1
|
Wang Y, Zhou S, Zheng Y, Wang Y, Hou Y, Wu K, Huang C, Liu S, Shen Y, Chen R, Zhang Y. Measurements of Local pH Gradients for Electrocatalysts in the Oxygen Evolution Reaction by Electrochemiluminescence. J Am Chem Soc 2025. [PMID: 40388601 DOI: 10.1021/jacs.5c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
An accurate understanding of the mechanism of the oxygen evolution reaction (OER) is crucial for catalyst design in the hydrogen energy industry. Despite significant advancements in microscopic pH detection, selective, sensitive, speedy, and reliable detection of local pH gradients near the catalysts during the OER remains elusive. Here, we pioneer an electrochemiluminescence (ECL) method for local pH detection during the OER. For this purpose, a new class of ECL emitters based on ECL resonance energy transfer was theoretically predicted and facilely synthesized by grafting functional fluorescent dyes onto noble 2D carbon nitride. By positioning one of the as-prepared ECL emitters with pH-responsibility neighboring the OER catalysts, local pH gradient generation near the catalysts could be qualitatively measured in real-time with a subsecond resolution. It provided details of the reaction mechanism of the OER and unveiled the catalyst degrading pathway caused by proton accumulation. Besides, the average proton generation rate on the catalyst was also extractable from the local pH measurement as a quantitative descriptor of the OER reaction rate. Owing to the high designability of the grafting method, this study opens up new strategies for studying reaction mechanisms and detecting intermediates.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Sijia Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yongji Wang
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yuhua Hou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Kaiqing Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Chaofeng Huang
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Ran Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Ino K, Mockaitis T, Shikuwa R, Oba K, Hiramoto K, Morkvenaite-Vilkonciene I, Abe H, Shiku H. Recent advances in electrochemiluminescence sensing for in vitro cell analysis: a review. ANAL SCI 2025; 41:557-569. [PMID: 39918697 DOI: 10.1007/s44211-025-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 05/10/2025]
Abstract
Electrochemiluminescence (ECL) is a chemiluminescence phenomenon triggered by electrochemical reactions and is widely used for (bio)chemical analyses and electrochemical bioimaging. Compared to fluorescence sensing, ECL sensing reduces background noise by eliminating autofluorescence associated with excitation light. In addition, compared with conventional electrochemical imaging with scanning electrochemical microscopes, ECL imaging is faster as it requires no scanning. Furthermore, unlike electrode arrays, ECL devices can function without complex wiring, simplifying their construction. These characteristics render ECL sensing a useful analytical tool. Recently, ECL sensing has been widely used for in vitro cell analysis due to high demand for biochips in regenerative medicine, drug screening, and microphysiological systems. This review focuses on recent advancements in ECL-based cell analysis with applications for the detection of H2O2, respiration activity, cell adhesion, lipid membranes, and bipolar electrochemistry-based devices.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| | - Tomas Mockaitis
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Laboratory of Bioelectrochemical Technologies, Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 10257, Vilnius, Lithuania
| | - Ryota Shikuwa
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kimiharu Oba
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kaoru Hiramoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8577, Japan
- Research Institute of Electrical Communications, Tohoku University, Sendai, 980-8577, Japan
| | - Inga Morkvenaite-Vilkonciene
- Laboratory of Bioelectrochemical Technologies, Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 10257, Vilnius, Lithuania
- Department of Electrical Engineering, Vilnius Gediminas Technical University, 10223, Vilnius, Lithuania
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
3
|
Motchaalangaram JA, Mahalingam P, Wallace KJ, Miao W. Electrogenerated Chemiluminescence Coupled with Molecularly Imprinted Polymer for Sensitive and Selective Detection of N, N-Dimethyltryptamine. Anal Chem 2025; 97:6163-6174. [PMID: 40083188 PMCID: PMC11948175 DOI: 10.1021/acs.analchem.4c06886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
A simple and efficient approach that combined electrogenerated chemiluminescence (ECL) and molecularly imprinted polymers (MIPs) for selective and sensitive detection of the hallucinogenic drug N,N-dimethyltryptamine (DMT) was developed. ECL, one of the most sensitive analytical techniques for ultratrace analyte detection, offers the advantage of light-free spectroscopic analysis initiated by electrochemistry. MIPs, on the other hand, provide specific binding sites, allowing the target analyte to become selectively imprinted within the polymer matrix. In this study, an ECL coupled-MIP sensor was fabricated using para-aminobenzoic acid (p-ABA) as the monomer and DMT as the template molecule. The MIP was electropolymerized onto a glassy carbon electrode coated with a Nafion film entrapping [Ru(bpy)3]2+ species. Following elution, the imprinted sites were reoccupied by DMT, generating ECL signals in a phosphate buffered solution during anodic potential scanning. The ECL-MIP sensor demonstrated a wide dynamic range for DMT detection, from 0.5 to 300 μM, with an estimated detection limit of 0.5-1.0 μM (S/N = 3). The sensor's reproducibility, stability, and selectivity were also evaluated. Finally, density functional theory was employed to investigate the structure-property relationship of the p-ABA-DMT interaction. This work demonstrated the potential of ECL coupled with MIP technology for identifying structurally related molecules, achieving enhanced selectivity with a simple and cost-effective design.
Collapse
Affiliation(s)
- Jesy Alka Motchaalangaram
- Department
of Chemistry and Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Paramasivam Mahalingam
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Karl J. Wallace
- Department
of Chemistry and Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Wujian Miao
- Department
of Chemistry and Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
4
|
Dutta C, Citterio D, Nath P. Present and future of smartphone-coupled chemiluminescence and electrochemiluminescence assays: a mini-review. Analyst 2025; 150:1033-1047. [PMID: 39964229 DOI: 10.1039/d4an01438c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
The convergence of smartphones with chemiluminescence and electrochemiluminescence (CL/ECL) assays marks a transformative leap in the realm of sensing technologies. The traditional CL/ECL assays, known for their high sensitivity and versatility, find extensive applications in medical diagnostics, environmental monitoring, food safety, and forensic sciences. However, these techniques have long been constrained due to the requirement of expensive instrumentation and complex reagent handling and hence their accessibility within certain environments is limited. In an era where rapid, accurate, and routine analysis is critical, smartphone-enabled CL/ECL systems offer substantial advantages over conventional analytical methods. By leveraging the universal accessibility and technological sophistication of smartphones and combining them with CL/ECL-based sensing, the smartphone has evolved into a cost-efficient and accessible analytical platform. The ability of the combined platform to conduct on-site analysis in real-time with minimal effort has emerged as a game-changer, particularly in low-resource settings. This mini-review explores the rapid evolution of smartphone-coupled CL/ECL systems over the last five years. The article covers the areas where the combined platform has been implemented in recent years for various sensing applications. The review further identifies key challenges that are associated with such combined platforms and finally highlights the future perspectives of the present topic.
Collapse
Affiliation(s)
- Chunuranjan Dutta
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Sonitpur, Assam 784028, India.
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Pabitra Nath
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Sonitpur, Assam 784028, India.
| |
Collapse
|
5
|
García-Fernández D, Gutiérrez-Gálvez L, López-Diego D, Luna M, Torres Í, Zamora F, Solera J, García-Mendiola T, Lorenzo E. Tetrahedral DNA nanostructures, graphene and carbon nanodots-based electrochemiluminescent biosensor for BRCA1 gene mutation detection. Talanta 2025; 284:127182. [PMID: 39577381 DOI: 10.1016/j.talanta.2024.127182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
In this study, we present a novel electrochemiluminescent DNA biosensor designed for detecting breast cancer type 1 (BRCA1) gene mutations. The biosensor integrates graphene nanosheets (Graph-NS), tetrahedral DNA nanostructures (TDNs), and carbon nanodots (CNDs) to enhance sensitivity and specificity. Graph-NS are employed to structure the transducer and serve as a platform for DNA immobilization. TDNs are engineered with a BRCA1 gene-specific capture probe located at the apex (TDN-BRCA1), facilitating efficient biorecognition. Additionally, the basal vertices of TDNs are functionalized with amino groups, enabling their attachment to the CSPE/Graph-NS surface via amino-graphene interaction. This platform effectively identifies single-base mutations in the BRCA1 gene utilizing synthesized CNDs as a coreactant and [Ru(bpy)3]2+ as the luminophore through the coreactant pathway. The developed biosensor demonstrates exceptional sensitivity and can detect a single mutation in the BRCA1 gene. Furthermore, it has been successfully validated in real samples obtained from breast cancer patients, showcasing a remarkable detection limit of 1.41 aM.
Collapse
Affiliation(s)
- Daniel García-Fernández
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David López-Diego
- Instituto de Micro y Nanotecnología IMN-CNM. CSIC (CEI UAM+CSIC), 28760, Tres Cantos, Madrid, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM. CSIC (CEI UAM+CSIC), 28760, Tres Cantos, Madrid, Spain
| | - Íñigo Torres
- Departamento de Química Inorgánica and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid. 28049, Madrid Spain
| | - Félix Zamora
- Departamento de Química Inorgánica and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid. 28049, Madrid Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jesús Solera
- Molecular Oncogenetics Unit, La Paz Universitary Hospital, Biochemistry Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
6
|
Zou X, Wang X, Tu J, Chen D, Cao Y. Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors. BIOSENSORS 2025; 15:148. [PMID: 40136945 PMCID: PMC11940617 DOI: 10.3390/bios15030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
The detection of small molecules is critical in many fields, but traditional electrochemical detection methods often exhibit limited accuracy. The construction of multi-mode sensors is a common strategy to improve detection accuracy. However, most existing multi-mode sensors rely on the separate analysis of each mode signal, which can easily lead to sensor failure when the deviation between different mode results is too large. In this study, we propose a multi-mode sensor based on Prussian Blue (PB) for ascorbic acid (AA) detection. We innovatively integrate back-propagation artificial neural networks (BP ANNs) to comprehensively process the three collected signal data sets, which successfully solves the problem of sensor failure caused by the large deviation of signal detection results, and greatly improves the prediction accuracy, detection range, and anti-interference of the sensor. Our findings provide an effective solution for optimizing the data analysis of multi-modal sensors, and show broad application prospects in bioanalysis, clinical diagnosis, and related fields.
Collapse
Affiliation(s)
- Xue Zou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (J.T.)
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China;
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (J.T.)
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (J.T.)
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (J.T.)
- College of Science, Qiongtai Normal University, Haikou 571100, China
| |
Collapse
|
7
|
Wang X, Zang X, Zhou H, Wang N, Fang Y, Cui B. Fe, Cu dual-atom catalysts assisted molecularly imprinted electrochemiluminescence sensor for ultrasensitive detection of trichlorfon. Food Chem 2025; 463:141294. [PMID: 39298852 DOI: 10.1016/j.foodchem.2024.141294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Trichlorfon (TCF) has the possibility of contaminating agricultural crops and posing some health risks to humans. Herein, an electrochemiluminescence (ECL) sensor based on Fe, Cu dual-atom catalysts (Fe/Cu-N-C DACs) and Au@Luminol was developed for the ultrasensitive detection of TCF. Fe/Cu-N-C with diatomic sites has a very high catalytic activity and can be used as a co-reaction accelerator to activate H2O2 to generate a large number of hydroxyl radicals which triggered a strong cathodic ECL signal of luminol. TCF molecularly imprinted polymer (MIP) was further introduced as a specific recognition element, and the interaction between the template molecule and the functional monomer was verified by molecular docking technique. The developed sensing platform was successfully applied to the ultrasensitive detection of TCF with a linear range from 1.0 pg/mL to 5.0 μg/mL with a low detection limit (0.39 pg/mL). This study broadens the application of DACs in ECL sensing.
Collapse
Affiliation(s)
- Xinran Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- College of Science, Huzhou University, Zhejiang, Huzhou 313000, China
| | - Hong Zhou
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Na Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
8
|
Xu R, Yang Q, Yang W, Zhang Y, Chauvin J, Zhang XJ, Cosnier S, Marks RS, Shan D. Embracing Nature's Wisdom: Liposome-Mediated Amplification of Electrochemiluminescence for the Sensitive and Selective Immunoassay of Serum Amyloid A. Anal Chem 2025; 97:945-952. [PMID: 39810342 DOI: 10.1021/acs.analchem.4c05685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Serum amyloid A (SAA) is a key biomarker for diagnosing inflammatory responses in diseases like influenza and COVID-19. An electrochemiluminescence (ECL) biosensor has been constructed for signal enhancement in SAA detection by encapsulating 4,4',4″,4‴-(1,3,6,8-pyrenetetrayl) tetrakis-benzoic acid (TBAPy) into liposomes. Such biomimetic encapsulation shields the biologically important membrane to avoid aggregation of TBAPy and prevents quenching. It would enhance the ECL signal's stability and intensity, resulting in a 5-fold signal increase with a relative standard deviation (RSD) of 1.71%. The biosensor has shown very good specificity and sensitivity toward SAA detection. The estimated detection limit is 0.188 pg/mL. This innovative approach integrates biomimicry with ECL technology and represents a leap in developing the next generation of diagnostic tools with superior sensitivity and specificity.
Collapse
Affiliation(s)
- Ruicheng Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
| | - Qiaoting Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
| | - Wei Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
| | - Yuji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
| | - Jérome Chauvin
- University of Grenoble Alpes-CNRS, DCM UMR 5250, Grenoble F-38000, France
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P R China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, Grenoble F-38000, France
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100,Poland
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 90089, Israel
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
| |
Collapse
|
9
|
Yan Y, Ding L, Ding J, Zhou P, Su B. Recent Advances in Electrochemiluminescence Visual Biosensing and Bioimaging. Chembiochem 2024; 25:e202400389. [PMID: 38899794 DOI: 10.1002/cbic.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Electrochemiluminescence (ECL) is one of the most powerful techniques that meet the needs of analysis and detection in a variety of scenarios, because of its highly analytical sensitivity and excellent spatiotemporal controllability. ECL combined with microscopy (ECLM) offers a promising approach for quantifying and mapping a wide range of analytes. To date, ECLM has been widely used to image biological entities and processes, such as cells, subcellular structures, proteins and membrane transport properties. In this review, we first introduced the mechanisms of several classic ECL systems, then highlighted the progress of visual biosensing and bioimaging by ECLM in the last decade. Finally, the characteristics of ECLM were summarized, as well as some of the current challenges. The future research interests and potential directions for the application of ECLM were also outlooked.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Ben Trad F, Carré B, Delacotte J, Lemaître F, Guille-Collignon M, Arbault S, Sojic N, Labbé E, Buriez O. Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes. Anal Bioanal Chem 2024; 416:7385-7394. [PMID: 38227016 DOI: 10.1007/s00216-024-05133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Herein, transient releases either from NADH-loaded liposomes or enzymatic reactions confined in giant liposomes were imaged by electrochemiluminescence (ECL). NADH was first encapsulated with the [Ru(bpy)3]2+ luminophore inside giant liposomes (around 100 µm in diameter) made of DOPC/DOPG phospholipids (i.e., 1,2-dioleolyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycerol-3-phospho-(1'-rac-glycerol) sodium salt) on their inner- and outer-leaflet, respectively. Then, membrane permeabilization triggered upon contact between the liposome and a polarized ITO electrode surface and ECL was locally generated. Combination of amperometry, photoluminescence, and ECL provided a comprehensive monitoring of a single liposome opening and content release. In a second part, the work is focused on the ECL characterization of NADH produced by glucose dehydrogenase (GDH)-catalyzed oxidation of glucose in the confined environment delimited by the liposome membrane. This was achieved by encapsulating both the ECL and catalytic reagents (i.e., the GDH, glucose, NAD+, and [Ru(bpy)3]2+) in the liposome. In accordance with the results obtained, NADH can be used as a biologically compatible ECL co-reactant to image membrane permeabilization events of giant liposomes. Under these conditions, the ECL signal duration was rather long (around 10 s). Since many enzymatic reactions involve the NADH/NAD+ redox couple, this work opens up interesting prospects for the characterization of enzymatic reactions taking place notably in artificial cells and in confined environments.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Bixente Carré
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400, Talence, France.
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
11
|
Yang D, Fang Y, Liu X, Ma J, Xu J, Dong H, Ding H, Wang D, Liu Q, Zhang F. Lensless On-Chip Chemiluminescence Imaging for High-Throughput Single-Cell Heterogeneity Analysis. NANO LETTERS 2024; 24:14875-14883. [PMID: 39512117 DOI: 10.1021/acs.nanolett.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
High-throughput single-cell heterogeneity imaging and analysis is essential for understanding complex biological systems and for advancing personalized precision disease diagnosis and treatment. Here, we present a miniaturized lensless chemiluminescence chip for high-throughput single-cell functional imaging with subcellular resolution. With the sensitive chemiluminescence sensing and wide field of view of contact lensless imaging, we demonstrated the chemiluminescent imaging of over 1000 single cells, and their membrane glycoprotein and the high-throughput single-cell heterogeneity of membrane protein imaging were examined for precision analysis. Furthermore, the functional adhesion and heterogeneity of single live cells were imaged and explored. This miniaturized lensless on-chip CL-CMOS imaging platform enables high-throughput single-cell imaging and analysis with high sensitivity and subcellular resolution, providing new techniques for the cellular study of biological heterogeneity and has potential application in precision disease diagnosis and treatment at the point-of-care settings.
Collapse
Affiliation(s)
- Dehong Yang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Fang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyin Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinbiao Ma
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiahao Xu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Dong
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Haiying Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310005, China
| | - Di Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Mortazavi SMR, Hosseini M, Xu G, Naderi-Manesh H, Ganjali MR. Highly specific detection of ROR1 cancer biomarker with bipolar electrochemiluminescence. Mikrochim Acta 2024; 191:734. [PMID: 39514011 DOI: 10.1007/s00604-024-06815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
An electrochemiluminescence (ECL) detection system is presented integrated with a bipolar electrode system for sensitive cancer diagnosis. In order to achieve the highest electrical conductivity and redox-active surface area, MXene was chosen as the material for the bipolar electrode. As part of the detection process, the anodic pole of the bipolar electrode was modified with the receptor tyrosine kinase like orphan receptor 1 (ROR1) antibody, followed by an immunoassay using the ROR1 antibody-modified Ag triangle that was identified as significantly enhancing ECL. We measured the ECL of luminol using the anode pole of BPE as an analytical signal in the presence of H2O2. Additionally, 3D-printed microchannels were used to fabricate the BPE system, to reduce the quantity of sample required. It has been shown that the present immunosensors are low-cost and sensitive in detecting types of cancer, with an extended linear range of 10 fg mL-1 to 1 µg mL-1 in the analysis of synthetic samples and achieving an accuracy of ~ 90% in diagnosing ten unknown real samples.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Mortazavi
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Dong Z, Du F, Hanif S, Tian Y, Xu G. Development of chemiluminescent systems and devices for analytical applications. Chem Commun (Camb) 2024; 60:11837-11848. [PMID: 39318260 DOI: 10.1039/d4cc04414b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Chemiluminescence (CL) refers to the light-emitting phenomenon resulting from chemical reactions. Due to its simplicity in terms of instrumentation and high sensitivity, CL plays a critical role in analytical chemistry and has developed rapidly in recent years. In this review, we discuss the efforts made by our group in the field of CL. This includes exploring new luminophores that function under neutral pH conditions, developing oxidant- and reactive oxygen species-based coreactants (e.g. artemisinin and thiourea dioxide) for luminol and lucigenin CL, utilizing nanomaterial-based CL signal amplification and employing innovative ultrasound devices for CL and their analytical applications. We discussed the CL amplification mechanisms of these systems in detail. Finally, we summarize the challenges and prospects for the future development of CL.
Collapse
Affiliation(s)
- Zhiyong Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230026, China.
| | - Fangxin Du
- School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences, The Mall Road, Rawalpindi, Punjab 46000, Pakistan
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230026, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
14
|
Zhang Y, Gao D, Yang H, Gao W, Wu C. A simple and cost-effective strategy for electrochemiluminescence spectral determination. Anal Chim Acta 2024; 1324:343097. [PMID: 39218576 DOI: 10.1016/j.aca.2024.343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Electrochemiluminescence (ECL), as a unique and powerful analytical technique, has been widely used in various fields. The determination of ECL spectra plays a crucial role in understanding ECL reaction mechanisms and conducting spectra-resolved ECL analysis. ECL intensity is typically detected using a photomultiplier tube, which offers high sensitivity for detecting extremely weak light signals but does not allow for spectral identification. Due to the time-dependent variation of ECL intensity caused by the applied potential and electrochemical reaction processes, it is challenging to perform ECL spectral detection using conventional wavelength-scanning spectrometers. RESULTS In this study, we present a straightforward and cost-effective ECL spectral detection strategy by incorporating an automatically controlled tunable optical filter device between a commonly used PMT detector and a specially designed ECL reaction cell. The effectiveness of this approach was confirmed through initial validation, where the spectrum of a green LED spotlight was measured and compared with a commercial spectrometer. In a dynamic system with stable ECL signals, the ECL spectrum of the typical Ru(bpy)32+/TPA system was rapidly acquired by adjusting the bandpass filters. To account for time-varying ECL signals in practical measurements, time-based correction algorithms were implemented to rectify variations in ECL intensity. By integrating time-based correction algorithms and an automatically controlled tunable optical filter device into a commonly utilized PMT detector, the rapid and sensitive ECL spectra determination was achieved. Experimental results demonstrated the reliability of the proposed strategy. SIGNIFICANCE This strategy is based on the widely used high-sensitivity PMT detection component, enabling the rapid and sensitive measurement of ECL spectra without altering the ECL detection hardware. It is simple, fast, efficient, and cost-effective, with the potential to be widely used for rapid ECL spectral detection and spectra-resolved ECL analysis.
Collapse
Affiliation(s)
- Yifei Zhang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dexin Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Hongye Yang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Chi Wu
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
15
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
16
|
Liu J, Ming W, Zhang J, Zhou X, Qin Y, Wu L. Aggregation-induced electrochemiluminescence based on intramolecular charge transfer and twisted molecular conformation for label-free Immunoassay. Anal Chim Acta 2024; 1320:342994. [PMID: 39142778 DOI: 10.1016/j.aca.2024.342994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Organic emitters with exceptional properties exhibit significant potential in the field of aggregation-induced electrochemiluminescence (AIECL); however, their practicality is impeded by limited ECL efficiency (ΦECL). This paper investigates a novel type of AIECL emitter (BDPPA NPs), where an efficient intramolecular charge transfer (ICT) effect and highly twisted conformation contribute to a remarkable enhancement of ECL. The ICT effect reduces the electron transfer path, while the twisted conformation effectively restricts π-π stacking and intramolecular motions. Intriguingly, compared to the standard system of [Ru(bpy)32+]/TPrA, bright emissions with up to 54 % ΦECL were achieved, enabling direct visual observation of ECL through the co-reactant route. The label-free immunosensor exhibited distinguished performance in detecting SARS-CoV-2 N protein across an exceptionally wide linear range of 0.001-500 ng mL-1, with a remarkably low detection limit of 0.28 pg mL-1. Furthermore, this developed ECL platform exhibited excellent sensitivity, specificity, and stability characteristics, providing an efficient avenue for constructing platforms for bioanalysis and clinical diagnosis analysis.
Collapse
Affiliation(s)
- Jinxia Liu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Wenjun Ming
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Jing Zhang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Xiaobo Zhou
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China.
| | - Li Wu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
17
|
Ji F, Wang P, Li Z, Ji K, Wang D, Ma Q. Cu superparticle-based aggregation induced enhancement strategy with PVDF-HFP/CeVO 4 NP sensing interface for miR-103a detection. Talanta 2024; 276:126289. [PMID: 38776779 DOI: 10.1016/j.talanta.2024.126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Aggregation-induced emission (AIE) has been widely used in research on electrochemiluminescence (ECL) due to its excellent luminescence intensity. In this work, copper superparticles (Cu SPs) were used to construct ECL biosensor to detect the microRNA-103a (miRNA-103a) in triple-negative breast cancer (TNBC) tumor tissues. Firstly, GSH-capped copper clusters were used as precursors to prepare Cu SPs by the AIE effect. Compared with clusters, Cu SPs possessed higher luminescence performance and energy stability, making them an ideal choice for ECL nanoprobe. The film of PVDF-HFP/CeVO4 NPs was constructed and modified with CPBA and GSH as the sensing interface (PCCG). The PCCG film displayed good conductivity and hydrophilicity, and desirable mechanical stability. Moreover, the PCCG film can induce high carrier mobility rates and dissociate large amounts of the co-reactant K2S2O8 to enhance the ECL intensity of Cu SPs. As a result, the prepared ECL sensor with the catalyzed hairpin assembly (CHA) strategy was employed to quantify miRNA-103a in the range of 100 fM to 100 nM. The biosensor provided a novel analytical approach for the clinical diagnosis of TNBC.
Collapse
Affiliation(s)
- Fangyan Ji
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Kaixiang Ji
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
18
|
Chen X, Xv H, Li C, Kong L, Li C, Li F. Fe-single-atom catalysts boosting electrochemiluminescence via bipolar electrode integrated with its peroxidase-like activity for bioanalysis. Biosens Bioelectron 2024; 258:116351. [PMID: 38705074 DOI: 10.1016/j.bios.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Multifunctional single-atom catalysts (SACs) have been extensively investigated as outstanding signal amplifiers in bioanalysis field. Herein, a type of Fe single-atom catalysts with Fe-nitrogen coordination sites in nitrogen-doped carbon (Fe-N/C SACs) was synthesized and demonstrated to possess both catalase and peroxidase-like activity. Utilizing Fe-N/C SACs as dual signal amplifier, an efficient bipolar electrode (BPE)-based electrochemiluminescence (ECL) immunoassay was presented for determination of prostate-specific antigen (PSA). The cathode pole of the BPE-ECL platform modified with Fe-N/C SACs is served as the sensing side and luminol at the anode as signal output side. Fe-N/C SACs could catalyze decomposition of H2O2 via their high catalase-like activity and then increase the Faraday current, which can boost the ECL of luminol due to the electroneutrality in a closed BPE system. Meanwhile, in the presence of the target, glucose oxidase (GOx)-Au NPs-Ab2 was introduced through specific immunoreaction, which catalyzes the formation of H2O2. Subsequently, Fe-N/C SACs with peroxidase-like activity catalyze the reaction of H2O2 and 4-chloro-1-naphthol (4-CN) to generate insoluble precipitates, which hinders electron transfer and then inhibits the ECL at the anode. Thus, dual signal amplification of Fe-N/C SACs was achieved by increasing the initial ECL and inhibiting the ECL in the presence of target. The assay exhibits sensitive detection of PSA linearly from 1.0 pg/mL to 100 ng/mL with a detection limit of 0.62 pg/mL. The work demonstrated a new ECL enhancement strategy of SACs via BPE system and expands the application of SACs in bioanalysis field.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Huijuan Xv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Can Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
19
|
Mao H, Yu L, Tu M, Wang S, Zhao J, Zhang H, Cao Y. Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Crit Rev Anal Chem 2024; 54:1273-1289. [PMID: 35980613 DOI: 10.1080/10408347.2022.2111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.
Collapse
Affiliation(s)
- Huiru Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Longmei Yu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuning Wang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiyun Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ya Cao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
20
|
Wu Y, Gu Q, Wang Z, Tian Z, Liu H, Liu S. Ultrasensitive Electrochemiluminescence Imaging Detection of Multiple miRNAs in Single Cells with a Closed Bipolar Electrode Array Chip. Anal Chem 2024; 96:12112-12119. [PMID: 38989957 DOI: 10.1021/acs.analchem.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In situ sensitive detection of multiple biomarkers in a single cell was highly necessary for understanding the pathogenesis mechanism and facilitating disease diagnosis. Herein, a bipolar electrode (BPE)-electrochemiluminescence (ECL) imaging chip was designed for ultrasensitive in situ detection of multiple miRNAs in single cells based on a dual-signal amplification strategy. A single cell was trapped and lysed within the microtrap of the cathode chamber and an HCR amplification process and nanoprobes (Fc/DNA/Fe3O4) were introduced, leading to a large number of electroactive molecules (Fc) being modified on the surface. Under a suitable potential, Fc+ in the cathodic chamber was reduced to Fc and L-012 was oxidized in the anodic chamber according to the electric neutrality principle of the bipolar electrode system, resulting in the ECL signal recorded by EMCCD. Ascribed to the dual-signal amplification, sensitive visual detection of miRNA-21 and miRNA-155 in single cells was achieved. For MCF-7 cells, miRNA-21 and miRNA-155 were calculated to be 4385 and 1932 copies/cell (median), respectively. For HeLa cells, miRNA-21 and miRNA-155 were calculated to be 1843 and 1012 copies/cell (median), respectively. The comprehensive evaluation of two kinds of miRNA could effectively eliminate error signals, and the detection precision was improved by 10%.
Collapse
Affiliation(s)
- Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qinglin Gu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhi Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214125, China
| | - Zhaoyan Tian
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hui Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
21
|
Ni J, Yang B, Liu L, Dai X, Yang W, Wang Q, Chen X, Song Z, Lin Z. Conductivity-Regulated Bipolar Electrochemiluminescence Sensing Platform for Indicator-Free Homogeneous Bioassay. Anal Chem 2024. [PMID: 39016591 DOI: 10.1021/acs.analchem.4c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Electrochemiluminescence (ECL) sensors have been widely developed because of their high sensitivity and low background. However, most of them suffered from tedious probe modification on the electrode and cross-interferences within the sensing and reporting reactions. The bipolar electrode based ECL (BPE-ECL) can effectively eliminate interference by physically separating the sensing and reporting cells, but there is still a need for exogenous electroactive indicators to transduce the variations between two poles of a BPE. Herein, based on the discovery that conductivity can be regulated in aqueous medium by homogeneous bioreaction, we showed a novel BPE-ECL sensing platform that combined the conductivity-based biosensing technology with ECL reporting system for the first time. Compared to many short nucleic acids, the target induced a hybridization chain reaction to produce the long nucleic acid aggregates, resulting in a conductivity decrease of the sensing cell and finally reducing the ECL response in the reporting cell. The BPE-ECL platform has already been applied to detect microRNA-21 for a demonstration. This innovative system not only separates the target sensing and reporting reactions but also avoids the use of electrochemical indicators for measurement. The BPE-ECL biosensing platform can be developed to detect different targets by changing the probe used.
Collapse
Affiliation(s)
- Jiancong Ni
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Bifang Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Liyang Liu
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaohui Dai
- Zhangzhou Product Quality Inspection Institute, Zhangzhou 363000, Fujian, China
| | - Weiqiang Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qingxiang Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaoping Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhiping Song
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
22
|
Knežević S, Han D, Liu B, Jiang D, Sojic N. Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2024; 63:e202407588. [PMID: 38742673 DOI: 10.1002/anie.202407588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Electrochemiluminescence (ECL) is rapidly evolving from an analytical method into an optical microscopy. The orthogonality of the electrochemical trigger and the optical readout distinguishes it from classic microscopy and electrochemical techniques, owing to its near-zero background, remarkable sensitivity, and absence of photobleaching and phototoxicity. In this minireview, we summarize the recent advances in ECL imaging technology, emphasizing original configurations which enable the imaging of biological entities and the improvement of the analytical properties by increasing the complexity and multiplexing of bioassays. Additionally, mapping the (electro)chemical reactivity in space provides valuable information on nanomaterials and facilitates deciphering ECL mechanisms for improving their performances in diagnostics and (electro)catalysis. Finally, we highlight the recent achievements in imaging at the ultimate limits of single molecules, single photons or single chemical reactions, and the current challenges to translate the ECL imaging advances to other fields such as material science, catalysis and biology.
Collapse
Affiliation(s)
- Sara Knežević
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607, Pessac, France
| | - Dongni Han
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Baohong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607, Pessac, France
| |
Collapse
|
23
|
Wei J, Yang N, Li F, Cai S, Zhang B, Cai Z. Direct Comparative Studies Revealing the Contribution of TADF Activity of Organic Emitters Towards Efficient Electrochemiluminescence. Chemistry 2024; 30:e202401036. [PMID: 38742490 DOI: 10.1002/chem.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Electrochemiluminescence (ECL) featuring thermally activated delayed fluorescence (TADF) properties has attracted considerable interest, showcasing their potential for 100 % exciton harvesting, which marks a significant advancement in the realm of organic ECL. However, the challenge of elucidating the precise contribution of TADF to the enhanced ECL efficiency arises due to the lack of comparative studies of organic compounds with or without efficient TADF properties. In this study, we present four carbazole-benzonitrile molecules possessing similar chemical structures and comparable exchange energy (ΔEST). Despite their comparable properties, these compounds exhibited varying TADF efficiencies, warranting a closer examination of their underlying structural and electronic characteristics governing the optical properties. Consequently, intense ECL emission was only observed from 4CzBN with a remarkable TADF efficiency, underscoring the substantial difference in the ECL signal among molecules with comparable ΔEST and similar spectral properties but varying TADF activity.
Collapse
Affiliation(s)
- Jinliu Wei
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Nairong Yang
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Shunyou Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Baohua Zhang
- School of Chemistry and Chemical Engineering, Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| |
Collapse
|
24
|
Liu M, Arias-Aranda LR, Li H, Bouffier L, Kuhn A, Sojic N, Salinas G. Wireless Multimodal Light-Emitting Arrays Operating on the Principles of LEDs and ECL. Chemphyschem 2024; 25:e202400133. [PMID: 38624189 DOI: 10.1002/cphc.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Electrochemistry-based light-emitting devices have gained considerable attention in different applications such as sensing and optical imaging. In particular, such systems are an interesting alternative for the development of multimodal light-emitting platforms. Herein we designed a multicolor light-emitting array, based on the electrochemical switch-on of light-emitting diodes (LEDs) with a different intrinsic threshold voltage. Thermodynamically and kinetically favored coupled redox reactions, i. e. the oxidation of Mg and the reduction of protons on Pt, act as driving force to power the diodes. Moreover, this system enables to trigger an additional light emission based on the interfacial reductive-oxidation electrochemiluminescence (ECL) mechanism of the Ru(bpy)3 2+/S2O8 2- system. The synergy between these light-emission pathways offers a multimodal platform for the straightforward optical readout of physico-chemical information based on composition changes of the solution.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Leslie R Arias-Aranda
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Haidong Li
- College of Chemistry and Chemical Engineering. Yangzhou University, 225002, Yangzhou, China
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| |
Collapse
|
25
|
Ben Trad F, Delacotte J, Lemaître F, Guille-Collignon M, Arbault S, Sojic N, Labbé E, Buriez O. Shadow electrochemiluminescence imaging of giant liposomes opening at polarized electrodes. Analyst 2024; 149:3317-3324. [PMID: 38742381 DOI: 10.1039/d4an00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In this work, the release of giant liposome (∼100 μm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400 Talence, France.
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
26
|
Ding L, Guo J, Chen S, Wang Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024; 273:125937. [PMID: 38503124 DOI: 10.1016/j.talanta.2024.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.
Collapse
Affiliation(s)
- Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shu Chen
- School of Bioengineering, Shandong Polytechnic, Jinan, 250104, PR China
| | - Yawen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
27
|
Zhang X, Jia Y, Zhang N, Wu D, Ma H, Ren X, Ju H, Wei Q. Self-Assembly-Induced Enhancement of Cathodic Electrochemiluminescence of Copper Nanoclusters for a Split-Type Matrix Metalloproteinase 14 Sensing Platform. Anal Chem 2024; 96:7265-7273. [PMID: 38649306 DOI: 10.1021/acs.analchem.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Li M, Gao X, Ren X, Ai Y, Zhang B, Zou G. Potential-selective electrochemiluminescence of AgInS 2/ZnS nanocrystals and its immunoassay application. Chem Commun (Camb) 2024; 60:4958-4961. [PMID: 38629343 DOI: 10.1039/d4cc00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Potential-selective electrochemiluminescence (ECL) with tunable maximum-emission-potential ranging from 0.95 to 0.30 V is achieved using AgInS2/ZnS nanocrystals, which is promising in the design of multiplexed bioassay on commercialized ECL setups. The model system AgInS2/ZnS/N2H4 exhibits efficient ECL around 0.30 V and can be exploited for sensitive immunoassays with less electrochemical interference and crosstalk.
Collapse
Affiliation(s)
- Mengwei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
29
|
Voci S, Vannoy KJ, Dick JE. Femtoliter oil droplets act as CO 2 micropumps for uninterrupted electrochemiluminescence at the water|oil interface. J Colloid Interface Sci 2024; 661:853-860. [PMID: 38330657 PMCID: PMC11307245 DOI: 10.1016/j.jcis.2024.01.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Interfacial effects are well-known to significantly alter chemical reactivity, especially in confined environments, where the surface to volume ratio increases. Here, we observed an inhomogeneity in the electrogenerated chemiluminescence (ECL) intensity decrease over time in a multiphasic system composed of femtoliter water droplets entrapping femtoliter volumes of the 1,2-dichloroethane (DCE) continuous phase. In usual electrochemiluminescence (ECL) reactions involving an ECL chromophore and oxalate ([C2O4]2-), the build-up of CO2 diminishes the ECL signal with time because of bubble formation. We hypothesised that relative solubilities of chemical species in these environments play a dramatic role in interfacial reactivity. Water droplets, loaded with the ECL luminophore [Ru(bpy)3]2+ and the coreactant [C2O4]2- were allowed to stochastically collide and adsorb at the surface of a glassy carbon macroelectrode. When water droplets coalesce on the surface, they leave behind femtoliter droplets of the DCE phase (inclusions). We report the surprising finding that the addition of multiple interfaces, due to the presence of continuous phase's femtoliter inclusions, allows sustained ECL over time after successive potential applications at the triple-phase boundary between water droplet|electrode|DCE inclusion. When femtoliter droplets of DCE form on the electrode surface, bright rings of ECL are observed during the simultaneous oxidation of [Ru(bpy)3]2+ and [C2O4]2-. Control experiments and finite element modelling allowed us to propose that these rings arise because CO2 that is generated near the 1,2-dichloroethane droplet partitions in due to relative solubility of CO2 in 1,2-dichloroethane and builds up and/or is expelled at the top of the droplet. The small droplets of the DCE phase act as micropumps, pumping away carbon dioxide from the interface. These results highlight the unexpected point that confined microenvironments and their geometry can tune chemical reactions of industrial importance and fundamental interest.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
Li C, Feng M, Stanković D, Bouffier L, Zhang F, Wang Z, Sojic N. Wireless rotating bipolar electrochemiluminescence for enzymatic detection. Analyst 2024; 149:2756-2761. [PMID: 38563766 DOI: 10.1039/d4an00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 μM and with a limit of detection of 10 μM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.
Collapse
Affiliation(s)
- Chunguang Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Minghui Feng
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dalibor Stanković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Laurent Bouffier
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| |
Collapse
|
31
|
Fang Y, Yang H, Hou Y, Li W, Shen Y, Liu S, Zhang Y. Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides. Nat Commun 2024; 15:3597. [PMID: 38678039 PMCID: PMC11519465 DOI: 10.1038/s41467-024-48011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.
Collapse
Affiliation(s)
- Yanfeng Fang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Hong Yang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuhua Hou
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wang Li
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China.
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Huang Y, Cai H, Lin Y, Luo F, Lin C, Wang J, Qiu B, Lin Z. Charge Density-Regulated Microchannel-Based Electrochemiluminescence Sensor for Hydrogen Sulfide Detection with a Highly Efficient Accumulation Strategy. Anal Chem 2024; 96:5251-5257. [PMID: 38512289 DOI: 10.1021/acs.analchem.3c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The electrochemiluminescence (ECL) intensity can be regulated by ionic current passing through the microchannel, which broadened the regulation of the ECL sensors. But in the early reported sensors, the electrostatic repulsion and steric hindrance caused few targets to approach the interface of the microchannel driven by concentration difference, which reduced the detection efficiency and prolonged the detection period. In this study, different accumulation strategies, such as a positive electric field and different polarity electric fields, were designed to accumulate targets in the microchannel. The interaction of azide groups and hydrogen sulfide served as a research model. Hydrogen sulfide can react with the negatively charged azide groups in the microchannel surface to produce positively charged amino groups, decreasing the negative charge density of the microchannel and thus altering the ionic current and ECL intensity. The accumulation of hydrogen sulfide at the microchannel tip can increase the collision probability with azide groups to improve the detection efficiency, and the integration of accumulation and reaction can shorten the detection period to 28 min. The hydrogen sulfide concentration on the microchannel tip accumulated by applying different polarity electric fields was 22.3-fold higher than that accumulated by applying a positive electric field. The selected research model broadened the application range of a microchannel-based ECL sensor and confirmed the universality of the microchannel-based ECL sensor.
Collapse
Affiliation(s)
- Yanling Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huabin Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Yue Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| |
Collapse
|
33
|
Zhao Y, Léger Y, Descamps J, Sojic N, Loget G. Off-Grid Electrogenerated Chemiluminescence with Customized p-i-n Photodiodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308023. [PMID: 37988641 DOI: 10.1002/smll.202308023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Electrochemiluminescence (ECL) is the generation of light induced by an electrochemical reaction, driven by electricity. Here, an all-optical ECL (AO-ECL) system is developped, which triggers ECL by the illumination of electrically autonomous "integrated" photoelectrochemical devices immersed in the electrolyte. Because these systems are made using small and cheap devices, they can be easily prepared and readily used by any laboratories. They are based on commercially available p-i-n Si photodiodes (≈1 € unit-1), coupled with well-established ECL-active and catalytic materials, directly coated onto the component leads by simple and fast wet processes. Here, a Pt coating (known for its high activity for reduction reactions) and carbon paint (known for its optimal ECL emission properties) are deposited at cathode and anode leads, respectively. In addition to its optimized light absorption properties, using the commercial p-i-n Si photodiode eliminates the need for a complicated manufacturing process. It is shown that the device can emit AO-ECL by illumination with polychromatic (simulated sunlight) or monochromatic (near IR) light sources to produce visible photons (425 nm) that can be easily observed by the naked eye or recorded with a smartphone camera. These low-cost off-grid AO-ECL devices open broad opportunities for remote photodetection and portable bioanalytical tools.
Collapse
Affiliation(s)
- Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes, F-35000, France
| | - Yoan Léger
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082, Rennes, F-35000, France
| | - Julie Descamps
- University of Bordeaux, INP, ISM, UMR CNRS 5255, Bordeaux, 33607, France
| | - Neso Sojic
- University of Bordeaux, INP, ISM, UMR CNRS 5255, Bordeaux, 33607, France
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes, F-35000, France
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
34
|
Yee H, Lee JI, Park DM, Jung K, Lee S, Kim NH, Kim J, Kim HJ, Kang MS. Extending the Operational Lifetime of Electrochemiluminescence Devices by Installing a Floating Bipolar Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307190. [PMID: 38009522 DOI: 10.1002/smll.202307190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Electrochemiluminescence (ECL) holds significant promise for the development of cost-effective light-emitting devices because of its simple structure. However, conventional ECL devices (ECLDs) have a major limitation of short operational lifetimes, rendering them impractical for real-world applications. Typically, the luminescence of these devices lasts no longer than a few minutes during operation. In the current study, a novel architecture is provided for ECLDs that addresses this luminescence lifespan issue. The device architecture features an ECL active layer between two coplanar driving electrodes and a third floating bipolar electrode. The inclusion of the floating bipolar electrode enables modulating the electrical-field distribution within the active layer when a bias is applied between the driving electrodes. This, in turn, enables the use of opaque yet electrochemically stable noble metals as the driving electrodes while allowing ECL light to escape through the transparent floating bipolar electrode. A significant extension on operational lifetime is achieved, defined as the time required for the initial luminance (>100 cd m-2) to decrease by 50%, surpassing 1 h. This starkly contrasts the short lifetime (<1 min) attained by ECLDs in a conventional sandwich-type architecture with two transparent electrodes. These results provide simple strategies for developing durable ECL-based light-emitting devices.
Collapse
Affiliation(s)
- Hyeono Yee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Dong Mok Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Keonhee Jung
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seunghan Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Nam Hun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Ricci Institute of Basic Science, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
35
|
Li J, Zhou Y, Xi M, Hu L, Lu B, Gu W, Zhu C. Potential-Resolved Ratiometric Aptasensor for Sensitive Acetamiprid Analysis Based on Coreactant-free Electrochemiluminescence Luminophores of Gd-MOF and "Light Switch" Molecule of [Ru(bpy) 2dppz] 2. Anal Chem 2024; 96:5022-5028. [PMID: 38470563 DOI: 10.1021/acs.analchem.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.
Collapse
Affiliation(s)
- Jingshuai Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mengzhen Xi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Bingzhang Lu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
36
|
Gao W, Yang H, Zhang Y, Gao D, Wu C. A novel and efficient electrochemiluminescence sensing strategy for the determination of trimethylamine oxide in seafood. Talanta 2024; 269:125409. [PMID: 37992485 DOI: 10.1016/j.talanta.2023.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
A novel and efficient electrochemiluminescence (ECL) sensing strategy and a solid-state ECL sensor was proposed to detect trimethylamine oxide (TMAO), which is widely presented in marine species and has important physiological functions. TMAO was reduced by Fe(II)-EDTA complex to trimethylamine, acting as coreactant, to amplify the ECL response of the Ru (bpy)32+ system. To improve the detection sensitivity and efficiency, a robust solid-state ECL probe was prepared and a flow injection ECL detection system was established with a specially designed flow ECL unit, under the excitation of stepping pulse potentials. Under optimized experimental conditions, the developed ECL sensor worked well for TMAO detection in a wide linear range of 10.00 μM to 1.00 mM with a limit of detection of 3.41 μM. It was successfully applied to determine TMAO in various species of seafood samples. This work provides a promising strategy for TMAO detection.
Collapse
Affiliation(s)
- Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Hongye Yang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yifei Zhang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dexin Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Chi Wu
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
37
|
Navitski I, Ramanaviciute A, Ramanavicius S, Pogorielov M, Ramanavicius A. MXene-Based Chemo-Sensors and Other Sensing Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:447. [PMID: 38470777 DOI: 10.3390/nano14050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types.
Collapse
Affiliation(s)
- Ilya Navitski
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 2, Kharkivska Str., 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
38
|
Damirchi Z, Firoozbakhtian A, Hosseini M, Ganjali MR. Ti 3C 2/Ni/Sm-based electrochemical glucose sensor for sweat analysis using bipolar electrochemistry. Mikrochim Acta 2024; 191:137. [PMID: 38358570 DOI: 10.1007/s00604-024-06209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
An innovative electrochemical sensor is introduced that utilizes bipolar electrochemistry on a paper substrate for detecting glucose in sweat. The sensor employs a three-dimensional porous nanocomposite (MXene/NiSm-LDH) formed by decorating nickel-samarium nanoparticles with double-layer MXene hydroxide. These specially designed electrodes exhibit exceptional electrocatalytic activity during glucose oxidation. The glucose sensing mechanism involves enzyme-free oxidation of the analyte within the sensor cell, achieved by applying an appropriate potential. This leads to the reduction of K3Fe(CN)6 in the reporter cell, and the resulting current serves as the response signal. By optimizing various parameters, the measurement platform enables the accurate determination of sweat glucose concentrations within a linear range of 10 to 200 µM. The limit of detection (LOD) for glucose is 3.6 µM (S/N = 3), indicating a sensitive and reliable detection capability. Real samples were analysed to validate the sensor's efficiency, and the results obtained were both promising and encouraging.
Collapse
Affiliation(s)
- Zahra Damirchi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran.
- Medical Genetics Department, Institute of Medical Biotechnology (IMB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran.
| |
Collapse
|
39
|
Cui F, Wang P, Liu K, Guo Y, Ma Q, He Y. Cu nanoclusters/nano-vesicle-based confinement-induced electrochemiluminescence strategy for miRNA-145 detection. SENSORS AND ACTUATORS B: CHEMICAL 2024; 401:134910. [DOI: 10.1016/j.snb.2023.134910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
|
40
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
41
|
Firoozbakhtian A, Salah B, Eid K, Hosseini M, Xu G. Unmasking the Electrochemiluminescence Properties of Ternary Mn/Fe/Co Metals Doped Porous g-C 3N 4 Fiber-like Nanostructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38290524 DOI: 10.1021/acs.langmuir.3c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Graphitic-phase carbon nitride (g-C3N4) materials have exhibited increasingly remarkable performance as emerging electrochemiluminescence (ECL) emitters, owing to their unique optical and electronic properties; however, the ECL merits of porous g-C3N4 nanofibers doped with ternary metals are not yet explored. Deciphering the ECL properties of trimetal-doped g-C3N4 nanofibers could provide an exquisite pathway for ultrasensitive sensing and imaging with impressive advantages of minimal background signal, great sensitivity, and durability. Herein, we rationally synthesized g-C3N4 nanofibers doped atomically with Mn, Fe, and Co elements (Mn/Fe/Co/g-C3N4) in a one-pot via the protonation in ethanol and annealing process driven by the rolling up mechanism. The ECL performance of g-C3N4 with and without metal dopants was investigated and compared with standard Ru(bpy)32+ in the presence of potassium persulfate (K2S2O8) as the coreactant. Notably, g-C3N4 nanofibers doped with metal ions exhibited an ECL efficiency of 483% that was 4.83 times higher than that of Ru(bpy)32+. Mechanistic investigations unveiled that the g-C3N4 nanofibers possess a large surface area and, as a result, exhibit a reduced interfacial impedance within the porous microstructure. These factors contribute to the acceleration of charge transfer rates and the stabilization of charge carriers and excitons, ultimately facilitating the ECL process. This research endeavor may pave the way for a new hot research area and serves as a powerful tool for elucidating fundamental inquiries of ECL on one-dimensional g-C3N4 nanostructures.
Collapse
Affiliation(s)
- Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Belal Salah
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
42
|
Fracassa A, Santo CI, Kerr E, Knežević S, Hayne DJ, Francis PS, Kanoufi F, Sojic N, Paolucci F, Valenti G. Redox-mediated electrochemiluminescence enhancement for bead-based immunoassay. Chem Sci 2024; 15:1150-1158. [PMID: 38239687 PMCID: PMC10793598 DOI: 10.1039/d3sc06357g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Electrochemiluminescence (ECL) is a highly sensitive mode of detection utilised in commercialised bead-based immunoassays. Recently, the introduction of a freely diffusing water-soluble Ir(iii) complex was demonstrated to enhance the ECL emission of [Ru(bpy)3]2+ labels anchored to microbeads, but a comprehensive investigation of the proposed 'redox-mediated' mechanism was not carried out. In this work, we select three different water-soluble Ir(iii) complexes by virtue of their photophysical and electrochemical properties in comparison with those of the [Ru(bpy)3]2+ luminophore and the TPrA co-reactant. A systematic investigation of the influence of each Ir(iii) complex on the emission of the Ru(ii) labels on single beads by ECL microscopy revealed that the heterogeneous ECL can be finely tuned and either enhanced up to 107% or lowered by 75%. The variation of the [Ru(bpy)3]2+ ECL emission was correlated to the properties of each Ir(iii)-based mediator, which enabled us to decipher the mechanism of interaction and define guidelines for the future design of novel Ir(iii) complexes to further enhance the ECL emission of bead-based immunoassays. Ultimately, we showcase the potential of this technology for practical sample analysis in commercial instruments by assessing the enhancement of the collective ECL intensity from a bead-based system.
Collapse
Affiliation(s)
- Alessandro Fracassa
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
| | - Claudio Ignazio Santo
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
| | - Emily Kerr
- Institute for Frontier Materials, Deakin University Geelong Victoria 3220 Australia
| | - Sara Knežević
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255 33607 Pessac France
| | - David J Hayne
- Institute for Frontier Materials, Deakin University Geelong Victoria 3220 Australia
| | - Paul S Francis
- Deakin University, Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment Geelong Victoria 3220 Australia
| | | | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255 33607 Pessac France
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
- ICMATE-CNR Corso Stati Uniti 4 35127 Padova Italy
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
| |
Collapse
|
43
|
Song SS, Zhan J, Zhu HT, Bao JY, Wang AJ, Yuan PX, Feng JJ. Palladium nanospheres-embedded metal-organic frameworks to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene in aqueous solution for ultrasensitive Cu 2+ detection. Analyst 2024; 149:426-434. [PMID: 38099364 DOI: 10.1039/d3an01729j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.
Collapse
Affiliation(s)
- Shu-Shu Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiale Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
44
|
Lv F, Chen J, Wan Y, Si J, Song M, Zhu F, Du S, Shang Y, Man T, Zhu L, Ren K, Piao Y, Zhu C, Deng SY. Amplification of an Electrochemiluminescence-Emissive Aptamer into DNA Nanotags for Sensitive Fecal Calprotectin Determination. Anal Chem 2023; 95:18564-18571. [PMID: 38060825 DOI: 10.1021/acs.analchem.3c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The precision additive manufacturing and tessellated multitasking out of the structural DNA nanotechnology enable a configurable expression of densified electrochemiluminescent (ECL) complexes, which would streamline the bioconjugation while multiplying signals. Herein, a completely DNA-scaffold ECL "polyploid" was replicated out via the living course of rolling circle amplification. The amplicon carried the aptameric sequences of ZnPPIX/TSPP porphyrin as photoreactive centers that rallied at periodical intervals of the persistent extension into a close-packed nanoflower, ZnPDFI/II. Both microscopies and electrophoresis proved the robust nesting of guests at their deployed gene loci, while multispectral comparisons among cofactor substituents pinpointed the pivotal roles of singlet seclusion and Zn2+-chelation for the sake of intensive ECL irradiation. The adversity-resilient hydrogel texture made lipoidal filmogens as porphyrinic ECL prerequisites to be of no need at all, thus not only simplifying assay flows but also inspiring an in situ labeling plan. Upon bioprocessing optimization, an enriched probe ZnPDFIII was further derived that interpolated the binding motif related to calprotectin as validated by molecular docking and affinity titration. With it being a strongly indicative marker of inflammatory bowel disease (IBD), a competitive ECL aptasensing strategy was contrived, managing a signal-on and sensitive detection in mild conditions with a subnanogram-per-milliliter limit of detection by 2 orders of magnitude lower than the standard method as well as a comparable accuracy in clinical stool sample testing. Distinct from those conventional chemophysical rebuilding routes, this de novo biosynthetic fusion demonstrated a promising alternative toward ECL-source bioengineering, which may intrigue vibrant explorations of other ECL-shedding fabrics and, accordingly, a new bioanalytic mode downstream.
Collapse
Affiliation(s)
- Fujin Lv
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiyan Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fulin Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Songyuan Du
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuzhe Shang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Sheng-Yuan Deng
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
45
|
Sentic M, Trajkovic I, Manojlovic D, Stankovic D, Nikolic MV, Sojic N, Vidic J. Luminescent Metal-Organic Frameworks for Electrochemiluminescent Detection of Water Pollutants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7502. [PMID: 38068246 PMCID: PMC10707531 DOI: 10.3390/ma16237502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 10/16/2024]
Abstract
The modern lifestyle has increased our utilization of pollutants such as heavy metals, aromatic compounds, and contaminants that are of rising concern, involving pharmaceutical and personal products and other materials that may have an important environmental impact. In particular, the ultimate results of the intense use of highly stable materials, such as heavy metals and chemical restudies, are that they turn into waste materials, which, when discharged, accumulate in environmental water bodies. In this context, the present review presents the application of metal-organic frameworks (MOFs) in electrochemiluminescent (ECL) sensing for water pollutant detection. MOF composites applied as innovative luminophore or luminophore carriers, materials for electrode modification, and the enhancement of co-reaction in ECL sensors have enabled the sensitive monitoring of some of the most common contaminants of emerging concern such as heavy metals, volatile organic compounds, pharmaceuticals, industrial chemicals, and cyanotoxins. Moreover, we provide future trends and prospects associated with ECL MOF composites for environmental sensing.
Collapse
Affiliation(s)
- Milica Sentic
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia; (M.S.); (I.T.)
| | - Ivana Trajkovic
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia; (M.S.); (I.T.)
| | - Dragan Manojlovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.M.); (D.S.)
| | - Dalibor Stankovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.M.); (D.S.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia;
| | - Neso Sojic
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607 Pessac, France;
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, UMR 1319, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
46
|
Liu MM, Yang YJ, Guo ZZ, Zhong Y, Lei Y, Liu AL. A dual-readout sensing platform for the evaluation of cell viability integrating with optical and digital signals based on a closed bipolar electrode. Talanta 2023; 265:124881. [PMID: 37390672 DOI: 10.1016/j.talanta.2023.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Cell viability is essential for predicting drug toxicity and assessing drug effects in drug screening. However, the over/underestimation of cell viability measured by traditional tetrazolium colorimetric assays is inevitable in cell-based experiments. Hydrogen peroxide (H2O2) secreted by living cells may provide more comprehensive information about the cell state. Hence, it is significant to develop a simple and rapid approach for evaluating cell viability by measuring the excreted H2O2. In this work, we developed a dual-readout sensing platform based on optical and digital signals by integrating a light emitting diode (LED) and a light dependent resistor (LDR) into a closed split bipolar electrode (BPE), denoted as BP-LED-E-LDR, for evaluating cell viability by measuring the H2O2 secreted from living cells in drug screening. Additionally, the customized three-dimensional (3D) printed components were designed to adjust the distance and angle between the LED and LDR, achieving stable, reliable and highly efficient signal transformation. It only took 2 min to obtain response results. For measuring the exocytosis H2O2 from living cells, we observed a good linear relationship between the visual/digital signal and logarithmic function of MCF-7 cell counts. Furthermore, the fitted half inhibitory concentration curve of MCF-7 to doxorubicin hydrochloride obtained by the BP-LED-E-LDR device revealed a nearly identical tendency with the cell counting kit-8 assay, providing an attainable, reusable, and robust analytical strategy for evaluating cell viability in drug toxicology research.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan-Jie Yang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zi-Zhen Guo
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
47
|
Lee H, Kim J, Hwang M, Kim J. Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts. ACS Sens 2023; 8:4374-4383. [PMID: 37857596 DOI: 10.1021/acssensors.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In this work, we report a bipolar electrode (BPE) array system with self-driven optical readouts of the faradic current flowing through the BPEs. The BPE array system is based on the spontaneous redox reactions that are respectively occurring at opposite poles of the BPEs with appropriate electrocatalysts on the poles; this system is analogous to one consisting of galvanic electrochemical cells. The galvanic BPE array system operates in a self-powered mode that requires there to be neither a direct electrical connection nor external electrical polarization to each BPE. Importantly, the appropriate electrocatalysts on the poles play a critical role in the galvanic BPE array system to induce the spontaneous redox reactions occurring at the poles of BPEs. Moreover, the galvanic BPE array system provides self-driven optical readouts, including fluorometric and colorimetric ones, to report the faradaic current resulting from the spontaneous redox reactions on the BPE poles. Based on the unique benefits that the galvanic BPE array system has over conventional BPEs, we demonstrated the promising potential of galvanic BPE arrays for the simple yet rapid and quantitative screening of electrocatalysts for the oxygen reduction reaction as well as sensitive sensing of H2O2 in parallel.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Misol Hwang
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
48
|
Sun Q, Ning Z, Yang E, Yin F, Wu G, Zhang Y, Shen Y. Ligand-induced Assembly of Copper Nanoclusters with Enhanced Electrochemical Excitation and Radiative Transition for Electrochemiluminescence. Angew Chem Int Ed Engl 2023; 62:e202312053. [PMID: 37698462 DOI: 10.1002/anie.202312053] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Copper nanoclusters (CuNCs) are emerging electrochemiluminescence (ECL) emitters with unique molecule-like electronic structures, high abundance, and low cost. However, the synthesis of CuNCs with high ECL efficiency and stability in a scalable manner remains challenging. Here, we report a facile gram-scale approach for preparing self-assembled CuNCs (CuNCsAssy ) induced by ligands with exceptionally boosted anodic ECL and stability. Compared to the disordered aggregates that are inactive in ECL, the CuNCsAssy shows a record anodic ECL efficiency for CuNCs (10 %, wavelength-corrected, relative to Ru(bpy)3 Cl2 /tripropylamine). Mechanism studies revealed the unusual dual functions of ligands in simultaneously facilitating electrochemical excitation and radiative transition. Moreover, the assembly addressed the limitation of poor stability of conventional CuNCs. As a proof of concept, an ECL biosensor for alkaline phosphatase detection was successfully constructed with an ultralow limit of detection of 8.1×10-6 U/L.
Collapse
Affiliation(s)
- Qian Sun
- Medical School, Southeast University, Nanjing, 210009, China
| | - Zhenqiang Ning
- Medical School, Southeast University, Nanjing, 210009, China
- Department of Clinical Laboratory, Jiangxi Provincial Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Erli Yang
- Medical School, Southeast University, Nanjing, 210009, China
| | - Fei Yin
- Medical School, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, Southeast University, Nanjing, 210009, China
- Center of Clinical Laboratory Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, Southeast University, Nanjing, 210009, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China
- Center of Clinical Laboratory Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
49
|
Liu M, Salinas G, Yu J, Cornet A, Li H, Kuhn A, Sojic N. Endogenous and exogenous wireless multimodal light-emitting chemical devices. Chem Sci 2023; 14:10664-10670. [PMID: 37829015 PMCID: PMC10566513 DOI: 10.1039/d3sc03678b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Multimodal imaging is a powerful and versatile approach that integrates and correlates multiple optical modalities within a single device. This concept has gained considerable attention due to its potential applications ranging from sensing to medicine. Herein, we develop several wireless multimodal light-emitting chemical systems by coupling two light sources based on different physical principles: electrochemiluminescence (ECL) occurring at the electrode interface and a light-emitting diode (LED) switched on by an electrochemically triggered electron flow. Endogenous (thermodynamically spontaneous redox process) and exogenous (requiring an external power source) bipolar electrochemistry acts as a driving force to trigger both light emissions at different wavelengths. The results presented here interconnect optical imaging and electrochemical reactions, providing a novel and so far unexplored alternative to design autonomous hybrid systems with multimodal and multicolor optical readouts for complex bio-chemical systems.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Gerardo Salinas
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Jing Yu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Antoine Cornet
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Haidong Li
- College of Chemistry and Chemical Engineering, Yangzhou University 225002 Yangzhou China
| | - Alexander Kuhn
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| |
Collapse
|
50
|
Firoozbakhtian A, Hosseini M, Guan Y, Xu G. Boosting Electrochemiluminescence Immunoassay Sensitivity via Co-Pt Nanoparticles within a Ti 3C 2 MXene-Modified Single Electrode Electrochemical System on Raspberry Pi. Anal Chem 2023; 95:15110-15117. [PMID: 37750307 DOI: 10.1021/acs.analchem.3c03285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Point-of-care testing plays a crucial role in diagnostics within resource-poor areas, necessitating the utilization of portable and user-friendly devices. The adaptation of biosensors for point-of-care applications requires careful considerations, such as miniaturization, cost-effectiveness, and streamlined sample processing. In recent years, the electrochemiluminescence (ECL) immunoassay has gained significant attention due to its visual detection capabilities and ability to facilitate high-throughput analysis. However, the development of a practical and cost-effective ECL device remains a challenging task. This study presents the development of an integrated MXene-modified single-electrode electrochemical system (SEES) for visual and high-throughput ECL immunoassays incorporating a Raspberry Pi system. The SEES was designed by affixing a plastic sticker with multiple perforations onto a single carbon ink screen-printed electrode, which operates based on a resistance-induced potential difference. Leveraging the excellent adsorption and bioaffinity properties of the carbon ink screen-printed electrode, effective immobilization of antibodies was achieved. Furthermore, the incorporation of Co-Pt nanoparticles enhanced the ECL intensity and electron transfer kinetics, enabling the sensitive detection of SARS-CoV-2. The developed system comprised 18 individual reaction cells, allowing for simultaneous analysis while maintaining sample isolation. Impressively, the system achieved a remarkable minimum virus detection limit of 10-14 g mL-1, accompanied by a high R2 value of 0.9798. These findings highlight the promising potential of our developed system for efficient point-of-care testing in resource-limited settings.
Collapse
Affiliation(s)
- Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|