range of 1-1000 pM and limit of detection of 79 amol. The employment of highly stable perovskite/silica nanocomposites improved the test reliability and stability of SNPC, revealing the vast potential of perovskites in biosensing.
Collapse
Affiliation(s)
- Jiajun Zhong
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China
| | - Minghao Ge
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China
| | - Tongxu Gu
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China.
| | - Tong Wang
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China; CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China
| | - Zhizhou Liu
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China
| | - Pengli Bai
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China; CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China.
| |
Collapse
|
31
|
Flynn CD, Chang D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. Diagnostics (Basel) 2024; 14:1100. [PMID: 38893627 PMCID: PMC11172335 DOI: 10.3390/diagnostics14111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The integration of artificial intelligence (AI) into point-of-care (POC) biosensing has the potential to revolutionize diagnostic methodologies by offering rapid, accurate, and accessible health assessment directly at the patient level. This review paper explores the transformative impact of AI technologies on POC biosensing, emphasizing recent computational advancements, ongoing challenges, and future prospects in the field. We provide an overview of core biosensing technologies and their use at the POC, highlighting ongoing issues and challenges that may be solved with AI. We follow with an overview of AI methodologies that can be applied to biosensing, including machine learning algorithms, neural networks, and data processing frameworks that facilitate real-time analytical decision-making. We explore the applications of AI at each stage of the biosensor development process, highlighting the diverse opportunities beyond simple data analysis procedures. We include a thorough analysis of outstanding challenges in the field of AI-assisted biosensing, focusing on the technical and ethical challenges regarding the widespread adoption of these technologies, such as data security, algorithmic bias, and regulatory compliance. Through this review, we aim to emphasize the role of AI in advancing POC biosensing and inform researchers, clinicians, and policymakers about the potential of these technologies in reshaping global healthcare landscapes.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dingran Chang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
32
|
Strohmaier-Nguyen D, Horn C, Baeumner AJ. Membrane-Free Lateral Flow Assay with the Active Control of Fluid Transport for Ultrasensitive Cardiac Biomarker Detection. Anal Chem 2024; 96:7014-7021. [PMID: 38659215 PMCID: PMC11079857 DOI: 10.1021/acs.analchem.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Membrane-based lateral flow immunoassays (LFAs) have been employed as early point-of-care (POC) testing tools in clinical settings. However, the varying membrane properties, uncontrollable sample transport in LFAs, visual readout, and required large sample volumes have been major limiting factors in realizing needed sensitivity and desirable precise quantification. Addressing these challenges, we designed a membrane-free system in which the desirable three-dimensional (3D) structure of the detection zone is imitated and used a small pump for fluid flow and fluorescence as readout, all the while maintaining a one-step assay protocol. A hydrogel-like protein-polyelectrolyte complex (PPC) within a polyelectrolyte multilayer (PEM) was developed as the test line by complexing polystreptavidin (pSA) with poly(diallyldimethylammonium chloride) (PDDA), which in turn was layered with poly(acrylic acid) (PAA) resulting in a superior 3D streptavidin-rich test line. Since the remainder of the microchannel remains material-free, good flow control is achieved, and with the total volume of 20 μL, 7.5-fold smaller sample volumes can be used in comparison to conventional LFAs. High sensitivity with desirable reproducibility and a 20 min total assay time were achieved for the detection of NT-proBNP in plasma with a dynamic range of 60-9000 pg·mL-1 and a limit of detection of 56 pg·mL-1 using probe antibody-modified fluorescence nanoparticles. While instrument-free visual detection is no longer possible, the developed lateral flow channel platform has the potential to dramatically expand the LFA applicability, as it overcomes the limitations of membrane-based immunoassays, ultimately improving the accuracy and reducing the sample volume so that finger-prick analyses can easily be done in a one-step assay for analytes present at very low concentrations.
Collapse
Affiliation(s)
- Dan Strohmaier-Nguyen
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Carina Horn
- Roche
Diagnostics GmbH, 68305 Mannheim, Germany
| | - Antje J. Baeumner
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Chen X, Duan X, Gao Y. Recent Advances in Acoustofluidics for Point-of-Care Testing. Chempluschem 2024; 89:e202300489. [PMID: 37926688 DOI: 10.1002/cplu.202300489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Point-of-care testing (POCT) has played important role in clinical diagnostics, environmental assessment, chemical and biological analyses, and food and chemical processing due to its faster turnaround compared to laboratory testing. Dedicated manipulations of solutions or particles are generally required to develop POCT technologies that achieve a "sample-in-answer-out" operation. With the development of micro- and nanotechnology, many tools have been developed for sample preparation, on-site analysis and solution manipulations (mixing, pumping, valving, etc.). Among these approaches, the use of acoustic waves to manipulate fluids and particles (named acoustofluidics) has been applied in many researches. This review focuses on the recent developments in acoustofluidics for POCT. It starts with the fundamentals of different acoustic manipulation techniques and then lists some of representative examples to highlight each method in practical POC applications. Looking toward the future, a compact, portable, highly integrated, low power, and biocompatible technique is anticipated to simultaneously achieve precise manipulation of small targets and multimodal manipulation in POC applications.
Collapse
Affiliation(s)
- Xian Chen
- Center for Advanced Measurement Science, National Institute of Metrology, East Beisanhuan Road 18, Chaoyang District, Beijing, 100029, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments and, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, East Beisanhuan Road 18, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
34
|
Kim J, Yoo H, Woo S, Oh SS. Aptasensor-encapsulating semi-permeable proteinosomes for direct target detection in non-treated biofluids. Biosens Bioelectron 2024; 251:116062. [PMID: 38350238 DOI: 10.1016/j.bios.2024.116062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Detecting biomarkers in biofluids directly without sample treatments makes molecular diagnostics faster and more efficient. Aptasensors, the nucleic acid-based molecular biosensors, can detect a wide range of target molecules, but their susceptibility to degradation and aggregation by nucleases and charged proteins, respectively, limits their direct use in clinical samples. In this work, we demonstrate that when aptasensors are encapsulated in proteinosomes, the protein-based liposome mimics, clinically important small molecules can be sensitively and selectively detected in non-treated specimens, such as 100 % unpurified serum. As serum albumin is used to form the membrane, the nanomeshed proteinosomes become semi-permeable and antifouling, which enables exclusive admission of small molecules while blocking unwanted large proteins. Consequently, the enclosed aptasensors can maintain close-to-optimal performance for target binding, and nucleolytic degradation and electrostatic aggregation are effectively suppressed. Three different structure-switching aptamers specific for estradiol, dopamine, and cocaine, respectively, are demonstrated to fully conserve their high affinities and specificities inside the microcapsules. The shielding effect of proteinosomes is indeed exceptional; the enclosed DNA aptasensors remain completely intact over 18 h in serum and even in an extremely concentrated DNase solution (1 mg/ml, ∼300,000× the serum level). Moreover, the proteinosome-mediated compartmentalization enables independent operation of multiple aptasensors in the same mixture. Hence, simultaneous real-time sensing of two different targets is demonstrated with different operation modes, 'recording' target appearance and 'reporting' target concentration changes. This work is the first demonstration of small-molecule-specific aptasensors operating with optimal performance in serum environments and will find promising applications in molecular diagnostics.
Collapse
Affiliation(s)
- Jinmin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Hyebin Yoo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea.
| |
Collapse
|
35
|
Fu X, Qiu Y, Zhang H, Tian Y, Liu A, Wu H. Microfluidic sweat patch based on capillary force and evaporation pump for real-time continuous sweat analysis. BIOMICROFLUIDICS 2024; 18:034106. [PMID: 38841318 PMCID: PMC11149117 DOI: 10.1063/5.0208075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In addition to the common blood and urine, fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body's state. Wearable sweat sensors are crucial for understanding human physiological health; however, real-time in situ measurement of multiple biomarkers in sweat remains a significant challenge. Here, we propose a wearable microfluidic patch featuring an integrated microfluidic channel and evaporation pump for accelerated and continuous sweat collection, eliminating the need for additional sweat storage cavities that typically impede real-time detection. Capillary forces are harnessed to facilitate the rapid flow of sweat through the detection area, while an evaporation pump based on porous laser-induced graphene enhances sweat evaporation. The synergistic integration of these two components enables an uninterrupted flow of fresh sweat within the patch, ensuring real-time monitoring. The influence of channel size parameters on sweat flow velocity is analyzed, and the optimal width-to-height ratio for achieving the desired flow velocity is determined. By implementing a multi-channel parallel design with chamfering, liquid flow resistance is effectively reduced. Furthermore, the patch integrates sensor modules for sodium ion, chloride ion, glucose, and pH value measurements, ensuring excellent sealing and stability of the assembled system. This work presents a simplified approach to developing wearable sweat sensors that hold the potential for health monitoring and disease diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Huaping Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
36
|
Lou Y, Shi X, Zhou S, Tian J, Cao R. Smartphone-based paper microfluidic detection implementing a versatile quick response code conversion strategy. SENSORS AND ACTUATORS B: CHEMICAL 2024; 406:135393. [DOI: 10.1016/j.snb.2024.135393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
37
|
Zoratto N, Klein‐Cerrejon D, Gao D, Inchiparambil T, Sachs D, Luo Z, Leroux J. A Bioinspired and Cost-Effective Device for Minimally Invasive Blood Sampling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308809. [PMID: 38450888 PMCID: PMC11095219 DOI: 10.1002/advs.202308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Conventional venipuncture is invasive and challenging in low and middle-income countries. Conversely, point-of-care devices paired with fingersticks, although less invasive, suffer from high variability and low blood volume collection. Recently approved microsampling devices address some of these issues but remain cost-prohibitive for resource-limited settings. In this work, a cost-effective microsampling device is described for the collection of liquid blood with minimal invasiveness and sufficient volume retrieval for laboratory analyses or immediate point-of-care testing. Inspired by the anatomy of sanguivorous leeches, the single-use device features a storage compartment for blood collection and a microneedle patch hidden within a suction cup. Finite Element Method simulations, corroborated by mechanical analyses, guide the material selection for device fabrication and design optimization. In piglets, the device successfully collects ≈195 µL of blood with minimal invasiveness. Additionally, a tailor-made lid and adapter enable safe fluid transportation and integration with commercially available point-of-care systems for on-site analyses, respectively. Taken together, the proposed platform holds significant promise for enhancing healthcare in the pediatric population by improving patient compliance and reducing the risk of needlestick injuries through concealed microneedles. Most importantly, given its cost-effective fabrication, the open-source microsampling device may have a meaningful impact in resource-limited healthcare settings.
Collapse
Affiliation(s)
- Nicole Zoratto
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - David Klein‐Cerrejon
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - Daniel Gao
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - Tino Inchiparambil
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - David Sachs
- Institute for Mechanical SystemsDepartment of Mechanical and Process EngineeringETHZurich8093Switzerland
| | - Zhi Luo
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P.R. China
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| |
Collapse
|
38
|
Liu B, Cheng Y, Pan X, Yang W, Li X, Wang L, Ye H, Pan T. Multicolor-Assay-on-a-Chip Processed by Robotic Operation (MACpro) with Improved Diagnostic Accuracy for Field-Deployable Detection. Anal Chem 2024; 96:6634-6642. [PMID: 38622069 DOI: 10.1021/acs.analchem.3c05918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The ability to deploy decentralized laboratories with autonomous and reliable disease diagnosis holds the potential to deliver accessible healthcare services for public safety. While microfluidic technologies provide precise manipulation of small fluid volumes with improved assay performance, their limited automation and versatility confine them to laboratories. Herein, we report the utility of multicolor assay-on-a-chip processed by robotic operation (MACpro), to address this unmet need. The MACpro platform comprises a robot-microfluidic interface and an eye-in-hand module that provides flexible yet stable actions to execute tasks in a programmable manner, such as the precise manipulation of the microfluidic chip along with different paths. Notably, MACpro shows improved detection performance by integrating the microbead-based antibody immobilization with enhanced target recognition and multicolor sensing via Cu2+-catalyzed plasmonic etching of gold nanorods for rapid and sensitive analyte quantification. Using interferon-gamma as an example, we demonstrate that MACpro completes a sample-to-answer immunoassay within 30 min and achieves a 10-fold broader dynamic range and a 10-fold lower detection limit compared to standard enzyme-linked immunosorbent assays (0.66 vs 5.2 pg/mL). MACpro extends the applications beyond traditional laboratories and presents an automated solution to expand diagnostic capacity in diverse settings.
Collapse
Affiliation(s)
- Binyao Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Yixin Cheng
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Xiang Pan
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Wen Yang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Xiangpeng Li
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lele Wang
- Shenzhen Shaanxi Coal Hi-tech Research Institute Co., Ltd, Shenzhen 518107, P.R. China
| | - Haihang Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Tingrui Pan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
39
|
Adampourezare M, Nikzad B, Sajedi-Amin S, Rahimpour E. Colorimetric sensor array for versatile detection and discrimination of model analytes with environmental relevance. BMC Chem 2024; 18:80. [PMID: 38649980 PMCID: PMC11034120 DOI: 10.1186/s13065-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
In the current work, a rapid, simple, low-cost, and sensitive smartphone-based colorimetric sensor array coupled with pattern-recognition methods was proposed for the determination and differentiation of some organic and inorganic bases (i.e., OH-, CO32-, PO43-, NH3, ClO-, diethanolamine, triethanolamine) as model compounds. The sensing system has been designed based on color-sensitive dyes (Fuchsine, Giemsa, Thionine, and CoCl2) which were used as sensor elements. The color changes of a sensor array were observed by the naked eye. The color patterns were recorded using digital imaging in a three-dimensional (red, green, and blue) space and quantitatively analyzed with color calibration techniques. Distinctive colorimetric patterns for target bases via linear discriminant analysis (LDA) and hierarchical clustering analysis (HCA) were observed. The results indicated that the analytes related to each class (at the different concentration levels in the range of 0.001-1.0 mol L-1) were clustered together in the canonical discriminant plot and HCA dendrogram with high sensitivity and an overall precision of 85%. Furthermore, the first function factor of LDA correlated with the concentration of each target analyte in a correlation coefficient (R2) range of 0.864-0.996. These described procedures based on the colorimetric sensor array technique could be a promising candidate for practical applications in package technology and facile detection of pollutants.
Collapse
Affiliation(s)
- Mina Adampourezare
- Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Nikzad
- Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Sanaz Sajedi-Amin
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Gao L, Yi K, Tan Y, Guo C, Zheng D, Shen C, Li F. Engineering Gene-Specific DNAzymes for Accessible and Multiplexed Nucleic Acid Testing. JACS AU 2024; 4:1664-1672. [PMID: 38665662 PMCID: PMC11040662 DOI: 10.1021/jacsau.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
The accurate and timely detection of disease biomarkers at the point-of-care is essential to ensuring effective treatment and epidemiological surveillance. Here, we report the selection and engineering of RNA-cleaving DNAzymes that respond to specific genetic markers and amplify detection signals. Because the target-specific activation of gene-specific DNAzymes (gDz) is like the trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated (Cas) machinery, we further developed a CRISPR-like assay using RNA-cleaving DNAzyme coupled with isothermal sequence and signal amplification (CLARISSA) for nucleic acid detection in clinical samples. Building on the high sequence specificity and orthogonality of gDzs, CLARISSA is highly versatile and expandable for multiplex testing. Upon integration with an isothermal recombinase polymerase amplification, CLARISSA enabled the detection of human papillomavirus (HPV) 16 in 189 cervical samples collected from cervical cancer screening participants (n = 189) with 100% sensitivity and 97.4% specificity, respectively. A multiplexed CLARISSA further allowed the simultaneous analyses of HPV16 and HPV18 in 46 cervical samples, which returned clinical sensitivity of 96.3% for HPV16 and 83.3% for HPV18, respectively. No false positives were found throughout our tests. Besides the fluorescence readout using fluorogenic reporter probes, CLARISSA is also demonstrated to be fully compatible with a visual lateral flow readout. Because of the high sensitivity, accessibility, and multiplexity, we believe CLARISSA is an ideal CRISPR-Dx alternative for clinical diagnosis in field-based and point-of-care applications.
Collapse
Affiliation(s)
- Lu Gao
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ke Yi
- Department
of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic
and Pediatric Diseases and Birth Defects of Ministry of Education,
West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Tan
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chen Guo
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Danxi Zheng
- Department
of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic
and Pediatric Diseases and Birth Defects of Ministry of Education,
West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenlan Shen
- Department
of Laboratory Medicine, Med+X Center for Manufacturing, West China
Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Li
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Department
of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
- Department
of Laboratory Medicine, Med+X Center for Manufacturing, West China
Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
41
|
Williams DE, Li W, Chandrasekhar M, Corazza CMOW, Deijs GS, Djoko L, Govind B, Jose E, Kwon YJ, Lowe T, Panchal A, Reshef G, Vargas MJT, Simpson MC. Lab on a bead with oscillatory centrifugal microfluidics for fast and complete mixing enables fast and accurate biomedical assays. Sci Rep 2024; 14:8637. [PMID: 38622241 PMCID: PMC11018808 DOI: 10.1038/s41598-024-58720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Rapid mixing and precise timing are key for accurate biomedical assay measurement, particularly when the result is determined as the rate of a reaction: for example rapid immunoassay in which the amount of captured target is kinetically determined; determination of the concentration of an enzyme or enzyme substrate; or as the final stage in any procedure that involves a capture reagent when an enzyme reaction is used as the indicator. Rapid mixing and precise timing are however difficult to achieve in point-of-care devices designed for small sample volumes and fast time to result. By using centrifugal microfluidics and transposing the reaction surface from a chamber to a single mm-scale bead we demonstrate an elegant and easily manufacturable solution. Reagents (which may be, for example, an enzyme, enzyme substrate, antibody or antigen) are immobilised on the surface of a single small bead (typically 1-2 mm in diameter) contained in a cylindrical reaction chamber subjected to periodically changing rotational accelerations which promote both mixing and uniform mass-transfer to the bead surface. The gradient of Euler force across the chamber resulting from rotational acceleration of the disc, dΩdisc/dt, drives circulation of fluid in the chamber. Oscillation of Euler force by oscillation of rotational acceleration with period, T, less than that of the hydrodynamic relaxation time of the fluid, folds the fluid streamlines. Movement of the bead in response to the fluid and the changing rotational acceleration provides a dynamically changing chamber shape, further folding and expanding the fluid. Bead rotation and translation driven by fluid flow and disc motion give uniformity of reaction over the surface. Critical parameters for mixing and reaction uniformity are the ratio of chamber radius to bead radius, rchamber/rbead, and the product Trchamber(dΩdisc/dt), of oscillation period and Euler force gradient across the fluid. We illustrate application of the concept using the reaction of horse radish peroxidase (HRP) immobilised on the bead surface with its substrate tetramethylbenzidine (TMB) in solution. Acceleration from rest to break a hydrophobic valve provided precise timing for TMB contact with the bead. Solution uniformity from reaction on the surface of the bead in volumes 20-50 uL was obtained in times of 2.5 s or less. Accurate measurement of the amount of surface-bound HRP by model fitting to the measured kinetics of colour development at 10 s intervals is demonstrated.
Collapse
Affiliation(s)
- David E Williams
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Wei Li
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | | | | | - Gerrit Sjoerd Deijs
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Lionel Djoko
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Bhavesh Govind
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Ellen Jose
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Yong Je Kwon
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Tiffany Lowe
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Anil Panchal
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Gabrielle Reshef
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Matheus J T Vargas
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - M Cather Simpson
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand.
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
42
|
Konno S, Kudo H. Fundamental Study of a Wristwatch Sweat Lactic Acid Monitor. BIOSENSORS 2024; 14:187. [PMID: 38667180 PMCID: PMC11048019 DOI: 10.3390/bios14040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
A lactic acid (LA) monitoring system aimed at sweat monitoring was fabricated and tested. The sweat LA monitoring system uses a continuous flow of phosphate buffer saline, instead of chambers or cells, for collecting and storing sweat fluid excreted at the skin surface. To facilitate the use of the sweat LA monitoring system by subjects when exercising, the fluid control system, including the sweat sampling device, was designed to be unaffected by body movements or muscle deformation. An advantage of our system is that the skin surface condition is constantly refreshed by continuous flow. A real sample test was carried out during stationary bike exercise, which showed that LA secretion increased by approximately 10 μg/cm2/min compared to the baseline levels before exercise. The LA levels recovered to baseline levels after exercise due to the effect of continuous flow. This indicates that the wristwatch sweat LA monitor has the potential to enable a detailed understanding of the LA distribution at the skin surface.
Collapse
Affiliation(s)
| | - Hiroyuki Kudo
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Tokyo 214-8571, Kanagawa, Japan
| |
Collapse
|
43
|
Gao Y, Shi J, Wu C, Cao L, Liu L, Wang J, Luo X, Zhang X, Zhang Y. Functional Green-Emitting Mn 2+-doped Zinc Germanate Persistent Luminescent Nanoparticles for Dual-Mode Immunochromatographic Detection. Anal Chem 2024; 96:5694-5701. [PMID: 38538547 DOI: 10.1021/acs.analchem.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Immunochromatography is a commonly used immediate detection technique, using signal labels to generate detection signals for rapid medical diagnosis. However, its detection sensitivity is affected by background fluorescence caused by the excitation light source. We have developed an immunochromatographic test strip using Zn2GeO4:Mn2+ (ZGM) persistent luminescent nanoparticles (PLNPs) for immediate fluorescence detection and highly sensitive persistent luminescence (PersL) detection without background fluorescence interference. ZGM emits a strong green light when exposed to ultraviolet (UV) excitation, and its green PersL can persist for over 30 min after the excitation light is turned off. We modified the surface of ZGM with heparin-binding protein (HBP) antibodies to create immunochromatographic test strips for the detection of HBP as the target analyte. Under UV excitation, the chromatography test paper can be visually observed at concentrations as low as 25 ng/mL. After the excitation light source is switched off, PersL can achieve a detection limit of 4.7 ng/mL without background interference. This dual-mode immunochromatographic detection, based on ZGM, shows great potential for in vitro diagnostic applications.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Chen Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Longlong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinyuan Wang
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiaofang Luo
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiao Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
44
|
Zhang C, Wang J. PIS-Net: Efficient Medical Image Segmentation Network with Multivariate Downsampling for Point-of-Care. ENTROPY (BASEL, SWITZERLAND) 2024; 26:284. [PMID: 38667838 PMCID: PMC11049141 DOI: 10.3390/e26040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Recently, with more portable diagnostic devices being moved to people anywhere, point-of-care (PoC) imaging has become more convenient and more popular than the traditional "bed imaging". Instant image segmentation, as an important technology of computer vision, is receiving more and more attention in PoC diagnosis. However, the image distortion caused by image preprocessing and the low resolution of medical images extracted by PoC devices are urgent problems that need to be solved. Moreover, more efficient feature representation is necessary in the design of instant image segmentation. In this paper, a new feature representation considering the relationships among local features with minimal parameters and a lower computational complexity is proposed. Since a feature window sliding along a diagonal can capture more pluralistic features, a Diagonal-Axial Multi-Layer Perceptron is designed to obtain the global correlation among local features for a more comprehensive feature representation. Additionally, a new multi-scale feature fusion is proposed to integrate nonlinear features with linear ones to obtain a more precise feature representation. Richer features are figured out. In order to improve the generalization of the models, a dynamic residual spatial pyramid pooling based on various receptive fields is constructed according to different sizes of images, which alleviates the influence of image distortion. The experimental results show that the proposed strategy has better performance on instant image segmentation. Notably, it yields an average improvement of 1.31% in Dice than existing strategies on the BUSI, ISIC2018 and MoNuSeg datasets.
Collapse
Affiliation(s)
| | - Jia Wang
- School of Computer Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
45
|
Hu Y, Chatzilakou E, Pan Z, Traverso G, Yetisen AK. Microneedle Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306560. [PMID: 38225744 PMCID: PMC10966570 DOI: 10.1002/advs.202306560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Eleni Chatzilakou
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zhisheng Pan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Giovanni Traverso
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
46
|
Abdelrazig AO, Rijiravanich P, Suwannarat S, Surareungchai W, Somasundrum M. Detection of DNA using gold nanoparticle-coated silica nanoparticles. Anal Biochem 2024; 686:115411. [PMID: 38070665 DOI: 10.1016/j.ab.2023.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
We report a sensitive lateral flow assay (LFA) in which the assay colour change originated from reporter labels constructed from silica spheres (radius = 450 nm) coated with approximately 3.9 × 103 gold nanoparticles (radius = 8.5 nm). These reporter labels were modified with DNA and deposited in the conjugation area of an LFA device assembled on wax-patterned Fusion 5 paper. Test and control zones of the device were pre-loaded with capture probe formed by avidin-coated mesoporous silica nanoparticles attached with biotin-tagged DNA sequences. Proof-of-concept was demonstrated by the detection of a partial sequence of the actin gene of Colletotrichum truncatum. The DNA target could be detected with an LOD of 46 pM, which was 5 times lower than a comparative assay using gold nanoparticles alone. The assay showed good selectivity against the Colletotrichum species C. scovillei and C. gloeosporioides, as well as against DNA from the fungal genera Aspergillus niger and Alternaria alternata. There was negligible change in sensor response over storage for one month at room temperature. The LFA was used to detect PCR products following extraction from mycelium.
Collapse
Affiliation(s)
- Amir Osman Abdelrazig
- Sensor Technology Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand
| | - Patsamon Rijiravanich
- BioSciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand.
| | - Sawita Suwannarat
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Werasak Surareungchai
- Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok, 10400, Thailand; School of Bioresources and Technology, KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Mithran Somasundrum
- BioSciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
47
|
Beard JW, Hunt SL, Evans A, Goenner C, Miller BL. Mimicking an in cellulo environment for enzyme-free paper-based nucleic acid tests at the point of care. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582375. [PMID: 38464301 PMCID: PMC10925243 DOI: 10.1101/2024.02.27.582375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Point of care (PoC) nucleic acid amplification tests (NAATs) are a cornerstone of public health, providing the earliest and most accurate diagnostic method for many communicable diseases, such as HIV, in the same location the patient receives treatment. Communicable diseases disproportionately impact low-resource communities where NAATs are often unobtainable due to the resource intensive enzymes that drive the tests. Enzyme-free nucleic acid detection methods, such as hybridization chain reaction (HCR), use DNA secondary structures for self-driven amplification schemes producing large DNA nanostructures and capable of single molecule detection in cellulo. These thermodynamically driven DNA-based tests have struggled to penetrate the PoC diagnostic field due to their inadequate limits of detection or complex workflows. Here we present a proof-of-concept NAAT that combines HCR-based amplification of a target nucleic acid sequence with paper-based nucleic acid filtration and enrichment capable of detecting sub pM levels of synthetic DNA. We reconstruct the favorable hybridization conditions of an in cellulo reaction in vitro by incubating HCR in an evaporating, microvolume environment containing poly(ethylene glycol) as a crowding agent. We demonstrate that the kinetics and thermodynamics of DNA-DNA and DNA-RNA hybridization is enhanced by the dynamic evaporating environment and inclusion of crowding agents, bringing HCR closer to meeting PoC NAAT needs.
Collapse
Affiliation(s)
- Jeffrey W. Beard
- Department of Dermatology, University of Rochester, Rochester, NY 14627, USA
| | - Samuel L. Hunt
- Department of Dermatology, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Evans
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Coleman Goenner
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14627, USA
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
48
|
Cai R, Ngwadom C, Saxena R, Soman J, Bruggeman C, Hickey DP, Verduzco R, Ajo-Franklin CM. Creation of a point-of-care therapeutics sensor using protein engineering, electrochemical sensing and electronic integration. Nat Commun 2024; 15:1689. [PMID: 38402222 PMCID: PMC11258353 DOI: 10.1038/s41467-024-45789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
Point-of-care sensors, which are low-cost and user-friendly, play a crucial role in precision medicine by providing quick results for individuals. Here, we transform the conventional glucometer into a 4-hydroxytamoxifen therapeutic biosensor in which 4-hydroxytamoxifen modulates the electrical signal generated by glucose oxidation. To encode the 4-hydroxytamoxifen signal within glucose oxidation, we introduce the ligand-binding domain of estrogen receptor-alpha into pyrroloquinoline quinone-dependent glucose dehydrogenase by constructing and screening a comprehensive protein insertion library. In addition to obtaining 4-hydroxytamoxifen regulatable engineered proteins, these results unveil the significance of both secondary and quaternary protein structures in propagation of conformational signals. By constructing an effective bioelectrochemical interface, we detect 4-hydroxytamoxifen in human blood samples as changes in the electrical signal and use this to develop an electrochemical algorithm to decode the 4-hydroxytamoxifen signal from glucose. To meet the miniaturization and signal amplification requirements for point-of-care use, we harness power from glucose oxidation to create a self-powered sensor. We also amplify the 4-hydroxytamoxifen signal using an organic electrochemical transistor, resulting in milliampere-level signals. Our work demonstrates a broad interdisciplinary approach to create a biosensor that capitalizes on recent innovations in protein engineering, electrochemical sensing, and electrical engineering.
Collapse
Affiliation(s)
- Rong Cai
- Department of Biosciences, Rice University, Houston, TX, USA.
| | | | - Ravindra Saxena
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jayashree Soman
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Chase Bruggeman
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Caroline M Ajo-Franklin
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
49
|
Lei R, Arain H, Wang D, Arunachalam J, Saxena R, Mohan C. Duplex Vertical-Flow Rapid Tests for Point-of-Care Detection of Anti-dsDNA and Anti-Nuclear Autoantibodies. BIOSENSORS 2024; 14:98. [PMID: 38392017 PMCID: PMC10887294 DOI: 10.3390/bios14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The goal of this study is to develop a rapid diagnostic test for rheumatic disease and systemic lupus erythematosus (SLE) screening. A novel rapid vertical flow assay (VFA) was engineered and used to assay anti-nuclear (ANA) and anti-dsDNA (αDNA) autoantibodies from systemic lupus erythematosus (SLE) patients and healthy controls (HCs). Observer scores and absolute signal intensities from the VFA were validated via ELISA. The rapid point-of-care VFA test that was engineered demonstrated a limit of detection of 0.5 IU/mL for ANA and αDNA autoantibodies in human plasma with an inter-operator CV of 19% for ANA and 12% for αDNA. Storage stability was verified over a three-month period. When testing anti-dsDNA and ANA levels in SLE and HC serum samples, the duplex VFA revealed 95% sensitivity, 72% specificity and an 84% ROC AUC value in discriminating disease groups, comparable to the gold standard, ELISA. The rapid αDNA/ANA duplex VFA can potentially be used in primary care clinics for evaluating patients or at-risk subjects for rheumatic diseases and for planning follow-up testing. Given its low cost, ease, and rapid turnaround, it can also be used to assess SLE prevalence estimates.
Collapse
Affiliation(s)
- Rongwei Lei
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| | - Hufsa Arain
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| | - David Wang
- John Sealy School of Medicine, UT Medical Branch, Galveston, TX 77555, USA;
| | - Janani Arunachalam
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| | - Ramesh Saxena
- UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| |
Collapse
|
50
|
Kim YU, Cho WJ. Smart pH Sensing: A Self-Sensitivity Programmable Platform with Multi-Functional Charge-Trap-Flash ISFET Technology. SENSORS (BASEL, SWITZERLAND) 2024; 24:1017. [PMID: 38339734 PMCID: PMC10857351 DOI: 10.3390/s24031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
This study presents a novel pH sensor platform utilizing charge-trap-flash-type metal oxide semiconductor field-effect transistors (CTF-type MOSFETs) for enhanced sensitivity and self-amplification. Traditional ion-sensitive field-effect transistors (ISFETs) face challenges in commercialization due to low sensitivity at room temperature, known as the Nernst limit. To overcome this limitation, we explore resistive coupling effects and CTF-type MOSFETs, allowing for flexible adjustment of the amplification ratio. The platform adopts a unique approach, employing CTF-type MOSFETs as both transducers and resistors, ensuring efficient sensitivity control. An extended-gate (EG) structure is implemented to enhance cost-effectiveness and increase the overall lifespan of the sensor platform by preventing direct contact between analytes and the transducer. The proposed pH sensor platform demonstrates effective sensitivity control at various amplification ratios. Stability and reliability are validated by investigating non-ideal effects, including hysteresis and drift. The CTF-type MOSFETs' electrical characteristics, energy band diagrams, and programmable resistance modulation are thoroughly characterized. The results showcase remarkable stability, even under prolonged and repetitive operations, indicating the platform's potential for accurate pH detection in diverse environments. This study contributes a robust and stable alternative for detecting micro-potential analytes, with promising applications in health management and point-of-care settings.
Collapse
Affiliation(s)
| | - Won-Ju Cho
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea;
| |
Collapse
|