1
|
Shamsaei D, Hsieh SA, Ryan SJ, Anderson JL. Development of a 3D printed chemiluminescence smartphone detector for high performance liquid chromatography. Talanta 2025; 284:127156. [PMID: 39571344 DOI: 10.1016/j.talanta.2024.127156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024]
Abstract
A novel chemiluminescence detector for high-performance liquid chromatography (HPLC) was designed that incorporates a smartphone as photodetector, signal processor, and data storage unit. All detector components, including flow cell, flow cell holder, mixers, and housing, were fabricated by 3D printing and integration of the smartphone and 3D printed components provides a portable, low-cost, and user-friendly device. The detector was applied in the determination of carbamazepine using HPLC through a chemiluminescence reaction with tris(2,2'-bipyridyl)ruthenium(II) and cerium sulfate. Design and fabrication of the flow cell using two fabrication methods-3D printing and laser cutting-along with the integration of a mixer and the optimization of smartphone parameters were investigated. To expand the applicability of the detector for other analytes and different chemiluminescence reactions, detection of three piperazine derivatives by reaction with tris(2,2'-bipyridyl)ruthenium(II) and four phenethylamine compounds via reaction with acidic potassium permanganate reagent was studied. The linear dynamic range, limit of detection, and limit of quantification of the detector for the determination of carbamazepine were measured as 3.0-30.0 mg/L, 1.0 mg/L, and 3.0 mg/L, respectively, using the Samsung S20 smartphone device. Intraday and interday precision was evaluated for carbamazepine, with relative standard deviation (RSD) values for intraday precision ranging from 1.7 % to 6.2 % (n = 3) and interday precision RSD values ranging from 3.2 % to 4.8 % (n = 9).
Collapse
Affiliation(s)
- Danial Shamsaei
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Shu-An Hsieh
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Saxon J Ryan
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
2
|
Wei X, Luo QY, Li Y, Yuan J, Deng M, Liu X, Zhong P, Ouyang H, Li Y, Huang J, Quan H, Chu J, Yu X, Zhou W, Jin Z. Flexible Site-Specific Labeling-Mediated Self-Assembly Sensor Based on Quantum Dots and LUMinescent AntiBody Sensor for Duplexed Detection of Antibodies. ACS Sens 2025; 10:301-309. [PMID: 39791864 DOI: 10.1021/acssensors.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra. This issue complicates the implementation of multiplexed detection. To address this challenge, we present an innovative enhancement to the LUMABS sensor with quantum dots (QDs) as the acceptor instead of FP. The use of QDs offers several advantages over those of traditional FP-based sensors. The biotin-avidin system facilitates the flexible interchangeability of QDs, allowing for a more convenient multicolor sensor construct. The new QD-LUMABS system overcomes the limitations of spectral cross-talk and provides better spectral separation. This breakthrough enables the successful implementation of multiplexed detection for multiple targets simultaneously. Results demonstrated that the wavelength-tunable QD-LUMABS sensors achieved picomolar-level detection limits for antibodies and that this sensor-construction strategy was generally applicable among various epitopes and their antibodies. Furthermore, this sensor displayed excellent duplexing capabilities. These features underscore its potential for future clinical disease diagnosis applications.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qing-Ying Luo
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China
| | - Yeqing Li
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Jing Yuan
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen 518132, P. R. China
| | - Mengying Deng
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xinyu Liu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Peiluan Zhong
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | | | - Yanfei Li
- HeavyBio, Inc., Shenzhen 518102, P. R. China
| | | | | | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xuefeng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zongwen Jin
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Hattori M, Wazawa T, Orioka M, Hiruta Y, Nagai T. Creating coveted bioluminescence colors for simultaneous multi-color bioimaging. SCIENCE ADVANCES 2025; 11:eadp4750. [PMID: 39841832 PMCID: PMC11753369 DOI: 10.1126/sciadv.adp4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer. Using this approach, we could visualize multiple targets with up to 20 colors through single-shot acquisition using a color complementary metal-oxide semiconductor camera. Overall, this method enables simple and simultaneous observation of multiple biological targets and phenomena.
Collapse
Affiliation(s)
- Mitsuru Hattori
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuichi Wazawa
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mariko Orioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Transdimensional Life Imaging Division, OTRI, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Electronic Science, Hokkaido University, Kita-ku-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
4
|
Pradanas-González F, Cortés MG, Glahn-Martínez B, Del Barrio M, Purohit P, Benito-Peña E, Orellana G. Biosensing strategies using recombinant luminescent proteins and their use for food and environmental analysis. Anal Bioanal Chem 2024; 416:7205-7224. [PMID: 39325139 DOI: 10.1007/s00216-024-05552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Progress in synthetic biology and nanotechnology plays at present a major role in the fabrication of sophisticated and miniaturized analytical devices that provide the means to tackle the need for new tools and methods for environmental and food safety. Significant research efforts have led to biosensing experiments experiencing a remarkable growth with the development and application of recombinant luminescent proteins (RLPs) being at the core of this boost. Integrating RLPs into biosensors has resulted in highly versatile detection platforms. These platforms include luminescent enzyme-linked immunosorbent assays (ELISAs), bioluminescence resonance energy transfer (BRET)-based sensors, and genetically encoded luminescent biosensors. Increased signal-to-noise ratios, rapid response times, and the ability to monitor dynamic biological processes in live cells are advantages inherent to the approaches mentioned above. Furthermore, novel fusion proteins and optimized expression systems to improve their stability, brightness, and spectral properties have enhanced the performance and pertinence of luminescent biosensors in diverse fields. This review highlights recent progress in RLP-based biosensing, showcasing their implementation for monitoring different contaminants commonly found in food and environmental samples. Future perspectives and potential challenges in these two areas of interest are also addressed, providing a comprehensive overview of the current state and a forecast of the biosensing strategies using recombinant luminescent proteins to come.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Marta García Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Melisa Del Barrio
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Pablo Purohit
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| |
Collapse
|
5
|
Wu G, Liu S, Du C, Huang M, Wu Y, Shen Y. A Versatile Visual Molecular Imprinting-Driven Switchable Nanozyme Activity-Based Trimodal Assay and Logic Gate Circuits of Ethyl Carbamate. Anal Chem 2024; 96:14706-14713. [PMID: 39207941 DOI: 10.1021/acs.analchem.4c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Concerns regarding the hazard of the carcinogenic ethyl carbamate (EC) have driven attempts to exploit efficient, timely, straightforward, and economic assays for warning early food safety. Here, we proposed a novel molecularly imprinted polymer Co@MOF-MIP, with a high peroxidase (POD)-like activity and a bright blue fluorescence emission, to develop a versatile visual assay for colorimetric, fluorescent, and photothermal trimodal detection and logic gate outputting of EC. Briefly, the POD-like activity of Co@MOF-MIP made it to decompose H2O2 into ·OH for oxidizing colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue oxTMB, resulting in a 660 nm irradiated photothermal effect and bursting the blue fluorescence of Co@MOF-MIP via inner filter effect, observing a decreased fluorescence signal together with an increased colorimetric and 660 nm irradiated photothermal signals. However, EC could specifically fill the imprinted cavities of Co@MOF-MIP to block the catalytic substrates TMB and H2O2 out of Co@MOF-MIP for further reacting with the inside catalytic center of Co2+, resulting in the transformation suppressing of TMB into oxTMB, yielding an EC concentration-dependent trimodal responses in fluorescence signal enhancement, colorimetric, and 660 nm irradiated photothermal signal decreases. Assisted by the portable devices such as smartphones and hand-held thermal imagers, a visual onsite portable trimodal analytical platform was proposed for EC fast and accurate detection with the low detection limits of 1.64, 1.24, and 1.78 μg/L in colorimetric, fluorescent, and photothermal modes, respectively. Interestingly, these reactive events could be programmed by the classical Boolean logic gate analysis to offer a novel promising avenue for the big data Internet of Things monitoring and warning early residual EC in a more intelligent, dynamical, fast, and accurate manner, safeguarding food safety.
Collapse
Affiliation(s)
- Guojian Wu
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Sha Liu
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Chenxing Du
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Wang Y, Xu X, Que J, Wang X, Ni W, Wu Y, Yang L, Li Y. Ratiometric Readout of Bacterial Infections via a Lyophilized CRISPR-Cas12a Sensor with Color-Changeable Bioluminescence. Anal Chem 2024; 96:12776-12783. [PMID: 39047235 DOI: 10.1021/acs.analchem.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The healthcare burden imposed by bacterial infections demands robust and accessible diagnostic methods that can be performed outside hospitals and centralized laboratories. Here, we report Pathogen Assay with Ratiometric Luminescence (PEARL), a sensitive and easy-to-operate platform for detecting pathogenic bacteria. The PEARL leveraged a color-changeable CRISPR-Cas12a sensor and recombinase polymerase amplification to elicit ratiometric bioluminescence responses to target inputs. This platform enabled robust and visualized identification of attomolar bacteria genome deoxyribonucleic acid according to the color changes of the reactions. In addition, the components of the color-changeable Cas12a sensor could be lyophilized for 3 month storage at ambient temperature and then be fully activated with the amplicons derived from crude bacterial lysates, reducing the requirements for cold-chain storage and tedious handling steps. We demonstrated that the PEARL assay is applicable for identifying the infections caused by Pseudomonas aeruginosa in different clinical specimens, including sputa, urines, and swabs derived from wounds. These results revealed the potential of PEARL to be used by untrained personnel, which will facilitate decentralized pathogen diagnosis in community- and resource-limited regions.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xiaoning Xu
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jinqi Que
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xinyu Wang
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Yunhua Wu
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Liu Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, P. R. China
| | - Yong Li
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, P. R. China
| |
Collapse
|
7
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
8
|
Ming T, Lan T, Yu M, Cheng S, Duan X, Wang H, Deng J, Kong D, Yang S, Shen Z. Advancements in Biosensors for Point-of-Care Testing of Nucleic Acid. Crit Rev Anal Chem 2024:1-16. [PMID: 38889541 DOI: 10.1080/10408347.2024.2366943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Rapid, low-cost and high-specific diagnosis based on nucleic acid detection is pivotal in both detecting and controlling various infectious diseases, effectively curbing their spread. Moreover, the analysis of circulating DNA in whole blood has emerged as a promising noninvasive strategy for cancer diagnosis and monitoring. Although traditional nucleic acid detection methods are reliable, their time-consuming and intricate processes restrict their application in rapid field assays. Consequently, an urgent emphasis on point-of-care testing (POCT) of nucleic acids has arisen. POCT enables timely and efficient detection of specific sequences, acting as a deterrent against infection sources and potential tumor threats. To address this imperative need, it is essential to consolidate key aspects and chart future directions in POCT biosensors development. This review aims to provide an exhaustive and meticulous analysis of recent advancements in POCT devices for nucleic acid diagnosis. It will comprehensively compare these devices across crucial dimensions, encompassing their integrated structures, the synthesized nanomaterials harnessed, and the sophisticated detection principles employed. By conducting a rigorous evaluation of the current research landscape, this review will not only spotlight achievements but also identify limitations, offering valuable insights into the future trajectory of nucleic acid POCT biosensors. Through this comprehensive analysis, the review aspires to serve as an indispensable guide for fostering the development of more potent biosensors, consequently fostering precise and efficient POCT applications for nucleic acids.
Collapse
Affiliation(s)
- Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Tingting Lan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Mingxing Yu
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuhan Cheng
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Xu Duan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Deling Kong
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Zhao S, Xiong Y, Sunnapu R, Zhang Y, Tian X, Ai HW. Bioluminescence Imaging of Potassium Ion Using a Sensory Luciferin and an Engineered Luciferase. J Am Chem Soc 2024; 146:13406-13416. [PMID: 38698549 PMCID: PMC11100015 DOI: 10.1021/jacs.4c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.
Collapse
Affiliation(s)
- Shengyu Zhao
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ying Xiong
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Ranganayakulu Sunnapu
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Yiyu Zhang
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Xiaodong Tian
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Hui-wang Ai
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- The
UVA Comprehensive Cancer Center, University
of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
10
|
van Aalen EA, Lurvink JJJ, Vermeulen L, van Gerven B, Ni Y, Arts R, Merkx M. Turning Antibodies into Ratiometric Bioluminescent Sensors for Competition-Based Homogeneous Immunoassays. ACS Sens 2024; 9:1401-1409. [PMID: 38380622 PMCID: PMC10964239 DOI: 10.1021/acssensors.3c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Here we present LUCOS (Luminescent Competition Sensor), a modular and broadly applicable bioluminescent diagnostic platform enabling the detection of both small molecules and protein biomarkers. The construction of LUCOS sensors entails the covalent and site-specific coupling of a bioluminescent sensor component to an analyte-specific antibody via protein G-mediated photoconjugation. Target detection is accomplished through intramolecular competition with a tethered analyte competitor for antibody binding. We established two variants of LUCOS: an inherent ratiometric LUCOSR variant and an intensiometric LUCOSI version, which can be used for ratiometric detection upon the addition of a split calibrator luciferase. To demonstrate the versatility of the LUCOS platform, sensors were developed for the detection of the small molecule cortisol and the protein biomarker NT-proBNP. Sensors for both targets displayed analyte-dependent changes in the emission ratio and enabled detection in the micromolar concentration range (KD,app = 16-92 μM). Furthermore, we showed that the response range of the LUCOS sensor can be adjusted by attenuating the affinity of the tethered NT-proBNP competitor, which enabled detection in the nanomolar concentration range (KD,app = 317 ± 26 nM). Overall, the LUCOS platform offers a highly versatile and easy method to convert commercially available monoclonal antibodies into bioluminescent biosensors that provide a homogeneous alternative for the competitive immunoassay.
Collapse
Affiliation(s)
- Eva A. van Aalen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Joep J. J. Lurvink
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Leandra Vermeulen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Benice van Gerven
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Yan Ni
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Remco Arts
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
11
|
Zhao S, Xiong Y, Sunnapu R, Zhang Y, Tian X, Ai HW. Bioluminescence Imaging of Potassium Ion Using a Sensory Luciferin and an Engineered Luciferase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.581057. [PMID: 38559024 PMCID: PMC10980066 DOI: 10.1101/2024.03.13.581057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.
Collapse
Affiliation(s)
- Shengyu Zhao
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Ying Xiong
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Ranganayakulu Sunnapu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Hui-Wang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
12
|
Gräwe A, Spruit CM, de Vries RP, Merkx M. Bioluminescent detection of viral surface proteins using branched multivalent protein switches. RSC Chem Biol 2024; 5:148-157. [PMID: 38333197 PMCID: PMC10849123 DOI: 10.1039/d3cb00164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Fast and reliable virus diagnostics is key to prevent the spread of viruses in populations. A hallmark of viruses is the presence of multivalent surface proteins, a property that can be harnessed to control conformational switching in sensor proteins. Here, we introduce a new sensor platform (dark-LUX) for the detection of viral surface proteins consisting of a general bioluminescent framework that can be post-translationally functionalized with separately expressed binding domains. The platform relies on (1) plug-and-play bioconjugation of different binding proteins via SpyTag/SpyCatcher technology to create branched protein structures, (2) an optimized turn-on bioluminescent switch based on complementation of the split-luciferase NanoBiT upon target binding and (3) straightforward exploration of the protein linker space. The influenza A virus (IAV) surface proteins hemagglutinin (HA) and neuraminidase (NA) were used as relevant multivalent targets to establish proof of principle and optimize relevant parameters such as linker properties, choice of target binding domains and the optimal combination of the competing NanoBiT components SmBiT and DarkBiT. The sensor framework allows rapid conjugation and exchange of various binding domains including scFvs, nanobodies and de novo designed binders for a variety of targets, including the construction of a heterobivalent switch that targets the head and stem region of hemagglutinin. The modularity of the platform thus allows straightforward optimization of binding domains and scaffold properties for existing viral targets, and is well suited to quickly adapt bioluminescent sensor proteins to effectively detect newly evolving viral epitopes.
Collapse
Affiliation(s)
- Alexander Gräwe
- Laboratory of Protein Engineering, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Cindy M Spruit
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology and Drug Discovery Utrecht The Netherlands
| | - Robert P de Vries
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology and Drug Discovery Utrecht The Netherlands
| | - Maarten Merkx
- Laboratory of Protein Engineering, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
13
|
Sakama A, Orioka M, Hiruta Y. Current advances in the development of bioluminescent probes toward spatiotemporal trans-scale imaging. Biophys Physicobiol 2024; 21:e211004. [PMID: 39175853 PMCID: PMC11338684 DOI: 10.2142/biophysico.bppb-v21.s004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024] Open
Abstract
Bioluminescence imaging has recently attracted great attention as a highly sensitive and non-invasive analytical method. However, weak signal and low chemical stability of the luciferin are conventional drawbacks of bioluminescence imaging. In this review article, we describe the recent progress on the development and applications of bioluminescent probes for overcoming the aforementioned limitations, thereby enabling spatiotemporal trans-scale imaging. The detailed molecular design for manipulation of their luminescent properties and functions enabled a variety of applications, including in vivo deep tissue imaging, long-term imaging, and chemical sensor.
Collapse
Affiliation(s)
- Akihiro Sakama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mariko Orioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
14
|
Campbell E, Luxton T, Kohl D, Goodchild SA, Walti C, Jeuken LJC. Chimeric Protein Switch Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:1-35. [PMID: 38273207 DOI: 10.1007/10_2023_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Timothy Luxton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Declan Kohl
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Christoph Walti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
15
|
Calabretta MM, Michelini E. Current advances in the use of bioluminescence assays for drug discovery: an update of the last ten years. Expert Opin Drug Discov 2024; 19:85-95. [PMID: 37814480 DOI: 10.1080/17460441.2023.2266989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Bioluminescence is a well-established optical detection technique widely used in several bioanalytical applications, including high-throughput and high-content screenings. Thanks to advances in synthetic biology techniques and deep learning, a wide portfolio of luciferases is now available with tuned emission wavelengths, kinetics, and high stability. These luciferases can be implemented in the drug discovery and development pipeline, allowing high sensitivity and multiplexing capability. AREAS COVERED This review summarizes the latest advancements of bioluminescent systems as toolsets in drug discovery programs for in vitro applications. Particular attention is paid to the most advanced bioluminescence-based technologies for drug screening over the past 10 years (from 2013 to 2023) such as cell-free assays, cell-based assays based on genetically modified cells, bioluminescence resonance energy transfer, and protein complementation assays in 2D and 3D cell models. EXPERT OPINION The availability of tuned bioluminescent proteins with improved emission and stability properties is vital for the development of bioluminescence assays for drug discovery, spanning from reporter gene technology to protein-protein techniques. Further studies, combining machine learning with synthetic biology, will be necessary to obtain new tools for sustainable and highly predictive bioluminescent drug discovery platforms.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Gurukandure A, Somasundaram S, Kurian ASN, Khuda N, Easley CJ. Building a Nucleic Acid Nanostructure with DNA-Epitope Conjugates for a Versatile Approach to Electrochemical Protein Detection. Anal Chem 2023; 95:18122-18129. [PMID: 38032341 PMCID: PMC10720615 DOI: 10.1021/acs.analchem.3c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The recent surge of effort in nucleic-acid-based electrochemical (EC) sensors has been fruitful, yet there remains a need for more generalizable EC platforms for sensing multiple classes of clinically relevant targets. We recently reported a nucleic acid nanostructure for simple, economical, and more generalizable EC readout of a range of analytes, including small molecules, peptides, proteins, and antibodies. The nanostructure is built through on-electrode enzymatic ligation of three oligonucleotides for attachment, binding, and signaling. However, the generalizable detection of larger proteins remains a challenge. Here, we adapted the sensor to quantify larger proteins in a more generic manner through conjugating the protein's minimized antibody-binding epitope to the central DNA strand. This concept was verified using creatine kinase (CK-MM), a biomarker of muscle damage and several disorders for which rapid clinical sensing is important. DNA-epitope conjugates permitted a competitive immunoassay for the CK protein at the electrode via square-wave voltammetry (SWV). Sensing through a signal-off mechanism, the anti-CK antibody limit of detection (LOD) was 5 nM with a response time as low as 3 min. Antibody displacement by native protein analytes gave a signal-on response with the CK sensing range from the LOD of 14 nM up to 100 nM, overlapping with the normal (nonelevated) human clinical range (3-37 nM), and the sensor was validated in 98% human serum. While a need for improved DNA-epitope conjugate purification was identified, overall, this approach allows the quantification of a generic protein- or peptide-binding antibody and should facilitate future quantitative EC readouts of clinically relevant proteins that were previously inaccessible to EC techniques.
Collapse
Affiliation(s)
- Asanka Gurukandure
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Subramaniam Somasundaram
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Amanda S. N. Kurian
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Niamat Khuda
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christopher J. Easley
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
17
|
Campbell E, Adamson H, Kohl D, Tiede C, Wälti C, Tomlinson DC, Jeuken LJC. Enzyme - Switch sensors for therapeutic drug monitoring of immunotherapies. Biosens Bioelectron 2023; 237:115488. [PMID: 37419072 PMCID: PMC10427837 DOI: 10.1016/j.bios.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
Therapeutic monoclonal antibodies (TmAb) have emerged as effective treatments for a number of cancers and autoimmune diseases. However, large interpatient disparities in the pharmacokinetics of TmAb treatment requires close therapeutic drug monitoring (TDM) to optimise dosage for individual patients. Here we demonstrate an approach for achieving rapid, sensitive quantification of two monoclonal antibody therapies using a previously described enzyme switch sensor platform. The enzyme switch sensor consists of a β-lactamase - β-lactamase inhibitor protein (BLA-BLIP) complex with two anti-idiotype binding proteins (Affimer proteins) as recognition elements. The BLA-BLIP sensor was engineered to detect two TmAbs (trastuzumab and ipilimumab) by developing constructs incorporating novel synthetic binding reagents to each of these mAbs. Trastuzumab and ipilimumab were successfully monitored with sub nM sensitivity in up to 1% serum, thus covering the relevant therapeutic range. Despite the modular design, the BLA-BLIP sensor was unsuccessful in detecting two further TmAbs (rituximab and adalimumab), an explanation for which was explored. In conclusion, the BLA-BLIP sensors provide a rapid biosensor for TDM of trastuzumab and ipilimumab with the potential to improve therapy. The sensitivity of this platform alongside its rapid action would be suitable for bedside monitoring in a point-of-care (PoC) setting.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Hope Adamson
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Declan Kohl
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Christian Tiede
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Christoph Wälti
- School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - Darren C Tomlinson
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lars J C Jeuken
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, United Kingdom; Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands.
| |
Collapse
|
18
|
Zhang R, Wang Y, Deng H, Zhou S, Wu Y, Li Y. Fast and bioluminescent detection of antibiotic contaminants by on-demand transcription of RNA scaffold arrays. Anal Chim Acta 2023; 1273:341538. [PMID: 37423654 DOI: 10.1016/j.aca.2023.341538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Cell-free biosensors have inspired low-cost and field-applicable methods to detect antibiotic contaminants. However, the satisfactory sensitivity of current cell-free biosensors is mostly achieved by sacrificing the rapidity, which prolongs turnaround time by hours. Additionally, the software-based result interpretation provides an obstacle for delivering these biosensors to untrained individuals. Here, we present a bioluminescence-based cell-free biosensor, termed enhanced Bioluminescence sensing of Ligand-Unleashed RNA Expression (eBLUE). The eBLUE leveraged antibiotic-responsive transcription factors to regulate the transcription of RNA arrays that can serve as scaffolds for reassembling and activating multiple luciferase fragments. This process converted target recognition into an amplified bioluminescence response, enabling smartphone-based quantification of tetracycline and erythromycin directly in milk within 15 min. Moreover, the detection threshold of eBLUE can be easily tuned according to the maximum residue limits (MRLs) established by government agencies. Owing to this tunable nature, the eBLUE was further repurposed as an on-demand semi-quantification platform, allowing for fast (∼20 min) and software-free identification of safe and MRL-exceeding milk samples only by glancing over the smartphone photographs. Overall, the sensitivity, rapidity and user-friendliness of eBLUE demonstrate its potentials for practical applications, especially in resource-limited and household settings.
Collapse
Affiliation(s)
- Rui Zhang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Yu Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Haifeng Deng
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Shiwen Zhou
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Yunhua Wu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Yong Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China; Hubei Jiangxia Laboratory, Wuhan, 430200, PR China.
| |
Collapse
|
19
|
Jia T, Luo Y, Sheng X, Fang J, Merlin D, Iyer SS. Palladium encapsulated mesoporous silica nanoparticles for the rapid detection of analytes. Analyst 2023; 148:2064-2072. [PMID: 36988972 DOI: 10.1039/d3an00252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We designed a simple, inexpensive, and user-friendly assay using mesoporous silica nanoparticles to detect analytes.
Collapse
Affiliation(s)
- Tianwei Jia
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Ying Luo
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Xiaolin Sheng
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Jieqiong Fang
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Didier Merlin
- 790 Petit Science Center, Institute of Biomedical Science, Georgia State University and Atlanta Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| | - Suri S Iyer
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
20
|
Gräwe A, Merkx M. Bioluminescence Goes Dark: Boosting the Performance of Bioluminescent Sensor Proteins Using Complementation Inhibitors. ACS Sens 2022; 7:3800-3808. [PMID: 36450135 PMCID: PMC9791688 DOI: 10.1021/acssensors.2c01726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bioluminescent sensor proteins have recently gained popularity in both basic research and point-of-care diagnostics. Sensor proteins based on intramolecular complementation of split NanoLuc are particularly attractive because their intrinsic modular design enables for systematic tuning of sensor properties. Here we show how the sensitivity of these sensors can be enhanced by the introduction of catalytically inactive variants of the small SmBiT subunit (DarkBiTs) as intramolecular inhibitors. Starting from previously developed bioluminescent antibody sensor proteins (LUMABS), we developed single component, biomolecular switches with a strongly reduced background signal for the detection of three clinically relevant antibodies, anti-HIV1-p17, cetuximab (CTX), and an RSV neutralizing antibody (101F). These new dark-LUMABS sensors showed 5-13-fold increases in sensitivity which translated into lower limits of detection. The use of DarkBiTs as competitive intramolecular inhibitor domains is not limited to the LUMABS sensor family and might be used to boost the performance of other bioluminescent sensor proteins based on split luciferase complementation.
Collapse
|
21
|
Yuan H, Chen P, Wan C, Li Y, Liu BF. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. Trends Analyt Chem 2022; 157:116814. [PMID: 36373139 PMCID: PMC9637550 DOI: 10.1016/j.trac.2022.116814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) outbreak has urged the establishment of a global-wide rapid diagnostic system. Current widely-used tests for COVID-19 include nucleic acid assays, immunoassays, and radiological imaging. Immunoassays play an irreplaceable role in rapidly diagnosing COVID-19 and monitoring the patients for the assessment of their severity, risks of the immune storm, and prediction of treatment outcomes. Despite of the enormous needs for immunoassays, the widespread use of traditional immunoassay platforms is still limited by high cost and low automation, which are currently not suitable for point-of-care tests (POCTs). Microfluidic chips with the features of low consumption, high throughput, and integration, provide the potential to enable immunoassays for POCTs, especially in remote areas. Meanwhile, luminescence detection can be merged with immunoassays on microfluidic platforms for their good performance in quantification, sensitivity, and specificity. This review introduces both homogenous and heterogenous luminescence immunoassays with various microfluidic platforms. We also summarize the strengths and weaknesses of the categorized methods, highlighting their recent typical progress. Additionally, different microfluidic platforms are described for comparison. The latest advances in combining luminescence immunoassays with microfluidic platforms for POCTs of COVID-19 are further explained with antigens, antibodies, and related cytokines. Finally, challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
22
|
Wu Y, Jiang T. Developments in FRET- and BRET-Based Biosensors. MICROMACHINES 2022; 13:mi13101789. [PMID: 36296141 PMCID: PMC9610962 DOI: 10.3390/mi13101789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/25/2023]
Abstract
Resonance energy transfer technologies have achieved great success in the field of analysis. Particularly, fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) provide strategies to design tools for sensing molecules and monitoring biological processes, which promote the development of biosensors. Here, we provide an overview of recent progress on FRET- and BRET-based biosensors and their roles in biomedicine, environmental applications, and synthetic biology. This review highlights FRET- and BRET-based biosensors and gives examples of their applications with their design strategies. The limitations of their applications and the future directions of their development are also discussed.
Collapse
Affiliation(s)
- Yuexin Wu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Tianyu Jiang
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| |
Collapse
|
23
|
Boitet M, Eun H, Achek A, Carla de Almeida Falcão V, Delorme V, Grailhe R. Biolum' RGB: A Low-Cost, Versatile, and Sensitive Bioluminescence Imaging Instrument for a Broad Range of Users. ACS Sens 2022; 7:2556-2566. [PMID: 36001874 DOI: 10.1021/acssensors.2c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Luminometer and imaging systems are used to detect and quantify low light produced by a broad range of bioluminescent proteins. Despite their everyday use in research, such instruments are costly and lack the flexibility to accommodate the variety of bioluminescence experiment formats that may require top or bottom signal acquisition, high or medium sensitivity, or multiple wavelength detection. To address the growing need for versatile technologies, we developed a highly customizable bioluminescence imager called Biolum' RGB that uses a consumer color digital camera with a high-aperture lens mounted at the bottom or top of a 3D-printed dark chamber and can quantify bioluminescence emission from cells grown in 384-well microplates and Petri dishes. Taking advantage of RGB detectors, Biolum' RGB can distinguish spectral signatures from various bioluminescence probes and quantify bioluminescence resonant energy transfer occurring during protein-protein interaction events. Although Biolum' RGB can be used with any smartphone, in particular for low bioluminescence signals, we recommend the use of recent digital cameras which offer better sensitivity and high signal/noise ratio. Altogether, Biolum' RGB combines the benefits of a plate reader and imager while providing better image resolution and faster acquisition speed, and as such, it offers an exciting alternative for any laboratory looking for a versatile, low-cost bioluminescence imaging instrument.
Collapse
Affiliation(s)
- Maylis Boitet
- Technology Development Platform, Institut Pasteur Korea, Seongnam13488, Republic of Korea.,Division of Bio-Medical Science & Technology, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon34113, Republic of Korea
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam13488, Republic of Korea
| | - Asma Achek
- Technology Development Platform, Institut Pasteur Korea, Seongnam13488, Republic of Korea
| | | | - Vincent Delorme
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam13488, Republic of Korea
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam13488, Republic of Korea.,Division of Bio-Medical Science & Technology, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon34113, Republic of Korea.,Smart-MD, Institut Pasteur Korea, Seongnam13488, Republic of Korea
| |
Collapse
|
24
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
25
|
Li J, Wang JL, Zhang WL, Tu Z, Cai XF, Wang YW, Gan CY, Deng HJ, Cui J, Shu ZC, Long QX, Chen J, Tang N, Hu X, Huang AL, Hu JL. Protein sensors combining both on-and-off model for antibody homogeneous assay. Biosens Bioelectron 2022; 209:114226. [PMID: 35413624 PMCID: PMC8968183 DOI: 10.1016/j.bios.2022.114226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 μl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.
Collapse
|
26
|
Kimura H, Asano R. Strategies to simplify operation procedures for applying labeled antibody-based immunosensors to point-of-care testing. Anal Biochem 2022; 654:114806. [PMID: 35835209 DOI: 10.1016/j.ab.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
Abstract
Point-of-care testing (POCT) is an ideal testing format for the rapid and on-site detection of analytes in patients, and facilitates disease diagnosis and monitoring. Molecular recognition elements are required for the specific detection of analytes, and biosensors that use antibodies as the molecular recognition elements are called immunosensors. Traditional immunosensors such as sandwich enzyme-linked immunosorbent assay (ELISA) require complicated procedures to form immunocomplexes consisting of detection antibodies, analytes, and capture antibodies. They also require long incubation times, washing procedures, and large and expensive specialized equipment that must be operated by laboratory technicians. Immunosensors for POCT should be systems that use relatively small pieces of equipment and do not require special training. In this review, to help in the construction of immunosensors for POCT, we have summarized the recently reported strategies for simplifying the operation, incubation, and washing procedures. We focused on the optical and electrochemical detection principles of immunosensors, compared the strategies for operation, sensitivity, and detection devices and discussed the ideal system. Combining detection devices that can be fabricated inexpensively and strategies that enable simplification of operation procedures and enhance sensitivities will contribute to the development of immunosensors for POCT.
Collapse
Affiliation(s)
- Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
27
|
Kinnamon DS, Heggestad JT, Liu J, Chilkoti A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:123-149. [PMID: 35216530 PMCID: PMC10024863 DOI: 10.1146/annurev-anchem-061020-123817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
Collapse
Affiliation(s)
- David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jason Liu
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
28
|
Xiao M, Tian F, Liu X, Zhou Q, Pan J, Luo Z, Yang M, Yi C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105904. [PMID: 35393791 PMCID: PMC9110880 DOI: 10.1002/advs.202105904] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Indexed: 05/07/2023]
Abstract
Infectious virus outbreaks pose a significant challenge to public healthcare systems. Early and accurate virus diagnosis is critical to prevent the spread of the virus, especially when no specific vaccine or effective medicine is available. In clinics, the most commonly used viral detection methods are molecular techniques that involve the measurement of nucleic acids or proteins biomarkers. However, most clinic-based methods require complex infrastructure and expensive equipment, which are not suitable for low-resource settings. Over the past years, smartphone-based point-of-care testing (POCT) has rapidly emerged as a potential alternative to laboratory-based clinical diagnosis. This review summarizes the latest development of virus detection. First, laboratory-based and POCT-based viral diagnostic techniques are compared, both of which rely on immunosensing and nucleic acid detection. Then, various smartphone-based POCT diagnostic techniques, including optical biosensors, electrochemical biosensors, and other types of biosensors are discussed. Moreover, this review covers the development of smartphone-based POCT diagnostics for various viruses including COVID-19, Ebola, influenza, Zika, HIV, et al. Finally, the prospects and challenges of smartphone-based POCT diagnostics are discussed. It is believed that this review will aid researchers better understand the current challenges and prospects for achieving the ultimate goal of containing disease-causing viruses worldwide.
Collapse
Affiliation(s)
- Meng Xiao
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Feng Tian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Qiaoqiao Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Jiangfei Pan
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Zhaofan Luo
- Department of Clinical LaboratoryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| |
Collapse
|
29
|
Madrid RE, Ashur Ramallo F, Barraza DE, Chaile RE. Smartphone-Based Biosensor Devices for Healthcare: Technologies, Trends, and Adoption by End-Users. Bioengineering (Basel) 2022; 9:101. [PMID: 35324790 PMCID: PMC8945789 DOI: 10.3390/bioengineering9030101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Smart biosensors are becoming an important support for modern healthcare, even more so in the current context. Numerous smartphone-based biosensor developments were published in recent years, some highly effective and sensitive. However, when patents and patent applications related to smart biosensors for healthcare applications are analyzed, it is surprising to note that, after significant growth in the first half of the decade, the number of applications filed has decreased considerably in recent years. There can be many causes of this effect. In this review, we present the state of the art of different types of smartphone-based biosensors, considering their stages of development. In the second part, a critical analysis of the possible reasons why many technologies do not reach the market is presented. Both technical and end-user adoption limitations were addressed. It was observed that smart biosensors on the commercial stage are still scarce despite the great evolution that these technologies have experienced, which shows the need to strengthen the stages of transfer, application, and adoption of technologies by end-users.
Collapse
Affiliation(s)
- Rossana E. Madrid
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina; (F.A.R.); (D.E.B.); (R.E.C.)
| | | | | | | |
Collapse
|
30
|
Guo Z, Parakra RD, Xiong Y, Johnston WA, Walden P, Edwardraja S, Moradi SV, Ungerer JPJ, Ai HW, Phillips JJ, Alexandrov K. Engineering and exploiting synthetic allostery of NanoLuc luciferase. Nat Commun 2022; 13:789. [PMID: 35145068 PMCID: PMC8831504 DOI: 10.1038/s41467-022-28425-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Allostery enables proteins to interconvert different biochemical signals and form complex metabolic and signaling networks. We hypothesize that circular permutation of proteins increases the probability of functional coupling of new N- and C- termini with the protein's active center through increased local structural disorder. To test this we construct a synthetically allosteric version of circular permutated NanoLuc luciferase that can be activated through ligand-induced intramolecular non-covalent cyclisation. This switch module is tolerant of the structure of binding domains and their ligands, and can be used to create biosensors of proteins and small molecules. The developed biosensors covers a range of emission wavelengths and displays sensitivity as low as 50pM and dynamic range as high as 16-fold and could quantify their cognate ligand in human fluids. We apply hydrogen exchange kinetic mass spectroscopy to analyze time resolved structural changes in the developed biosensors and observe ligand-mediated folding of newly created termini.
Collapse
Affiliation(s)
- Zhong Guo
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Rinky D Parakra
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Ying Xiong
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Wayne A Johnston
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patricia Walden
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shayli Varasteh Moradi
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Jacobus P J Ungerer
- Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, 4001, Australia
- Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
- Alan Turing Institute, British Library 96, Euston road, London, NW1 2DB, UK.
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
31
|
Calabretta MM, Lopreside A, Montali L, Zangheri M, Evangelisti L, D'Elia M, Michelini E. Portable light detectors for bioluminescence biosensing applications: A comprehensive review from the analytical chemist's perspective. Anal Chim Acta 2022; 1200:339583. [DOI: 10.1016/j.aca.2022.339583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
|
32
|
Hattori M, Itoh Y, Nagai T. Method for Measuring Bioactive Molecules in Blood by a Smartphone Using Bioluminescent Ratiometric Indicators. Methods Mol Biol 2022; 2525:219-226. [PMID: 35836071 DOI: 10.1007/978-1-0716-2473-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescent indicators facilitate determination of bioactive molecules in blood samples with high sensitivity. Using a bright luciferase, its bioluminescence (BL) can be easily detected by conventional light sensing devices. In this chapter, we describe a protocol to measure bioactive molecules in blood by taking the BL images with a smartphone camera. We exemplify the measurement of unconjugated bilirubin (UCBR) concentration in the blood of mice using a ratiometric bioluminescent UCBR indicator, BABI (bilirubin assessment with a bioluminescent indicator), and a smartphone camera. We show the UCBR concentration is easily determined through measuring the variance in the BL color with a smartphone camera. This method provides a practical method to lead to future point-of-care diagnosis with quick and simple procedures.
Collapse
Affiliation(s)
- Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Yukino Itoh
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
33
|
Dillen A, Lammertyn J. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. Analyst 2022; 147:1006-1023. [DOI: 10.1039/d1an02308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining affinity-based nanoswitches with state-dependent readout platforms allows for continuous biosensing and acquisition of real-time information about biochemical processes occurring in the environment of interest.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
34
|
Thipwimonmas Y, Thiangchanya A, Phonchai A, Thainchaiwattana S, Jomsati W, Jomsati S, Tayayuth K, Limbut W. The Development of Digital Image Colorimetric Quantitative Analysis of Multi-Explosives Using Polymer Gel Sensors. SENSORS 2021; 21:s21238041. [PMID: 34884043 PMCID: PMC8659919 DOI: 10.3390/s21238041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 11/24/2022]
Abstract
Polymer gel sensors on 96-well plates were successfully used to detect four different multi-explosives, including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrite, and perchlorate. The products of reactions between the explosives and the polymer gel sensors were digitally captured, and the images were analyzed by a developed Red–Green–Blue (RGB) analyzer program on a notebook computer. RGB color analysis provided the basic color data of the reaction products for the quantification of the explosives. The results provided good linear range, sensitivity, limit of detection, limit of quantitation, specificity, interference tolerance, and recovery. The method demonstrated great potential to detect explosives by colorimetric analysis of digital images of samples on 96-well plates. It is possible to apply the proposed method for quantitative on-site field screening of multi-explosives.
Collapse
Affiliation(s)
- Yudtapum Thipwimonmas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Adul Thiangchanya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
| | - Apichai Phonchai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sittipoom Thainchaiwattana
- Police Forensic Science Center 9, M.1, Chalung, Hat Yai, Songkhla 90110, Thailand; (S.T.); (W.J.); (S.J.)
| | - Wachirawit Jomsati
- Police Forensic Science Center 9, M.1, Chalung, Hat Yai, Songkhla 90110, Thailand; (S.T.); (W.J.); (S.J.)
| | - Sunisa Jomsati
- Police Forensic Science Center 9, M.1, Chalung, Hat Yai, Songkhla 90110, Thailand; (S.T.); (W.J.); (S.J.)
| | - Kunanunt Tayayuth
- Science Park, Hat Yai Campus of Extension Southern Institute of Science Park, Prince of Songkla University, Moo 6, Hat Yai, Songkhla 90110, Thailand;
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (Y.T.); (A.T.); (A.P.)
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-288563
| |
Collapse
|
35
|
Deng M, Yuan J, Yang H, Wu X, Wei X, Du Y, Wong G, Tao Y, Liu G, Jin Z, Chu J. A Genetically Encoded Bioluminescent System for Fast and Highly Sensitive Detection of Antibodies with a Bright Green Fluorescent Protein. ACS NANO 2021; 15:17602-17612. [PMID: 34726889 DOI: 10.1021/acsnano.1c05164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A method for fast and highly sensitive detection of antibodies in serum would greatly facilitate the early diagnosis of disease and infection and dose optimization of therapeutic antibody. Bioluminescence detection with LUMABS (renamed mNeonG-LUMABS, where mNeonG is short for mNeonGreen) sensors based on bioluminescence resonance energy transfer (BRET) between blue-emitting luciferase Nluc and green fluorescent protein (FP) mNeonGreen has been demonstrated to enable fast detection of antibodies directly in serum with reasonable sensitivity. However, some mNeonG-LUMABS sensors exhibit low sensitivity, and thus, sensitivity improvement remains imperative. Here, we report a bright green FP, Clover4, obtained by structure-guided mutagenesis of green FP Clover. Despite similar brightness and fluorescence spectra of Clover and mNeonGreen, Clover4-LUMABS sensors exhibit a largely increased dynamic range (maximum 20-fold) and much lower limit of detection (LOD) (maximum 5.6-fold), most likely because Clover4 is positioned in a more parallel orientation to Nluc in LUMABS. Due to modular design, Clover4-LUMABS offers a general BRET system for fast and highly sensitive antibody detection in serum.
Collapse
Affiliation(s)
| | - Jing Yuan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Haibin Yang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518060, China
| | - Xuli Wu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | | | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yuyong Tao
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
36
|
Li J, Sun W, Qin Y, Cui P, Song G, Hua X, Wang L, Wang M. Inner filter effect-based immunoassay for the detection of acetamiprid using upconversion nanoparticles and gold nanoparticles. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1991281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Jiao Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Wanlin Sun
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yuling Qin
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Panpan Cui
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Guangyue Song
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiude Hua
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Limin Wang
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
37
|
Hattori M, Sugiura N, Wazawa T, Matsuda T, Nagai T. Ratiometric Bioluminescent Indicator for a Simple and Rapid Measurement of Thrombin Activity Using a Smartphone. Anal Chem 2021; 93:13520-13526. [PMID: 34570461 DOI: 10.1021/acs.analchem.1c02396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemostasis is an essential function that repairs tissues and maintains the survival of living organisms. To prevent diseases caused by the abnormality of the blood coagulation mechanism, it is important to carry out a blood test periodically by a method that is convenient and less burdensome for examiners. Thrombin is a protease that catalyzes the conversion of fibrinogen, and its cleavage activity can be an index of coagulation activity. Here, we developed a ratiometric bioluminescent indicator, Thrombastor (thrombin activity sensing indicator), which reflects the thrombin cleavage activity in blood by changing the emission color from green to blue. Compared to the current thrombin activity indicator, the rapid color change of the emission indicated a 2.5-fold decrease in the Km for thrombin, and the cleavage rate was more than two times faster. By improving the absolute bioluminescence intensity, detection from a small amount of plasma could be achieved with a smartphone camera. Using Thrombastor and a versatile device, an effective diagnosis for preventing coagulation disorders can be provided.
Collapse
Affiliation(s)
- Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Nae Sugiura
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
38
|
KUMADA R, ORIOKA M, CITTERIO D, HIRUTA Y. Fluorescent and Bioluminescent Probes based on Precise Molecular Design. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Rei KUMADA
- Department of Applied Chemistry, Keio University
| | | | | | - Yuki HIRUTA
- Department of Applied Chemistry, Keio University
| |
Collapse
|
39
|
Engineering with NanoLuc: a playground for the development of bioluminescent protein switches and sensors. Biochem Soc Trans 2021; 48:2643-2655. [PMID: 33242085 DOI: 10.1042/bst20200440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The small engineered luciferase NanoLuc has rapidly become a powerful tool in the fields of biochemistry, chemical biology, and cell biology due to its exceptional brightness and stability. The continuously expanding NanoLuc toolbox has been employed in applications ranging from biosensors to molecular and cellular imaging, and currently includes split complementation variants, engineering techniques for spectral tuning, and bioluminescence resonance energy transfer-based concepts. In this review, we provide an overview of state-of-the-art NanoLuc-based sensors and switches with a focus on the underlying protein engineering approaches. We discuss the advantages and disadvantages of various strategies with respect to sensor sensitivity, modularity, and dynamic range of the sensor and provide a perspective on future strategies and applications.
Collapse
|
40
|
A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nat Commun 2021; 12:4586. [PMID: 34321486 PMCID: PMC8319308 DOI: 10.1038/s41467-021-24874-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Heterogeneous immunoassays such as ELISA have become indispensable in modern bioanalysis, yet translation into point-of-care assays is hindered by their dependence on external calibration and multiple washing and incubation steps. Here, we introduce RAPPID (Ratiometric Plug-and-Play Immunodiagnostics), a mix-and-measure homogeneous immunoassay platform that combines highly specific antibody-based detection with a ratiometric bioluminescent readout. The concept entails analyte-induced complementation of split NanoLuc luciferase fragments, photoconjugated to an antibody sandwich pair via protein G adapters. Introduction of a calibrator luciferase provides a robust ratiometric signal that allows direct in-sample calibration and quantitative measurements in complex media such as blood plasma. We developed RAPPID sensors that allow low-picomolar detection of several protein biomarkers, anti-drug antibodies, therapeutic antibodies, and both SARS-CoV-2 spike protein and anti-SARS-CoV-2 antibodies. With its easy-to-implement standardized workflow, RAPPID provides an attractive, fast, and low-cost alternative to traditional immunoassays, in an academic setting, in clinical laboratories, and for point-of-care applications. Many current immunoassays require multiple washing, incubation and optimization steps. Here the authors present Ratiometric Plug-and-Play Immunodiagnostics (RAPPID), a generic assay platform that uses ratiometric bioluminescent detection to allow sandwich immunoassays to be performed directly in solution.
Collapse
|
41
|
Shanko ES, Ceelen L, Wang Y, van de Burgt Y, den Toonder J. Enhanced Microfluidic Sample Homogeneity and Improved Antibody-Based Assay Kinetics Due to Magnetic Mixing. ACS Sens 2021; 6:2553-2562. [PMID: 34191498 PMCID: PMC8457298 DOI: 10.1021/acssensors.1c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Recent global events have distinctly demonstrated the need for fast diagnostic analysis
of targets in a liquid sample. However, microfluidic lab-on-a-chip devices for
point-of-care diagnostics can suffer from slow analysis due to poor mixing. Here, we
experimentally explore the mixing effect within a microfluidic chamber, as obtained from
superparamagnetic beads exposed to an out-of-plane (vertical) rotating magnetic field.
Various magnetic protocols are explored, and the level of sample homogeneity is measured
by determining the mixing efficiency index. In particular, we introduce a method to
induce effective mixing in a microfluidic chamber by the actuation of the same beads to
perform global swarming behavior, a collective motion of a large number of individual
entities often seen in nature. The microparticle swarming induces high fluid velocities
in initially stagnant fluids, and it can be externally controlled. The method is
pilot-tested using a point-of-care test featuring a bioluminescent assay for the
detection of antibodies. The mixing by the magnetic beads leads to increased assay
kinetics, which indeed reduces the time to sensor readout substantially. Magnetic
microparticle swarming is expected to be beneficial for a wide variety of point-of-care
devices, where fast homogeneity of reagents does play a role.
Collapse
Affiliation(s)
- Eriola-Sophia Shanko
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Lennard Ceelen
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Ye Wang
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Yoeri van de Burgt
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Jaap den Toonder
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| |
Collapse
|
42
|
Takahashi R, Yasuda T, Ohmuro-Matsuyama Y, Ueda H. BRET Q-Body: A Ratiometric Quench-based Bioluminescent Immunosensor Made of Luciferase-Dye-Antibody Fusion with Enhanced Response. Anal Chem 2021; 93:7571-7578. [PMID: 34013723 DOI: 10.1021/acs.analchem.0c05217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A quenchbody (Q-body) is an immunosensor comprising an antibody fragment containing an antigen-binding site that is site-specifically labeled with a fluorescent dye. The fluorescent dye of a Q-body is quenched in the absence of an antigen; however, its fluorescence recovers in the presence of an antigen, offering simple and rapid systems for antigen detection. In this study, we fused luciferase NanoLuc to a Q-body to construct a new immunosensor termed the "BRET Q-body" that can detect antigens based on the bioluminescence resonance energy transfer (BRET) principle. The resulting BRET Q-bodies for an osteocalcin peptide that emit three different emission colors could detect an antigen without the requirement of an external light source, based on ratiometric detection and color change with two wavelengths for the luciferase and fluorophore. Furthermore, the BRET Q-body produced unexpectedly higher responses up to 12-fold because of the increased BRET efficiency, probably associated with antigen-dependent dye movement. Thus, the BRET Q-body is a useful biosensor as a core of point-of-care tests.
Collapse
Affiliation(s)
- Riho Takahashi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Takanobu Yasuda
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
43
|
Ganganboina AB, Takemura K, Zhang W, Li TC, Park EY. Cargo encapsulated hepatitis E virus-like particles for anti-HEV antibody detection. Biosens Bioelectron 2021; 185:113261. [PMID: 33962156 DOI: 10.1016/j.bios.2021.113261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022]
Abstract
Viral capsid-nanoparticle hybrid structures incorporating quantum dots (QDs) into virus-like particles (VLPs) constitute an emerging bioinspired type of nanoarchitecture paradigm used for various applications. In the present study, we packed inorganic QDs in vitro into the hepatitis E virus-like particle (HEV-LP) and developed a fluorometric biosensor for HEV antibody detection. Firstly, for the preparation of QDs-encapsulated HEV-LPs (QDs@HEV-LP), the HEV-LPs produced by a recombinant baculovirus expression system were disassembled and reassembled in the presence of QDs using the self-assembly approach. Thus, the prepared QDs@HEV-LP exhibited excellent fluorescence properties similar to QDs. Further, in the presence of HEV antibodies in the serum samples, when mixed with QDs@HEV-LP, bind together and further bind to anti-IgG-conjugated magnetic nanoparticles (MNPs). The target-specific anti-IgG-MNPs and QDs@HEV-LP enrich the HEV antibodies by magnetic separation, and the separated QDs@HEV-LP-bound HEV antibodies are quantified by fluorescence measurement. This developed method was applied to detect the HEV antibody from sera of HEV-infected monkey from 0 to 68 days-post-infection and successfully diagnosed for HEV antibodies. The viral RNA copies number from monkey fecal samples by RT-qPCR was compared to the HEV antibody generation. This study first used QDs-encapsulated VLPs as useful fluorescence emitters for biosensing platform construction. It provides an efficient route for highly sensitive and specific antibody detection in clinical diagnosis research.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kenshin Takemura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Wenjing Zhang
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo, 208-0011, Japan.
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo, 208-0011, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
44
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
45
|
Bottom-up de novo design of functional proteins with complex structural features. Nat Chem Biol 2021; 17:492-500. [PMID: 33398169 DOI: 10.1038/s41589-020-00699-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023]
Abstract
De novo protein design has enabled the creation of new protein structures. However, the design of functional proteins has proved challenging, in part due to the difficulty of transplanting structurally complex functional sites to available protein structures. Here, we used a bottom-up approach to build de novo proteins tailored to accommodate structurally complex functional motifs. We applied the bottom-up strategy to successfully design five folds for four distinct binding motifs, including a bifunctionalized protein with two motifs. Crystal structures confirmed the atomic-level accuracy of the computational designs. These de novo proteins were functional as components of biosensors to monitor antibody responses and as orthogonal ligands to modulate synthetic signaling receptors in engineered mammalian cells. Our work demonstrates the potential of bottom-up approaches to accommodate complex structural motifs, which will be essential to endow de novo proteins with elaborate biochemical functions, such as molecular recognition or catalysis.
Collapse
|
46
|
Itoh Y, Hattori M, Wazawa T, Arai Y, Nagai T. Ratiometric Bioluminescent Indicator for Simple and Rapid Diagnosis of Bilirubin. ACS Sens 2021; 6:889-895. [PMID: 33443410 DOI: 10.1021/acssensors.0c02000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bilirubin in human blood is highly important as a general index of one's physical condition because its concentration changes under the influence of several diseases. In particular, in newborns, jaundice is one of the most common diseases involving unconjugated bilirubin (UCBR), causing serious symptoms such as nuclear jaundice and deafness. Therefore, a frequent measurement of the UCBR levels in the blood is important. Here, we report a ratiometric bioluminescent indicator, BABI (bilirubin assessment with a bioluminescent indicator), that changes the emission color from blue to green depending on the UCBR concentration in a sample. Owing to the use of a bioluminescence signal that has a higher signal-to-noise ratio than the absorption and fluorescence signal, BABI enables highly sensitive and quantitative detection of UCBR for small blood samples using a smartphone camera. The establishment of a UCBR measurement assay using BABI provides the possibility of a simple and rapid method for blood-based diagnosis using bioluminescent indicators and a versatile mobile device.
Collapse
Affiliation(s)
- Yukino Itoh
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Mitsuru Hattori
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Tetsuichi Wazawa
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Yoshiyuki Arai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeharu Nagai
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|
47
|
Cárdenas P. Starting from scratch: a workflow for building truly novel proteins. Synth Biol (Oxf) 2021; 6:ysab005. [PMID: 33758784 PMCID: PMC7966779 DOI: 10.1093/synbio/ysab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pablo Cárdenas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, Wi J, Hong HJ, Stewart L, Oh BH, Baker D. De novo design of modular and tunable protein biosensors. Nature 2021; 591:482-487. [PMID: 33503651 PMCID: PMC8074680 DOI: 10.1038/s41586-021-03258-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023]
Abstract
Naturally occurring protein switches have been repurposed for the development of biosensors and reporters for cellular and clinical applications1. However, the number of such switches is limited, and reengineering them is challenging. Here we show that a general class of protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which the binding of a peptide key triggers biological outputs of interest2. The designed sensors are modular molecular devices with a closed dark state and an open luminescent state; analyte binding drives the switch from the closed to the open state. Because the sensor is based on the thermodynamic coupling of analyte binding to sensor activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We create biosensors that can sensitively detect the anti-apoptosis protein BCL-2, the IgG1 Fc domain, the HER2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac troponin I and an anti-hepatitis B virus antibody with the high sensitivity required to detect these molecules clinically. Given the need for diagnostic tools to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3, we used the approach to design sensors for the SARS-CoV-2 spike protein and antibodies against the membrane and nucleocapsid proteins. The former, which incorporates a de novo designed spike receptor binding domain (RBD) binder4, has a limit of detection of 15 pM and a luminescence signal 50-fold higher than the background level. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes, and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.
Collapse
Affiliation(s)
- Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Hsien-Wei Yeh
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Jooyoung Park
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Hansol Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Robert A. Langan
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Scott E. Boyken
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Marc J. Lajoie
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Longxing Cao
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Cameron M. Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Marcos C. Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Jimin Wi
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Lance Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Byung-Ha Oh
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Correspondence and requests for materials should be addressed to D.B. or B.-H.O
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA,Correspondence and requests for materials should be addressed to D.B. or B.-H.O
| |
Collapse
|
49
|
Zhou L, Zhang L, Yang L, Ni W, Li Y, Wu Y. Tandem reassembly of split luciferase-DNA chimeras for bioluminescent detection of attomolar circulating microRNAs using a smartphone. Biosens Bioelectron 2021; 173:112824. [PMID: 33229132 DOI: 10.1016/j.bios.2020.112824] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/03/2023]
Abstract
Detection of dysregulated circulating microRNAs (miRNAs) in human biofluids is a fundamental ability to determine tumor occurrence and metastasis in a minimally invasive fashion. However, the requirements for sophisticated instruments and professional personnel impede the translation of miRNA tests into routine clinical diagnostics, especially for resource-limited regions. Herein, we developed a DNA-guided bioluminescence strategy for the detection of circulating miRNAs. In this strategy, a pair of split luciferase-DNA chimeras was constructed and integrated into the miRNA-triggered rolling circle amplification (RCA) process. The tandem reassembly of split luciferase-DNA chimeras on the RCA products elicited a turn-on bioluminescence response with ultrahigh signal-to-background (S/B) ratio. This strategy enabled smartphone-based assays for different miRNAs with attomolar sensitivity and single-base specificity, as demonstrated here for miR-21. miR-148b, and cel-miR-39. Further application of our approach to the clinical serum samples realized identification of dysregulated miR-21 and miR-148b in the lung cancer patients, showing a satisfactory agreement with the control assays performed with quantitative reverse transcription polymerase chain reaction (qRT-PCR). Therefore, the developed method possesses the benefits of high performance and reliability, offering a potential tool for implementing miRNA-based diagnosis in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Lanlan Zhou
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Linling Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Liu Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, PR China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, PR China.
| | - Yong Li
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Yunhua Wu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
50
|
Weihs F, Anderson A, Trowell S, Caron K. Resonance Energy Transfer-Based Biosensors for Point-of-Need Diagnosis-Progress and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:660. [PMID: 33477883 PMCID: PMC7833371 DOI: 10.3390/s21020660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The demand for point-of-need (PON) diagnostics for clinical and other applications is continuing to grow. Much of this demand is currently serviced by biosensors, which combine a bioanalytical sensing element with a transducing device that reports results to the user. Ideally, such devices are easy to use and do not require special skills of the end user. Application-dependent, PON devices may need to be capable of measuring low levels of analytes very rapidly, and it is often helpful if they are also portable. To date, only two transduction modalities, colorimetric lateral flow immunoassays (LFIs) and electrochemical assays, fully meet these requirements and have been widely adopted at the point-of-need. These modalities are either non-quantitative (LFIs) or highly analyte-specific (electrochemical glucose meters), therefore requiring considerable modification if they are to be co-opted for measuring other biomarkers. Förster Resonance Energy Transfer (RET)-based biosensors incorporate a quantitative and highly versatile transduction modality that has been extensively used in biomedical research laboratories. RET-biosensors have not yet been applied at the point-of-need despite its advantages over other established techniques. In this review, we explore and discuss recent developments in the translation of RET-biosensors for PON diagnoses, including their potential benefits and drawbacks.
Collapse
Affiliation(s)
- Felix Weihs
- CSIRO Health & Biosecurity, Parkville, 343 Royal Parade, Melbourne, VIC 3030, Australia;
| | - Alisha Anderson
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia;
| | - Stephen Trowell
- PPB Technology Pty Ltd., Centre for Entrepreneurial Agri-Technology, Australian National University, Canberra, ACT 2601, Australia;
| | - Karine Caron
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia;
| |
Collapse
|