1
|
Zhou J, Liang C, Li J, Gu J, Salamova A, Liu L. Consumer products are important reservoirs and sources of organophosphate tri-esters and di-esters: Characteristics, mass inventory, and implication for waste management. J Environ Sci (China) 2025; 151:550-559. [PMID: 39481961 DOI: 10.1016/j.jes.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 11/03/2024]
Abstract
Numerous studies documented the occurrence of organophosphate tri-esters (tri-OPEs) and di-esters (di-OPEs) in the environment. Little information is available on their occurrence in waste consumer products, reservoirs and sources of these chemicals. This study collected and analyzed 92 waste consumer products manufactured from diverse polymers, including polyurethane foam (PUF), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polypropylene (PP), and polyethylene (PE) to obtain information on the occurrence and profiles of 16 tri-OPEs and 10 di-OPEs. Total concentrations of di-OPEs (18-370,000 ng/ g, median 1,700 ng/g) were one order of magnitude lower than those of tri-OPEs (94-4,500,000 ng/g, median 5,400 ng/g). The concentrations of both tri- and di-OPEs in products made of PUF, PS, and ABS were orders of magnitude higher than those made of PP and PE. The compositional patterns of OPEs varied among different polymer types but were generally dominated by bisphenol A bis(diphenyl phosphate), triphenyl phosphate, tris(1-chloro-2-propyl) phosphate, di-phenyl phosphate (DPHP), and bis (2-ethylhexyl) phosphate. Two industrially applied di-OPEs (di-n-butyl phosphate and DPHP) exhibited higher levels than their respective tri-OPEs, contrary to their production volumes. Some non-industrially applied chlorinated di-OPEs were also detected, with concentrations up to 97,000 ng/g. These findings suggest that degradation of tri-OPEs during the manufacturing and use of products is an important source of di-OPEs. The mass inventories of tri-OPEs and di-OPEs in consumer products were estimated at 3,100 and 750 tons/year, respectively. This study highlights the importance of consumer products as emission sources of a broad suite of OPEs.
Collapse
Affiliation(s)
- Jie Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jinyun Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jiayi Gu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Georgia 30322, USA
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
2
|
Han X, Li W, Jia Q, Guo Z, Zhao Y, Zhuang Y, Hu J, Li Z, Li H, Liu J, Wu C. Multimedia-Based Source Apportionment and Health Implications of Indoor Organophosphate Esters in Various Scenes of Urban Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7574-7587. [PMID: 40193547 DOI: 10.1021/acs.est.4c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Studies on source apportionment of indoor OPEs rarely involve multiple media and characteristic source markers on emissions. Herein, we present a novel framework for quantitative and integrative source appointment of indoor OPEs by integrating OPE concentrations in multimedia into equivalent indoor concentrations (EICs) and using characteristic source markers on indoor emissions. Utility was demonstrated by applying it to five types of microenvironments where the 13 OPEs were ubiquitous (indoor dust: 993-14000 ng/g; indoor air: 0.549-14.1 ng/m3). The paired dust and air samples were adopted to construct the "Measured-Paired-EICs" data set for source apportionments via positive matrix factorization (PMF). Moreover, an alternative model method for constructing EIC data sets from single-medium measurements was established to improve the applicability of the framework. Accordingly, "Modeled-Paired-EICs", "Dust-Only", and "Air-Only" data sets were constructed for comparison. The extracted factors exhibited consistent contributions for "Measured-Paired-EICs" and "Modeled-Paired-EICs" solutions (RSD: 0.14-5.4%), while the "Air-Only" solution identified incomplete factors and the "Dust-Only" solution showed errors of 40.6-262%. Specifically, PMF analysis resolved seven known sources and other unknown sources. Furthermore, heterogeneities in source identification and source contributions were observed across various exposure scenarios; the probabilistic carcinogenic risk of TCEP (up to 7.19 × 10-7) was close to the acceptable level (1 × 10-6) and demands further attention.
Collapse
Affiliation(s)
- Xu Han
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Jia
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China
| | - Zhongbao Guo
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China
| | - Yanjun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Zhuang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jufang Hu
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huachang Li
- BGRIMM MTC Technology Co., Ltd., Beijing 102628, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Fan Z, Long C, Ge X, Huang Z, Ren H, Yu Y, An T. Identification and spatial distribution of organophosphorus flame retardants in surface soils from typical petrochemical industry and flame retardant production parks in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125972. [PMID: 40043873 DOI: 10.1016/j.envpol.2025.125972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/10/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Organophosphorus flame retardants (OPFRs) are widely used as flame retardants and plasticizers in various industries. As for the petrochemical industry, many petrochemical products such as lubricant base oil, gasoline, etc., require the use of OPFRs in their production processes. However, the emission characteristics of OPFRs from the petrochemical industry are limited. Thus, this study investigated the OPFR characteristics from three petrochemical industry parks, as well as one flame-retardant manufacturing park. There were 196 samples collected and thirteen OPFRs were analyzed. The median OPFR concentrations were 5.29-12.3 and 2.62 ng/g in three petrochemical industry parks and the flame-retardant manufacturing park, respectively. The OPFR compositions differed between petrochemical industry parks and flame-retardant production park. Chlorinated-OPFRs (especially TCIPP) accounting for ≥64.2% of the composition of soil OPFRs and alkyl-OPFRs (80.5%) were the respective predominant congeners in the petrochemical industry parks and the flame-retardant manufacturing park. Spatial distribution analysis revealed OPFR pollution within the park's vicinity, extending toward the surrounding areas. Principal component analysis further revealed that OPFRs primarily originated from industrial emissions, polyurethane foam use, and oil-related emissions for the petrochemical industry parks. However, high concentrations were also found in residential areas, farmlands, and populated areas from the flame-retardant manufacturing park and surrounding areas, indicating other potential sources. Summarily, this study provided insight into the contamination characteristics of OPFRs from typical industrial parks and their surroundings.
Collapse
Affiliation(s)
- Zhiyong Fan
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Key Laboratory of City Cluster Environmental Safety and Green Development, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Key Laboratory of City Cluster Environmental Safety and Green Development, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhaofa Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Key Laboratory of City Cluster Environmental Safety and Green Development, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Key Laboratory of City Cluster Environmental Safety and Green Development, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Key Laboratory of City Cluster Environmental Safety and Green Development, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Key Laboratory of City Cluster Environmental Safety and Green Development, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Zang N, He P, Zhang H, Zhang X, Lü F. Recycling process of decoration and demolition waste is a neglected source for emerging concerns in particulate phase: PAHs as an example. ENVIRONMENT INTERNATIONAL 2025; 198:109393. [PMID: 40153978 DOI: 10.1016/j.envint.2025.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Decoration and demolition waste (DDW) has been widely studied because of its annual surge in output, complex composition, and high utilization potential. DDW recycling is a key element of circular economy, with the potential for emerging pollutants in the particulate phase. Thus, this study selected polycyclic aromatic hydrocarbons (PAHs) as the representative and investigated their emission characteristics and occupational risk in the particulate phase, including 2.5-μm (PM2.5), inhalable (PM10), total suspended particles (TSP), and dust samples of different sizes (75-100 μm, 50-75 μm, and < 50 μm), from dust collectors during DDW recycling. Acenaphthylene (Acy), chrysene (Chr), benz[a]anthracene (BaA), fluoranthene (Fla), pyrene (Pyr), phenanthrene (Phe) were detected in all samples. PM2.5 and dust in 75-100 μm own the highest total occupation risk of 1.51 × 10-13 and 2.07 × 10-15, respectively. Chr and BaA had the control priority with the converted toxicity of 162.82 ng/g and 233.35 ng/g. Moreover, nontarget screening was applied to mining out isophorone, benzophenone, and other carcinogenic micropollutants in the PM2.5, PM10, TSP, and dust samples. Global PAHs from DDW recycling production can reach 193.44 ± 241.80 kg/a under reasonable estimation. This study provides strong evidence that DDW recycling is a neglected source of concern in the particulate phase.
Collapse
Affiliation(s)
- Nana Zang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoxing Zhang
- Shanghai Yuexin Environmental Protection Technology Co., Ltd, Shanghai 201800, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Meng J, Long C, Fang L, Huang S, Liu H, Li G, Yu Y. National urinary metabolites of organophosphate flame retardants in urban Chinese residents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125886. [PMID: 39984015 DOI: 10.1016/j.envpol.2025.125886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organophosphate flame retardants (OPFRs) are extensively added to household products for fire safety. However, little is understood about the national scale of human exposure levels and the factors influencing OPFRs in developing countries. In this study, five metabolites of OPFRs (mOPFRs) were determined for the first time in the urine of 1184 general population in 26 provincial capitals of mainland China. The detection frequency and median concentration of ∑5mOPFRs were 86.0% and 61 μg/L, respectively, with bis(1-chloro-2-propyl) phosphate, bis(2-chloroethyl) phosphate (BCEP), and diphenyl phosphate predominantly accounting for 75.9% of the total. Human exposure to OPFRs is higher in western China than in other Chinese regions. Gender, age, bottled water, and takeout consumption significantly influenced the urinary mOPFRs. Monte Carlo simulations showed that 3.6% of participants had hazard indices values higher than one, indicating that a small proportion of the Chinese population exposed to OPFRs had potential non-carcinogenic risks. Here, BCEP was the primary contributor, making up 81.5% of the total risk. This study indicated that investigating human exposure to OPFRs is imperative, especially the safety of these substances as a substitute for polybrominated diphenyl ethers.
Collapse
Affiliation(s)
- Junli Meng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Lei Fang
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Zhang Y, Qin H, Zu B, Yu Z, Liu C, Shi J, Zhou B. Maternal Exposure to Environmentally Relevant Concentrations of Tris(2,4-di- tert-butylphenyl) Phosphate-Induced Developmental Toxicity in Zebrafish Offspring via Disrupting foxO1/ ripor2 Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5474-5486. [PMID: 40087148 DOI: 10.1021/acs.est.4c14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Abnormal development and mortality in early life stages pose significant threats to the growth and continuation of fish populations. Tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP) is a novel organophosphate ester contaminant detected in natural waters. However, the potential effects of maternal exposure to TDtBPP on the early development of offspring embryos in fish remain unknown. Here, 30-day-old zebrafish were exposed to TDtBPP at 0, 50, 500, or 5000 ng/L for 180 days, and the exposed females were spawned with unexposed males. TDtBPP accumulation was detected in offspring embryos, accompanied by an increased malformation rate and mortality. The developmental abnormality of offspring embryos was identified to originate from the gastrula stage. Furthermore, based on transcriptome analysis, the down-regulation of RHO family interacting cell polarization regulator 2 gene (ripor2) was considered as a key toxic event, and this was confirmed in the subsequent knockdown experiment. Moreover, molecular docking studies and forkhead box O1 (foxO1) transcription factor inhibitor (AS1842856) exposure experiments demonstrated that the blockade of foxO1 transcriptional regulation was responsible for the decreased expression of ripor2. The results of this study demonstrated that the occurrence of developmental malformation and mortality in zebrafish offspring embryos following maternal TDtBPP exposure were triggered by the blockade of foxO1 transcriptional regulation and the consequent down-regulation of ripor2.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
7
|
Su W, Liang W, Yang Z, Huang X, Wang P, Liu J, Ruan T, Jiang G. Identification and Prioritization of Emerging Organophosphorus Compounds Beyond Organophosphate Esters in Chinese Estuarine Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4080-4091. [PMID: 39960287 DOI: 10.1021/acs.est.4c09869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Organophosphorus compounds (OPCs) pose potential hazards to human health and aquatic ecosystems. However, limited knowledge of emerging OPCs beyond organophosphate esters (OPEs) hinders a thorough understanding of the environmental occurrence and exposure risks. Through target, suspect, and nontarget screening analysis, 64 OPCs were successfully identified in Chinese estuarine waters, including 24 known OPEs and 40 emerging analogues (i.e., quaternary phosphonium, phosphine oxide, organophosphonate, and organothiophosphate esters). Domestic wastewater and agricultural and industrial discharges were factors influencing the OPC distribution patterns. In particular, quaternary phosphoniums and phosphine oxides accounted for over 50% of the total OPC loading in the Yellow and Jia Rivers, which were likely polluted by phosphorus-related industries. Risk quotient (RQ) calculations showed that tetrabutylphosphonium contributed the most to algae toxicity due to the biocidal effects of onium salts, while chloroalkyl OPEs dominated the ecological risks for daphnia and fish. The multicriteria decision analysis approach was further introduced for relative chemical ranking by considering the variations in hazard criteria of environmental occurrence, fate, and toxicity of the OPCs. The results indicate that aryl phosphoniums and aryl phosphine oxides have a hazard priority similar to that of the OPEs and, therefore, require more attention.
Collapse
Affiliation(s)
- Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Gong F, Zhang T, Zhao T, Qi A, Xu P, Huang Q, Li Y, Wang M, Xiao Y, Yang L, Ji Y, Wang W. Comparison of indoor and outdoor atmospheric organophosphorus flame retardants (OPFRs) from the petrochemical industrial area in North China: Occurrence, gas-PM 2.5 distribution, source appointment and health implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125529. [PMID: 39674254 DOI: 10.1016/j.envpol.2024.125529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The consumption of organophosphorus flame retardants (OPFRs) has surged significantly recent years since global banning of brominated flame retardants (BFRs). Industrial activity is an important source of OPFRs, however there are few studies on OPFRs contamination in the indoor and outdoor atmosphere of industrial areas. A study was conducted to analyze contamination of 15 OPFRs individuals in both indoor and outdoor air and PM2.5 of living and industrial sites of the petrochemical industrial area (outdoor and indoor sites of living area was LO and LI, outdoor and indoor sites of industrial area was IO and II). The average concentrations of OPFRs in PM2.5 of LO (16.40 ng/m3) and IO (17.83 ng/m3) were similar, while LI (60.46 ng/m3) was higher than that in II (33.43 ng/m3). The average concentrations of indoor OPFR in PM2.5 and air in summer were 4.10 and 2.22 times higher than those in winter, respectively. This seasonal concentration variation of OPFRs may attribute to the influence of temperature that accelerated the releasing of OPFRs from materials. Source apportionment results indicated that the indoor source (material emission) was the dominant contributor of indoor OPFRs in PM2.5 and air, and outdoor sources (industrial and traffic sources) had significant contribution to OPFRs in indoor and outdoor air and outdoor PM2.5. The gas-particle partitioning of OPFRs had not reached equilibrium state. The KOA absorption model has better fitting effect for OPFRs with logKOA > 10. The health risk of OPFRs for both adult and child was neglectable. While considering the high contribution of TCEP to carcinogenic risk, and high contribution of TCPP to none-carcinogenic risk, their health risk should be given special attention.
Collapse
Affiliation(s)
- Feijie Gong
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tianqi Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Qingdao Research Academy of Environmental Sciences, Qingdao, 266003, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Peng Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yifan Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Miao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
9
|
Wu Y, Yao Y, Chen S, Li X, Wang Z, Wang J, Gao H, Chen H, Wang L, Sun H. Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:798-810. [PMID: 39723965 DOI: 10.1021/acs.est.4c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs). Thirty-four OPFRs were detected in river water samples, with total concentrations of 62.9-1.06 × 103 ng/L (median: 455 ng/L). Triphenylphosphine oxide and diphenyl phosphoric acid were ubiquitously detected up to 620 and 127 ng/L, respectively. Among 26 identified NOPs, 17 were reported for the first time in the environment, including 14 novel organophosphate esters (especially 4 heterocycles and 3 oligomers), 2 organophosphites, and an organophosphonate. Bis(2,4-di-tert-butylphenyl) hydrogen phosphate and 2,2-dimethylpropoxy(propyl)phosphinic acid with high predicted persistence or toxicity were widely detected, with semiquantified concentrations up to 990 and 1.0 × 103 ng/L, respectively. Structurally similar organophosphorus heterocycles exhibited consistent variation trends, suggesting a common emission source. Estimated annual river discharges to the sea were 20.6-37.0 kg/yr for OPFRs and 30.8-161 kg/yr for NOPs. These findings indicate that industrial activities contribute OPFRs and NOPs to the river catchment and its estuary, posing ecological risks to both terrestrial and marine environments.
Collapse
Affiliation(s)
- Yilin Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huixian Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Zhang Y, Qin H, Li B, Yu Z, Zu B, Kong R, Letcher RJ, Liu C, Zhou B. A Novel Organophosphate Ester, Tris(2,4-di tert-butylphenyl) Phosphate, Induced Reproductive Toxicity in Male Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:279-290. [PMID: 39718999 DOI: 10.1021/acs.est.4c10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
As a novel organophosphate ester (NOPE), tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) has attracted significant attention due to its unexpectedly high detection in natural environments. However, the ecological toxic effects of environmentally relevant concentrations of TDtBPP in organisms remain entirely unknown. In this study, 1 month old zebrafish were exposed to 0, 50, 500, or 5000 ng/L TDtBPP for 150 days, and the reproductive toxicity in male fish was evaluated. Results demonstrated that TDtBPP exposure significantly inhibited the maturation of spermatozoa and thus decreased spermatogenesis. Furthermore, abnormal sperm morphology and decreased sperm motility were also observed. The decrease in sperm quantity and quality eventually resulted in the declining fecundity. Moreover, TDtBPP exposure downregulated the expression of hsd3b1 in vivo and in vitro and subsequently inhibited the synthesis of androgens in zebrafish testes and Leydig cells. This inhibition of androgen synthesis appeared to be responsible for the observed reproductive toxicity in male fish. Molecular docking and dual-luciferase reporter gene experiments elucidated that TDtBPP inhibited the promotion of vitamin D on hsd3b1 transcription by the vitamin D receptor and thus downregulated the expression of hsd3b1. Our findings provide first time evidence that TDtBPP poses a risk to male fish reproduction at environmentally relevant levels.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, OttawaK1S 5B6, Ontario ,Canada
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan430078, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| |
Collapse
|
11
|
Feng X, Xu W, Ji X, Liang J, Liu X, Liu X, Liu C, Qu G, Liu R. First Evidence of Novel Organothiophosphate Esters as Prevalent New Pollutants in Dust from Automotive Repair Shops Discovered by High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22790-22798. [PMID: 39582259 DOI: 10.1021/acs.est.4c09683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The occurrence of organophosphorus compounds has garnered global concern due to their widespread production and potential environmental risks. Limited structural information has hindered a comprehensive understanding of their composition. By characteristic fragmentation-based nontarget analysis, the occurrence and composition of organothiophosphate esters (OTPEs), which are antiwear additives in lubricant oils that have received little attention previously, were investigated in dust from automotive repair shops and surrounding buildings. Fourteen OTPEs were tentatively identified, including four triarylphosphorothionates, six O,O-dialkyl phosphorothioates, and four O-alkyl O-alkyl sulfone phosphorothioates, among which four OTPEs were further confirmed by authentic standards or an industrial product. Triphenyl phosphorothioate (TPhPt) and tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168=S) were prevalently detected in automotive repair shops with median concentrations of 230 and 246 ng/g, respectively, closely comparable to triphenyl phosphate (TPhP, median concentration: 302 ng/g). O,O-Dihexyl phosphorothioate (DHPt), O,O-dioctyl phosphorothioate (DOPt), O-hexyl O-hexyl sulfone phosphorothioate (DHSPt), and O-octyl O-octyl sulfone phosphorothioate (DOSPt) were the abundant analogues in automotive repair shops with semiquantitative median concentrations in the range of 119-1.05 × 103 ng/g. Hierarchical cluster analysis showed that OTPEs exhibited similar distribution patterns across automotive repair shops, indicating that these chemicals had similar sources. Moreover, the concentrations of OTPEs were usually higher in automotive repair shops than that in surrounding buildings, suggesting a motor vehicle related emission source. To our knowledge, 12 out of the 14 detected OPTEs were reported in the environment for the first time. The discovery of these OTPEs expanded the scope of known organophosphorus pollutants, highlighting the potential contaminants of OTPEs from lubricant oils for automotive and industrial applications.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Chunguang Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Cao Y, Cao Z, Wang P, Zhao L, Zhang S, Shi Y, Liu L, Zhu H, Wang L, Cheng Z, Sun H. Source and bioavailability of quaternary ammonium compounds (QACs) in dust: Implications for Nationwide Exposure in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136268. [PMID: 39471614 DOI: 10.1016/j.jhazmat.2024.136268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Quaternary ammonium compounds (QACs), widely used in various disinfectants products during the COVID-19 Pandemic, raised the concerns on their exposure and health effect. To date, the sources of QACs in indoor environments have been largely ignored. Additionally, there is no information on the nationwide human exposure assessment of QACs in China after the COVID-19. Herein, analysis of QACs in household products, including personal care (n = 27), cleaning (n = 6) and disinfection products (n = 11) from different manufacturing companies further confirmed there are extensive application of QACs in household products, raising their potential exposure to humans. QACs were frequently detected in indoor dust samples (n = 370) from 111 cities of 31 provinces/municipalities across China, with median concentration of 6778 ng/g. Benzalkyldimethylammonium compounds (BACs) and alkyltrimethylammonium compounds (ATMACs) were identified as the dominant QACs in dust samples, with the proportions of 44 % and 46 %, respectively. The in vivo bioavailability experiment (C57BL/6 male mice) showed that the relative bioavailability (RBA) of QACs through dust ingestion ranged from 5.08 % to 66.3 % and 60.3 % to 118 % in the low and high-dose group, respectively. Compared to the pre-adjustment scenario of RBA values, the exposure risk of QACs was overestimated by 2.23 - 5.14 times.
Collapse
Affiliation(s)
- Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
Cui J, Ge Y, Guo M, Zhang L, Zhang S, Zhao L, Shi Y, Baqar M, Yao Y, Zhu H, Wang L, Cheng Z, Sun H. Occupational exposure to traditional and emerging organophosphate esters: A comparison of levels across different sources and blood distribution. ENVIRONMENT INTERNATIONAL 2024; 194:109165. [PMID: 39637534 DOI: 10.1016/j.envint.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Currently, there is limited knowledge regarding occupational exposure of traditional and emerging organophosphate esters (OPEs) from e-waste and automobile dismantling activities, and their distribution within the human blood. In the present study, we collected dust and urine samples from e-waste (ED) (n = 91 and 130, respectively) and automobile dismantling (AD) plants (n = 93 and 94, respectively), as well as serum-plasma-whole blood samples (sets from 128 participants) within ED areas for analyzing traditional and emerging organophosphate tri-esters (tri-OPEs) and organophosphate di-esters (di-OPEs). Median concentration of ∑tri-OPEs and ∑di-OPEs in dust (37,400 and 9,000 ng/g in ED, and 27,000 and 14,700 ng/g in AD areas, respectively) and urine samples (11.8 and 21.9 ng/mL in ED areas, and 17.2 and 15.0 ng/mL in AD areas, respectively) indicated that both e-waste and automobile dismantling activities served as important pollution source for OPEs. Dust ingestion has been evidenced to be the main exposure pathway compared to dermal absorption and inhalation. The median concentration (ng/mL) of OPEs in blood matrices descended order as follow: whole blood (13.1) > serum (11.6) > plasma (10.4) for ∑tri-OPEs, and plasma (3.51) > serum (0.36) > whole blood (0.23) for ∑di-OPEs. Concentration ratios of OPEs varied across blood matrices, depending on the compounds, suggesting that the essentiality of appropriate biomonitoring matrix for conducting comprehensive exposure assessments.
Collapse
Affiliation(s)
- Jingren Cui
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Meiqi Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Folarin BT, Poma G, Yin S, Altamirano JC, Cleys P, Oluseyi T, Covaci A. Source identification and human exposure assessment of organophosphate flame retardants and plasticisers in soil and outdoor dust from Nigerian e-waste dismantling and dumpsites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124998. [PMID: 39313125 DOI: 10.1016/j.envpol.2024.124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are major sources of organophosphate flame retardant and plasticiser emissions and may pose potentially adverse effects on environment and human health. In 20 outdoor dust and 49 soil samples collected from four e-waste dismantling and three e-waste dumpsites in two States of Nigeria (Lagos and Ogun), we identified 13 alternative plasticisers (APs), 7 legacy phthalate plasticisers (LPs), and 17 organophosphorus flame retardants (OPFRs) for the first time in African e-waste streams. In the samples from dismantling sites, the range (median) concentrations of ∑13APs, ∑7LPs, and ∑17OPFRs were 11-2747 μg/g (144 μg/g), 11-396 μg/g (125 μg/g), and 0.2-68 μg/g (5.5 μg), in dust respectively and 1.8-297 μg/g (55 μg/g), 1.3-274 μg/g (48.5 μg/g), and 1.6-62 μg/g (1.6 μg/g), in soil respectively. Results for soil samples from e-waste dumpsites were (6.6-195 μg/g (23.7 μg/g), 6.0-295 μg/g (54.8), and 0.4-42.3 μg/g (9.0 μg/g) for ∑13APs, ∑7LPs, and ∑17OPFRs respectively. Overall, concentrations of APs were significantly higher at the dismantling sites (p = 0.005) compared to dumpsites, levels of LPs were higher at dismantling sites but not significant, while OPFR concentrations were significantly higher in dumpsite samples (p = 0.005). Plasticisers were found to be major contributors to pollution at e-waste dismantling sites, while OPFRs were associated with both automobile dismantling and e-waste dumpsite processes. Following particle size fractionation of selected soil samples, higher concentrations of targeted compounds were observed in the smaller mesh (180 μm) soil sieve fraction. For dust, the total median estimated daily intake via ingestion and dermal adsorption (EDIing and EDIderm) ranged from 43 to 74 ng/kg bw/day and 0.4-0.7 ng/kg bw/day, respectively. Correspondingly, 4.6-45 ng/kg bw/day and 0.015-0.57 ng/kg bw/day were the values found for soil, respectively. According to these results, the targeted chemicals do not appear to pose a non-carcinogenic risk to e-waste workers through ingestion or dermal contact of bio-accessible fractions of the chemicals. Human biomonitoring campaigns are recommended in the Nigerian e-waste environment considering the elevated concentration levels found for the majority of targeted compounds and that risk parameters required for exposure assessment were only available for a limited number of compounds.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, 5500, Mendoza, Argentina
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
15
|
Xu W, Zhang W, Yu Z, Gai X, Fu J, Hu L, Fu J, Zhang H, Jiang G. A comparative study for organophosphate triesters and diesters in mice via oral gavage exposure: Tissue distribution, excreta elimination, metabolites and toxicity. ENVIRONMENT INTERNATIONAL 2024; 193:109114. [PMID: 39509842 DOI: 10.1016/j.envint.2024.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Organophosphate triesters (tri-OPEs) and diesters (di-OPEs) may threaten human health through dietary intake, whereas little information is available about their fate in mammals. Herein, mice exposure experiments were carried out through gavage with six tri-OPEs and six di-OPEs, respectively. The residual levels of di-OPEs in mice were generally higher than those of tri-OPEs. The residual di-OPEs mainly distributed in the liver and blood while the most tri-OPEs remained in stomach, indicating easier transfer and lower metabolism levels of di-OPEs. The accumulation of tri- and di-OPEs with large octanol-water partition coefficients and long carbon chain were observed in tissues and feces, implying that the elimination of these OPEs through fecal excretion is an important elimination pathway. A total of 86 OPE metabolites were found in murine urine and feces, 57 of which were identified for the first time. For tri-OPEs, carboxylated OPEs had higher peak intensities and fewer interference factors among the metabolites, which could serve as ideal biomarkers. The predicted oral median lethal doses of OPEs and corresponding metabolites showed an increased toxicity of some hydroxylated OPEs and di-OPEs, needing further attention. These results provided new insights and evidence on the fates and biomarkers of OPEs exposure for mammals.
Collapse
Affiliation(s)
- Wenyu Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wei Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zechen Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoyu Gai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
16
|
Zhou G, Zhang Y, Wang Z, Li M, Li H, Shen C. Distribution Characteristics and Ecological Risk Assessment of Organophosphate Esters in Surface Soils of China. TOXICS 2024; 12:686. [PMID: 39330614 PMCID: PMC11435882 DOI: 10.3390/toxics12090686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
The chemical flame retardants represented by organophosphate esters (OPEs) are widely used and have a serious impact on the environment. In this study, we collected data on the exposure levels of ten OPEs in Chinese soils in recent years and performed an ecological risk assessment. The results showed that the levels of OPEs varied considerably throughout different regions of China, with high exposure levels in highly urbanized or industrialized areas such as Guangdong Province and Northeast China, where the mean value was >200 ng/g. The content of OPEs in the soil in industrial and commercial areas was significantly higher than in other regions, indicating that the concentration of OPEs in the soil is closely related to local economic development and the degree of industrialization. Meanwhile, the number of studies reporting on OPEs and their exposure concentrations have increased significantly since 2018. Through the ecological risk assessment, it was found that TCP, EHDPP and TEHP pose high ecological risks. Although some OPEs, such as TCIPP, have low ecological risk levels overall, their high exposure concentrations are still worthy of attention. This study details the general status of OPE contamination in Chinese soils, which can serve as a reference for ecological environmental supervision.
Collapse
Affiliation(s)
- Guorui Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China;
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Yizhang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Mingrui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| | - Haiming Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Chen Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.Z.); (Z.W.); (M.L.)
| |
Collapse
|
17
|
Jin X, Yao R, Yao S, Yu X, Tang J, Huang J, Yao R, Jin L, Liang Q, Sun J. Metabolic perturbation and oxidative damage induced by tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-ethylhexyl) phosphate (TEHP) on Escherichia coli through integrative analyses of metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116797. [PMID: 39067080 DOI: 10.1016/j.ecoenv.2024.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Organophosphate esters (OPEs) are one of the emerging environmental threats, causing the hazard to ecosystem safety and human health. Yet, the toxic effects and metabolic response mechanism after Escherichia coli (E.coli) exposed to TDCIPP and TEHP is inconclusive. Herein, the levels of SOD and CAT were elevated in a concentration-dependent manner, accompanied with the increase of MDA contents, signifying the activation of antioxidant response and occurrence of lipid peroxidation. Oxidative damage mediated by excessive accumulation of ROS decreased membrane potential and inhibited membrane protein synthesis, causing membrane protein dysfunction. Integrative analyses of GC-MS and LC-MS based metabolomics evinced that significant perturbation to the carbohydrate metabolism, nucleotide metabolism, lipids metabolism, amino acid metabolism, organic acids metabolism were induced following exposure to TDCIPP and TEHP in E.coli, resulting in metabolic reprogramming. Additionally, metabolites including PE(16:1(5Z)/15:0), PA(17:0/15:1(9Z)), PC(20:2(11Z,14Z)/12:0), LysoPC(18:3(6Z,9Z,12Z)/0:0) were significantly upregulated, manifesting that cell membrane protective molecule was afforded by these differential metabolites to improve permeability and fluidity. Overall, current findings generate new insights into the molecular toxicity mechanism by which E.coli respond to TDCIPP and TEHP stress and supply valuable information for potential ecological risks of OPEs on aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Runlin Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Siyu Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Jiaxing Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ruipu Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Qianwei Liang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology Maoming, Guangdong 525000, China.
| |
Collapse
|
18
|
Tran-Lam TT, Pham PT, Bui MQ, Dao YH, Le GT. Organophosphate esters and their metabolites in silver pomfret (Pampus argenteus) of the Vietnamese coastal areas: Spatial-temporal distribution and exposure risk. CHEMOSPHERE 2024; 362:142724. [PMID: 38950748 DOI: 10.1016/j.chemosphere.2024.142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
A large number of studies on organophosphate esters (tri-OPEs) in marine organisms have not assessed the simultaneous occurrence of tri-OPEs and their metabolites (di-OPEs) in these species. This research investigated the concentration and geographical distribution of 15 tri-OPEs and 7 di-OPEs in 172 samples of Pampus argenteus that were collected annually from 2021 to 2023 at three distinct locations along the Vietnamese coast. As a result, tri-OPEs and di-OPEs were detected in numerous fish samples, indicating their widespread spatial and temporal occurrence in marine fish and pointing out the importance of monitoring their levels. The tri-OPEs and di-OPEs ranged within 2.1-38.9 ng g-1 dry weight (dw) and 3.2-263.4 ng g-1 dw, respectively. The mean concentrations of tri-OPEs ranged from 0.4 (TIPrP) to 5.4 ng g-1 dw (TBOEP), with TBOEP and TEHP having the highest mean values. In addition, the profiles of tri-OPEs in fish exhibited a descending order: Σalkyl OPEs > ΣCl-alkyl OPEs > Σaryl OPEs. The di-OPEs, namely BEHP and DMP, had the highest mean levels, measuring 33.4 ng g-1 dw and 23.8 ng g-1 dw, respectively. Furthermore, there have been significant findings of strong positive correlations between di-OPEs and tri-OPE pairs (p < 0.05). It is worth noting that there is a noticeable difference in the composition of tri-OPEs between the North and other regions. Despite these findings, the presence of OPE-contaminated fish did not pose any health risks to Vietnam's coastal population.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam; Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City, 70000, Viet Nam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Quang Bui
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| |
Collapse
|
19
|
Huang J, Ye L, Wang J, Deng Y, Du B, Liu W, Su G. A new approach to monitoring typical organophosphorus compounds (OPs) in environmental media: From database building to suspect screening. ENVIRONMENT INTERNATIONAL 2024; 189:108802. [PMID: 38875816 DOI: 10.1016/j.envint.2024.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Organophosphorus compounds (OPs) are widely used as flame retardants (FRs) and plasticizers, yet strategies for comprehensively screening of suspect OPs in environmental samples are still lacking. In this work, a neoteric, robust, and general suspect screening technique was developed to identify novel chemical exposures by use of ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). We firstly established a suspect chemical database which had 7,922 OPs with 4,686 molecular formulas, and then conducted suspect screening in n = 50 indoor dust samples, n = 76 sediment samples, and n = 111 water samples. By use of scoring criteria such as retention time prediction models, we successfully confirmed five compounds by comparison with their authentic standards, and prioritized three OPs candidates including a nitrogen/fluorine-containing compound, that is dimethyl {1H-indol-3-yl[3-(trifluoromethyl)anilino]methyl} phosphonate (DMITFMAMP). Given that the biodegradation half-life values in water (t1/2,w) of DMITFMAMP calculated by EPI Suite is 180 d, it is considered to be potentially persistent. This strategy shows promising potential in environmental pollution assessment, and can be expected to be widely used in future research.
Collapse
Affiliation(s)
- Jianan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Bing Du
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, No.1 Yuhuinanlu, Chaoyang District, Beijing 100029, China.
| | - Wei Liu
- State Key Laboratory for Environmental Protection of Water Ecological Health in the Middle and Lower Reaches of the Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
20
|
Zhang X, Shi J, Wang R, Ma J, Li X, Cai W, Li T, Zou W. Acute exposure to tris(2,4-di-tert-butylphenyl)phosphate elicits cardiotoxicity in zebrafish (Danio rerio) larvae via inducing ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134389. [PMID: 38669931 DOI: 10.1016/j.jhazmat.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tris(2,4-di-tert-butylphenyl)phosphate (AO168 =O), a novel organophosphate ester, is prevalent and abundant in the environment, posing great exposure risks to ecological and public health. Nevertheless, the toxicological effects of AO168 =O remain entirely unknown to date. The results in this study indicated that acute exposure to AO168 =O at 10 and 100 μg/L for 5 days obviously impaired cardiac morphology and function of zebrafish larvae, as proofed by decreased heartbeat, stroke volume, and cardiac output and the occurrence of pericardial edema and ventricular hypertrophy. Transcriptomics, polymerase chain reaction, and molecular docking revealed that the strong interaction of AO168 =O and transferrin receptor 1 activated the transportation of ferric iron into intracellular environment. The release of free ferrous ion to cytoplasmic iron pool also contributed to the iron overload in heart region, thus inducing ferroptosis in larvae via generation of excessive reactive oxygen species, glutathione peroxidase 4 inhibition, glutathione depletion and lipid peroxidation. Ferroptosis inhibitor (Fer-1) co-exposure effectively relieved the cardiac dysfunctions of zebrafish, verifying the dominant role of ferroptosis in the cardiotoxicity caused by AO168 =O. This research firstly reported the adverse impact and associated mechanisms of AO168 =O in cardiomyogenesis of vertebrates, underlining the urgency of concerning the health risks of AO168 =O.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jing Shi
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Ruonan Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Wenwen Cai
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tengfei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
21
|
Yang J, Yao Y, Li X, He A, Chen S, Wang Y, Dong X, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Indoor Air and Dust from Multiple Microenvironments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7986-7997. [PMID: 38657129 DOI: 10.1021/acs.est.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 μg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.
Collapse
Affiliation(s)
- Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
22
|
Schachterle ML, Lowe LE, Owens JE. Exploring the residential exposome: Determination of hazardous flame retardants in air filter dust from HVAC systems. ENVIRONMENTAL RESEARCH 2024; 248:118223. [PMID: 38286254 DOI: 10.1016/j.envres.2024.118223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
Dust is a sink for flame retardants, which are added to a myriad of consumer products in residential spaces. Organophosphate esters (OPEs) and brominated flame retardants (BFRs) are two classes of flame retardants that are frequently used in consumer products and consequently found in dust. In this present work, a novel solvent-limited microextraction technique, which we detailed in a companion study, was applied for the determination of four OPEs and two BFRs with limits of quantitation at the ng/g level by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry from n = 47 air filter dust samples collected from forced air HVAC systems. Levels of the BFRs, including tetrabromobisphenol-A and its derivative tribromobisphenol-A, were found at levels <4 μg/g and not frequently detected. Conversely, all four OPEs were detected in all air filter dust samples. Total OPE load was dominated by tris(2,4-di-tert-butylphenyl) phosphate, T24DtBPP, a novel OPE not widely examined in the literature. Comparison of individual and total OPE concentrations to residential characteristics revealed statistically significant relationships to location of the home and dominant flooring type. Overall, this study motivates future work in examining the whole house exposome using air filter dust as a passive sampling regime with more examination of T24DtBPP loads within other indoor spaces.
Collapse
Affiliation(s)
- Morgan L Schachterle
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA.
| | - Luis E Lowe
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Janel E Owens
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
23
|
Liang C, He Y, Mo XJ, Guan HX, Liu LY. Universal occurrence of organophosphate tri-esters and di-esters in marine sediments: Evidence from the Okinawa Trough in the East China Sea. ENVIRONMENTAL RESEARCH 2024; 248:118308. [PMID: 38281563 DOI: 10.1016/j.envres.2024.118308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Gas Hydrate, Guangzhou, 510640, China
| | - Xiao-Jing Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Hong-Xiang Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China.
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
24
|
Sun B, Zhou C, Zhu M, Wang S, Zhang L, Yi C, Ling H, Xiang M, Yu Y. Leaching kinetics and bioaccumulation potential of additive-derived organophosphate esters in microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123671. [PMID: 38442824 DOI: 10.1016/j.envpol.2024.123671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Considerable research has been conducted to evaluate microplastics (MPs) as vehicles for the transfer of hazardous pollutants in organisms. However, little effort has been devoted to the chemical release of hazardous additive-derived pollutants from MPs in gut simulations. This study looked at the leaching kinetics of organophosphate esters (OPFRs) from polypropylene (PP) and polystyrene (PS) MPs in the presence of gut surfactants, specifically sodium taurocholate, at two biologically relevant temperatures for marine organisms. Diffusion coefficients of OPFRs ranged from 1.71 × 10-20 to 4.04 × 10-18 m2 s-1 in PP and 2.91 × 10-18 to 1.51 × 10-15 m2 s-1 in PS. The accumulation factors for OPFRs in biota-plastic and biota-sediment interactions ranged from 1.52 × 10-3-69.1 and 0.02-0.7, respectively. Based on B3LYP/6-31G (d,p) calculations, the biodynamic model analysis revealed a slight increase in the bioaccumulation of OPFRs at a minor dose of 0.05% MPs. However, at higher concentrations (0.5% and 5% MPs), there was a decrease in bioaccumulation compared to the lower concentration for most OPFR compounds. In general, the ingestion of PE MPs notably contributed to the bioaccumulation of OPFRs in lugworms, whereas the contribution of PP and PS MPs was minimal. This could vary among sites exhibiting varying levels of MP concentrations or MPs displaying stronger affinities towards chemicals.
Collapse
Affiliation(s)
- Bingbing Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Chang Zhou
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Ming Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Siqi Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Liuyi Zhang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Chuan Yi
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Academy of Ecological and Environmental Sciences, Wuhan, 430072, China
| | - Haibo Ling
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Academy of Ecological and Environmental Sciences, Wuhan, 430072, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
25
|
Hu J, Lyu Y, Li M, Wang L, Jiang Y, Sun W. Discovering Novel Organophosphorus Compounds in Wastewater Treatment Plant Effluents through Suspect Screening and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6402-6414. [PMID: 38546437 DOI: 10.1021/acs.est.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Limited knowledge on the structure of emerging organophosphorus compounds (OPCs) hampers our comprehensive understanding of their environmental occurrence and potential risks. Through suspect and nontarget screening, combining data-dependent acquisition, data-independent acquisition, and parallel reaction monitoring modes, we identified 60 OPCs (17 traditional and 43 emerging compounds) in effluents of 14 wastewater treatment plants (WWTPs) in Beijing and Qinghai, China. These OPCs comprise 26 organophosphate triesters, 17 organophosphate diesters, 6 organophosphonates, 7 organothiophosphate esters, and 4 other OPCs. Notably, 14 suspect OPCs were newly identified in WWTP effluents, and 16 nontarget OPCs were newly discovered in environmental matrices. Specifically, the cyclic phosphonate, (5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl dimethyl phosphonate P-oxide (PMMMPn), consistently appeared in all WWTP effluents, with semiquantitative concentrations ranging from 44.4 to 282 ng/L. Its analogue, di-PMMMPn, presented in 93% of wastewater samples. Compositional differences between the WWTP effluents of two cities were mainly attributed to emerging OPCs. Hazard and ecological risk assessment underscored the substantial contribution of chlorinated organophosphate esters and organothiophosphate esters to overall risks of OPCs in WWTP effluents. This study provides the most comprehensive OPC profiles in WWTP effluents to date, highlighting the need for further research on their occurrence, fate, and risks, particularly for chlorinated OPCs.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Mingzhen Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
26
|
Zhang S, Cheng Z, Cao Y, He F, Zhao L, Baqar M, Zhu H, Zhang T, Sun H. Aromatic amine antioxidants (AAs) and p-phenylenediamines-quinones (PPD-Qs) in e-waste recycling industry park: Occupational exposure and liver X receptors (LXRs) disruption potential. ENVIRONMENT INTERNATIONAL 2024; 186:108609. [PMID: 38579452 DOI: 10.1016/j.envint.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuhao Cao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Feixiang He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
27
|
Yang L, Zhang T, Gao Y, Li D, Cui R, Gu C, Wang L, Sun H. Quantitative identification of the co-exposure effects of e-waste pollutants on human oxidative stress by explainable machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133560. [PMID: 38246054 DOI: 10.1016/j.jhazmat.2024.133560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Global electronic waste (e-waste) generation continues to grow. The various pollutants released during precarious e-waste disposal activities can contribute to human oxidative stress. This study encompassed 129 individuals residing near e-waste dismantling sites in China, with elevated urinary concentrations of e-waste-related pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), organophosphorus flame retardants (OPFRs), bisphenols (BPs), and phthalate esters (PAEs). Utilizing an explainable machine learning framework, the study quantified the co-exposure effects of these pollutants, finding that approximately 23% and 18% of the variance in oxidative DNA damage and lipid peroxidation, respectively, was attributable to these substances. Heavy metals emerged as the most critical factor in inducing oxidative stress, followed by PAHs and PAEs for oxidative DNA damage, and BPs, OPFRs, and PAEs for lipid peroxidation. The interactions between different pollutant classes were found to be weak, attributable to their disparate biological pathways. In contrast, the interactions among congeneric pollutants were strong, stemming from their shared pathways and resultant synergistic or additive effects on oxidative stress. An intelligent analysis system for e-waste pollutants was also developed, which enables more efficient processing of large-scale and dynamic datasets in evolving environments. This study offered an enticing peek into the intricacies of co-exposure effect of e-waste pollutants.
Collapse
Affiliation(s)
- Luhan Yang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dairui Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rui Cui
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Xie Z, Zhang X, Xie Y, Liu F, Sun B, Liu W, Wu J, Wu Y. Bioaccumulation and Potential Endocrine Disruption Risk of Legacy and Emerging Organophosphate Esters in Cetaceans from the Northern South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4368-4380. [PMID: 38386007 DOI: 10.1021/acs.est.3c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Wen Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
29
|
Hu Q, Zeng X, Xiao S, Song Q, Liang Y, Yu Z. Co-occurrence of organophosphate diesters and organophosphate triesters in daily household products: Potential emission and possible human health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133116. [PMID: 38056277 DOI: 10.1016/j.jhazmat.2023.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Eight paired organophosphate diesters (Di-OPs) and organophosphate triesters (Tri-OPs) were investigated in wipes from analytical instruments and 47 material samples related to household products, including textiles, electrical/electronic devices, building/ decoration materials and children's products. The total concentrations of Di-OPs ranged in 3577-95551 ng/m2 in the wipes and limit of detection-23002 ng/g in the materials. The Tri-OPs concentrations varied significantly in the ranges of 107218-1756892 ng/m2 and 2.13-503149 ng/g, respectively. Four industrial Di-OPs were detected in > 65% of the studied samples suggesting their direct application in the studied materials. Furthermore, we demonstrated for the first time that four non-industrial Di-OPs, e.g., bis(2-chloroethyl) phosphate, bis(1-chloro-2-propyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate, and bis(butoxyethyl) phosphate, identified as degradation products of their respective Tri-OPs were also detected in these studied samples, which might act as important emission sources of Di-OPs in indoor environments. We estimated the burden of Di-OPs and Tri-OPs in a typical residential house and instrumental room, which both exhibited important contributions from furniture, building and decoration materials, and electrical/electronic devices. Limit health risk was posed to local people via air inhalation.
Collapse
Affiliation(s)
- Qiongpu Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiyu Xiao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Song
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Gao K, Wang L, Xu Y, Zhang Y, Li H, Fu J, Fu J, Lu L, Qiu X, Zhu T. Concentration identification and endpoint-oriented health risk assessments on a broad-spectrum of organic compounds in atmospheric fine particles: A sampling experimental study in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167574. [PMID: 37804984 DOI: 10.1016/j.scitotenv.2023.167574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Understanding the complicate chemical components in atmospheric fine particulate matter (PM2.5) helps policy makers for pollutants control track progress and identify disparities in overall health risks. However, till now, information on accurate component detection, source identification, and effect-oriented risk assessment is scarce, especially for the simultaneous analysis of a broad-spectrum of compounds. In this study, a high-throughput target method was employed to distinguish the occurrence and characteristics of 152 chemicals: phthalate esters (PAEs), organophosphate esters (OPEs), carboxylic acid esters (CAEs), nitrophenols (NPs), nitrogen heterocyclic compounds (NHCs), per- and poly-fluoroalkyl substances (PFASs), triclosan and its derivatives (TCSs), and organosulfates (OSs) in ambient PM2.5 collected from Beijing, China. Detection frequencies of 77 targeted compounds were >50 %. Total concentrations of all compounds ranged from 33.1 to 745 ng/m3. The median concentration of ∑PAEs (108 ng/m3) was the highest, followed by ∑CAEs (12.2 ng/m3) and ∑NPs (10.1 ng/m3). Organophosphate diesters (di-OPEs) and TCSs were reported for the first time in ambient PM2.5. The pollutants mainly originated from the local industrial production, release of building materials, and environmental degradation of parent compounds. Based on absorption, distribution, metabolism, excretion, and toxicity (ADMET)-oriented risk evaluations, we found that bis (2-ethylhexyl) phthalate, diisobutyl phthalate, dibutyl phthalate, and di (2-ethylhexyl) adipate have high health risks. Additionally, the high oxidative stress potential of 4-nitrocatechol and the strong blood-brain barrier penetration potential of triclosan cannot be ignored. Our study will facilitate the evaluations of specific health outcomes and mechanisms of pollutants, and suggestion of pollutants priority control to reduce human health hazards caused by atmospheric particles.
Collapse
Affiliation(s)
- Ke Gao
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China; SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Linxiao Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China
| | - Yifan Xu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yidan Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Haonan Li
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Jianjie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
31
|
Liang C, Zeng MX, Yuan XZ, Liu LY. An overview of current knowledge on organophosphate di-esters in environment: Analytical methods, sources, occurrence, and behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167656. [PMID: 37813257 DOI: 10.1016/j.scitotenv.2023.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Organophosphate di-esters (di-OPEs) are highly related to tri-OPEs. The presence of di-OPEs in the environment has gained global concerns, as some di-OPEs are more toxic than their respective tri-OPE compounds. In this study, current knowledge on the analytical methods, sources, environmental occurrence, and behavior of di-OPEs were symmetrically reviewed by compiling data published till March 2023. The determination of di-OPEs in environmental samples was exclusively achieved with liquid chromatography mass spectrometry operated in negative mode. There are several sources of di-OPEs, including industrial production, biotic and abiotic degradation from tri-OPEs under environmental conditions. A total of 14 di-OPE compounds were determined in various environments, including dust, sediment, sludge, water, and atmosphere. The widespread occurrence of di-OPEs suggested that human and ecology are generally exposed to di-OPEs. Among all environmental matrixes, more data were recorded for dust, with the highest concentration of di-OPEs up to 32,300 ng g-1. Sorption behavior, phase distribution, gas-particle partitioning behavior was investigated for certain di-OPEs. Suggestions on future studies in the perspective of human exposure to and environmental behavior of di-OPEs were proposed.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Meng-Xiao Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
32
|
Luo Z, Huang W, Yu W, Tang S, Wei K, Yu Y, Xu L, Yin H, Niu J. Insights into electrochemical oxidation of tris(2-butoxyethyl) phosphate (TBOEP) in aquatic media: Degradation performance, mechanisms and toxicity changes of intermediate products. CHEMOSPHERE 2023; 343:140267. [PMID: 37758090 DOI: 10.1016/j.chemosphere.2023.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.
Collapse
Affiliation(s)
- Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kun Wei
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuanyuan Yu
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
33
|
Lan Y, Liu Y, Cai Y, Du Q, Zhu H, Tu H, Xue J, Cheng Z. Eight novel brominated flame retardants in indoor and outdoor dust samples from the E-waste recycling industrial park: Implications for human exposure. ENVIRONMENTAL RESEARCH 2023; 238:117172. [PMID: 37729961 DOI: 10.1016/j.envres.2023.117172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
As alternatives for legacy brominated flame retardants, novel brominated flame retardants (NBFRs) have a wide array of applications in the electronic and electrical fields. The shift of recycling modes of electronic and electrical waste (e-waste) from informal recycling family workshop to formal recycling facilities might come with the change the chemical landscape emitted including NBFRs, however, little information is known about this topic. This study investigated the occurrence characteristics, distribution, and exposure profiles of eight common NBFRs and their derivatives in an e-waste recycling industrial park in central China and illustrated the differences in various functional zones in the recycling park. The highest level of ΣNBFRs in dust samples was found in e-waste storage area at median concentration of 27,400 ng/g, followed by e-waste dismantling workshops (23,300 ng/g), workshop outdoor area (7770 ng/g), and residential area outdoor (536 ng/g). In the e-waste dismantling associated dust samples, tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), tetrabromobisphenol A (TBBPA) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) were the predominant components. This paper presented the first evidence regarding the occurrence characteristic and distribution of tetrabromobisphenol S (TBBPS), tetrabromobisphenol A bismethyl ether (TBBPA-BME) and tetrabromobisphenol S bis(2,3-dibromopropyl ether) (TBBPS-BDBPE) in the e-waste associated dust samples. By comparing with previous studies performed in China, this paper also noticed the significant decrease of TBBPA concentrations in the dust probably due to the shift of e-wastes sources and recycling modes. We further assessed the risk of occupational workers exposure to NBFRs. The median EDI (estimated daily intake) value of ΣNBFRs among e-waste dismantling workers was 9.71 ng/kg BW/d with the maximum EDI value being 19.6 ng/kg BW/d, hundreds of times higher than those exposed by general population. The study raises great concern for the health risk of occupational exposure to NBFRs in the e-waste recycling industrial park.
Collapse
Affiliation(s)
- Yongyin Lan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingping Du
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haitao Tu
- Division of Nephrology, The First affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Luo W, Liu Y, Yang X, Aamir M, Bai X, Liu W. Prenatal exposure to emerging and traditional organophosphate flame retardants: Regional comparison, transplacental transfer, and birth outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122463. [PMID: 37669697 DOI: 10.1016/j.envpol.2023.122463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
During gestation, organophosphate flame retardants (OPFRs) have the potential to pose health risks to fetuses due to their ability to cross the placental barrier. However, data are scarce regarding the transplacental transfer of these compounds, particularly concerning emerging OPFRs and regional variations. In this study, we analyzed 14 traditional OPFRs and 5 emerging OPFRs in maternal and cord serum samples from Mianyang and Hangzhou, two cities in eastern and western China, respectively. The results revealed marked disparities in the overall levels of OPFRs between the two cities (p < 0.05), with the average concentration in maternal serum being higher in Hangzhou (14.55 ng/mL) than in Mianyang (8.28 ng/mL). The most abundant compounds found in both cities were tris (2-chloroethyl) phosphate (TCEP), Triphenyl phosphate (TPHP), and Tri-n-butyl phosphate (TnBP). Additionally, this study marked the first detection of novel OPFRs, including resorcinol bis (diphenyl phosphate) (RDP), isodecyl diphenyl phosphate (IDDPP), cresyl diphenyl phosphate (CDP), and bisphenol A bis (diphenyl phosphate) (BPA-BDPP) in maternal and cord serum simultaneously with the detection frequencies higher than 45%. This study also found that transplacental transfer efficiencies for OPFRs varied by ester group, with Aryl-OPFRs exhibiting the highest transfer rates (0.90-1.11) and Alkyl-OPFRs exhibiting the lowest (0.66-0.83). Transfer efficiencies exhibited a positive correlation with log Kow values (p < 0.05), suggesting that hydrophobic OPFRs with higher log Kow values are more likely to permeate the placental barrier. Moreover, the exposure levels of Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), Tri (Chloropropyl) Phosphate (TCIPP), TPHP, and CDP in cord serum were negatively associated (p < 0.05) with birthweight of newborns. This research adds to our understanding of the transplacental transfer of OPFRs and the possible health risks associated with prenatal exposure.
Collapse
Affiliation(s)
- Wangwang Luo
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomeng Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Muhammed Aamir
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaoxia Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
35
|
Xie Y, Zhang Q, Chen L, Li F, Li M, Guo LH. Emerging organophosphate ester resorcinol bis(diphenyl phosphate) exerts estrogenic effects via estrogen receptor pathways. Toxicology 2023; 499:153649. [PMID: 37827210 DOI: 10.1016/j.tox.2023.153649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Environmental occurrence and human exposure of emerging organophosphate esters (eOPEs) have increased significantly in recent years. Resorcinol bis(diphenyl) phosphate (RDP) is one of the major eOPEs detected in indoor dust, but the knowledge on its toxicities and health risks is rather limited. In this study, we investigated the in vitro estrogenic effects and underlying mechanism of RDP in comparison with a legacy OPE triphenyl phosphate (TPHP). Our results showed that RDP promoted MCF-7 cell proliferation with the lowest effect concentration of 2.5 μM, and the maximum enhancement of 1.6 folds is greater than that of TPHP (1.3 folds). The effect was inhibited completely by an estrogen receptor (ER) antagonist, suggesting that ER activation was responsible for the enhancement. In luciferase reporter gene assays both RDP and TPHP activated ER transcriptional activity at 2.5 μM, but RDP activity was higher than TPHP. Competitive fluorescence binding assays showed that RDP bound to ER with an IC10 of 0.26 μM, which is 20 folds lower than TPHP (5.6 μM). Molecular docking simulation revealed that both RDP and TPHP interacted with ER at the binding pocket of estradiol, although the hydrogen bonds were different. Taken together, RDP exerted stronger estrogenic effects than TPHP through ER-mediated pathways and may pose more health risks.
Collapse
Affiliation(s)
- Yue Xie
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Qi Zhang
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
36
|
Liu YS, Li HR, Lao ZL, Ma ST, Liao ZC, Song AM, Liu MY, Liu YS, Ying GG. Organophosphate esters (OPEs) in a heavily polluted river in South China: Occurrence, spatiotemporal trends, sources, and phase distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122492. [PMID: 37659627 DOI: 10.1016/j.envpol.2023.122492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
In the past decade, organophosphate esters (OPEs) undergo rapid increase in production and use. Meanwhile, owing to their additive property, OPEs exhibit liability to escape from related products and therefore ubiquity in various environments. Moreover, numerous researches verify their bioavailability and negative effects on biota and human, hence their occurrence and associated risks have caught much concern, particularly those in aquatic systems. So far, however, OPEs in water are generally investigated as a whole, their phase distribution and behavior in waterbodies are incompletely characterized. We examined 25 OPEs in water (including dissolved and particulate phases), sediment, and sediment core samples from the Lian River, which flows through the Guiyu e-waste recycling zone and Shantou specific economic zone in South China. Compared to most global waterbodies, the Lian River showed high or ultrahigh OPE levels in both water and sediments, particularly in the reaches surrounded by e-waste recycling and plastic-related industries, which were the top two greatest OPE sources. Non-industrial and agriculture-related anthropogenic activities also contributed OPEs. Sediment core data suggested that OPEs have been present in waters in Guiyu since the 1960s and showed a temporal trend consistent with the local waste-recycling business. The phase distribution of OPEs in the Lian River was significantly correlated with their hydrophobicity and solubility. Owing to their wide range of physicochemical properties, OPE congeners showed significant percentage differences in the Lian River water and sediments. Generally, OPEs in water reflect their dynamic real-time inputs, while those in sediment signify their accumulative deposition, which is another cause of their phase distribution disparities in the Lian River. The physicochemical parameters of OPEs first imposed negative and then positive influences on their dissolved phase-sediment distribution, indicating the involvement of both the adsorption of dissolved OPEs and the deposition of particle-bound OPEs.
Collapse
Affiliation(s)
- Yi-Shan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Zhi-Lang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Sheng-Tao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Zi-Cong Liao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Ai-Min Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Ming-Yang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
37
|
Peng Y, Shi C, Wang C, Li Y, Zeng L, Zhang J, Huang M, Zheng Y, Chen H, Chen C, Li H. Review on typical organophosphate diesters (di-OPEs) requiring priority attention: Formation, occurrence, toxicological, and epidemiological studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132426. [PMID: 37683352 DOI: 10.1016/j.jhazmat.2023.132426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The impact of primary metabolites of organophosphate triesters (tri-OPEs), namely, organophosphate diesters (di-OPEs), on the ecology, environment, and humans cannot be ignored. While extensive studies have been conducted on tri-OPEs, research on the environmental occurrence, toxicity, and health risks of di-OPEs is still in the preliminary stage. Understanding the current research status of di-OPEs is crucial for directing future investigations on the production, distribution, and risks associated with environmental organophosphate esters (OPEs). This paper specifically reviews the metabolization process from tri-OPEs to di-OPEs and the occurrence of di-OPEs in environmental media and organisms, proposes typical di-OPEs in different media, and classifies their toxicological and epidemiological findings. Through a comprehensive analysis, six di-OPEs were identified as typical di-OPEs that require prioritized research. These include di-n-butyl phosphate (DNBP), bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPHP). This review provides new insights for subsequent toxicological studies on these typical di-OPEs, aiming to improve our understanding of their current status and provide guidance and ideas for research on the toxicity and health risks of di-OPEs. Ultimately, this review aims to enhance the risk warning system of environmental OPEs.
Collapse
Affiliation(s)
- Yi Peng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chongli Shi
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chen Wang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yu Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jin Zhang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengyan Huang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yang Zheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Haibo Chen
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chao Chen
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Hui Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
38
|
Ye L, Li J, Gong S, Herczegh SM, Zhang Q, Letcher RJ, Su G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132095. [PMID: 37523961 DOI: 10.1016/j.jhazmat.2023.132095] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The list of organophosphate esters (OPEs) reported in the environment continues to expand as evidenced by the increasing number of OPE studies in the literature. However, there remains a general dearth of information on more recently produced and used OPEs that are proving to be emerging environmental contaminants. The present review summarizes the available studies in a systematic framework of the current state of knowledge on the analysis, environmental fate, and behavior of emerging OPEs. This review also details future directions to better understand emerging OPEs in the environment. Firstly, we make recommendations that the current structural/practical abbreviations and naming of OPEs be revised and updated. A chemical database (CDB) containing 114 OPEs is presently established based on the suspect list from the current scientific literature. There are 12 established OPEs and a total of 83 emerging OPEs that have been reported in human and/or biota samples. Of the emerging OPEs more than 80% have nearly 100% detection frequencies in samples of certain environmental media including indoor air, wastewater treatment plants, sediment, and fish. In contrast to OPEs considered established contaminants, most emerging OPEs have been identified more recently due to the more pervasive use of high-resolution mass spectrometry (HRMS) based approaches and especially gas or liquid chromatography coupled with HRMS-based non-target analysis (NTA) of environmental sample fractions. Intentional/unintentional industrial use and non-industrial formation are sources of emerging OPEs in the environment. Predicted physical-chemical properties in silico of newer, molecularly larger and more oligomeric OPEs strongly suggest that some compounds such as bisphenol A diphenyl phosphate (BPA-DPP) are highly persistent, bioaccumulative and/or toxic. Limited information on laboratory-based toxicity data has shown that some emerging OPEs elicit harmful effects such as cytotoxicity, development toxicity, hepatotoxicity, and endocrine disruption in exposed humans and mammals. Established, and to a much lesser degree emerging OPEs, have also been shown to transform and degrade in biota and possibly alter their toxicological effects. Research on emerging OPE contaminants is presently limited and more study is warranted on sample analysis methods, source apportionment, transformation processes, environmental behavior, biomarkers of exposure and toxicity.
Collapse
Affiliation(s)
- Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sofia M Herczegh
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
39
|
Liu H, Bai Y, Yu Y, Qi Z, Zhang G, Li G, Yu Y, An T. Maternal transfer of resorcinol-bis(diphenyl)-phosphate perturbs gut microbiota development and gut metabolism of offspring in rats. ENVIRONMENT INTERNATIONAL 2023; 178:108039. [PMID: 37336026 DOI: 10.1016/j.envint.2023.108039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Resorcinol-bis(diphenyl)-phosphate (RDP), an emerging organophosphate flame retardant, is increasingly used as a primary alternative for decabromodiphenyl ether and is frequently detected in global environmental matrices. However, the long-term effects of its exposure to humans remain largely unknown. To investigate its intergenerational transfer capacity and health risks, female Sprague Dawley rats were orally exposed to RDP from the beginning of pregnancy to the end of the lactation period. The RDP content, gut microbiota homeostasis, and metabolic levels were determined. RDP accumulation occurred in the livers of maternal rats and offspring and increased with exposure time. 16S rRNA gene sequencing showed that exposure to RDP during pregnancy and/or lactation significantly disrupted gut microbiota homeostasis, as evidenced by decreased abundance and diversity. In particular, the abundance of Turicibacter, Adlercreutzia, and YRC22 decreased, correlating significantly with glycollipic metabolism. This finding was consistent with the reduced levels of short-chain fatty acids, the crucial gut microbial metabolites. Meanwhile, RDP exposure resulted in changes in gut microbiome-related metabolism. Nine critical overlapping KEGG metabolic pathways were identified, and the levels of related differential metabolites decreased. Our results suggest that the significant adverse impacts of RDP on gut microbiota homeostasis and metabolic function may increase the long-term risks related to inflammation, obesity, and metabolic diseases.
Collapse
Affiliation(s)
- Hongli Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yixiu Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingying Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
40
|
Chen MH, Jia SM, Yang PF, Zhu FJ, Ma WL. Health Risk Assessment of Organophosphate Flame Retardants in Soil Across China Based on Monte Carlo Simulation. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:129-139. [PMID: 37578493 DOI: 10.1007/s00244-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Health risks from exposure to contaminants are generally estimated by evaluating concentrations of the contaminants in environmental matrixes. However, accurate health risk assessment is difficult because of uncertainties regarding exposures. This study aims to utilize data on the concentrations of organophosphate flame retardants (OPFRs) in surface soil across China coupled with Monte Carlo simulations to compensate for uncertainties in exposure to evaluate the health risks associated with contamination of soil with this class of flame retardants. Results revealed that concentrations of ∑OPFRs were 0.793-406 ng/g dry weight (dw) with an average of 23.2 ng/g dw. In terms of spatial distribution, higher OPFRs concentrations were found in economically developed regions. Although the values of health risk of OPFRs in soil across China were below the threshold, the high concentrations of OPFRs in soil in some regions should attract more attentions in future. Sensitivity analysis revealed that concentrations of OPFRs in soil, skin adherence factor, and exposure duration were the most sensitive parameters in health risk assessment. In summary, the study indicated that the national scale soil measurement could provide unique information on OPFRs exposure and health risk assessment, which was useful for the management of soil in China and for better understanding of the environmental fate of OPFRs in the global perspective.
Collapse
Affiliation(s)
- Mei-Hong Chen
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin, 150090, China
| | - Shi-Ming Jia
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin, 150090, China
| | - Pu-Fei Yang
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin, 150090, China
| | - Fu-Jie Zhu
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin, 150090, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
41
|
Tian YX, Wang Y, Chen HY, Ma J, Liu QY, Qu YJ, Sun HW, Wu LN, Li XL. Organophosphate esters in soils of Beijing urban parks: Occurrence, potential sources, and probabilistic health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162855. [PMID: 36931520 DOI: 10.1016/j.scitotenv.2023.162855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Organophosphate esters (OPEs) are an emerging contaminant widely distributed in the soil. OPEs have drawn increasing attention for their biological toxicity and possible threat to human health. This research investigated the pollution characteristics of two typical OPEs, organophosphate triesters (tri-OPEs) and organophosphate diesters (di-OPEs), in soils of 104 urban parks in Beijing. The median concentrations of Σ11tri-OPEs and Σ8di-OPEs were 157 and 17.9 ng/g dw, respectively. Tris(2-chloroisopropyl) phosphate and bis(2-ethylhexyl) phosphate were the dominant tri-OPE and di-OPE, respectively. Consumer materials (such as building insulation and decorative materials), traffic emissions, and reclaimed water irrigation may be critical sources of tri-OPEs in urban park soils. Di-OPEs mainly originated from the degradation of parent compounds and industrial applications. Machine learning models were employed to determine the influencing factors of OPEs and predict changes in their concentrations. The predicted OPEs concentrations in Beijing urban park soils in 2025 and 2030 are three times and five times those in 2018, respectively. According to probabilistic health risk assessment, non-carcinogenic and carcinogenic risks of OPEs can be negligible for children and adults. Our results could inform measures for preventing and controlling OPEs pollution in urban park soils.
Collapse
Affiliation(s)
- Y X Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Y Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - H Y Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - J Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Q Y Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Y J Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - H W Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - L N Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - X L Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
42
|
Zhao L, Zhu H, Cheng Z, Shi Y, Zhang Q, Wang Y, Sun H. Co-occurrence and distribution of organophosphate tri- and di-esters in dust and hand wipes from an e-waste dismantling plant in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163176. [PMID: 37003336 DOI: 10.1016/j.scitotenv.2023.163176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Electronic waste (e-waste) dismantling facilities are a well-known source of emerging contaminants including organophosphate esters (OPEs). However, little information is available regarding the release characteristics and co-contaminations of tri- and di-esters. This study, therefore, investigated a broad range of tri- and di-OPEs in dust and hand wipe samples collected from an e-waste dismantling plant and homes as comparison. The median ∑tri-OPE and ∑di-OPE levels in dust and hand wipe samples were approximately 7- and 2-fold higher than those in the comparison group, respectively (p < 0.01). Triphenyl phosphate (median: 11,700 ng/g and 4640 ng/m2) and bis(2-ethylhexyl) phosphate (median: 5130 ng/g and 940 ng/m2) were the dominant components of tri- and di-OPEs, respectively. The combination of Spearman rank correlations and the determinations of molar concentration ratios of di-OPEs to tri- OPEs revealed that apart from the degradation of tri-OPEs, di-OPEs could originate from direct commercial application, or as impurities in tri-OPE formulas. Significant positive correlations (p < 0.05) were found for most tri- and di-OPE levels between the dust and hand wipes from dismantling workers, whereas this was not observed in those from the ordinary microenvironment. Our results provide robust evidence that e-waste dismantling activities contribute to OPEs contamination in the surroundings and further human exposure pathways and toxicokinetics are needed to be elucidated.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
43
|
Jia T, Gao L, Liu W, Guo B, He Y, Xu X, Mao T, Deng J, Li D, Tao F, Wang W. Screening of organophosphate esters in different indoor environments: Distribution, diffusion, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121576. [PMID: 37028786 DOI: 10.1016/j.envpol.2023.121576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
of air conditioner (AC) filter dust can reveal the level of organophosphate ester (OPE) pollution in indoor environments, but comprehensive research on this topic remains lacking. This study combined non-targeted and targeted analysis to screen and analyze 101 samples of AC filter dust, settled dust, and air obtained in 6 indoor environments. Phosphorus-containing organic compounds account for a large proportion of the organic compounds found in indoor environments, and OPEs might be the main pollutants. Using toxicity data and traditional priority polycyclic aromatic hydrocarbons for toxicity prediction of OPEs, 11 OPEs were prioritized for further quantitative analysis. The concentration of OPEs in AC filter dust was highest, followed in descending order by that in settled dust and that in air. The concentration of OPEs in AC filter dust in the residence was two to seven times greater than that in the other indoor environments. More than 56% of the OPEs in AC filter dust showed significant correlation, while those in settled dust and air were weakly correlated, suggesting that large amounts of OPEs collected over long periods could have a common source. Fugacity results showed that OPEs were transferred easily from dust to air, and that dust was the main source of OPEs. The values of both the carcinogenic risk and the hazard index were lower than the corresponding theoretical risk thresholds, indicating low risk to residents through exposure to OPEs in indoor environments. However, it is necessary to remove AC filter dust in a timely manner to prevent it becoming a pollution sink of OPEs that could be rereleased and endanger human health. This study has important implications for comprehensive understanding of the distribution, toxicity, sources, and risks of OPEs in indoor environments.
Collapse
Affiliation(s)
- Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Wenbin Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| | - Bobo Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotian Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tianao Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fang Tao
- China Jiliang University, Hangzhou, 310018, China
| | - Wenwen Wang
- Agilent Technologies (China) Co. Ltd., Beijing, 100102, China
| |
Collapse
|
44
|
Bi R, Meng W, Su G. Organophosphate esters (OPEs) in plastic food packaging: non-target recognition, and migration behavior assessment. ENVIRONMENT INTERNATIONAL 2023; 177:108010. [PMID: 37307603 DOI: 10.1016/j.envint.2023.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) are widely used as plasticizers in plastic food packaging; however, the migration of OPEs from plastic to food is largely unstudied. We do not even know the specific number of OPEs that exist in the plastic food packaging. Herein, an integrated target, suspect, and nontarget strategy for screening OPEs was optimized using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). The strategy was used to analyze 106 samples of plastic food packaging collected in Nanjing city, China, in 2020. HRMS allowed full or tentative identification of 42 OPEs, of which seven were reported for the first time. Further, oxidation products of bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite (AO626) in plastics were identified, implying that the oxidation of organophosphite antioxidants (OPAs) could be an important indirect source of OPEs in plastics. The migration of OPEs was examined with four simulated foods. Twenty-six out of 42 OPEs were detected in at least one of the four simulants, particularly isooctane, in which diverse OPEs were detected at elevated concentrations. Overall, the study supplements the list of OPEs that humans could ingest as well as provides essential information regarding the migration of OPEs from plastic food packaging to food.
Collapse
Affiliation(s)
- Ruifeng Bi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
45
|
Wei D, Yuan K, Ai F, Li M, Zhu N, Wang Y, Zeng K, Yin D, Bu Y, Zhang Z. Occurrence, spatial distributions, and temporal trends of bisphenol analogues in an E-waste dismantling area: Implications for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161498. [PMID: 36638703 DOI: 10.1016/j.scitotenv.2023.161498] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The environmental occurrences of bisphenol analogues (BPs) have been extensively reported, whereas their concentration profile, spatial distribution, and temporal trend in e-waste dismantling area are still poorly understood. Herein, typical BPs (BPA, BPS, TBBPA, TBBPA-DHEE, and TBBPA-MHEE) were investigated in water, soil, and biological samples from three representative regions (FJT, JJP, and RIB) in e-waste recycling area in Taizhou, Zhejiang Province. Overall, the detection frequency of BPs in all samples was 100 %, confirming widespread presence of BPs in e-waste recycling area. Wherein, BPA was the predominant BPs in water (33.3 %) and soil samples (34.9 %), but TBBPA accounted for the largest proportion (41.3 %) in biological samples. In addition, the concentration of BPs in FJT was lower than that in JJP and RIB owing to the renovations on FJT by the local government in recent years, whereas the higher BPs level in RIB implied that elevated BPs contents was related to massive e-waste dismantling activities. From 2017 to 2021, a decreased trend of BPs concentration was observed in FJT, but aggravation of BPs levels in RIB was caused by the ongoing e-waste dismantling. The risk assessment revealed that the BPs in e-waste recycling area posed a low ecological and human health risk. Our finding could provide a valuable reference for the development of strict legislation systems related to e-waste management in China.
Collapse
Affiliation(s)
- Dali Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kuijing Yuan
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingwei Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
46
|
Wang S, Qian J, Zhang B, Chen L, Wei S, Pan B. Unveiling the Occurrence and Potential Ecological Risks of Organophosphate Esters in Municipal Wastewater Treatment Plants across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1907-1918. [PMID: 36695577 DOI: 10.1021/acs.est.2c06077] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs) discharged from wastewater treatment plants (WWTPs) have attracted increasing concerns because of their potential risks to aquatic ecosystems. The identification of the structures of OPEs is a prerequisite for subsequent assessment of their environmental impacts, which could hardly be accomplished using traditional target analytical methods. In this study, we describe the use of suspect and nontarget screening techniques for identification of organophosphate triesters and diesters (tri-OPEs and di-OPEs) in the influent and effluent samples acquired from 25 municipal WWTPs across China. There are totally 33 different OPE molecules identified, 11 of which are detected in wastewater for the first time and 4 are new to the public. In all tested samples, di-OPEs account for a significant portion (53% on average) of the total OPEs (ng/L-μg/L). More importantly, most of the OPEs could not be eliminated after treatment in these WWTPs, while some of the di-OPEs even accumulate. The research priority of OPEs in the effluent based on ecological risk was also analyzed, and the results reflected a previously unrecognized exposure risk of emerging OPEs for aquatic living organisms. These findings present a holistic understanding of the environmental relevance of OPEs in WWTPs on a country scale, which will hopefully provide guidance for the upgrade of treatment protocols in WWTPs and even for the modification of governmental regulations in the future.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Lao Z, Li H, Liao Z, Liu Y, Ying G, Song A, Liu M, Liu H, Hu L. Spatiotemporal transitions of organophosphate esters (OPEs) and brominated flame retardants (BFRs) in sediments from the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158807. [PMID: 36115395 DOI: 10.1016/j.scitotenv.2022.158807] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Recent regulations on the use of brominated flame retardants (BFRs, especially polybrominated diphenyl ethers, PBDEs) have led a sharp increase in the use of organophosphate esters (OPEs), which have become the subject of widespread environmental concern. To gain insights into their environmental transitions, we investigated the spatiotemporal trends and sources of 25 OPEs and 23 BFRs (21 PBDEs and two alternative BFRs) in sediments from the Pearl River Delta (PRD), the second economic/industrial region of China. Among them, PBDEs showed higher mean concentrations than OPEs and alt-BFRs in PRD sediments, a continual increase in most PRD areas, and positive correlations with most local socioeconomic parameters. The source analysis results indicated that all of these changes resulted from the substantial use/stock of PBDEs (especially deca-BDE) in this region, and BDE-209 displayed debromination in most sediments. OPEs demonstrated obvious increases in sediments from all major PRD rivers, especially those located in less-developed regions. This distribution might be related to the large-scale industry relocation from the central PRD area to its vicinities. Unexpectedly, decabromodiphenyl ethane (DBDPE), an important deca-BDE substitute, presented considerable declines in the PRD sediments while several novel OPEs showed considerably high proportions, especially aryl-substituted OPEs, which merit further screening analysis.
Collapse
Affiliation(s)
- Zhilang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Huiru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zicong Liao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Yishan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Aimin Song
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingyang Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hehuan Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
49
|
Liang C, Mo XJ, Xie JF, Wei GL, Liu LY. Organophosphate tri-esters and di-esters in drinking water and surface water from the Pearl River Delta, South China: Implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120150. [PMID: 36103943 DOI: 10.1016/j.envpol.2022.120150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Some organophosphate di-esters (di-OPEs) have been found to be more toxic than their respective tri-esters. The environmental occurrence of di-OPEs remains largely unclear. A total of 106 water samples, including 56 drinking water (bottled, barreled, and tap water) and 50 surface water (lake and river) samples were collected and analyzed for 10 organophosphate tri-esters (tri-OPEs) and 7 di-OPEs. The concentrations (range (median)) of ∑7di-OPE were 2.8-22 (9.7), 1.1-5.8 (2.6), 3.7-250 (120), 13-410 (220), and 92-930 (210) ng/L in bottled water, barreled water, tap water, lake water, and river water, respectively. In all types of water samples, tris(1-chloro-2-propyl) phosphate was the dominant tri-OPE compound. Diphenyl phosphate was the predominant di-OPE compound in tap water and surface water, while di-n-butyl phosphate and bis(2-ethylhexyl) phosphate was the dominant compound in bottled water and barreled water, respectively. Source analysis suggested diverse sources of di-OPEs, including industrial applications, effluents of municipal wastewater treatment plants, degradation from tri-OPEs during production/usage and under natural environmental conditions. The non-carcinogenic and carcinogenic risks of OPEs were lower than the theoretical threshold of risk, indicating the human health risks to OPEs via drinking water consumption were negligible. More studies are needed to explore environmental behaviors of di-OPEs in the aquatic environment and to investigate ecological risks.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiao-Jing Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jiong-Feng Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Gao-Ling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
50
|
Zhou Y, Li Z, Zhu Y, Chang Z, Hu Y, Tao L, Zheng T, Xiang M, Yu Y. Legacy and alternative flame retardants in indoor dust from e-waste industrial parks and adjacent residential houses in South China: Variations, sources, and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157307. [PMID: 35839871 DOI: 10.1016/j.scitotenv.2022.157307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Many studies have elucidated health concerns of informal e-waste recycling activities, yet few has evaluated the effectiveness of the regulations as well as the human exposure risks to adjacent residents. Herein, legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDs), and alternative organophosphate esters (OPEs) were investigated in indoor dust collected from three e-waste industrial parks and five adjacent villages located in south China. The levels and composition patterns varied significantly between workshop and home dust. BDE209 showed much higher (p < 0.01) concentrations in workshop dust versus home dust, while relatively comparable levels were found for OPEs and HBCDs. Principal component analysis revealed that OPEs and PBDEs were mainly related to home and workshop dust, respectively. Results strongly indicated that e-waste dismantling activities still contribute to a high burden of BDE209 to surrounding residents, whilst the sources of OPEs may also originated from household products, especially for TCEP. The estimated daily intakes (EDIs) via dust ingestion and dermal absorption for occupational worker and nearby toddlers were below available reference dose (RfD) values even at worst case scenario. This study highlights the significance of deca-BDEs rather than alternative OPEs in e-waste generated in China, which could provide scientific suggestions for policy formulation.
Collapse
Affiliation(s)
- Ying Zhou
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yu Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yunjiang Yu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|