1
|
Cadavid J, Larrañaga A, Lizundia E. Structure and nanotoxicity of fungal chitin-glucan nanofibrils with gradient acid and alkaline treatments. Carbohydr Polym 2025; 357:123484. [PMID: 40159005 DOI: 10.1016/j.carbpol.2025.123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 04/02/2025]
Abstract
Among nanoscale biopolymers, fungal chitin nanofibrils (ChNFs) stand out for their low carbon footprint and functional properties. However, the nanotoxicity properties of ChNFs have not been fully elucidated. To fill this knowledge gap, here we investigate the cytotoxicity and inflammatory effects of chemically modified ChNFs having gradient acid and alkaline treatments. ChNFs isolated from white mushroom exhibit a long fibrous morphology with diameters of 3-8 nm and lengths of 150-600 nm, and are composed of α-chitin in coexistence with amorphous covalently bounded β-glucans. Both alkaline (2 m NaOH) and acidic (2 m HCl) treatments impact the crystallinity, N-acetylation, zeta potential, and nitrogen content values to provide ranges of 23-to-51 %, 45-to-99 %, -5 to +26 mV, and 2.6-to-5.2 %, respectively. Nanotoxicity studies with colloidal dispersions demonstrate differences in the inflammatory response by cells after chemical post-treatments. The NaOH-treated ChNFs elicited a much lower inflammatory response, attenuating the release of nitrites and the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Alginate hydrogels with ChNFs were further fabricated and demonstrated potential to host cells in three-dimensional microenvironments, preserving a good metabolic activity, viability, and cell proliferation. These results may guide new applications of fungal nanochitin in pharmaceutical or tissue engineering.
Collapse
Affiliation(s)
- Juan Cadavid
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain; INIFTA-CONICET-UNLP, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, 48940 Leioa, Biscay, Spain.
| |
Collapse
|
2
|
Waterlot C, Duarte-Serrano D, Hadad C, Jamali A, Van Nhien AN. Removal of Ni 2+ and Cd 2+ from aqueous solutions by bionanosorbents: Isotherm, thermodynamic and mechanistic studies. CHEMOSPHERE 2025; 377:144311. [PMID: 40117947 DOI: 10.1016/j.chemosphere.2025.144311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
The present work presents the efficiency and the limit in using bionanosorbents (cellulose, chitin and modified chitin nanocrystals) for the sorption of metal ions M2+ (M = Ni and Cd) in batch systems. Bionanosorbents were extracted from plants and shrimp shells, two available and low-cost materials. If cellulose and chitin nanocrystals did not efficiently remove metals in the experimental conditions of this work, the surface-modified chitin exhibited enhancement for the Ni2+ and Cd2+ adsorption capacity than original chitin nanocrystals. The Langmuir and Freundlich models fitted well to the experimental data from which the maximum adsorption capacity was 139.2 mg Ni g-1 and 38.4 mg Cd g-1. Regarding the Gibbs free energy and the Hall parameter, the sorption of Ni2+ and Cd2+ were spontaneous and favourable for pH around the neutrality. This corroborates the examination of IR spectra of oxidized chitin nanocrystals before and after the sorption process from which the metal removal mechanism was mainly attributed to the formation of complexes and ion exchanges of the bionanosorbent and metal ions. Element mappings of the bionanosorbents after sorption revealed a homogeneous distribution of Cd(II).
Collapse
Affiliation(s)
- Christophe Waterlot
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - Gcg, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France.
| | - Daniela Duarte-Serrano
- Laboratoire de Glycochimie et des Agroressources d'Amiens UR 7378, Université de Picardie Jules Verne - UFR des Sciences, 33 rue Saint Leu, Cedex, 80039, Amiens, France; Institut de Chimie de Picardie FR 3085, 80039, Amiens, France
| | - Caroline Hadad
- Laboratoire de Glycochimie et des Agroressources d'Amiens UR 7378, Université de Picardie Jules Verne - UFR des Sciences, 33 rue Saint Leu, Cedex, 80039, Amiens, France; Institut de Chimie de Picardie FR 3085, 80039, Amiens, France
| | - Arash Jamali
- Plateforme de Microscopie Electronique - Université de Picardie Jules Verne, HUB de l'Energie, 33 rue Saint Leu, Cedex, 80039, Amiens, France
| | - Albert Nguyen Van Nhien
- Laboratoire de Glycochimie et des Agroressources d'Amiens UR 7378, Université de Picardie Jules Verne - UFR des Sciences, 33 rue Saint Leu, Cedex, 80039, Amiens, France; Institut de Chimie de Picardie FR 3085, 80039, Amiens, France
| |
Collapse
|
3
|
Sivaramakrishna D, Bhuvanachandra B, Bevara S, Padhy H, Maddu RR, Bellamkonda R, Podile AR. Composition of the pretreatment solvent and the structural features of substrates and chitinases influence the bioconversion of α-chitin. Int J Biol Macromol 2025; 310:143340. [PMID: 40254204 DOI: 10.1016/j.ijbiomac.2025.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/16/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Auxiliary domains in chitinases play a significant role in the hydrolysis of chitin and chitooligosaccharides (COS). Pretreatment of α-chitin, followed by enzymatic hydrolysis, considerably enhanced the production of COS with a lower degree of polymerization (DP). We studied the effect of pretreatment solvent composition (KOH-with/without-urea) on the bioconversion of α-chitin and hydrolysis of COS (DP2-6), separately by a multi-modular chitinase CsChiG and its catalytic domain (Cat-CsChiG). Temperature-dependent structural stability of CsChiG and Cat-CsChiG was analyzed using circular dichroism spectroscopy. Deletion of chitin-binding domains in CsChiG influenced the overall secondary structural elements and its thermal stability, affecting the bioconversion of treated substrates and hydrolysis of lower chain length COS. Field emission scanning electron microscope (FESEM) and thermogravimetric analysis-differential thermal analysis (TGA-DTA) corroborate the influence of pretreatment on the structural and thermal stabilities of the pretreated substrates. It is, therefore, concluded that the composition of the pretreatment solvent and structural features of the substrates and modules in the chitinases influence the bioconversion of α-chitin, especially the composition of COS.
Collapse
Affiliation(s)
- Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India; Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India..
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Samatha Bevara
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Harihara Padhy
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rajesh Rao Maddu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Ramakrishna Bellamkonda
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
4
|
Kawasaki T, Nagase A, Hayakawa K, Teshima F, Tanaka K, Zen H, Shishikura F, Sei N, Sakai T, Hayakawa Y. Infrared Free-Electron Laser: A Versatile Molecular Cutter for Analyzing Solid-State Biomacromolecules. ACS OMEGA 2025; 10:13860-13867. [PMID: 40256544 PMCID: PMC12004168 DOI: 10.1021/acsomega.4c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025]
Abstract
Free-electron lasers that oscillate in the infrared (IR) range of 1000 (10 μm) to 4000 cm-1 (2.5 μm) were applied to irradiate solid-phase polysaccharides and aromatic biomacromolecules. Synchrotron radiation IR microscopy (SR-IRM) and electrospray ionization mass spectroscopy (ESI-MS) analyses showed that N-acetyl glucosamine was isolated from the powdered exoskeleton of crayfish by irradiation at 1020 cm-1 (9.8 μm), resonating with the C-O stretching mode (νC-O). Irradiation at 3448 cm-1 (2.9 μm), which is resonant with the O-H stretching vibration (νO-H) of sulfonated lignin, dissociates the aggregate state and releases coniferyl aldehyde substituted with sulfinate, as shown by scanning electron microscopy, terahertz-coherent edge radiation spectroscopy, SR-IRM, and ESI-MS. These vibrational excitation reactions proceed at room temperature in the absence of solvent. Current and previous studies have demonstrated that intense IR lasers can be used as versatile tools for unveiling the internal structures of persistent biomacromolecules.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- Accelerator
Laboratory, High Energy Accelerator Research
Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Atsushi Nagase
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Ken Hayakawa
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Fumitsuna Teshima
- National
Institutes of Natural Sciences Institute for Molecular Science, UVSOR Synchrotron Facility, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kiyohisa Tanaka
- National
Institutes of Natural Sciences Institute for Molecular Science, UVSOR Synchrotron Facility, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Heishun Zen
- Institute
of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Fumio Shishikura
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Norihiro Sei
- Research
Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science
and Technology, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Takeshi Sakai
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| | - Yasushi Hayakawa
- Laboratory
for Electron Beam Research and Application (LEBRA), Institute of Quantum
Science, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba274-8501, Japan
| |
Collapse
|
5
|
Mao X, Liu Y, Qiao C, Sun Y, Zhao Z, Liu J, Zhu L, Zeng H. Nano-fibrous biopolymers as building blocks for gel networks: Interactions, characterization, and applications. Adv Colloid Interface Sci 2025; 338:103398. [PMID: 39823917 DOI: 10.1016/j.cis.2025.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors. The inter-/intra-molecular interactions directly affect the assembly of nano-building blocks, which determines the structure of gels, and the integrity of connected nano-building blocks, influencing the mechanical properties and the performance of gels in specific applications. This review focuses on four biopolymer nanofibers (cellulose, chitin, silk, collagen), commonly used in gel preparations, as representatives for polysaccharides and polypeptides. The covalent and non-covalent interactions between biopolymers and other materials have been categorized and discussed in relation to the resulting gel network structures and properties. Nanomechanical characterization techniques, such as surface forces apparatus (SFA) and atomic force microscopy (AFM), have been employed to precisely quantify the intermolecular interactions between biopolymers and other building blocks. The applications of these gels are classified and correlated to the functions of their building blocks. The inter-/intra-molecular interactions act as "sewing threads", connecting all nano-building blocks to establish suitable network structures and functions. This review aims to provide a comprehensive understanding of the interactions involved in gel preparation and the design principles needed to achieve targeted functional gels.
Collapse
Affiliation(s)
- Xiaohui Mao
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Yujie Liu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, PR China
| | - Liping Zhu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
6
|
Ma F, Jiao J, Chao Y, Xie W, Wu D. Selective nucleation of chitin nanocrystals in the crystallization of poly(ε-caprolactone-b-l-lactide) diblock copolymer composites. Int J Biol Macromol 2025; 301:140919. [PMID: 39947552 DOI: 10.1016/j.ijbiomac.2025.140919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025]
Abstract
Rod-like chitin nanocrystals (ChNCs) filled biodegradable aliphatic polyesters are of great interest because as-obtained nanocomposites are all-degradable. In this work, we prepared a poly(ε-caprolactone-b-l-lactide) (PCL-b-PLA) copolyester nanocomposite with ChNCs and carried out a crystallization study. The results disclosed that the roles of ChNCs played during crystallization of copolyester matrices were very attractive: as heterogeneous nucleator of PLA phase, whereas as inert filler for PCL phase. Thus, the overall crystallization kinetics of PLA phase were accelerated. The heterogeneous nucleation led to the formation of more amounts of crystallized PLA domains, which favored nucleating following crystallization of PCL phase. In addition, the presence of ChNCs did not strongly influence the microphase-segregated structure of PCL-b-PLA, and had good reinforcements to matrix copolymer. The selective nucleation ability of ChNCs reported in this study is valuable for regulating the structures and properties of nanocomposites based on the ChNCs-filled aliphatic diblock copolyester with double crystalline blocks.
Collapse
Affiliation(s)
- Fen Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Jiali Jiao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Yuchen Chao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Wenyuan Xie
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Jiangsu Provincial Laboratory of Environmental Materials & Engineering, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
7
|
Zhao D, Zhou N, Wu C, Wu B, Chen F, Zhang A, Chen K. The application of chitin materials in enzymatic catalysis: A review. Carbohydr Polym 2025; 352:123172. [PMID: 39843077 DOI: 10.1016/j.carbpol.2024.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Enzymatic catalysis offers notable advantages, including exceptional catalytic efficiency, selectivity, and the ability to operate under mild conditions. However, its widespread application is hindered by the high costs associated with enzymes and cofactors. Materials-mediated immobilization technology has proven effective in the recycling of enzymes and cofactors. An optimal carrier material for protein immobilization must be non-toxic, biocompatible, and should not compromise the biological activity or structure of the enzymes. Compared to synthetic polymers, chitin is a promising carrier given its low cost, renewability, abundance of functional groups, and notable biocompatibility and biodegradability. Although numerous reviews on chitosan and other polymers for immobilization have been published, few have addressed using chitin as supports. In this review, chitin-based materials mediated enzyme immobilization, the one-step purification and immobilization of enzymes, as well as co-immobilization of enzymes and cofactors were summarized. Particularly, the significance of chitin materials in the field of enzymatic catalysis was emphasized. This study has the potential to open new avenues for immobilized biocatalysts.
Collapse
Affiliation(s)
- Dexin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhou
- Petrochemical Research Institute of Petrochina Co., Ltd., Beijing 102206, China
| | - Chaoqiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bin Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Feifei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
8
|
Wu Q, Zhang J, Yang S, Luo F, Yan Z, Liu X, Xie H, Huang J, Chen Y. Bridging Electrolyte Bulk and Interfacial Chemistry: Dynamic Protective Strategy Enable Ultra-Long Lifespan Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2025; 64:e202418524. [PMID: 39582315 DOI: 10.1002/anie.202418524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
The main bottleneck of rechargeable aqueous zinc batteries (AZBs) is their limited cycle lifespans stemming from the unhealthy electrolyte bulk and fragile interface, especially in the absence of dynamic protection mechanism between them. To overcome this limitation, benefitting from their synergistic physical and chemical properties, chitin nanocrystals (ChNCs) are employed as superior colloid electrolyte to bridge electrolyte bulk and interfacial chemistry for ultra-long lifespan AZBs. This unique strategy not only enables continuous optimization of the electrolyte bulk and interfacial chemistry within the battery but also facilitates self-repairing of mechanical damage both internally and externally, thereby achieving comprehensive, persistent, and dynamic protection. As a result, the modified zinc (Zn) cells present high Zn plating/stripping coulombic efficiencies of 97.71 % ~99.81 % from 5 to 100 mA cm-2, and remarkably service lifespan up to 8,200 h (more than 11 months). Additionally, the Zn//MnO2 full cell exhibits a high capacity retention of 70.1 % after 3,000 cycles at 5 A g-1. This dynamic protective strategy to challenge aqueous Zn chemistry may open up a new avenue for building better AZBs and beyond.
Collapse
Affiliation(s)
- Qing Wu
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jinlong Zhang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Song Yang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Fusheng Luo
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zeyu Yan
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Xiude Liu
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Haibo Xie
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jun Huang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
9
|
Zhang J, Wei L, Zhang H, Ma X, Sun Y, Li R, Zhang C, Cai X, Qiao J, Meng Q. Proteomic insights into nematode-trapping fungi Arthrobotrys oligospora after their response to chitin. J Vet Res 2025; 69:71-82. [PMID: 40144063 PMCID: PMC11936082 DOI: 10.2478/jvetres-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Nematode-trapping fungi (NTFs) can produce various chitinases to degrade nematode body wall and eggshell chitin during predation. However, the regulatory mechanisms of their expression of chitinases still remain unclear. The primary objective of this study was to elucidate the differential protein profile of A. oligospora, an NTF, in response to chitin. Material and Methods Colloidal chitin was added to induce the culture of A. oligospora, and the phenotypic differences before and after induction were observed under inverted microscope. The differential proteins before and after mycelium induction were screened by liquid chromatography-tandem mass spectrometry. The differentially expressed chitinase was expressed in Pichia yeast, and the recombinant enzyme was incubated with Caenorhabditis elegans and its egg suspension to explore its biological activity. Results It was found that there was a significant acceleration in the mycelial growth post chitin interaction in A. oligospora. A total of 1,124 differentially expressed proteins (DEPs) were identified between the control group (AO-c) and the experimental group (AO-e), with 183 upregulated and 941 downregulated. Gene Ontology analysis revealed that the DEPs acted in various metabolic processes with catalysis and binding functions. Kyoto Encyclopedia of Genes and Genomes analysis associated these proteins primarily with signalling pathways related to glucose metabolism. Three chitinases were significantly modulated among DEPs. Moreover, enzymatic activity assays demonstrated that one of them effectively degraded C. elegans and its eggs. Conclusion These findings suggest that A. oligospora can significantly alter its protein expression profile in response to chitin, thereby facilitating its sugar metabolism and mycelial development. Our study provided new insights into the regulatory mechanisms of nematode predation in A. oligospora.
Collapse
Affiliation(s)
- Jiahua Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Lixiang Wei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Huimei Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Xixi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Yansen Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Ruobing Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Chengzhi Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu730046, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| |
Collapse
|
10
|
Ma H, Zou Y, Liu L, Yu J, Wang P, Lin L, Chen M, Jia R, Fan Y. A nanochitin-drived natural biological adhesive with high cohesive for wound healing. Int J Biol Macromol 2025; 297:139505. [PMID: 39788259 DOI: 10.1016/j.ijbiomac.2025.139505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The weak cohesive strength of tissue adhesives hinders their practical applications. To overcome this challenge, we develop a green bio-adhesive that balances both cohesion and adhesion, drawing inspiration from the natural adhesion mechanisms of mussels. This bio-adhesive, referred to as OTS, was ingeniously crafted through the co-assembly of multi-surface-charged chitin nanofibers (OAChN) and tannic acid (TA), integrated with silk fibroin (SF), resulting in a material with enhanced cohesive strength and robust adhesive properties. The adhesive achieved significant cohesion through hydrogen-bonded crosslinking among OAChN, SF, and TA, boasting a tensile strength of 24.53 KPa and allowing for 150 % elastic deformation. OTS adheres effectively to diverse complex surfaces, with adhesive strengths of 14.55 MPa underwater and 8.83 MPa in air, demonstrating excellent versatility. The biocompatibility and degradability of OTS were confirmed by a wound healing model in SD rats, showing no nanotoxicity and effectively promoting wound healing, rapid hemostasis, and sealing. This green adhesive strategy offers a novel approach to augmenting the cohesive strength of tissue adhesives suitable for complex conditions and has potential medical applications ranging from rapid hemostasis to wound healing enhancement.
Collapse
Affiliation(s)
- Huazhong Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Yujun Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Lin Lin
- Jiangsu Opera Medical Supplies Co., Ltd, China
| | | | - Ruoxian Jia
- Jiangsu Opera Medical Supplies Co., Ltd, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
11
|
Manoj N, Pradhan M, Kundu D, Abhiramy DS, Balakumaran PA, Sherpa KC. Nanochitin: Green nanomaterial for sustainable applications in agriculture and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178607. [PMID: 39889571 DOI: 10.1016/j.scitotenv.2025.178607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
The need for a green and sustainable nanomaterial sourced from biomass in the form of nanochitin has raised interest in paving the way towards incorporating biological resources for the production of functional materials. Nanochitin as nanofibers and nanocrystals/whiskers have attractive features like their ability to self-assemble into multidimensional biomaterials while retaining their intrinsic characteristics. Herein, the review discusses chitin's molecular association and hierarchical assemblies and gives an overview of the extraction methods adopted to produce nanochitin. Recent progress in the development of advanced functional nanochitin-based materials/composites and their current application in agriculture and environmental remediation are reviewed to gain a better understanding of their applicability for forthcoming research and improvement. Furthermore, the environmental impact assessment of chitin has been discussed, followed by the techno-economic analysis, thus providing scope for improvement in manufacturing and perspectives on the potential of nanochitin in the context of sustainable material and their role in circular bioeconomy.
Collapse
Affiliation(s)
- Neeraja Manoj
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Meghna Pradhan
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Deepan Shammy Abhiramy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Palanisamy Athiyaman Balakumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Knawang Chhunji Sherpa
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Arumughan V, Medipally H, Torris A, Levä T, Grimm HC, Tammelin T, Kourist R, Kontturi E. Bioinspired Nanochitin-Based Porous Constructs for Light-Driven Whole-Cell Biotransformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413058. [PMID: 39901454 DOI: 10.1002/adma.202413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Indexed: 02/05/2025]
Abstract
Solid-state photosynthetic cell factories (SSPCFs) are a new production concept that leverages the innate photosynthetic abilities of microbes to drive the production of valuable chemicals. It addresses practical challenges such as high energy and water demand and improper light distribution associated with suspension-based culturing; however, these systems often face significant challenges related to mass transfer. The approach focuses on overcoming these limitations by carefully engineering the microstructure of the immobilization matrix through freeze-induced assembly of nanochitin building blocks. The use of nanochitins with optimized size distribution enabled the formation of macropores with lamellar spatial organization, which significantly improves light transmittance and distribution, crucial for maximizing the efficiency of photosynthetic reactions. The biomimetic crosslinking strategy, leveraging specific interactions between polyphosphate anions and primary amine groups featured on chitin fibers, produced mechanically robust and wet-resilient cryogels that maintained their functionality under operational conditions. Various model biotransformation reactions leading to value-added chemicals are performed in chitin-based matrix. It demonstrates superior or comparable performance to existing state-of-the-art matrices and suspension-based systems. The findings suggest that chitin-based cryogel approach holds significant promise for advancing the development of solid-state photosynthetic cell factories, offering a scalable solution to improve the efficiency and productivity of light-driven biotransformation.
Collapse
Affiliation(s)
- Vishnu Arumughan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| | - Hitesh Medipally
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Royal Institute of Technology, Tomtebodavägen 23, Stockholm, 17165, Sweden
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Tuukka Levä
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Hanna C Grimm
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, Graz, 8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| |
Collapse
|
13
|
Ifuku S, Kaminaka H, Shams MI. Nanochitin From Crab Shells: Production, Chemical Modification, Composite Materials, and Physiological Functions. Macromol Rapid Commun 2025:e2400765. [PMID: 39895236 DOI: 10.1002/marc.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/18/2025] [Indexed: 02/04/2025]
Abstract
Large quantities of crab shells are generated in food-processing plants. In this review, the authors summarize a series of research findings on the production of nanochitin, its physical properties, chemical modifications, and functions, which have not been fully addressed in existing literature. Nanochitin, which has a width of 10 nm, is derived from chitin, the main component of crab shells, using a technology similar to that used to produce nanocellulose from wood. Unlike conventional chitin, nanochitin is well dispersed in water, making it easy to mold and process into various products for different applications. They can also be modified for specific uses through processes such as acylation and etherification to enhance their physical properties and add functionality. Nanochitin, which are known for their exceptional mechanical strength, can be blended with resins to create composite films with improved strength and elasticity. These films maintain the transparency of the resin, reduce its thermal expansion, and offer reinforcement. Chitin and its derivative chitosan are used as wound dressings, hemostatic agents, and health foods. Nanochitin and its deacetyl derivatives have diverse functions such as topical medicine for the skin, ingestion as a health food, and use as pesticides or fertilizers for plants.
Collapse
Affiliation(s)
- Shinsuke Ifuku
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8552, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8553, Japan
| | - Md Iftekhar Shams
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
14
|
Lin X, Chen H, Huang L, Liu S, Cai C, Li Y, Li S. Advanced chitin-based composite hydrogels enabled by quercetin-mediated assembly for multifunctional applications. Int J Biol Macromol 2025; 291:139043. [PMID: 39710027 DOI: 10.1016/j.ijbiomac.2024.139043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances. The quercetin-mediated strategy could effectively modulate the non-covalent interactions within hydrogel, which served as the sacrificial bonds to dissipate large energy, leading to the high toughness of chitin-based composite hydrogels (0.70-1.02 MJ·m-3). Furthermore, through utilizing quercetin-assisted non-covalent interactions, effective dispersion of inorganic materials (e.g., molybdenum disulfide, carbon nanotube and calcium carbonate) within hydrogels was achieved, resulting in composite hydrogels with diverse functionalities. Our quercetin-mediated strategy conceptualized in this work paves the way for the development of a diverse array of chitin-based composite hydrogels which incorporate various functional inorganic materials.
Collapse
Affiliation(s)
- Xinghuan Lin
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China.
| | - Hanji Chen
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuang Liu
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Chunsheng Cai
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Yibao Li
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Shanshan Li
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
15
|
Dubashynskaya NV, Petrova VA, Ustyukhina IS, Sgibnev AV, Cherkasova YI, Nashchekina YA, Vlasova EN, Romanov DP, Skorik YA. Mucoadhesive polyelectrolyte complexes of fucoidan and chitin nanowhiskers to prolong the antiprotozoal activity of metronidazole. Carbohydr Polym 2025; 349:122975. [PMID: 39643420 DOI: 10.1016/j.carbpol.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 12/09/2024]
Abstract
The improvement of the specific pharmacological activity of agents with antimicrobial and antiprotozoal properties (e.g. metronidazole, MET) is of interest for clinical applications in the treatment of bacterial infections. In this work, we prepared the polyelectrolyte complexes (PEC) based on chitin nanowhiskers (CNW) and fucoidan (FUC) with hydrodynamic diameters of 244 and 816 nm, a ζ-potential of about -22 mV and good mucoadhesive properties. The incorporation of MET into PEC particles promoted the sustained release of MET for 10 h and maintained the antiprotozoal activity against clinical isolates of Trichomonas vaginalis for up to 10 h. At concentrations of 1-3 mg/mL, the CWN-FUC-MET particles showed no cytotoxicity (HeLa cell line). The sustained drug release rate, combined with pronounced mucoadhesive properties, improved pharmacological activity, and non-cytotoxicity makes the developed biopolymer delivery systems promising candidates for further clinical trials.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Valentina A Petrova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Irina S Ustyukhina
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Andrey V Sgibnev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Yuliya I Cherkasova
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, St. Petersburg 199034, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
16
|
Jin J, Ma H, Liang H, Zhang Y. Biopolymer-Derived Carbon Materials for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414620. [PMID: 39871757 DOI: 10.1002/adma.202414620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Indexed: 01/29/2025]
Abstract
Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics. This review aims to discuss the carbonization mechanisms, carbonization techniques, and processes, as well as the diverse applications of biopolymer-derived carbon materials (BioCMs) in wearable electronics. First, the characteristics of four representative biopolymers, including cellulose, lignin, chitin, and silk fibroin, and their carbonization processes are discussed. Then, typical carbonization techniques, including pyrolysis carbonization, laser-induced carbonization, Joule heating carbonization, hydrothermal transformation, and salt encapsulation carbonization are discussed. The influence of the processes on the morphology and properties of the resultant BioCMs are summarized. Subsequently, applications of BioCMs in wearable devices, including physical sensors, chemical sensors, energy devices, and display devices are discussed. Finally, the challenges currently facing the field and the future opportunities are discussed.
Collapse
Affiliation(s)
- Jiongke Jin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoxuan Ma
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huarun Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
17
|
Yang T, Li R, Ding M, Yu H, Zhang L, Xie H. Aldehyde-functionalization of chitin nanocrystals via SI-ARGET ATRP of lignin-derived monomers. Carbohydr Polym 2025; 348:122892. [PMID: 39567129 DOI: 10.1016/j.carbpol.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Chitin nanocrystals (ChNCs), prepared from a down-sizing process from chitin, have recently captured great attention to access sustainable nanomaterials. The surface modification of ChNCs is crucial to regulate the surface physicochemical properties and introduce specific functions, thus satisfying their diverse applications. In this study, aldehyde-functionalized ChNCs (ChNCs-PVMA) with enhanced hydrophobicity were developed via surface-initiated activators regenerated by electron transfer for atom transfer radical polymerization (SI-ARGET ATRP) of a lignin-derived polymerizable aldehyde monomer, vanillin methacrylate (VMA). The monomer conversion was determined by 1H NMR spectroscopy of the reaction mixture based on the change of the relative ratio of VMA and solvent signals. The prepared ChNCs-PVMA were systematically characterized by FTIR, CP/MAS 13C NMR, XPS, XRD, DSC, TGA, and TEM. The dispersibility of ChNCs and ChNCs-PVMA in water and DMF was evaluated by dynamic light scattering and visual observation, indicating good dispersion of ChNCs-PVMA in organic solvents. Furthermore, based on the available aldehyde groups, the ChNCs-PVMA was reacted with amino acids via Schiff base reaction, demonstrating a rich follow-up chemistry towards diverse functions by the reactive aldehyde groups.
Collapse
Affiliation(s)
- Tongjun Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Rongli Li
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Mingtao Ding
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Hong Yu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lihua Zhang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
18
|
Djalali S, Jing Y, Ogawa Y, Delbianco M. Synthetic chitin oligosaccharide nanocrystals and their higher-order assemblies. Chem Sci 2025; 16:1390-1395. [PMID: 39703414 PMCID: PMC11653566 DOI: 10.1039/d4sc07549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Self-assembly is a powerful strategy for creating complex architectures and elucidating the aggregation behaviors of biopolymers. Herein, we investigate the hierarchical assembly of chitin using a bottom-up approach based on synthetic oligosaccharides. We discovered that chitin oligosaccharides self-assemble into platelets, which then form higher-order structures. Subtle changes in experimental conditions drastically altered the self-assembly results, generating a wide array of higher-order architectures. Through systematic investigations employing transmission electron microscopy (TEM), photoinduced force microscopy (PiFM), and atomic force microscopy (AFM), we uncovered the role of water in shaping the different morphologies. This finding gave us the tools to promote the formation of chiral, uniform chitin oligosaccharide bundles. Our work not only sheds light on the fundamental aspects of chitin organization, but also suggests strategies for designing carbohydrate-based materials with tunable structures and properties.
Collapse
Affiliation(s)
- Surusch Djalali
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 Berlin 14195 Germany
| | - Yun Jing
- Molecular Vista Inc. 6840 Via Del Oro, Suite 110 San Jose CA 95119 USA
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble 38000 France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| |
Collapse
|
19
|
Sheng O, Jin T, Wang T, Yang T, Han Q, Tao X, Jin C. Loosening the Solvation Cage in Polysaccharide Polymer Electrolyte for Sustainable Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409680. [PMID: 39696926 DOI: 10.1002/smll.202409680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/15/2024] [Indexed: 12/20/2024]
Abstract
Biomass with naturally ion-conducting segments (e.g., hydroxyl) holds promise for sustainable batteries. Several expeditions are proposed to successfully enhance the ion conduction in biomass polymer mainly by intermolecular structure regulation. Presently, the recognition and research of biomass polymer electrolytes are still limited, requiring continuous explorations to promote the application of such promising electrolytes. Herein, a molecularly asymmetric electrolyte is produced, comprising polysaccharides of starch and chitosan. The strong Li+-O (hydroxyl) interactions are replaced by weak Li+-oxygen (O) of ester carbonyl, and the steric hindrance group -NH3 + promotes the immobilization of anion and stabilization of the interface. Such intermolecular chemical modulations of biomass are achieved by a one-pot esterification and protonation of polysaccharides. A loosely-solvating cage structure with the participation of O of ester carbonyl, glycerol, and anion, allowing the rapid conduction (1.82 × 10-4 S cm-1 at 30 °C) and a high migration number (0.49) of Li+. Moreover, Li symmetric cells (2500 h) and Li4TiO5 | Li cells (400 cycles) employing the SCA electrolyte show superior cycling stability. The polysaccharide BPEs and solvation regulation strategy open up a promising avenue for constructing sustainable batteries.
Collapse
Affiliation(s)
- Ouwei Sheng
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, China
| | - Tenglong Jin
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tianyu Wang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, China
| | - Tao Yang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, China
| | - Qingyue Han
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chengbin Jin
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
20
|
Vale AC, Leite L, Pais V, Bessa J, Cunha F, Fangueiro R. Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres. Polymers (Basel) 2024; 16:3602. [PMID: 39771455 PMCID: PMC11679467 DOI: 10.3390/polym16243602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile). For each source, typical applications and the biopolymers usually extracted will also be outlined. Furthermore, acknowledging the challenging lignocellulosic structure and composition of these sources, an overview of conventional and emerging pre-treatments and extraction methods, namely physical, chemical, physicochemical, and biological methodologies, will also be presented. Additionally, this review aims to explore the applications of the compounds obtained in the production of man-made organic fibres (MMOFs). A brief description of their evolution and their distinct properties will be described, as well as the most prominent commercial MMOFs currently available. Ultimately, this review concludes with future perspectives concerning the pursuit of greener and sustainable polymeric sources, as well as effective extraction processes. The potential and main challenges of implementing these sources in the production of alternative man-made organic fibres for diverse applications will also be highlighted.
Collapse
Affiliation(s)
- Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Liliana Leite
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
21
|
Abidnejad R, Robertson D, Khakalo A, Gholami Haghighi Fard M, Seppälä A, Pasquier E, Tardy BL, Mattos BD, Rojas OJ. Gas evolution in self-extinguishing and insulative nanopolysaccharide-based hybrid foams. Carbohydr Polym 2024; 346:122646. [PMID: 39245507 DOI: 10.1016/j.carbpol.2024.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Lightweight, energy-efficient materials in building construction typically include polymeric and composite foams. However, these materials pose significant fire hazards due to their high combustibility and toxic gas emissions, including carbon monoxide and hydrogen cyanide. This study delves into the latter aspects by comparing hybrid systems based on nanofiber-reinforced silica-based Pickering foams with a synthetic reference (polyurethane foams). The extent and dynamics of fire retardancy and toxic gas evolution were assessed, and the results revealed the benefits of combining the thermal insulation of silica with the structural strength of biobased nanofibers, the latter of which included anionic and phosphorylated cellulose as well as chitin nanofibers. We demonstrate that the nanofiber-reinforced silica-based Pickering foams are thermal insulative and provide both fire safety and energy efficiency. The results set the basis for the practical design of hybrid foams to advance environmental sustainability goals by reducing energy consumption in built environments.
Collapse
Affiliation(s)
- Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Daria Robertson
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Alexey Khakalo
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | - Ari Seppälä
- Department of Mechanical Engineering, Aalto University School of Engineering, Espoo, Finland
| | - Eva Pasquier
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland; RISE PFI, Høgskoleringen 6b, Trondheim 7491, Norway
| | - Blaise L Tardy
- Department of Chemical and Petroleum Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
22
|
Cao P, Huang J. Influences of Coagulant Polarity on the Modulus of the Chitin Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25940-25949. [PMID: 39570335 DOI: 10.1021/acs.langmuir.4c03309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The chitin hydrogel draws great attention in biomedical fields owing to its high similarity and good affinity for peptides. The conversion of raw chitin to the designed hydrogel through a sol-gel process prevails, while the modulus of the chitin hydrogel is significantly influenced by the factors of gelation technology (i.e., coagulation, involving polymer chain rearrangement and the reconstruction of multiple interactions). Water and several organic solvents such as ethanol, DMAc, and DMSO are effective coagulants for aqueous chitin/KOH/urea solutions. In particular, the concentration of aqueous ethanol solutions displays a high dependency on the modulus of chitin hydrogels. However, recent reports about chitin hydrogel fabrication seldom demonstrate the effect of coagulant factors on hydrogel performance. Our study found that the polarity of the coagulant and its diffusion index for entry into the chitin solution during the coagulation process had a direct influence on the hydrogel modulus. The influence of the two factors was investigated to find out their quantified relationship with the hydrogel modulus, which will inspire a practical method to develop new coagulants to prepare modulus-manipulable chitin hydrogels.
Collapse
Affiliation(s)
- Peng Cao
- College of Environment and Chemical Engineering, Lanzhou Resource and Environment Vocational and Technical University, Lanzhou 730000, China
| | - Junchao Huang
- School of Materials & Energy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Wang W, Zhu Y, Österberg M, Mattos BD. Refined Industrial Tannins via Sequential Fractionation: Exploiting Well-Defined Molecular Structures for Controlled Performance in Pickering Emulsions Costabilized with Chitin Nanofibrils. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:17878-17890. [PMID: 39668964 PMCID: PMC11633650 DOI: 10.1021/acssuschemeng.4c07769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Tannins from Acacia mearnsii (black wattle) are one of the few industrially available sources of nonlignin polyphenols. The intrinsic chemical heterogeneity and high dispersity of industrial tannins complicate their use in applications where the reactivity or colloidal interactions need to be precisely controlled. Here, we employ a solubility-centered sequential fractionation to obtain homogeneous tannin fractions with a dispersity index lower than 2. The well-defined and homogeneous fractions were characterized using NMR and MALDI-TOF and were used to prepare Pickering emulsions by costabilization with chitin nanofibrils. We demonstrate that the emulsion droplet size and associated properties can be tuned by using tannin fractions of varied molar mass, which is a result of fine control over the tannin-chitin complexation interactions at the oil-water interface. In addition to enhancing emulsion stability, the addition of tannin to chitin-stabilized Pickering emulsions has proven to be a viable strategy for engineering the emulsion's viscoelastic properties, as well as introducing antioxidative properties. Overall, we demonstrate a facile method to finely control the properties of industrial tannins and enable their customization to allow their utilization in high-performance multiphase systems.
Collapse
Affiliation(s)
- Weitong Wang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| | - Ya Zhu
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| |
Collapse
|
24
|
Azpitarte Aretxabaleta M, Barandika G, Minguez R, Lizundia E. Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films. Biomacromolecules 2024; 25:7630-7641. [PMID: 39526954 DOI: 10.1021/acs.biomac.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.
Collapse
Affiliation(s)
- Madalen Azpitarte Aretxabaleta
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain
| | - Gotzone Barandika
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, Leioa, Biscay 48490, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, Leioa, Biscay 48940, Spain
| | - Rikardo Minguez
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, Leioa, Biscay 48940, Spain
| |
Collapse
|
25
|
Wu Y, Chen S, Wu J, Liu F, Chen C, Ding B, Zhou X, Deng H. Revivable self-assembled supramolecular biomass fibrous framework for efficient microplastic removal. SCIENCE ADVANCES 2024; 10:eadn8662. [PMID: 39612327 PMCID: PMC11606434 DOI: 10.1126/sciadv.adn8662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microplastic remediation in aquatic bodies is essential for the entire ecosystem, but is challenging to achieve with a universal and efficient strategy. Here, we developed a sustainable and environmentally adaptable adsorbent through supramolecular self-assembly of chitin and cellulose. This biomass fibrous framework (Ct-Cel) showcases an excellent adsorption performance for polystyrene, polymethyl methacrylate, polypropylene, and polyethylene terephthalate. The affinity for diverse microplastics is attributed to the transformation of multiple intermolecular interactions between different microplastics and Ct-Cel. Meanwhile, the strong resistance of Ct-Cel to multiple pollutants in water enables an enhanced adsorption when coexisting with microorganisms and Pb2+. Moreover, Ct-Cel can remove 98.0 to 99.9% of microplastics in four types of real water and maintains a high removal efficiency of up to 95.1 to 98.1% after five adsorption cycles. This work may open up prospects for functional biomass materials for cost-efficient remediation of microplastics in complex aquatic environments.
Collapse
Affiliation(s)
- Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Shixiong Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Fangtian Liu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
26
|
Chen J, Wang X, Wang B, Wu T, Zhang L, Zhang K, Fang G, Wang Y, Zhao Y, Yang G. Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403221. [PMID: 39012064 DOI: 10.1002/smll.202403221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Indexed: 07/17/2024]
Abstract
Solar interfacial evaporation strategy (SIES) has shown great potential to deal with water scarcity and energy crisis. Biobased hydrogel derived interfacial evaporator can realize efficient evaporation due to the unique structure- properties relationship. As such, increasing studies have focused on water treatment or even potential accompanying advanced energy storage applications with respect of efficiency and mechanism of bio-based hydrogel derived interfacial evaporation from microscale to molecular scale. In this review, the interrelationship between efficient interfacial evaporator and bio-based hydrogel is first presented. Then, special attention is paid on the inherent molecular characteristics of the biopolymer related to the up-to-date studies of promising biopolymers derived interfacial evaporator with the objective to showcase the unique superiority of biopolymer. In addition, the applications of the bio-based hydrogels are highlighted concerning the aspects including water desalination, water decontamination atmospheric water harvesting, energy storage and conversion. Finally, the challenges and future perspectives are given to unveil the bottleneck of the biobased hydrogel derived SIES in sustainable water and other energy storage applications.
Collapse
Affiliation(s)
- Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaofa Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Baobin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Lei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Yueying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
27
|
Cheng T, Chai K, Liang K, Ji Y. Evaluating the strategies to improve strength and water-resistance of chitin nanofibril assembled structures: Molecule-bridging, heat-treatment and deacidifying. Int J Biol Macromol 2024; 281:135683. [PMID: 39349330 DOI: 10.1016/j.ijbiomac.2024.135683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Chitin nanofibril (ChiNF) is a promising building block used to fabricate chitin fibers, films or gels via self-assembly from its aqueous suspension. Although mechanical strengthening of its assembled structures has made great advances, the unsatisfactory water-resistance is still a crucial obstacle to practical application and even rarely referred to. Herein, ChiNF was prepared via deacetylation-ultrasonication treatment and the strategies of molecule-bridging, heat-treatment and deacidifying that aiming to improve the strength and water-resistance of its assembled films were evaluated. Molecule-bridging, including tannic acid (TA) or/and chitosan (CS), improved the mechanical properties to some extent, but had no obvious positive effects on water-resistance; heat-treatment was a useful route to enhance both strength and water-resistance; interestingly, deacidifying was more efficient than heat-treatment with respect to improving strength and water-resistance, implying the presence of acid was the major reason for deteriorating assembled structures. Combining molecule-bridging, deacidifying and heat-treatment produced a strong ChiNF-TA/CS cast film with excellent water-resistance. Different from the commonly-used approach of vacuum filtration, these strategies are very suitable for large-scale production of the ChiNF-based self-supported films or coatings via solution casting. Furthermore, the reverse dialysis deacidification simultaneously produced highly concentrated suspensions suitable for dry-spinning, and thus strong chitin macrofibers were successfully fabricated.
Collapse
Affiliation(s)
- Tai Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Kaiyan Chai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Kai Liang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
28
|
Chen K, Zhang W, Chen J, Wu P, Fang Y, Wu M, Liu D, Lei K, Lv J, Zhao Y. Water-in-water emulsions stabilized by nano-chitin. Int J Biol Macromol 2024; 281:136450. [PMID: 39389501 DOI: 10.1016/j.ijbiomac.2024.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
A water-in-water (W/W) emulsion consists of microdroplets was formed by the spontaneous liquid-liquid separation by mixing polyacrylic acid and chitosan oligosaccharide in water, and these microdropletes were stabilized by nano-chitin, formed water-in-water Pickering emulsions. By taking the advantage of interfacial adsorption of nano-chitin, the W/W emulsion droplets composed of polyacrylic acid/chitosan oligosaccharide (COS/PAA) polyelectrolyte coacervate were successfully stabilized. Research results indicated that composite microspheres were formed by the nano-chitin stabilized COS/PAA emulsion, and the size of these composite microspheres was related to the concentration and morphology of the nano-chitin. As the concentration of nano-chitin increases, the size of the composite microspheres first increases and then decreases, gradually becoming more uniform; whereas a decrease in the length of nano-chitin will lead to an increase in the size of the composite microspheres. The formation of composite microspheres may be due to the electrostatic interactions between nano-chitin and the emulsion droplets. In addition, the composite microspheres exhibit the best release effect for berberine hydrochloride at a pH value of 3.
Collapse
Affiliation(s)
- Kezhou Chen
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wenchang Zhang
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China
| | - Jiajie Chen
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China
| | - Pan Wu
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yaru Fang
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China
| | - Mi Wu
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China
| | - Dongwen Liu
- Foshan Hospital of TCM, Foshan, Guangdong 528000, People's Republic of China
| | - Kaijun Lei
- Foshan Hospital of TCM, Foshan, Guangdong 528000, People's Republic of China.
| | - Jianhua Lv
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China.
| | - Yan Zhao
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528000, People's Republic of China.
| |
Collapse
|
29
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
30
|
Yang Y, Yang DC, Long XY, Liu X, Lu JW, Zhang ZJ, Shi QQ, Zhou Y, Zou DH. Bioinspired triple-layered membranes for periodontal guided bone regeneration applications. J Mater Chem B 2024; 12:9938-9946. [PMID: 39267586 DOI: 10.1039/d4tb01658k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Barrier membranes have been used for the treatment of alveolar bone loss caused by periodontal diseases or trauma. However, an optimal barrier membrane must satisfy multiple requirements simultaneously, which are challenging to combine into a single material. We herein report the design of a bioinspired membrane consisting of three functional layers. The primary layer is composed of clay nanosheets and chitin, which form a nacre-inspired laminated structure. A calcium phosphate mineral layer is deposited on the inner surface of the nacre-inspired layer, while a poly(lactic acid) layer is coated on the outer surface. The composite membrane integrates good mechanical strength and deformability because of the nacre-inspired structure, facilitating operations during the implant surgery. The mineral layer induces the osteogenic differentiation of bone marrow mesenchymal stem cells and increases the stiffness of the membrane, which is an important factor for the regeneration process. The poly(lactic acid) layer can prevent unwanted mineralization on the outer surface of the membrane in oral environments. Cell experiments reveal that the membrane exhibits good biocompatibility and anti-infiltration capability toward connective tissue/epithelium cells. Furthermore, in vitro analyses show that the membrane does not degrade too fast, allowing enough time for bone regeneration. In vivo experiments prove that the membrane can effectively induce better bone regeneration and higher trabecular bone density in alveolar bone defects. This study demonstrates the potential of this bioinspired triple-layered membrane with hierarchical structures as a promising barrier material for periodontal guided tissue regeneration.
Collapse
Affiliation(s)
- Yang Yang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Deng-Cheng Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Xian-Yan Long
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Xiang Liu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Jing-Wen Lu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhou-Jing Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Qian-Qian Shi
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Yong Zhou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Duo-Hong Zou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, School of Medicine, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
31
|
Dong X, Shi L, Ma S, Chen X, Cao S, Li W, Zhao Z, Chen C, Deng H. Chitin/Chitosan Nanofibers Toward a Sustainable Future: From Hierarchical Structural Regulation to Functionalization Applications. NANO LETTERS 2024; 24:12014-12026. [PMID: 39255018 DOI: 10.1021/acs.nanolett.4c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Owing to its multiple fascinating properties of renewability, biodegradability, biocompatibility, and antibacterial activity, chitin is expected to become a green cornerstone of next-generation functional materials. Chitin nanofibers, as building blocks, form multiscale hierarchical structures spanning nano- and macrolevels in living organisms, which pave the way for sophisticated functions. Therefore, from a biomimetic perspective, exploiting chitin nanofibers for use in multifunctional, high-performance materials is a promising approach. Here, we first summarize the latest advances in the multiscale hierarchical structure assembly mode of chitin and its derivative nanofibers, including top-down exfoliation and bottom-up synthesis. Subsequently, we emphasize the environmental impacts of these methods, which are crucial for whether chitin nanofibers can truly contribute to a more eco-friendly era. Furthermore, the latest progress of chitin nanofibers in environmental and medical applications is also discussed. Finally, the potential challenges and tailored solutions of chitin nanofibers are further proposed, covering raw material, structure, function, manufacturing, policies, etc.
Collapse
Affiliation(s)
- Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Lei Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Shuai Ma
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyi Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Shiyi Cao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| |
Collapse
|
32
|
Zhang J, Mohd Said F, Daud NFS, Jing Z. Present status and application prospects of green chitin nanowhiskers: A comprehensive review. Int J Biol Macromol 2024; 278:134235. [PMID: 39079565 DOI: 10.1016/j.ijbiomac.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Petrochemical resources are non-renewable, which has impeded the development of synthetic polymers. The poor degradability of synthetic polymers poses substantial environmental pressure. Additionally, the high cost of synthetic biopolymers with excellent degradation performance limits their widespread application. Thus, it is crucial to seek green, sustainable, low-cost polymers as alternatives to petrochemical-based synthetic polymers and synthetic biopolymers. Chitin is a natural and renewable biopolymer discovered in crustacean shells, insect exoskeletons, and fungal cell walls. Chitin chains consist of crystalline and amorphous regions. Note that various treatments can be employed to remove the amorphous region, enhancing the crystallinity of chitin. Chitin nanowhiskers are a high crystallinity nanoscale chitin product with a high aspect ratio, a large surface area, adjustable surface morphology, and biocompatibility. They discover widespread applications in biomedicine, environmental treatment, food packaging, and biomaterials. Various methods can be utilized for preparing chitin nanowhiskers, including chemical, ionic liquids, deacetylation, and mechanical methods. However, developing an environmentally friendly preparation process remains a big challenge for expanding their applications in different materials and large-scale production. This article comprehensively analyzes chitin nanowhiskers' preparation strategies and their drawbacks. It also highlights the extensive application in different materials and various fields, besides the potential for commercial application.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nur Fathin Shamirah Daud
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
33
|
Huang S, Liu T, Liu Y, Duan Y, Zhang J. Gradient heating activated ammonium persulfate oxidation for efficient preparation of high-quality chitin nanofibers. Carbohydr Polym 2024; 340:122308. [PMID: 38858009 DOI: 10.1016/j.carbpol.2024.122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
APS is a cheap and eco-friendly oxidant which enables one-step extraction of nanochitin (NCh) from fishery wastes. However, it is challenging to improve the preparation efficiency and NCh quality simultaneously, owing to the uneven or uncontrollable oxidation. Herein, we propose a simple and controllable way to isolate chitin nanofibers (ChNFs) from squid pen by gradient heating activated (GHA)- ammonium persulfate (APS) oxidation. Compared to the isothermal activated (ITA)-APS oxidation, our strategy reduced the mass ratio of squid pen to APS from 1:45 to 1:6 and reaction time from 15 h to 8 h. Meanwhile, the as-prepared ChNFs exhibited high yield (91.5 %), light transmittance (98 % at 500 nm), crystallinity index (96.9 %), and carboxyl content (1.53 mmol/g). GHA-APS oxidation involved multiple continuous heating and isothermal stages. The former stimulates a moderate activation of APS and enhances the oxidation rate, while the latter provides a duration for surface chemistry. This non-isothermal heating facilitates the continuous decomposition of APS at a relatively high and consistent rate, thereby enhances its oxidation efficiency. Furthermore, green assessments indicate this method is simple, time-saving, eco-friendly and cost-effective. Overall, this work introduces a novel perspective for the industrial extraction of high-efficiency and high-quality nanomaterials.
Collapse
Affiliation(s)
- Shasha Huang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tianjiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yunxiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
34
|
Andrew LJ, Lizundia E, MacLachlan MJ. Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401560. [PMID: 39221689 DOI: 10.1002/adma.202401560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Transient technology involves materials and devices that undergo controlled degradation after a reliable operation period. This groundbreaking strategy offers significant advantages over conventional devices based on non-renewable materials by limiting environmental exposure to potentially hazardous components after disposal, and by increasing material circularity. As the most abundant naturally occurring polymer on Earth, cellulose is an attractive material for this purpose. Besides, (nano)celluloses are inherently biodegradable and have competitive mechanical, optical, thermal, and ionic conductivity properties that can be exploited to develop sustainable devices and avoid the end-of-life issues associated with conventional systems. Despite its potential, few efforts have been made to review current advances in cellulose-based transient technology. Therefore, this review catalogs the state-of-the-art developments in transient devices enabled by cellulosic materials. To provide a wide perspective, the various degradation mechanisms involved in cellulosic transient devices are introduced. The advanced capabilities of transient cellulosic systems in sensing, photonics, energy storage, electronics, and biomedicine are also highlighted. Current bottlenecks toward successful implementation are discussed, with material circularity and environmental impact metrics at the center. It is believed that this review will serve as a valuable resource for the proliferation of cellulose-based transient technology and its implementation into fully integrated, circular, and environmentally sustainable devices.
Collapse
Affiliation(s)
- Lucas J Andrew
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- UBC BioProducts Institute, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
35
|
Gao M, Tang H, Zhu H. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Compr Rev Food Sci Food Saf 2024; 23:e70008. [PMID: 39223761 DOI: 10.1111/1541-4337.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.
Collapse
Affiliation(s)
- Mingyue Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hanqi Tang
- Personal Department, Shandong University, Qingdao, China
| | - Hongguang Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Chen F, Ritter M, Xu Y, Tu K, Koch SM, Yan W, Bian H, Ding Y, Sun J, Burgert I. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311966. [PMID: 38770995 DOI: 10.1002/smll.202311966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.
Collapse
Affiliation(s)
- Feng Chen
- Hubei Provincial Engineering Research Center of Surface and Interface Regulation Technology and Equipment for Renewable Energy Materials, Jianghan University, Wuhan, 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices-Ministry of Education, Jianghan University, Wuhan, 430056, China
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Maximilian Ritter
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Yifan Xu
- Hubei Provincial Engineering Research Center of Surface and Interface Regulation Technology and Equipment for Renewable Energy Materials, Jianghan University, Wuhan, 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices-Ministry of Education, Jianghan University, Wuhan, 430056, China
| | - Kunkun Tu
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| | - Sophie Marie Koch
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Wenqing Yan
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yong Ding
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Jianguo Sun
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| | - Ingo Burgert
- Wood Materials Science Group, Institute for Building Materials, ETH Zürich, Zürich, 8093, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, Dübendorf, 8600, Switzerland
| |
Collapse
|
37
|
Chen W, Tan Y, Guo C, Zhang X, He X, Kuang W, Weng H, Du H, Huang D, Huang Y, Xu J, He H. Biomass-derived polymer as a flexible "zincophilic-hydrophobic" solid electrolyte interphase layer to enable practical Zn metal anodes. J Colloid Interface Sci 2024; 669:104-116. [PMID: 38705110 DOI: 10.1016/j.jcis.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Aqueous zinc ion batteries (AZIBs) face significant challenges stemming from Zn dendrite growth and water-contact attack, primarily due to the lack of a well-designed solid electrolyte interphase (SEI) to safeguard the Zn anode. Herein, we report a bio-mass derived polymer of chitin on Zn anode (Zn@chitin) as a novel and robust artificial SEI layer to boost the Zn anode rechargeability. The polymeric chitin SEI layer features both zincophilic and hydrophobic characteristics to target the suppressed dendritic Zn formation as well as the water-induced side reactions, thus harvesting a dendrite-free and corrosion-resistant Zn anode. More importantly, this polymeric interphase layer is strong and flexible accommodating the volume changes during repeated cycling. Based on these benefits, the Zn@chitin anode demonstrates prolonged cycling performance surpassing 1300 h under an ultra-large current density of 20 mA cm-2, and a long cycle life of 680 h with a record-high zinc utilization rate of 80 %. Besides, the assembled Zn@chitin/V2O5 full batteries reveal excellent capacity retention and rate performance under practical conditions, proving the reliability of our proposed strategy for industrial AZIBs. Our research offers valuable insights for constructing high-performance AZIBs, and simultaneously realizes the high-efficient use of cheap biomass from a "waste-to-wealth" concept.
Collapse
Affiliation(s)
- Wenjian Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Yi Tan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Chengyue Guo
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Xiaoyan Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Xin He
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Wei Kuang
- School of Physical Science and Technology, Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi University, Nanning 530004, China
| | - Haofan Weng
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - He Du
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Dan Huang
- School of Physical Science and Technology, Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi University, Nanning 530004, China
| | - Yanping Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China.
| | - Huibing He
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
38
|
Liu H, Wang Z, Xin H, Liu J, Wang Q, Pang B, Zhang K. Polysaccharide Nanocrystals-Based Chiral Nematic Structures: From Self-Assembly Mechanisms, Regulation, to Applications. ACS NANO 2024; 18:22675-22708. [PMID: 39137301 PMCID: PMC11363144 DOI: 10.1021/acsnano.4c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Chiral architectures, one of the key structural features of natural systems ranging from the nanoscale to macroscale, are an infinite source of inspiration for functional materials. Researchers have been, and still are, strongly pursuing the goal of constructing such structures with renewable and sustainable building blocks via simple and efficient strategies. With the merits of high sustainability, renewability, and the ability to self-assemble into chiral nematic structures in aqueous suspensions that can be preserved in the solid state, polysaccharide nanocrystals (PNs) including cellulose nanocrystals (CNCs) and chitin nanocrystals (ChNCs) offer opportunities to reach the target. We herein provide a comprehensive review that focuses on the development of CNCs and ChNCs for the use in advanced functional materials. First, the introduction of CNCs and ChNCs, and cellulose- and chitin-formed chiral nematic organizations in the natural world, are given. Then, the self-assembly process of such PNs and the factors influencing this process are comprehensively discussed. After that, we showcased the emerging applications of the self-assembled chiral nematic structures of CNCs and ChNCs. Finally, this review concludes with perspectives on the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Huan Liu
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- National
Forestry and Grassland Administration Key Laboratory of Plant Fiber
Functional Materials, Fuzhou 350108, China
| | - Zhihao Wang
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haowei Xin
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Bo Pang
- Department
of Food Science and Technology, National
University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Kai Zhang
- Sustainable
Materials and Chemistry, Department of Wood Technology and Wood-Based
Composites, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
39
|
Hu Z, Wang P, Shang J, Zhang L, Zhou J, Ren L. Preparation of zwitterionically charged chitin nanofibers through one step chemical modification and their application for antireflective coatings. Int J Biol Macromol 2024; 274:133337. [PMID: 38908624 DOI: 10.1016/j.ijbiomac.2024.133337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Chitin nanofibers are widely used in many fields because of their biocompatibility, renewability and excellent mechanical properties. Herein, zwitterionically charged chitin nanofibers (ZC-ChNFs) were prepared from chitin via one step chemical modification (oxalic acid pretreatment) and subsequent ultrasound treatment. Effects of pretreatment time on size of the ZC-ChNFs and pH of ZC-ChNF suspensions on the thickness, porosity, refractive index and antireflective capacity of ZC-ChNF coatings were investigated. It was found that, by adjusting pH of the ZC-ChNF suspension, porosity and refractive index of the ZC-ChNF coatings could be controlled. The ZC-ChNF coatings fabricated with smaller ZC-ChNFs had higher antireflective performance and the transmittance gain of a glass with a ZC-ChNF coating was about 3.5 % at a wavelength of 550 nm compared to the bare glass. The results of this work provide a promising pathway to fabricate antireflective coating with ZC-ChNFs just by controlling the pH of ZC-ChNF suspensions.
Collapse
Affiliation(s)
- Zhiqing Hu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Peizhuang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Li Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
40
|
Yu S, Peng G, Jiao J, Liu P, Li H, Xi J, Wu D. Chitin nanocrystals-stabilized emulsion as template for fabricating injectable suspension containing polylactide hollow microspheres. Carbohydr Polym 2024; 337:122176. [PMID: 38710562 DOI: 10.1016/j.carbpol.2024.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
One of the promising applications of rod-like chitin nanocrystals (ChNCs) is the use as particle emulsifier to develop Pickering emulsions. We reported a ChNC-stabilized oil-in-water emulsion system, and developed a Pickering emulsion-templated method to prepare polylactide (PLA) hollow microspheres here. The results showed that both non-modified ChNCs and acetylated ChNCs could well emulsify the dichloromethane (DCM) solution of PLA-in-aqueous mannitol solution systems, forming very stable emulsions. At the same oil-to-water ratios and ChNC loadings, the emulsion stability was improved with increasing acetylation levels of ChNCs, accompanied by reduced size of droplets. Through the solvent evaporation, the PLA hollow microspheres were templated successfully, and the surface structure was also strongly dependent on the acetylation level of ChNCs. At a low level of acetylation, the single-hole or multi-hole surface structure formed, which was attributed to the out-diffusion of DCM caused by the solvent extraction and evaporation. These surface defects decreased with increased acetylation levels of ChNCs. Moreover, the aqueous suspension with as-obtained PLA microspheres revealed shear-thinning property and good biocompatibility, thereby had promising application as injectable fillers. This work can provide useful information around tuning surface structures of the Pickering emulsion-templated polymer hollow microspheres by regulating acetylation level of ChNCs.
Collapse
Affiliation(s)
- Sumin Yu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Jiali Jiao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Peng Liu
- Shanghai Isiris Medical Co. Ltd., Shanghai 201400, PR China
| | - Huajun Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Juqun Xi
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
41
|
Yang D, Dong X, Jiang L, Liu F, Ma S, Shi X, Du Y, Chen C, Deng H. A Universal Biomacromolecule-Enabled Assembly Strategy for Constructing Multifunctional Aerogels with 90% Inorganic Mass Loading from Inert Nano-Building Blocks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402334. [PMID: 38659186 DOI: 10.1002/smll.202402334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Inert inorganic nano-building blocks, such as carbon nanotubes (CNTs) and boron nitride (BN) nanosheets, possess excellent physicochemical properties. However, it remains challenging to build aerogels with these inert nanomaterials unless they are chemically modified or compounded with petrochemical polymers, which affects their intrinsic properties and is usually not environmentally friendly. Here, a universal biomacromolecule-enabled assembly strategy is proposed to construct aerogels with 90 wt% ultrahigh inorganic loading. The super-high inorganic content is beneficial for exploiting the inherent properties of inert nanomaterials in multifunctional applications. Taking chitosan-CNTs aerogel as a proof-of-concept demonstration, it delivers sensitive pressure response as a pressure sensor, an ultrahigh sunlight absorption (94.5%) raising temperature under light (from 25 to 71 °C within 1 min) for clean-up of crude oil spills, and superior electromagnetic interference shielding performance of up to 68.9 dB. This strategy paves the way for the multifunctional application of inert nanomaterials by constructing aerogels with ultrahigh inorganic loading.
Collapse
Affiliation(s)
- Di Yang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Linbin Jiang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Fangtian Liu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Shuai Ma
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Basic Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Yumin Du
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
42
|
Lu Y, Mehling M, Huan S, Bai L, Rojas OJ. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chem Soc Rev 2024; 53:7363-7391. [PMID: 38864385 DOI: 10.1039/d3cs00641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanocellulose is not only a renewable material but also brings functions that are opening new technological opportunities. Here we discuss a special subset of this material, in its fibrillated form, which is produced by aerobic microorganisms, namely, bacterial nanocellulose (BNC). BNC offers distinct advantages over plant-derived counterparts, including high purity and high degree of polymerization as well as crystallinity, strength, and water-holding capacity, among others. More remarkably, beyond classical fermentative protocols, it is possible to grow BNC on non-planar interfaces, opening new possibilities in the assembly of advanced bottom-up structures. In this review, we discuss the recent advances in the area of BNC-based biofabrication of three-dimensional (3D) designs by following solid- and soft-material templating. These methods are shown as suitable platforms to achieve bioadaptive constructs comprising highly interlocked biofilms that can be tailored with precise control over nanoscale morphological features. BNC-based biofabrication opens applications that are not possible by using traditional manufacturing routes, including direct ink writing of hydrogels. This review emphasizes the critical contributions of microbiology, colloid and surface science, as well as additive manufacturing in achieving bioadaptive designs from living matter. The future impact of BNC biofabrication is expected to take advantage of material and energy integration, residue utilization, circularity and social latitudes. Leveraging existing infrastructure, the scaleup of biofabrication routes will contribute to a new generation of advanced materials rooted in exciting synergies that combine biology, chemistry, engineering and material sciences.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marina Mehling
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Wood Science, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
43
|
Xu Z, Yue P, Feng JJ. A theory of hydrogel mechanics that couples swelling and external flow. SOFT MATTER 2024; 20:5389-5406. [PMID: 38932626 DOI: 10.1039/d4sm00424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Two aspects of hydrogel mechanics have been studied separately in the past. The first is the swelling and deswelling of gels in a quiescent solvent bath triggered by an environmental stimulus such as a change in temperature or pH, and the second is the solvent flow around and into a gel domain, driven by an external pressure gradient or moving boundary. The former neglects convection due to external flow, whereas the latter neglects solvent diffusion driven by a gradient in chemical potential. Motivated by engineering and biomedical applications where both aspects coexist and potentially interact with each other, this work presents a poroelasticity model that integrates these two aspects into a single framework, and demonstrates how the coupling between the two gives rise to novel physics in relatively simple one-dimensional and two-dimensional flows.
Collapse
Affiliation(s)
- Zelai Xu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Pengtao Yue
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| |
Collapse
|
44
|
Mhatre S, Niu X, Bautista GF, Sumanasinghe S, Rojas OJ. Electric field-modulated evaporative thin film deposition of bio-particles for piezoelectric applications. NANOSCALE 2024; 16:12611-12623. [PMID: 38881312 DOI: 10.1039/d4nr00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Bio-based functional materials can be used to replace or limit the use of synthetic materials sourced from unsustainable sources. However, the potential of such materials remains largely unexplored. In this study, we demonstrate the use of weak AC electric fields to deposit ultra-thin piezoelectric films from cellulose nanocrystals (CNC). This is the first time electric fields are used to realize <50 nm thick uniform bio-based piezoelectric films wherein the bioparticles exhibit unidirectional arrangement. Interestingly, we found that the use of weak AC electric fields of suitable frequencies completely mitigates the coffee ring effect (CRE), which results in defect-free uniform ultra-thin films. Additionally, the electric fields appear to help in realizing unidirectional alignment of particles in the films, which enhances their piezoelectric properties. The method was also tested for chitin nanocrystals (ChNC), which have a similar aspect ratio but bear opposite polarity surface charges, and the influence of the field on coffee ring formation and particle orientation in CNC thin film deposition was validated. The phenomena can be attributed to the constant spatio-temporal curvature of the evaporating liquid film, the transient state between the three-phase contact (TPC) line, the electric field-dependent contact angle, and the permanent and field-induced dipole moments. These factors lead to particle polarization and alignment. The films have an optimum electrical frequency of deposition at which they are continuous and uniformly thin, have unidirectional alignment of particles, and function as a single dipole.
Collapse
Affiliation(s)
- Sameer Mhatre
- BioProducts Institute, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Xun Niu
- BioProducts Institute, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Gio F Bautista
- BioProducts Institute, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, BC, Canada
| | - Sajana Sumanasinghe
- Department of Mechanical Engineering, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Orlando J Rojas
- BioProducts Institute, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, BC, Canada
- Department of Wood Science, University of British Columbia, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| |
Collapse
|
45
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
46
|
Zhang Y, Wang L, Zhang H, Rosqvist E, Lastusaari M, Peltonen J, Vähäsalo L, Xu C, Wang X, Pranovich A. Crystalline nanoxylan from hot water extracted wood xylan at multi-length scale: Molecular assembly from nanocluster hydrocolloids to submicron spheroids. Carbohydr Polym 2024; 335:122089. [PMID: 38616078 DOI: 10.1016/j.carbpol.2024.122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
As a contribution to expand accessibility in the territory of bio-based nanomaterials, we demonstrate a novel material strategy to convert amorphous xylan preserved in wood biomass to hierarchical assemblies of crystalline nanoxylan on a multi-length scale. By reducing the end group in pressurized hot water extracted (PHWE) xylan to primary alcohol as a xylitol form with borohydride reduction, the endwise-peeling depolymerization is effectively impeded in the alkali-catalyzed hydrolytic cleavage of side substitutions in xylan. Nanoprecipitation by a gradual pH decrease resulted in a stable hydrocolloid dispersion in the form of worm-like nanoclusters assembled with primary crystallites, owing to the self-assembly of debranched xylan driven by strong intra- and inter-chain H-bonds. With evaporation-induced self-assembly, we can further construct the hydrocolloids as dry submicron spheroids of crystalline nanoxylan (CNX) with a high average elastic modulus of 47-83 GPa. Taking the advantage that the chain length and homogeneity of PHWE-xylan can be tailored, a structure-performance correlation was established between the structural order in CNX and the phosphorescent emission of this crystalline biopolymer. Rigid clusterization and high crystallinity that are constructed by strong intra- and inter-molecule interactions within the nanoxylan effectively restrict the molecular motion, thereby promoting the emission of ultralong organic phosphorescence.
Collapse
Affiliation(s)
- Yidong Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Luyao Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Hao Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Emil Rosqvist
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Mika Lastusaari
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Jouko Peltonen
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Lari Vähäsalo
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland; CH-Bioforce Oy, Espoo FI-02170, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland.
| | - Andrey Pranovich
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland.
| |
Collapse
|
47
|
Liu F, Wu Y, Long M, Ma Y, Zheng M, Cao S, Chen S, Du Y, Chen C, Deng H. Activating Adsorption Sites of Waste Crayfish Shells via Chemical Decalcification for Efficient Capturing of Nanoplastics. ACS NANO 2024; 18:15779-15789. [PMID: 38833666 DOI: 10.1021/acsnano.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The property of being stubborn and degradation resistant makes nanoplastic (NP) pollution a long-standing remaining challenge. Here, we apply a designed top-down strategy to leverage the natural hierarchical structure of waste crayfish shells with exposed functional groups for efficient NP capture. The crayfish shell-based organic skeleton with improved flexibility, strength (14.37 to 60.13 MPa), and toughness (24.61 to 278.98 MJ m-3) was prepared by purposefully removing the inorganic components of crayfish shells through a simple two-step acid-alkali treatment. Due to the activated functional groups (e.g., -NH2, -CONH-, and -OH) and ordered architectures with macropores and nanofibers, this porous crayfish shell exhibited effective removal capability of NPs (72.92 mg g-1) by physical interception and hydrogen bond/electrostatic interactions. Moreover, the sustainability and stability of this porous crayfish shell were demonstrated by the maintained high-capture performance after five cycles. Finally, we provided a postprocessing approach that could convert both porous crayfish shell and NPs into a tough flat sheet. Thus, our feasible top-down engineering strategy combined with promising posttreatment is a powerful contender for a recycling approach with broad application scenarios and clear economic advantages for simultaneously addressing both waste biomass and NP pollutants.
Collapse
Affiliation(s)
- Fangtian Liu
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yang Wu
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Min Long
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yifan Ma
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Min Zheng
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Shiyi Cao
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Shixiong Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yumin Du
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
48
|
Rajeev A, Yin L, Kalambate PK, Khabbaz MB, Trinh B, Kamkar M, Mekonnen TH, Tang S, Zhao B. Nano-enabled smart and functional materials toward human well-being and sustainable developments. NANOTECHNOLOGY 2024; 35:352003. [PMID: 38768585 DOI: 10.1088/1361-6528/ad4dac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials, which are key to many technological innovations to meet economic and societal needs. Along with researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated 'Smart & Functional Materials' as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject, including our own research and key research literature, in the context of the UN Sustainability development goals.
Collapse
Affiliation(s)
- Ashna Rajeev
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lu Yin
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pramod K Kalambate
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Barjini Khabbaz
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Binh Trinh
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milad Kamkar
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Tang
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
49
|
Guo T, Wan Z, Panahi-Sarmad M, Banvillet G, Lu Y, Zargar S, Tian J, Jiang F, Mao Y, Tu Q, Rojas OJ. Chitin Nanofibers Enable the Colloidal Dispersion of Carbon Nanomaterials in Aqueous Phase and Hybrid Material Coassembly. ACS NANO 2024; 18:14954-14967. [PMID: 38820368 DOI: 10.1021/acsnano.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Chitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system. Related effects are found to be transferable to multiwalled carbon nanotubes and graphene nanosheets. The observations explain the functionality of hybrid membranes obtained by aqueous phase processing, which benefit from an excellent areal mass distribution (correlated to piezoresistivity), also contributing to high electromechanical performance. The water resistance and flexibility of the ChNF/CNT membranes (along with its tensile strength at break of 190 MPa, conductivity of up to 426 S/cm, and piezoresistivity and light absorption properties) are conveniently combined in a device demonstration, a sunlight water evaporator. The latter is shown to present a high evaporation rate (as high as 1.425 kg water m-2 h-1 under one sun illumination) and recyclability.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gabriel Banvillet
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shiva Zargar
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Jing Tian
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Qingshi Tu
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
50
|
Ma F, Gao Y, Xie W, Wu D. Effect of hydrophobic modification of chitin nanocrystals on role as anti-nucleator in the crystallization of poly(ε-caprolactone)/polylactide blend. Int J Biol Macromol 2024; 269:132097. [PMID: 38710249 DOI: 10.1016/j.ijbiomac.2024.132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Biodegradable polymer blends filled with rod-like polysaccharide nanocrystals have attracted much attention because each component in this type of ternary composites is biodegradable, and the final properties are more easily tailored comparing to those of binary composites. In this work, chitin nanocrystals (ChNCs) were used as nanofiller for the biodegradable poly(ε-caprolactone) (PCL)/polylactide (PLA) immiscible blend to prepare ternary composites for a crystallization study. The results revealed that the crystallization behavior of PCL/PLA blend matrices strongly depended on the surface properties of ChNCs. Non-modified ChNCs and modified ChNCs played completely different roles during crystallization of the ternary systems: the former was inert filler, while the latter acted as anti-nucleator to the PCL phase. This alteration was resulted from the improved ChNC-PCL affinity after modification of ChNCs, which was due to the 'interfacial dilution effect' and the preferential dispersion of ChNCs. This work presents a unique perspective on the nucleation role of ChNCs in the crystallization of immiscible PCL/PLA blends, and opens up a new application scenario for ChNCs as anti-nucleator.
Collapse
Affiliation(s)
- Fen Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Yuxin Gao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Wenyuan Xie
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Institute for Innovative Materials & Energy, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|