1
|
Yao Z, Liu T, Wang J, Fu Y, Zhao J, Wang X, Li Y, Yang X, He Z. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv 2025; 81:108546. [PMID: 40015385 DOI: 10.1016/j.biotechadv.2025.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
As an emerging therapeutic tool, small interfering RNA (siRNA) had the capability to down-regulate nearly all human mRNAs via sequence-specific gene silencing. Numerous studies have demonstrated the substantial potential of siRNA in the treatment of broad classes of diseases. With the discovery and development of various delivery systems and chemical modifications, six siRNA-based drugs have been approved by 2024. The utilization of siRNA-based therapeutics has significantly propelled efforts to combat a wide array of previously incurable diseases and advanced at a rapid pace, particularly with the help of potent targeted delivery systems. Despite encountering several extracellular and intracellular challenges, the efficiency of siRNA delivery has been gradually enhanced. Currently, targeted strategies aimed at improving potency and reducing toxicity played a crucial role in the druggability of siRNA. This review focused on recent advancements on ionizable lipid nanoparticles (LNPs) and cationic polymer (CP) vectors applied for targeted siRNA delivery. Based on various types of targeted modifications, we primarily described delivery systems modified with receptor ligands, peptides, antibodies, aptamers and amino acids. Finally, we discussed the challenges and opportunities associated with siRNA delivery systems based on ionizable LNPs and CPs vectors.
Collapse
Affiliation(s)
- Ziying Yao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingwen Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhai Fu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhua Zhao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Yang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Zhu P, Li Y, Zhang D. One-Component Ionizable Amphiphilic Janus Dendrimers for Targeted mRNA Delivery. Angew Chem Int Ed Engl 2025; 64:e202505304. [PMID: 40192525 DOI: 10.1002/anie.202505304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
mRNA nanomedicine represents a new generation of therapeutics. However, how to deliver mRNA to the desired organs and cells effectively remains challenging. Common mRNA delivery vectors include viral and nonviral types such as four-component lipid nanoparticles (LNPs), polymer-based nanoparticles, lipid-polymer hybrid nanoparticles, and so on. One-component ionizable amphiphilic Janus dendrimers (IAJDs), are an emerging type of mRNA delivery vehicle displaying good stability and high delivery efficiency. In this review, we comprehensively present the design, synthesis, and mRNA delivery properties of IAJDs, with particular focus on the relationship between their molecular structures and organ targeted delivery properties. Other representative types of dendrimers for RNA delivery are also reviewed. Overall, this review summarizes the recent research progress on IAJDs systematically, aiming to guide the development of more efficient mRNA delivery platforms and next-generation mRNA nanomedicines.
Collapse
Affiliation(s)
- Pengyu Zhu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Dapeng Zhang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
López Espinar A, Mulder LM, Elkhashab M, Khan Z, Czarnocki-Cieciura M, Aburto MR, Vucen S, Kowalski PS. Tailoring Alkyl Side Chains of Ionizable Amino-Polyesters for Enhanced In Vivo mRNA Delivery. ACS APPLIED BIO MATERIALS 2025; 8:3958-3971. [PMID: 40293247 DOI: 10.1021/acsabm.5c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid nanoparticles (LNPs) containing ionizable lipids are the most clinically advanced platform for mRNA delivery, but their application beyond the liver remains challenging. Polymer-lipid hybrid nanoparticles offer a promising alternative, combining the synthetic versatility and unique properties of polymers with the biocompatibility of lipid excipients. While the significance of alkyl tail design is well-recognized for ionizable lipids, the impact of the polymer side chain composition on interactions with lipid excipients, mRNA delivery efficacy, and tissue specificity remains poorly understood. Here, we focus on a class of ionizable amino-polyesters (APEs) that exhibit features desired for potential clinical applications, including narrow molecular weight distribution and a good safety profile, and investigate the effect of polymer side chain composition on the formulation of APE lipid nanoparticles (APE-LNPs) for mRNA delivery. A library of 36 APEs was synthesized via ring-opening polymerization of chemically diverse tertiary amino-alcohols and lactone monomers with distinct alkyl side chain compositions, including variations in length and unsaturation. We show that optimal alkyl side chain length is critical for the assembly of stable mRNA nanoparticles and efficient mRNA delivery both in vitro and in vivo. Top-performing APE-LNPs display superior delivery efficacy in vitro and in extrahepatic tissues compared to benchmark LNPs, including DLin-MC3-DMA ionizable lipid. The polymer chain composition affects the tissue selectivity of APE-LNPs, with shorter side chains (4-5 carbons) effectively targeting the spleen and lungs, while longer chains (7-9 carbons) show enhanced liver delivery. We also explored the relevance of lipid excipients in APE-LNPs, demonstrating the essential role of unsaturated phospholipids in enhancing cellular uptake and mRNA delivery, and the limited relevance of cholesterol. These findings provide valuable insights into the design of polymers for use in the LNP context, which could aid the development of polymeric alternatives to ionizable lipids and expand the utility of mRNA LNP technology to nonliver tissues.
Collapse
Affiliation(s)
| | - Lianne M Mulder
- School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | | | - Zahra Khan
- School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | - Mariusz Czarnocki-Cieciura
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Maria R Aburto
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, Research Ireland Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
4
|
Wu J, Zhang Y, Wu Z, Townsend J, Crooks I, Watt B, Baik A, Cygnar K, Qiu H, Li N. Characterization of lipid nanoparticles using macro mass photometry: Insights into size and mass. Anal Chim Acta 2025; 1351:343944. [PMID: 40187867 DOI: 10.1016/j.aca.2025.343944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Lipid nanoparticles (LNPs) have become an important delivery system for nucleic acids, as applied in the first RNAi drug and two COVID-19 mRNA vaccines approved by the FDA. Despite advantages of their high cargo capacity, low immunogenicity allowing for redosing, scalability and low-cost manufacturing, challenges such as liver accumulation and difficulties in quality control persist for LNPs development. Conjugation of antibodies or antibody fragments onto LNPs holds promise in achieving precise targeting and higher stability of the targeting moieties on LNP surfaces. However, quality control of such multiple-component products poses additional challenges compared to LNP alone. LNP size and mass are critical quality attributes which play important roles in determining LNPs' nucleic acid cargo loading, antibody conjugation level, biodistribution, targeting capability, and overall efficacy. RESULTS Macro mass photometry (MMP), a single-molecule technique, enabled orthogonal characterization of LNPs by incorporating contrast analysis as a proxy for particle mass and combining it with size measurement. This approach thus improves the definition of LNP species within heterogeneous systems. Using MMP, this study revealed the effects of PEG-lipid concentration, mRNA encapsulation, and antibody conjugation on LNP size and mass. Additionally, the study demonstrated the MMP's utility in monitoring LNPs under various stress conditions, including high pH, low pH, oxidation, freeze-thaw cycles, and agitation. SIGNIFICANCE This study represents the first use of mass photometry for LNP analysis, simultaneously characterizing the mass and size of LNPs. It highlights the potential of MMP as a valuable orthogonal tool for LNP characterization and supports LNP formulation development.
Collapse
Affiliation(s)
- Jikang Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Yu Zhang
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Zhijie Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Julia Townsend
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Ivor Crooks
- Refeyn Ltd, Unit 9, Trade City Oxford, Sandy Lane West, Oxford, OX4 6FF, UK
| | - Brenda Watt
- Refeyn Inc, 21 Hickory Drive, Suite 2a, Waltham, MA, 02451, USA
| | - Andrew Baik
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Katherine Cygnar
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
5
|
Xue Y, Wang C, Li H, Du S, Zhong Y, Zhang Y, Wang S, Guo K, Hou X, Kang DD, Liu Z, Tian M, Cao D, Deng B, McComb DW, Markovic T, Pan J, Borna M, Nestler EJ, Peng PC, Dong Y. Lipid Nanoparticles Enhance mRNA Delivery to the Central Nervous System Upon Intrathecal Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417097. [PMID: 40317512 DOI: 10.1002/adma.202417097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/27/2025] [Indexed: 05/07/2025]
Abstract
Lipid nanoparticle-messenger RNA formulations have garnered significant attention for their therapeutic potential in infectious diseases, cancer and genetic disorders. However, effective mRNA delivery to the central nervous system (CNS) remains a formidable challenge. To overcome this limitation, a class of brain-targeting lipids (BLs) is developed by incorporating brain-targeting small molecules with amino lipids and formulated them with helper lipids to generate brain-targeting lipid nanoparticles (BLNPs) for mRNA delivery. Screening studies led to a lead formulation, TD5 BLNPs, outperforming FDA-approved DLin-MC3-DMA LNPs in delivering mRNA to the brain upon intrathecal injection. Specifically, a single intrathecal injection of TD5 BLNP-GFP mRNA led to GFP expression in 29.6% of neurons and 38.1% of astrocytes across the brain. In an Ai14 mouse model, TD5 BLNP-Cre recombinase mRNA treatment induced tdTomato expression in ≈30% of neurons and 40% of astrocytes across major brain regions. Notably, delivery of Cas9 mRNA/sgRNA complex using TD5 BLNPs achieved effective genome editing in the brain. Additionally, TD5 BLNPs showed comparable safety profiles to MC3 LNPs, indicating promising biocompatibility. Overall, this TD5 BLNP formulation effectively delivers mRNA to brain tissues via intrathecal injection and facilitates efficient expression in both neurons and astrocytes, presenting a potential strategy for treating CNS diseases.
Collapse
Affiliation(s)
- Yonger Xue
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chang Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuebao Zhang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kaiyuan Guo
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diana D Kang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhengwei Liu
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meng Tian
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dinglingge Cao
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiayi Pan
- Biogen Inc, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Mandana Borna
- Biogen Inc, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Paul C Peng
- City Therapeutics, 399 Binney Street, Cambridge, MA, 02142, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
6
|
Ricci D, Cruciata I, Fiduccia I, Vitale E, Corrao F, Branchini A, Carollo PS, Pibiri I, Lentini L. Advancing Therapeutic Strategies for Nonsense-Related Diseases: From Small Molecules to Nucleic Acid-Based Innovations. IUBMB Life 2025; 77:e70027. [PMID: 40420818 DOI: 10.1002/iub.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Nonsense mutations in gene coding regions introduce an in-frame premature termination codon (PTC) in the mRNA transcript, resulting in the early termination of translation and the production of a truncated, nonfunctional protein. The absence of protein expression and the consequent loss of essential cellular functions are responsible for the severe phenotypes in the so-called genetic nonsense-related diseases (NRDs), such as cystic fibrosis, hemophilia, Duchenne muscular dystrophy, Fabry disease, Choroideremia, Usher syndrome, Shwachman-Diamond syndrome, and even certain types of cancer. Nonsense mutations pose a significant challenge in the treatment of NRDs, as a specific approach directly addressing this genetic defect is currently unavailable. Developing new therapeutic strategies for nonsense suppression is a crucial goal of precision medicine. This review describes some of the most promising therapeutic approaches and emerging strategies for treating NRDs. It considered both the use of small molecules to interfere with molecular mechanisms related to nonsense mutations, such as translational readthrough-inducing drugs (TRIDs) or inhibitors of the nonsense-mediated decay (NMD) pathway, and also innovative approaches involving nucleic acids, such as gene editing, anticodon engineered-tRNA (ACE-tRNA), or mRNA-based therapy. Future research should focus on refining these approaches and exploring integrated and personalized treatments to enhance therapeutic outcomes and ensure continuous improvement in the quality of care.
Collapse
Affiliation(s)
- Davide Ricci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Ignazio Fiduccia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Emanuele Vitale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Yong H, Tian Y, Li Z, Wang C, Zhou D, Liu J, Huang X, Li J. Highly Branched Poly(β-amino ester)s for Efficient mRNA Delivery and Nebulization Treatment of Silicosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414991. [PMID: 40167376 DOI: 10.1002/adma.202414991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
mRNA therapeutics hold tremendous promise for disease prevention and treatment. Development of high-performance mRNA delivery systems with enhanced transfection efficiency and a safety profile will further fulfill their therapeutic potential and expedite their translation. The synthesis of "four-in-one" highly branched poly(β-amino ester)s (O-LhPAEs) is reported by integrating the essential components of lipid nanoparticles (LNPs) for spleen-selective mRNA enrichment and nebulization treatment of silicosis. 60 O-LhPAEs with distinct branched structure and chemical composition, including tertiary/quaternary amines, cholesterol moieties, zwitterionic species, and hydrophobic alkyl tails, are synthesized using sequential Michael addition, ring-opening, and nucleophilic substitution reactions. The unique topological structure and chemical composition collectively enhanced O-LhPAEs/mRNA polyplex serum resistance, cellular uptake, and endosomal escape. The optimal O-LhPAE, 20%b-3C-2P12, exhibits up to 93.1% mRNA transfection across 11 different cell types, including epithelial cells, fibroblasts, cancer cells, stem cells, neurological cells, and astrocytes. Biodistribution study reveals that 20%b-3C-2P12/mRNA polyplexes are mainly enriched in the spleen following systemic administration. Through nebulization, 20%b-3C-2P12 mediated high Tbx2 mRNA expression in the lungs of silicosis mice, effectively restoring lung functions. This study not only establishes a strategy for development of LNP-like O-LhPAEs but also provides promising candidates for highly safe, efficient, and spleen-selective mRNA delivery and nebulization treatment of silicosis.
Collapse
Affiliation(s)
- Haiyang Yong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunze Tian
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dezhong Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou, 571158, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Shaanxi Provincial Key Laboratory of Environmental Health Hazard Assessment and Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth military Medical University, Xi'an, 710032, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
8
|
Mao X, Lan Y, Lou F, Zhang Z, Jin Q, Jia Y, Li Y. Molecular understanding of transmembrane transport of mRNA carried by graphene oxide: Effect of membrane tension. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 67:102826. [PMID: 40288623 DOI: 10.1016/j.nano.2025.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
In recent years, graphene oxide (GO) has emerged as a promising nanocarrier for targeted mRNA delivery. However, the detailed molecular mechanisms governing its transmembrane transport remain poorly understood. Here, we employ molecular simulations to systematically investigate how membrane surface tension and binding configurations influence the transmembrane behavior of GO-mRNA nanocomplexes. Our findings reveal a membrane tension-dependent entry pathway that nanocomplex entry cell from adhesion/penetration to endocytosis, suggesting a potential mechanism for tumor cell drug resistance development. Furthermore, we demonstrate distinct transmembrane dynamics process for three predominant GO-mRNA binding modes, exhibiting variations in translocation velocity, penetration depth, and resultant membrane deformation. These computational insights provide crucial theoretical guidance for engineering optimized mRNA delivery carrier, potentially advancing the biomedical application of GO-based nanoplatforms in gene therapy and precision oncology.
Collapse
Affiliation(s)
- Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yun Lan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fangzhou Lou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qi Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuandi Jia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Huayamares SG, Lian L, Rab R, Hou Y, Radmand A, Kim H, Zenhausern R, Achyut BR, Gilbert Ross M, Lokugamage MP, Loughrey D, Peck HE, Echeverri ES, Da Silva Sanchez AJ, Shajii A, Li A, Tiegreen KE, Santangelo PJ, Sorscher EJ, Dahlman JE. Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses. Nat Commun 2025; 16:3490. [PMID: 40221395 PMCID: PMC11993580 DOI: 10.1038/s41467-025-58548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Most cancer patients diagnosed with late-stage head and neck squamous cell carcinoma are treated with chemoradiotherapy, which can lead to toxicity. One potential alternative is tumor-limited conversion of a prodrug into its cytotoxic form. We reason this could be achieved by transient and tumor-specific expression of purine nucleoside phosphorylase (PNP), an Escherichia coli enzyme that converts fludarabine into 2-fluoroadenine, a potent cytotoxic drug. To efficiently express bacterial PNP in tumors, we evaluate 44 chemically distinct lipid nanoparticles (LNPs) using species-agnostic DNA barcoding in tumor-bearing mice. Our lead LNP, designated LNP intratumoral (LNPIT), delivers mRNA that leads to PNP expression in vivo. Additionally, in tumor cells transfected with LNPIT, we observe upregulated pathways related to RNA and protein metabolism, providing insight into the tumor cell response to LNPs in vivo. When mice are treated with LNPIT-PNP, then subsequently given fludarabine phosphate, we observe anti-tumor responses. These data are consistent with an approach in which LNP-mRNA expression of a bacterial enzyme activates a prodrug in solid tumors.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Regina Rab
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yuning Hou
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Bhagelu R Achyut
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Anand P, Zhang Y, Patil S, Kaur K. Metabolic Stability and Targeted Delivery of Oligonucleotides: Advancing RNA Therapeutics Beyond The Liver. J Med Chem 2025; 68:6870-6896. [PMID: 39772535 PMCID: PMC11998008 DOI: 10.1021/acs.jmedchem.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Oligonucleotides have emerged as a formidable new class of nucleic acid therapeutics. Fully modified oligonucleotides exhibit enhanced metabolic stability and display successful clinical applicability for targets formerly considered "undruggable". Accumulating studies show that conjugation to targeting modalities of stabilized oligonucleotides, especially small interfering RNAs (siRNAs), has enabled robust delivery to intended cells/tissues. However, the major challenge in the field has been the stability and targeted delivery of oligonucleotides (siRNAs and antisense oligonucleotides (ASOs)) to extrahepatic tissues. In this Perspective, we review chemistry innovations and emerging delivery approaches that have revolutionized oligonucleotide drug discovery and development. We explore findings from both academia and industry that highlight the potential of oligonucleotides for indications involving different extrahepatic organs─including skeletal muscles, brain, lungs, skin, heart, adipose tissue, and eyes. In all, continued advances in chemistry coupled with conjugation-based approaches or novel administration routes will further advance the delivery of oligonucleotides to extrahepatic tissues.
Collapse
Affiliation(s)
- Puneet Anand
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Yu Zhang
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Spoorthi Patil
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Keerat Kaur
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| |
Collapse
|
11
|
Cabré-Romans JJ, Cuella-Martin R. CRISPR-dependent base editing as a therapeutic strategy for rare monogenic disorders. Front Genome Ed 2025; 7:1553590. [PMID: 40242216 PMCID: PMC12000063 DOI: 10.3389/fgeed.2025.1553590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Rare monogenic disorders are caused by mutations in single genes and have an incidence rate of less than 0.5%. Due to their low prevalence, these diseases often attract limited research and commercial interest, leading to significant unmet medical needs. In a therapeutic landscape where treatments are targeted to manage symptoms, gene editing therapy emerges as a promising approach to craft curative and lasting treatments for these patients, often referred to as "one-and-done" therapeutics. CRISPR-dependent base editing enables the precise correction of genetic mutations by direct modification of DNA bases without creating potentially deleterious DNA double-strand breaks. Base editors combine a nickase version of Cas9 with cytosine or adenine deaminases to convert C·G to T·A and A·T to G·C, respectively. Together, cytosine (CBE) and adenine (ABE) base editors can theoretically correct ∼95% of pathogenic transition mutations cataloged in ClinVar. This mini-review explores the application of base editing as a therapeutic approach for rare monogenic disorders. It provides an overview of the state of gene therapies and a comprehensive compilation of preclinical studies using base editing to treat rare monogenic disorders. Key considerations for designing base editing-driven therapeutics are summarized in a user-friendly guide for researchers interested in applying this technology to a specific rare monogenic disorder. Finally, we discuss the prospects and challenges for bench-to-bedside translation of base editing therapies for rare monogenic disorders.
Collapse
Affiliation(s)
- Júlia-Jié Cabré-Romans
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Raquel Cuella-Martin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Zhao X, Zhang Y, Wang X, Fu Z, Zhong Z, Deng C. Multivalent ionizable lipid-polypeptides for tumor-confined mRNA transfection. Bioact Mater 2025; 46:423-433. [PMID: 39850023 PMCID: PMC11754973 DOI: 10.1016/j.bioactmat.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025] Open
Abstract
mRNA therapeutics is revolutionizing the treatment concepts toward many diseases including cancer. The potential of mRNA is, however, frequently limited by modest control over site of transfection. Here, we have explored a library of multivalent ionizable lipid-polypeptides (MILP) to achieve robust mRNA complexation and tumor-confined transfection. Leveraging the multivalent electrostatic, hydrophobic, and H-bond interactions, MILP efficiently packs both mRNA and plasmid DNA into sub-80 nm nanoparticles that are stable against lyophilization and long-term storage. The best MILP@mRNA complexes afford 8-fold more cellular uptake than SM-102 lipid nanoparticle formulation (SM-102 LNP), efficient endosomal disruption, and high transfection in different cells. Interestingly, MILP@mLuc displays exclusive tumor residence and distribution via multivalency-directed strong affinity and transcytosis, and affords specific protein expression in tumor cells and macrophages at tumor sites following intratumoral injection, in sharp contrast to the indiscriminate distribution and transfection in main organs of SM-102 LNP. Notably, MILP@mIL-12 with specific and efficient cytokine expression generates significant remodeling of tumor immunoenvironments and remarkable antitumor response in subcutaneous Lewis lung carcinoma and 4T1 tumor xenografts. MILP provides a unique strategy to site-specific transfection that may greatly broaden the applications of mRNA.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yueyue Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xin Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Ziming Fu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
13
|
Loughrey D, Paunovska K, Echeverri ES, Tiegreen KE, Dahlman JE. The time course of in vivo cellular responses to LNPs. Chem Commun (Camb) 2025; 61:4535-4538. [PMID: 39996281 DOI: 10.1039/d4cc06659f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cells actively respond to drug delivery systems. However, the time course of cellular responses to lipid nanoparticles (LNPs) remains unclear. Here we characterized the transcriptomic response to LNPs carrying mRNA at different timepoints in vivo. Exposure to LNPs altered the expression of signaling pathways including endocytosis and lysosomal pathways as soon as one hour after administration. These pathways returned to their baseline state by 24 hours. Our data are consistent with the hypothesis that cells actively yet transiently respond to LNPs.
Collapse
Affiliation(s)
- David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
14
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
15
|
Gao M, Zhong J, Liu X, Zhao Y, Zhu D, Shi X, Xu X, Zhou Q, Xuan W, Zhang Y, Zhou Y, Cheng J. Deciphering the Role of PEGylation on the Lipid Nanoparticle-Mediated mRNA Delivery to the Liver. ACS NANO 2025; 19:5966-5978. [PMID: 39899798 DOI: 10.1021/acsnano.4c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Organ- and cell-specific delivery of mRNA via modular lipid nanoparticles (LNPs) is promising in treating various diseases, but targeted cargo delivery is still very challenging. Most previous work focuses on screening ionizable and helper lipids to address the above issues. Here, we report the multifacial role of PEGylated lipids in manipulating LNP-mediated delivery of mRNA to the liver. We employed the typical excipients in LNP products, including DLin-MC3-DMA, DPSC, and cholesterol. Five types of PEGylated lipids were selected, and their molar ratio was fixed at 1.5% with a constant PEG molecular weight of 2000 Da. The architecture of steric lipids dramatically affected the in vitro gene transfection, in vivo blood clearance, liver deposition, and targeting of specific cells, all of which were closely linked to the de-PEGylation rate. The fast de-PEGylation resulted in short blood circulation and high accumulation in the liver. However, the ultrafast de-PEGylation enabled the deposition of more LNPs in Kupffer cells other than hepatocytes. Surprisingly, simply changing the terminal groups of PEGylated lipids from methoxyl to carboxyl or amine could dramatically increase the liver delivery of LNPs, which might be associated with the accelerated de-PEGylation rate and enhanced LNP-cell interaction. The current work highlights the importance of manipulating steric lipids in promoting mRNA delivery, offering an alternative approach for formulating and optimizing mRNA LNPs.
Collapse
Affiliation(s)
- Menghua Gao
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jiafeng Zhong
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Xinxin Liu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dingcheng Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohuo Shi
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310030, China
| | - Xuehan Xu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Qin Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjing Xuan
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yue Zhang
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yaofeng Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jianjun Cheng
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
16
|
Yu M, Lin L, Zhou D, Liu S. Interaction design in mRNA delivery systems. J Control Release 2025; 377:413-426. [PMID: 39580076 DOI: 10.1016/j.jconrel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Following the coronavirus disease 2019 (COVID-19) pandemic, mRNA technology has made significant breakthroughs, emerging as a potential universal platform for combating various diseases. To address the challenges associated with mRNA delivery, such as instability and limited delivery efficacy, continuous advancements in genetic engineering and nanotechnology have led to the exploration and refinement of various mRNA structural modifications and delivery platforms. These achievements have significantly broadened the clinical applications of mRNA therapies. Despite the progress, the understanding of the interactions in mRNA delivery systems remains limited. These interactions are complex and multi-dimensional, occurring between mRNA and vehicles as well as delivery materials and helper ingredients. Resultantly, stability of the mRNA delivery systems and their delivery efficiency can be both significantly affected. This review outlines the current state of mRNA delivery strategies and summarizes the interactions in mRNA delivery systems. The interactions include the electrostatic interactions, hydrophobic interactions, hydrogen bonding, π-π stacking, coordination interactions, and so on. This interaction understanding provides guideline for future design of next-generation mRNA delivery systems, thereby offering new perspectives and strategies for developing diverse mRNA therapeutics.
Collapse
Affiliation(s)
- Mengyao Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
17
|
Wang H, Cheng Y. Polymers for mRNA Delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70002. [PMID: 39763235 DOI: 10.1002/wnan.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.
Collapse
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
18
|
Gupta DS, Suares D. Uncovering the Emerging Prospects of Lipid-based Nanoparticulate Vehicles in Lung Cancer Management: A Recent Perspective. Pharm Nanotechnol 2025; 13:155-170. [PMID: 38468532 DOI: 10.2174/0122117385286781240228060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Lung cancer, a leading cause of cancer-related deaths globally, is gaining research interest more than ever before. Owing to the burden of pathogenesis on the quality of life of patients and subsequently the healthcare system, research efforts focus on its management and amelioration. In an effort to improve bioavailability, enhance stability, minimize adverse effects and reduce the incidence of resistance, nanotechnological platforms have been harnessed for drug delivery and improving treatment outcomes. Lipid nanoparticles, in particular, offer an interesting clinical opportunity with respect to the delivery of a variety of agents. These include synthetic chemotherapeutic agents, immunotherapeutic molecules, as well as phytoconstituents with promising anticancer benefits. In addition to this, these systems are being studied for their usage in conjunction with other treatment strategies. However, their applications remain limited owing to a number of challenges, chiefly clinical translation. There is a need to address the scalability of such technologies, in order to improve accessibility. The authors aim to offer a comprehensive understanding of the evolution of lipid nanoparticles and their application in lung cancer, the interplay of disease pathways and their mechanism of action and the potential for delivery of a variety of agents. Additionally, a discussion with respect to results from preclinical studies has also been provided. The authors have also provided a well-rounded insight into the limitations and future perspectives. While the possibilities are endless, there is a need to undertake focused research to expedite clinical translation and offer avenues for wider applications in disease management.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Divya Suares
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
19
|
Witten J, Raji I, Manan RS, Beyer E, Bartlett S, Tang Y, Ebadi M, Lei J, Nguyen D, Oladimeji F, Jiang AY, MacDonald E, Hu Y, Mughal H, Self A, Collins E, Yan Z, Engelhardt JF, Langer R, Anderson DG. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat Biotechnol 2024:10.1038/s41587-024-02490-y. [PMID: 39658727 DOI: 10.1038/s41587-024-02490-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neural networks, a deep-learning strategy for ionizable lipid design. We created a dataset of >9,000 lipid nanoparticle activity measurements and used it to train a directed message-passing neural network for prediction of nucleic acid delivery with diverse lipid structures. Lipid optimization using neural networks predicted RNA delivery in vitro and in vivo and extrapolated to structures divergent from the training set. We evaluated 1.6 million lipids in silico and identified two structures, FO-32 and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. FO-32 matched the state of the art for nebulized mRNA delivery to the mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret lungs. Overall, this work shows the utility of deep learning for improving nanoparticle delivery.
Collapse
Affiliation(s)
- Jacob Witten
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idris Raji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Rajith S Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Beyer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra Bartlett
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mehrnoosh Ebadi
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Junying Lei
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Dien Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Favour Oladimeji
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allen Yujie Jiang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise MacDonald
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yizong Hu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haseeb Mughal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ava Self
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evan Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Shin K, Suh HW, Suberi A, Whang CH, Ene M, Grundler J, Grun MK, Saltzman WM. Branching in poly(amine-co-ester) polyplexes impacts mRNA transfection. Biomaterials 2024; 311:122692. [PMID: 38986360 PMCID: PMC11298310 DOI: 10.1016/j.biomaterials.2024.122692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Branching is a key structural parameter of polymers, which can have profound impacts on physicochemical properties. It has been demonstrated that branching is a modulating factor for mRNA delivery and transfection using delivery vehicles built from cationic polymers, but the influence of polymer branching on mRNA delivery remains relatively underexplored compared to other polymer features such as monomer composition, hydrophobicity, pKa, or the type of terminal group. In this study, we examined the impact of branching on the physicochemical properties of poly(amine-co-esters) (PACE) and their efficiency in mRNA transfection in vivo and in vitro under various conditions. PACE polymers were synthesized with various degrees of branching ranging from 0 to 0.66, and their transfection efficiency was systemically evaluated. We observed that branching improves the stability of polyplexes but reduces the pH buffering capacity. Therefore, the degree of branching (DB) must be optimized in a delivery route specific manner due to differences in challenges faced by polyplexes in different physiological compartments. Through a systematic analysis of physicochemical properties and mRNA transfection in vivo and in vitro, this study highlights the influence of polymer branching on nucleic acid delivery.
Collapse
Affiliation(s)
- Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Polymer Science & Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Alexandra Suberi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Chang-Hee Whang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Madalina Ene
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Julian Grundler
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Molly K Grun
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
21
|
Raguram A, An M, Chen PZ, Liu DR. Directed evolution of engineered virus-like particles with improved production and transduction efficiencies. Nat Biotechnol 2024:10.1038/s41587-024-02467-x. [PMID: 39537813 PMCID: PMC12085157 DOI: 10.1038/s41587-024-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Engineered virus-like particles (eVLPs) are promising vehicles for transient delivery of proteins and RNAs, including gene editing agents. We report a system for the laboratory evolution of eVLPs that enables the discovery of eVLP variants with improved properties. The system uses barcoded guide RNAs loaded within DNA-free eVLP-packaged cargos to uniquely label each eVLP variant in a library, enabling the identification of desired variants following selections for desired properties. We applied this system to mutate and select eVLP capsids with improved eVLP production properties or transduction efficiencies in human cells. By combining beneficial capsid mutations, we developed fifth-generation (v5) eVLPs, which exhibit a 2-4-fold increase in cultured mammalian cell delivery potency compared to previous-best v4 eVLPs. Analyses of v5 eVLPs suggest that these capsid mutations optimize packaging and delivery of desired ribonucleoprotein cargos rather than native viral genomes and substantially alter eVLP capsid structure. These findings suggest the potential of barcoded eVLP evolution to support the development of improved eVLPs.
Collapse
Affiliation(s)
- Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| | - Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Fei Y, Yu X, Liu P, Ren H, Wei T, Cheng Q. Simplified Lipid Nanoparticles for Tissue- And Cell-Targeted mRNA Delivery Facilitate Precision Tumor Therapy in a Lung Metastasis Mouse Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409812. [PMID: 39390844 DOI: 10.1002/adma.202409812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Indexed: 10/12/2024]
Abstract
mRNA-based applications have achieved remarkable success in the development of next-generation vaccines and the treatment of diverse liver diseases. Overcoming the challenge of delivering mRNA to extrahepatic tissues, especially specific cells within tissues, is crucial for precision therapy. In this study, a platform is developed for selective mRNA delivery to desired cells within tissues by combining lipid nanoparticle (LNP)-based targeted delivery with mRNA sequence-controlled expression. Through systematic optimization, a three-component LNP platform is developed, enabling targeted mRNA delivery to the lung, liver, and spleen. The incorporation of unique microRNA target sites into the mRNA scaffold further enhances control over protein translation in specific cells within the target tissue. This combined strategy, named SELECT (Simplified LNP with Engineered mRNA for Cell-type Targeting), demonstrates its efficacy in distinguishing mRNA expression between tumor and normal cells based on intracellular microRNA abundance. SELECT encapsulating mRNA encoding a tumor-specific cytotoxic protein, human ELANE, exhibits selective mRNA delivery to tumor lesions and significant inhibition of tumor growth in a mouse model of melanoma lung metastasis. Overall, SELECT has great potential as a new precision tumor treatment approach and also offers promising prospects for other mRNA therapies targeting specific cell types.
Collapse
Affiliation(s)
- Yuan Fei
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xiaolu Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyu Liu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Hongyu Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Tarab-Ravski D, Stotsky-Oterin L, Elisha A, Kundoor GR, Ramishetti S, Hazan-Halevy I, Haas H, Peer D. The future of genetic medicines delivered via targeted lipid nanoparticles to leukocytes. J Control Release 2024; 376:286-302. [PMID: 39401676 DOI: 10.1016/j.jconrel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Genetic medicines hold vast therapeutic potential, offering the ability to silence or induce gene expression, knock out genes, and even edit DNA fragments. Applying these therapeutic modalities to leukocytes offers a promising path for treating various conditions yet overcoming the obstacles of specific and efficient delivery to leukocytes remains a major bottleneck in their clinical translation. Lipid nanoparticles (LNPs) have emerged as the leading delivery system for nucleic acids due to their remarkable versatility and ability to improve their in vivo stability, pharmacokinetics, and therapeutic benefits. Equipping LNPs with targeting moieties can promote their specific cellular uptake and internalization to leukocytes, making targeted LNPs (tLNPs) an inseparable part of developing leukocyte-targeted gene therapy. However, despite the significant advancements in research, genetic medicines for leukocytes using targeted delivery approaches have not been translated into the clinic yet. Herein, we discuss the important aspects of designing tLNPs and highlight the considerations for choosing an appropriate bioconjugation strategy and targeting moiety. Furthermore, we provide our insights on limiting challenges and identify key areas for further research to advance these exciting therapies for patient care.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Govinda Reddy Kundoor
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Heinrich Haas
- NeoVac Ltd. 127 Olympic Ave., OX14 4SA, Milton Park, Oxfordshire, UK; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, Chen PZ, Palczewski K, Liu DR. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol 2024; 42:1526-1537. [PMID: 38191664 PMCID: PMC11228131 DOI: 10.1038/s41587-023-02078-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Prime editing enables precise installation of genomic substitutions, insertions and deletions in living systems. Efficient in vitro and in vivo delivery of prime editing components, however, remains a challenge. Here we report prime editor engineered virus-like particles (PE-eVLPs) that deliver prime editor proteins, prime editing guide RNAs and nicking single guide RNAs as transient ribonucleoprotein complexes. We systematically engineered v3 and v3b PE-eVLPs with 65- to 170-fold higher editing efficiency in human cells compared to a PE-eVLP construct based on our previously reported base editor eVLP architecture. In two mouse models of genetic blindness, single injections of v3 PE-eVLPs resulted in therapeutically relevant levels of prime editing in the retina, protein expression restoration and partial visual function rescue. Optimized PE-eVLPs support transient in vivo delivery of prime editor ribonucleoproteins, enhancing the potential safety of prime editing by reducing off-target editing and obviating the possibility of oncogenic transgene integration.
Collapse
Affiliation(s)
- Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Han X, Alameh MG, Gong N, Xue L, Ghattas M, Bojja G, Xu J, Zhao G, Warzecha CC, Padilla MS, El-Mayta R, Dwivedi G, Xu Y, Vaughan AE, Wilson JM, Weissman D, Mitchell MJ. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo. Nat Chem 2024; 16:1687-1697. [PMID: 38982196 PMCID: PMC11446653 DOI: 10.1038/s41557-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/14/2024] [Indexed: 07/11/2024]
Abstract
Lipid nanoparticles (LNPs) are widely used for mRNA delivery, with cationic lipids greatly affecting biodistribution, cellular uptake, endosomal escape and transfection efficiency. However, the laborious synthesis of cationic lipids limits the discovery of efficacious candidates and slows down scale-up manufacturing. Here we develop a one-pot, tandem multi-component reaction based on the rationally designed amine-thiol-acrylate conjugation, which enables fast (1 h) and facile room-temperature synthesis of amidine-incorporated degradable (AID) lipids. Structure-activity relationship analysis of a combinatorial library of 100 chemically diverse AID-lipids leads to the identification of a tail-like amine-ring-alkyl aniline that generally affords efficacious lipids. Experimental and theoretical studies show that the embedded bulky benzene ring can enhance endosomal escape and mRNA delivery by enabling the lipid to adopt a more conical shape. The lead AID-lipid can not only mediate local delivery of mRNA vaccines and systemic delivery of mRNA therapeutics, but can also alter the tropism of liver-tropic LNPs to selectively deliver gene editors to the lung and mRNA vaccines to the spleen.
Collapse
Affiliation(s)
- Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Majed Ghattas
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Bojja
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claude C Warzecha
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garima Dwivedi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Xu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Rallabandi R, Sharp B, Majerus S, Royster A, Hoffer S, Ikeda M, Devaux P. Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2024; 32:101290. [PMID: 39070290 PMCID: PMC11283025 DOI: 10.1016/j.omtm.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus, measles virus (MeV), as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency, in this study, we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally, the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells, capable of incorporating new technologies as they are developed.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Spencer Majerus
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Austin Royster
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarrianna Hoffer
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mia Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Muskan M, Abeysinghe P, Cecchin R, Branscome H, Morris KV, Kashanchi F. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol Ther 2024; 32:2939-2949. [PMID: 38414242 PMCID: PMC11403218 DOI: 10.1016/j.ymthe.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.
Collapse
Affiliation(s)
- Muskan Muskan
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Pevindu Abeysinghe
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Riccardo Cecchin
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Heather Branscome
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA
| | - Kevin V Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| | - Fatah Kashanchi
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA.
| |
Collapse
|
28
|
Liao H, Liao J, Zeng L, Cao X, Fan H, Chen J. Strategies for Organ-Targeted mRNA Delivery by Lipid Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2004. [PMID: 39400518 DOI: 10.1002/wnan.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Messenger RNA (mRNA) technology has rapidly evolved, significantly impacting various therapeutic applications, including vaccines, protein replacement, and gene editing. Lipid nanoparticles (LNPs) have emerged as a pivotal nonviral vector for mRNA delivery, crucial for organ-targeted therapies. Despite their success, most LNP formulations predominantly target the liver, limiting their use in nonliver diseases. This review explores strategies to achieve organ-specific mRNA delivery using LNPs, including the discovery of new lipid structures, modification of targeting ligands, incorporation of additional components, and optimization of LNP formulations. These advancements aim to enhance the precision and efficacy of mRNA therapeutics across a broader range of diseases.
Collapse
Affiliation(s)
- Hangping Liao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Jacobs W, Khalifeh M, Koot M, Palacio-Castañeda V, van Oostrum J, Ansems M, Verdurmen WPR, Brock R. RNA-based logic for selective protein expression in senescent cells. Int J Biochem Cell Biol 2024; 174:106636. [PMID: 39089613 DOI: 10.1016/j.biocel.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Cellular senescence is a cellular state characterized by irreversible growth arrest, resistance to apoptosis and secretion of inflammatory molecules, which is causally linked to the pathogenesis of many age-related diseases. Besides, there is accumulating evidence that selective removal of senescent cells can benefit therapies for cancer and fibrosis by modulating the inflammatory microenvironment. While the field of so-called senolytics has spawned promising small molecules and peptides for the selective removal of senescent cells, there is still no effective means to detect senescent cells in vivo, a prerequisite for understanding the role of senescence in pathophysiology and to assess the effectiveness of treatments aimed at removing senescent cells. Here, we present a strategy based on an mRNA logic circuit, that yields mRNA-dependent protein expression only when a senescence-specific miRNA signature is present. Following a validation of radiation-induced senescence induction in primary human fibroblasts, we identify miRNAs up- and downregulated in association with cellular senescence using RT-qPCR. Incorporating binding sites to these miRNAs into the 3' untranslated regions of the mRNA logic circuit, we demonstrate the senescence-specific expression of EGFP for detection of senescent cells and of a constitutively active caspase-3 for selective removal. Altogether, our results pave the way for a novel approach to execute an mRNA-based programme specifically in senescent cells aimed at their detection or selective removal.
Collapse
Affiliation(s)
- Ward Jacobs
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Merijn Koot
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - Jenny van Oostrum
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
30
|
Petersen DMS, Weiss RM, Hajj KA, Yerneni SS, Chaudhary N, Newby AN, Arral ML, Whitehead KA. Branched-Tail Lipid Nanoparticles for Intravenous mRNA Delivery to Lung Immune, Endothelial, and Alveolar Cells in Mice. Adv Healthc Mater 2024; 13:e2400225. [PMID: 38888972 PMCID: PMC11368637 DOI: 10.1002/adhm.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Lipid nanoparticles (LNPs) are proven safe and effective delivery systems on a global scale. However, their efficacy has been limited primarily to liver and immune cell targets. To extend the applicability of mRNA drugs, 580 ionizable lipidoids are synthesized and tested for delivery to extrahepatocellular targets. Of these, over 40 enabled protein expression in mice, with the majority transfecting the liver. Beyond the liver, several LNPs containing new, branched-tail ionizable lipidoids potently delivered mRNA to the lungs, with cell-level specificity depending on helper lipid chemistry. Incorporation of the neutral helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) at 16 mol% enabled highly specific delivery to natural killer and dendritic cells within the lung. Although inclusion of the cationic lipid 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP) improved lung tropism, it decreased cell specificity, resulting in equal transfection of endothelial and lymphoid cells. DOTAP formulations are also less favorable than DOPE formulations because they elevated liver enzyme and cytokine levels. Together, these data identify a new branched-tailed LNP with a unique ability to selectively transfect lung immune cell populations without the use of toxicity-prone cationic helper lipids. This novel vehicle may unlock RNA therapies for lung diseases associated with immune cell dysregulation, including cancer, viral infections, and autoimmune disorders.
Collapse
Affiliation(s)
- Daria M. Strelkova Petersen
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Ryan M. Weiss
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Khalid A. Hajj
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Sai S. Yerneni
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Alexandra N. Newby
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Mariah L. Arral
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Kathryn A. Whitehead
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
31
|
Jacob EM, Huang J, Chen M. Lipid nanoparticle-based mRNA vaccines: a new frontier in precision oncology. PRECISION CLINICAL MEDICINE 2024; 7:pbae017. [PMID: 39171210 PMCID: PMC11336688 DOI: 10.1093/pcmedi/pbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The delivery of lipid nanoparticle (LNP)-based mRNA therapeutics has captured the attention of the vaccine research community as an innovative and versatile tool for treating a variety of human malignancies. mRNA vaccines are now in the limelight as an alternative to conventional vaccines owing to their high precision, low-cost, rapid manufacture, and superior safety profile. Multiple mRNA vaccine platforms have been developed to target several types of cancer, and many have demonstrated encouraging results in animal models and human trials. The effectiveness of these new mRNA vaccines depends on the efficacy and stability of the antigen(s) of interest generated and the reliability of their delivery to antigen-presenting cells (APCs), especially dendritic cells (DCs). In this review, we provide a detailed overview of mRNA vaccines and their delivery strategies and consider future directions and challenges in advancing and expanding this promising vaccine platform to widespread therapeutic use against cancer.
Collapse
Affiliation(s)
- Eden M Jacob
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
32
|
Shin H, Kang S, Won C, Min D. A Single-Dose mRNA Vaccine Employing Porous Silica Nanoparticles Induces Robust Immune Responses Against the Zika Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404590. [PMID: 39010673 PMCID: PMC11425238 DOI: 10.1002/advs.202404590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 07/17/2024]
Abstract
Recently, lipid nanoparticles (LNPs)-based mRNA delivery has been approved by the FDA for SARS-CoV-2 vaccines. However, there are still considerable points for improvement in LNPs. Especially, local administration of LNPs-formulated mRNA can cause off-target translation of mRNA in distal organs which can induce unintended adverse effects. With the hypothesis that large and rigid nanoparticles can be applied to enhance retention of nanoparticles at the injection site, a polyethyleneimine (PEI)-coated porous silica nanoparticles (PPSNs)-based mRNA delivery platform is designed. PPSNs not only facilitate localized translation of mRNA at the site of injection but also prolonged protein expression. It is further demonstrated that the development of a highly efficacious Zika virus (ZIKV) vaccine using mRNA encoding full-length ZIKV pre-membrane (prM) and envelope (E) protein delivered by PPSNs. The ZIKV prME mRNA-loaded PPSNs vaccine elicits robust immune responses, including high levels of neutralizing antibodies and ZIKV E-specific T cell responses in C57BL/6 mice. Moreover, a single injection of prME-PPSNs vaccine provided complete protection against the ZIKV challenge in mice.
Collapse
Affiliation(s)
- Hojeong Shin
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Seounghun Kang
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence TechnologyLemonex Inc.Seoul06683Republic of Korea
| | - Dal‐Hee Min
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
- Institute of Biotherapeutics Convergence TechnologyLemonex Inc.Seoul06683Republic of Korea
| |
Collapse
|
33
|
Ren Y, Zeng L, Tang Y, Liao J, Jiang M, Cao X, Fan H, Chen J. Enhancing spleen-targeted mRNA delivery with branched biodegradable tails in lipid nanoparticles. J Mater Chem B 2024; 12:8062-8066. [PMID: 39099464 DOI: 10.1039/d4tb00960f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The application of mRNA therapy is constrained by the current lipid nanoparticles' (LNPs) inability to target non-liver tissues. In this study, we demonstrate that ionizable lipids equipped with branched and biodegradable tails enhance the selective delivery of mRNA to the spleen, particularly to antigen-presenting cells. This approach offers novel insights into how the chemical structure of LNPs influences their organ-specific targeting capabilities.
Collapse
Affiliation(s)
- Yupeng Ren
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, 2 Taoyuan Street, Xiangtan 411201, P. R. China.
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yingsen Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Meng Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, 2 Taoyuan Street, Xiangtan 411201, P. R. China.
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, 2 Taoyuan Street, Xiangtan 411201, P. R. China.
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
34
|
He Z, Liu Z, Chen Y. Chemical Design Strategy of Ionizable Lipids for In Vivo mRNA Delivery. ChemMedChem 2024; 19:e202400199. [PMID: 38722488 DOI: 10.1002/cmdc.202400199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/08/2024] [Indexed: 06/27/2024]
Abstract
Lipid nanoparticles (LNPs) are the most clinically successful drug delivery systems that have accelerated the development of mRNA drugs and vaccines. Among various structural components of LNPs, more recent attention has been paid in ionizable lipids (ILs) that was supposed as the key component in determining the effectiveness of LNPs for in vivo mRNA delivery. ILs are typically comprised of three moieties including ionizable heads, linkers, and hydrophobic tails, which suggested that the combination of different functional groups in three moieties could produce ILs with diverse chemical structures and biological identities. In this concept article, we provide a summary of chemical design strategy for high-performing IL candidates and discuss their structure-activity relationships for shifting tissue-selective mRNA delivery. We also propose an outlook for the development of next-generation ILs, enabling the broader translation of mRNA formulated with LNPs.
Collapse
Affiliation(s)
- Zepeng He
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
- College of Chemistry and Molecular Science, Henan University, Zhengzhou, 450046, China
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou, 450046, China
| |
Collapse
|
35
|
Li J, Zhang Y, Yang YG, Sun T. Advancing mRNA Therapeutics: The Role and Future of Nanoparticle Delivery Systems. Mol Pharm 2024; 21:3743-3763. [PMID: 38953708 DOI: 10.1021/acs.molpharmaceut.4c00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The coronavirus (COVID-19) pandemic has underscored the critical role of mRNA-based vaccines as powerful, adaptable, readily manufacturable, and safe methodologies for prophylaxis. mRNA-based treatments are emerging as a hopeful avenue for a plethora of conditions, encompassing infectious diseases, cancer, autoimmune diseases, genetic diseases, and rare disorders. Nonetheless, the in vivo delivery of mRNA faces challenges due to its instability, suboptimal delivery, and potential for triggering undesired immune reactions. In this context, the development of effective drug delivery systems, particularly nanoparticles (NPs), is paramount. Tailored with biophysical and chemical properties and susceptible to surface customization, these NPs have demonstrated enhanced mRNA delivery in vivo and led to the approval of several NPs-based formulations for clinical use. Despite these advancements, the necessity for developing a refined, targeted NP delivery system remains imperative. This review comprehensively surveys the biological, translational, and clinical progress in NPs-mediated mRNA therapeutics for both the prevention and treatment of diverse diseases. By addressing critical factors for enhancing existing methodologies, it aims to inform the future development of precise and efficacious mRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
36
|
Guérin M, Lepeltier E. Nanomedicines via the pulmonary route: a promising strategy to reach the target? Drug Deliv Transl Res 2024; 14:2276-2297. [PMID: 38587757 DOI: 10.1007/s13346-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Over the past decades, research on nanomedicines as innovative tools in combating complex pathologies has increased tenfold, spanning fields from infectiology and ophthalmology to oncology. This process has further accelerated since the introduction of SARS-CoV-2 vaccines. When it comes to human health, nano-objects are designed to protect, transport, and improve the solubility of compounds to allow the delivery of active ingredients on their targets. Nanomedicines can be administered by different routes, such as intravenous, oral, intramuscular, or pulmonary routes. In the latter route, nanomedicines can be aerosolized or nebulized to reach the deep lung. This review summarizes existing nanomedicines proposed for inhalation administration, from their synthesis to their potential clinical use. It also outlines the respiratory organs, their structure, and particularities, with a specific emphasis on how these factors impact the administration of nanomedicines. Furthermore, the review addresses the organs accessible through pulmonary administration, along with various pathologies such as infections, genetic diseases, or cancer that can be addressed through inhaled nanotherapeutics. Finally, it examines the existing devices suitable for the aerosolization of nanomedicines and the range of nanomedicines in clinical development.
Collapse
Affiliation(s)
- Mélina Guérin
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France
| | - Elise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
37
|
Henser‐Brownhill T, Martin L, Samangouei P, Ladak A, Apostolidou M, Nagel B, Kwok A. In Silico Screening Accelerates Nanocarrier Design for Efficient mRNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401935. [PMID: 38837626 PMCID: PMC11321627 DOI: 10.1002/advs.202401935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Lipidic nanocarriers are a broad class of lipid-based vectors with proven potential for packaging and delivering emerging nucleic acid therapeutics. An important early step in the clinical development cycle is large-scale screening of diverse formulation libraries to assess particle quality and payload delivery efficiency. Due to the size of the screening space, this process can be both costly and time-consuming. To address this, computational models capable of predicting clinically relevant physio-chemical properties of dendrimer-lipid nanocarriers, along with their mRNA payload delivery efficiency in human cells are developed. The models are then deployed on a large theoretical nanocarrier pool consisting of over 4.5 million formulations. Top predictions are synthesised for validation using cell-based assays, leading to the discovery of a high quality, high performing, candidate. The methods reported here enable rapid, high-throughput, in silico pre-screening for high-quality candidates, and have great potential to reduce the cost and time required to bring mRNA therapies to the clinic.
Collapse
|
38
|
Zhao Y, Wang ZM, Song D, Chen M, Xu Q. Rational design of lipid nanoparticles: overcoming physiological barriers for selective intracellular mRNA delivery. Curr Opin Chem Biol 2024; 81:102499. [PMID: 38996568 PMCID: PMC11323194 DOI: 10.1016/j.cbpa.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
This review introduces the typical delivery process of messenger RNA (mRNA) nanomedicines and concludes that the delivery involves a at least four-step SCER cascade and that high efficiency at every step is critical to guarantee high overall therapeutic outcomes. This SCER cascade process includes selective organ-targeting delivery, cellular uptake, endosomal escape, and cytosolic mRNA release. Lipid nanoparticles (LNPs) have emerged as a state-of-the-art vehicle for in vivo mRNA delivery. The review emphasizes the importance of LNPs in achieving selective, efficient, and safe mRNA delivery. The discussion then extends to the technical and clinical considerations of LNPs, detailing the roles of individual components in the SCER cascade process, especially ionizable lipids and helper phospholipids. The review aims to provide an updated overview of LNP-based mRNA delivery, outlining recent innovations and addressing challenges while exploring future developments for clinical translation over the next decade.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zeyu Morgan Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Mengting Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
39
|
Huang Y, Zhang J, Wang X, Jing H, Li H. Aerosol Inhalation of Gene Delivery Therapy for Pulmonary Diseases. Biomolecules 2024; 14:904. [PMID: 39199292 PMCID: PMC11352762 DOI: 10.3390/biom14080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Gene delivery therapy has emerged as a popular approach for the treatment of various diseases. However, it still poses the challenges of accumulation in target sites and reducing off-target effects. Aerosol gene delivery for the treatment of pulmonary diseases has the advantages of high lung accumulation, specific targeting and fewer systemic side effects. However, the key challenge is selecting the appropriate formulation for aerosol gene delivery that can overcome physiological barriers. There are numerous existing gene carriers under study, including viral vectors and non-viral vectors. With the development of biomaterials, more biocompatible substances have applied gene delivery via inhalation. Furthermore, many types of genes can be delivered through aerosol inhalation, such as DNA, mRNA, siRNA and CRISPR/Cas9. Aerosol delivery of different types of genes has proven to be efficient in the treatment of many diseases such as SARS-CoV-2, cystic fibrosis and lung cancer. In this paper, we provide a comprehensive review of the ongoing research on aerosol gene delivery therapy, including the basic respiratory system, different types of gene carriers, different types of carried genes and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Hui Jing
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| |
Collapse
|
40
|
Yong H, Lin L, Li Z, Guo R, Wang C, Liu S, Zhou D. Tailoring Highly Branched Poly(β-amino ester)s for Efficient and Organ-Selective mRNA Delivery. NANO LETTERS 2024. [PMID: 39013032 DOI: 10.1021/acs.nanolett.4c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Development of mRNA therapeutics necessitates targeted delivery technology, while the clinically advanced lipid nanoparticles face difficulty for extrahepatic delivery. Herein, we design highly branched poly(β-amino ester)s (HPAEs) for efficacious organ-selective mRNA delivery through tailoring their chemical compositions and topological structures. Using an "A2+B3+C2" Michael addition platform, a combinatorial library of 219 HPAEs with varied backbone structures, terminal groups, and branching degrees are synthesized. The branched topological structures of HPAEs provide enhanced serum resistance and significantly higher mRNA expression in vivo. The terminal amine structures of HPAEs determine the organ-selectivity of mRNA delivery following systemic administration: morpholine facilitates liver targeting, ethylenediamine favors spleen delivery, while methylpentane enables mRNA delivery to the liver, spleen, and lungs simultaneously. This study represents a comprehensive exploration of the structure-activity relationship governing both the efficiency and organ-selectivity of mRNA delivery by HPAEs, suggesting promising candidates for treating various organ-related diseases.
Collapse
Affiliation(s)
- Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenfei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
41
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
42
|
Popoola DO, Cao Z, Men Y, Li X, Viapiano M, Wilkens S, Luo J, Teng Y, Meng Q, Li Y. Lung-Specific mRNA Delivery Enabled by Sulfonium Lipid Nanoparticles. NANO LETTERS 2024; 24:8080-8088. [PMID: 38888232 PMCID: PMC12013526 DOI: 10.1021/acs.nanolett.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Among various mRNA carrier systems, lipid nanoparticles (LNPs) stand out as the most clinically advanced. While current clinical trials of mRNA/LNP therapeutics mainly address liver diseases, the potential of mRNA therapy extends far beyond─yet to be unraveled. To fully unlock the promises of mRNA therapy, there is an urgent need to develop safe and effective LNP systems that can target extrahepatic organs. Here, we report on the development of sulfonium lipid nanoparticles (sLNPs) for systemic mRNA delivery to the lungs. sLNP effectively and specifically delivered mRNA to the lungs following intravenous administration in mice. No evidence of lung and systemic inflammation or toxicity in major organs was induced by sLNP. Our findings demonstrated that the newly developed lung-specific sLNP platform is both safe and efficacious. It holds great promise for advancing the development of new mRNA-based therapies for the treatment of lung-associated diseases and conditions.
Collapse
Affiliation(s)
- David O. Popoola
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhi Cao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Yuqin Men
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Xinyuan Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Mariano Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Qinghe Meng
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Yamin Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
43
|
Wu S, Lin L, Shi L, Liu S. An overview of lipid constituents in lipid nanoparticle mRNA delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1978. [PMID: 38965928 DOI: 10.1002/wnan.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA's inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shiqi Wu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Sanchez AJDS, Loughrey D, Echeverri ES, Huayamares SG, Radmand A, Paunovska K, Hatit M, Tiegreen KE, Santangelo PJ, Dahlman JE. Substituting Poly(ethylene glycol) Lipids with Poly(2-ethyl-2-oxazoline) Lipids Improves Lipid Nanoparticle Repeat Dosing. Adv Healthc Mater 2024; 13:e2304033. [PMID: 38318754 DOI: 10.1002/adhm.202304033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Poly(ethylene glycol) (PEG)-lipids are used in Food-and-Drug-Administration-approved lipid nanoparticle (LNP)-RNA drugs, which are safe and effective. However, it is reported that PEG-lipids may also contribute to accelerated blood clearance and rare cases of hypersensitivity; this highlights the utility of exploring PEG-lipid alternatives. Here, it is shown that LNPs containing poly(2-ethyl-2-oxazoline) (PEOZ)-lipids can deliver messenger RNA (mRNA) to multiple cell types in mice inside and outside the liver. In addition, it is reported that LNPs formulated with PEOZ-lipids show reduced clearance from the bloodstream and lower levels of antistealth lipid immunoglobulin Ms than LNPs formulated with PEG-lipids. These data justify further exploration of PEOZ-lipids as alternatives to PEG-lipids in LNP-RNA formulations.
Collapse
Affiliation(s)
- Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marine Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
45
|
Zhang X, Su K, Wu S, Lin L, He S, Yan X, Shi L, Liu S. One-Component Cationic Lipids for Systemic mRNA Delivery to Splenic T Cells. Angew Chem Int Ed Engl 2024; 63:e202405444. [PMID: 38637320 DOI: 10.1002/anie.202405444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Unlocking the full potential of mRNA immunotherapy necessitates targeted delivery to specific cell subsets in the spleen. Four-component lipid nanoparticles (LNPs) utilized in numerous clinical trials are primarily limited in hepatocyte and muscular targeting, highlighting the imperative demand for targeted and simplified non-liver mRNA delivery systems. Herein, we report the rational design of one-component ionizable cationic lipids to selectively deliver mRNA to the spleen and T cells with high efficacy. Unlike the tertiary amine-based ionizable lipids involved in LNPs, the proposed cationic lipids rich in secondary amines can efficiently deliver mRNA both in vitro and in vivo as the standalone carriers. Furthermore, these vectors facilitate efficacious mRNA delivery to the T cell subsets following intravenous administration, demonstrating substantial potential for advancing immunotherapy applications. This straightforward strategy extends the utility of lipid family for extrahepatic mRNA delivery, offering new insights into vector development beyond LNPs to further the field of precise mRNA therapy.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiqi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinxin Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
46
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
47
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
48
|
Li Z, Amaya L, Ee A, Wang SK, Ranjan A, Waymouth RM, Chang HY, Wender PA. Organ- and Cell-Selective Delivery of mRNA In Vivo Using Guanidinylated Serinol Charge-Altering Releasable Transporters. J Am Chem Soc 2024; 146:14785-14798. [PMID: 38743019 DOI: 10.1021/jacs.4c02704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.
Collapse
Affiliation(s)
- Zhijian Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura Amaya
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Aloysius Ee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Sean K Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, United States
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Alok Ranjan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
Zeng G, He Z, Yang H, Gao Z, Ge X, Liu L, Liu Z, Chen Y. Cationic Lipid Pairs Enhance Liver-to-Lung Tropism of Lipid Nanoparticles for In Vivo mRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25698-25709. [PMID: 38717294 DOI: 10.1021/acsami.4c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Much of current clinical interest has focused on mRNA therapeutics for the treatment of lung-associated diseases, such as infections, genetic disorders, and cancers. However, the safe and efficient delivery of mRNA therapeutics to the lungs, especially to different pulmonary cell types, is still a formidable challenge. In this paper, we proposed a cationic lipid pair (CLP) strategy, which utilized the liver-targeted ionizable lipid and its derived quaternary ammonium lipid as the CLP to improve liver-to-lung tropism of four-component lipid nanoparticles (LNPs) for in vivo mRNA delivery. Interestingly, the structure-activity investigation identified that using liver-targeted ionizable lipids with higher mRNA delivery performance and their derived lipid counterparts is the optimal CLP design for improving lung-targeted mRNA delivery. The CLP strategy was also verified to be universal and suitable for clinically available ionizable lipids such as SM-102 and ALC-0315 to develop lung-targeted LNP delivery systems. Moreover, we demonstrated that CLP-based LNPs were safe and exhibited potent mRNA transfection in pulmonary endothelial and epithelial cells. As a result, we provided a powerful CLP strategy for shifting the mRNA delivery preference of LNPs from the liver to the lungs, exhibiting great potential for broadening the application scenario of mRNA-based therapy.
Collapse
Affiliation(s)
- Gege Zeng
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Zepeng He
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Haihong Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhan Gao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Xueer Ge
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510006, China
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- College of Chemistry and Molecular Science, Henan University, Zhengzhou 475001, China
| |
Collapse
|
50
|
Sun W, Wu Y, Ying T. Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antiviral Res 2024; 225:105867. [PMID: 38521465 DOI: 10.1016/j.antiviral.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Monoclonal antibody-based therapeutics have achieved remarkable success in treating a wide range of human diseases. However, conventional systemic delivery methods have limitations in insufficient target tissue permeability, high costs, repeated administrations, etc. Novel technologies have been developed to address these limitations and further enhance antibody therapy. Local antibody delivery via respiratory tract, gastrointestinal tract, eye and blood-brain barrier have shown promising results in increasing local concentrations and overcoming barriers. Nucleic acid-encoded antibodies expressed from plasmid DNA, viral vectors or mRNA delivery platforms also offer advantages over recombinant proteins such as sustained expression, rapid onset, and lower costs. This review summarizes recent advances in antibody delivery methods and highlights innovative technologies that have potential to expand therapeutic applications of antibodies.
Collapse
Affiliation(s)
- Wenli Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| |
Collapse
|