1
|
Ma X, Wang W, Mao Q. Short-chain chlorinated paraffins induce hippocampal damage and glycerophospholipids disruption contributing to neurobehavioral deficits in mice. Food Chem Toxicol 2025; 201:115444. [PMID: 40220883 DOI: 10.1016/j.fct.2025.115444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Short-chain chlorinated paraffins (SCCPs), a class of widely used industrial chemicals, have raised significant health concerns due to their persistence, bioaccumulation, and potential neurotoxicity. This study investigated the neurotoxic effects of SCCPs on the hippocampus and their impact on brain glycerophospholipid metabolism in mice. Behavioral tests revealed that 50 mg/kg SCCPs exposure significantly reduced spontaneous activity and impaired learning and memory. Pathological examination showed neuronal damage, including nuclear pyknosis and cytoplasmic vacuolization, in the hippocampus. Biochemical analyses indicated elevated oxidative stress markers (reactive oxygen species, malondialdehyde) and decreased antioxidant levels (glutathione, superoxide dismutase), alongside reduced levels of neurotransmitters (5-Hydroxytryptamine, dopamine, brain-derived neurotrophic factor). Lipidomics analysis identified significant alterations in glycerophospholipid metabolites, such as decreased levels of phosphatidylcholine and phosphatidylserine. Immunohistochemistry demonstrated downregulation of tight junction proteins (Claudin-1, ZO-1), suggesting blood-brain barrier disruption. These findings highlight SCCPs' potential to induce hippocampal oxidative stress, neurotransmitter dysregulation, decreased claudin-1 expression and glycerophospholipid metabolism disruption, contributing to neurobehavioral deficits. This study provides insights into the mechanisms of SCCPs-induced neurotoxicity and emphasizes their potential implications for brain health.
Collapse
Affiliation(s)
- Xi Ma
- Department of Integrated TCM & Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430000, China; Wuhan University of Science and Technology, Wuhan, 430000, China
| | - Wenzhu Wang
- Department of Nephrology, Changshan County People's Hospital, Changshan, 324200, China
| | - Qingju Mao
- Department of Integrated TCM & Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430000, China; Wuhan University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
2
|
Shi Y, Li K, Qian Y, Guo W, Cao Y, Cheng Z, Zhu H. Beyond phthalates: Investigating non-phthalate plasticizers in indoor environments-A nationwide survey from China. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138497. [PMID: 40344834 DOI: 10.1016/j.jhazmat.2025.138497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/21/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Research on plasticizers, particularly non-phthalate plasticizers (NPAEs), in indoor environments and their associated human exposure risks remains limited in China. To address this, we analyzed 374 house dust samples nationwide for 11 phthalates (PAEs) and 16 NPAEs. Nineteen of 27 target analytes were widely detected, with total plasticizer concentrations (∑27plasticizers) ranging from 14.3 to 3358 μg/g (median: 226 μg/g). While PAEs dominated of total plasticizers (>70 %), however, some NPAEs, such as trioctyl trimellitate and methyl oleate, showed comparable or higher levels than certain PAEs, indicating their increasing presence. A temporal analysis of PAE occurrence in indoor dust from 2007 to 2023 revealed a significant downward trend. Geographically, Northeast China exhibited the highest ∑27plasticizers levels (median: 539 μg/g), 1.93-3.73 times higher than those in other regions. Additionally, urban households displayed significantly higher ∑27plasticizers concentrations than rural homes, suggesting more intensive emission sources. Floor and dwelling materials were identified as key contributors to plasticizer contamination. Although estimated hazard quotient values suggest minimal health risks under current exposure conditions, the complexity of exposure pathways warrants further investigation. This study provides a national-scale assessment of indoor plasticizer contamination and human exposure risks, offering critical insights for environmental health research and regulatory policies.
Collapse
Affiliation(s)
- Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Keyi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Qian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wencheng Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Fang K, Sun YB, He RM, Qian JK, Gu W, Lu YF, Dong ZM, Wan Y, Wang C, Tang S. A critical review of human internal exposure to short-chain chlorinated paraffins and its concerning health risks. ENVIRONMENTAL RESEARCH 2025; 272:121179. [PMID: 39983965 DOI: 10.1016/j.envres.2025.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Short-chain chlorinated paraffins (SCCPs) are a complex mixture of chlorinated derivatives of n-alkanes with a chain length of 10-13 carbon atoms. SCCPs have been extensively used in industrial applications, although an alarming concern is increasingly raised in hazarding environmental matrices and biological organisms due to the environmental persistence, bioaccumulation potential, biotoxicity, and long-range atmospheric transport. Herein, this study conducted a critical review of human internal exposure to SCCPs and its concerning health risks by thoroughly analyzing 63 relevant articles screened in online databases, including the Web of Science, PubMed, Elsevier ScienceDirect, and China National Knowledge Infrastructure (CNKI). The review focused on various biological matrices, including blood, breast milk, and placenta, to assess human internal exposure to SCCPs, and summarized systematic health risk assessments for external exposures across different population groups. The primary exposure routes of SCCPs were dietary intake and dust ingestion and dermal absorption. Particularly, vulnerable population groups of infants, children, and occupational workers suffered from an elevated health risk of SCCPs, with the daily SCCPs intake approaching or exceeding the tolerable daily intake (TDI). So far, existing literature on an internal exposure to SCCPs by detecting human biological samples is insufficient and lacks a comprehensive, life cycle-wide monitoring of vulnerable and occupational populations. The relationship between human exposure to SCCPs and the consequent adverse health effects requires a further deep mining. Moreover, there is a lack of established exposure warning guidance values, and available internal exposure assessment models of SCCPs are currently limited. The future research priority is to knit together the assessment of human internal exposure to SCCPs and the following health risk by advanced sample pre-treatment and analytical methodologies, standardized operating procedures, and non-targeted screening combined with targeted detection techniques. Through a continuous monitoring of human internal exposure to SCCPs, clear illustration of the exposure-effect relationship and comprehensive health risk assessments via multiple exposure routes, these results shed lights on developing and revising regulatory frameworks for governing the production and handling of SCCPs.
Collapse
Affiliation(s)
- Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Bin Sun
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Run-Ming He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jian-Kun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Fu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhao-Min Dong
- School of Public Health, Southeast University, Nanjing, 211189, China
| | - Yi Wan
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Yin S, Cseresznye A, Schönleben AM, Bosschaerts S, Rajaei F, Dahmardeh Behrooz R, Poma G, Liu X, Covaci A. Cumulative exposure assessment to polychlorinated alkanes (C 8-36) to indoor dust from Iranian kindergartens: Occurrence and health risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138305. [PMID: 40253788 DOI: 10.1016/j.jhazmat.2025.138305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The environmental and public health concerns associated with chlorinated paraffins (CPs) are significant, given their widespread use, long-lasting persistence, and potential adverse health effects. The objective of this study was to assess the contamination of polychlorinated alkanes (PCAs-C8-36), the major contaminants in the CP technical mixtures, in kindergartens in Tehran, Iran, and to evaluate the cumulative exposure risks through various routes, including ingestion, dermal contact, and inhalation of dust. The results revealed a pervasive contamination with PCAs. The sum of PCAs-C10-20 across all samples was found to be 1370 ng/g dw, with median values of 500 ng/g dw for ∑PCAs-C10-13, 620 ng/g dw for ∑PCAs-C14-17, and 280 ng/g dw for ∑PCAs-C18-20. These levels did not correlate with outdoor environmental factors or indoor characteristics. Dermal contact constituted 64-84 % of total exposure, with toddlers showing higher intake than caretakers. A cumulative exposure assessment was conducted to calculate the hazard quotient (HQ). The highest HQ value was observed for girls in the case of ∑PCAs-C10-13 (6.2 × 10-5), and the HQ for all groups remained well below the risk threshold. Despite the low level of immediate risks, chronic exposure in vulnerable population groups justifies proactive measures. Further investigation of exposure sources and implementation of interventions to reduce potential health risks are recommended, given the ubiquity of CPs in indoor environments. ENVIRONMENTAL IMPLICATIONS: This study highlights significant environmental implications of pervasive polychlorinated alkanes (PCAs-C8-36) contamination in Tehran's kindergartens, highlighting their persistence and potential long-term ecological impacts. Despite cumulative exposure risks (HQs <1) via dust ingestion, dermal contact, and inhalation, the ubiquity of PCAs (∑PCAs-C10-20: 1370 ng/g dw) raises concerns about chronic low-dose exposure in vulnerable toddlers. The lack of correlation between contamination levels and environmental/indoor factors suggests complex, unidentified emission sources. These findings emphasize the need for proactive regulatory measures to mitigate CP releases and prioritize indoor environmental quality, particularly in child-centric settings. Further research is critical to identify exposure pathways and inform policies safeguarding public health against persistent organic pollutants.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | | | - Stijn Bosschaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Fatemeh Rajaei
- Department of Environmental Sciences, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Reza Dahmardeh Behrooz
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Sistan, Zabol 98615-538, Iran
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xuanchen Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
5
|
Yin S, Folarin BT, Bosschaerts S, Oluseyi T, Poma G, Liu X, Covaci A. Human exposure to polychlorinated alkanes (C 8-36) in soil and dust from Nigerian e-waste sites: Occurrence, homologue pattern and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136954. [PMID: 39721250 DOI: 10.1016/j.jhazmat.2024.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are recognized as significant sources of chlorinated paraffin (CP) exposure. This study aims to investigate the environmental occurrence and distribution of polychlorinated alkanes (PCAs-C8-36), specifically in soil and outdoor dust samples collected from e-waste dumpsites and automobile dismantling and resale sites in Nigeria. The results revealed a widespread occurrence of PCAs across all sampled locations. For the PCAs homologue groups ∑PCAs-C10-13, ∑PCAs-C14-17, and ∑PCAs-C18-20, the median concentrations were 1150 ng/g dry weight (dw), 1180 ng/g dw, and 370 ng/g dw in the dust samples, and 2840 ng/g dw, 1820 ng/g dw, and 830 ng/g dw in the soil samples, respectively. Notably, the homologue distribution patterns of PCAs-C8-36 were similar in both dust and soil samples. However, PCAs-C10-13 was found to be higher in the soil samples, likely due to the wet and/or dry deposition effect of the aerosols, given these chemicals' volatile nature and ease of atmospheric dispersion. Pearson correlation analysis further revealed a co-occurrence of contaminants in the soil samples, supporting the hypothesis that soil acts as a sink for persistent organic pollutants (POPs). Additionally, lower molecular weight polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) showed reduced correlation with the PCAs. Health risk assessments indicated that working on e-waste sites could potentially pose a risk to the workers' health. This study highlights the urgent need for mitigating occupational exposure to PCAs, especially in informal e-waste processing environments where personal protective measures are often lacking.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State 23409, Nigeria
| | - Stijn Bosschaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xuanchen Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
6
|
Balla D, Costopoulou D, Perkons I, Saraga D, Zacs D, Voutsa D, Leondiadis L, Maggos T. Short- and medium-chain polychlorinated alkanes in the air of Athens, Greece. CHEMOSPHERE 2025; 373:144162. [PMID: 39923610 DOI: 10.1016/j.chemosphere.2025.144162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
The atmospheric occurrence and partition between the gas and particulate phase of short- (PCAs-C10-13) and medium-chain (PCAs-C14-17) polychlorinated alkanes (PCAs) were investigated during two sampling campaigns in Athens city, Greece. The concentrations of PCAs ranged between 1.46 and 43.6 ng m-3 in the gas phase, and between 5.8 and 40.3 ng m-3 in the particulate phase, which were within the reported levels in Europe. Significant seasonal variation was observed for PCAs-C10-13 and PCAs-C14-17 in the gas phase. C10Cl6-7 and C14Cl6-8 were the predominant short- and medium-chain congeners, respectively. Gas-phase PCAs exhibited significant positive correlation with temperature, and negative correlation with relative humidity. Diagnostic ratios of medium to short-chain PCAs suggested that ΣPCAs in total suspended particle (TSP) mainly originated from local sources. Furthermore, the relationship between partitioning coefficient Kp and the subcooled liquid pressure (PL°) was investigated. Moreover, Positive Matrix Factorization (PMF) analysis was employed to identify the potential ΣPCAs groups of sources. Finally, the estimated risk of inhalation exposure to ΣPCAs for adults and children was found to be low.
Collapse
Affiliation(s)
- Dimitra Balla
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece; Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Iela 3, Riga, LV-1076, Latvia.
| | - Dikaia Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Iela 3, Riga, LV-1076, Latvia.
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Thomas Maggos
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| |
Collapse
|
7
|
Ohoro CR, Olisah C, Wepener V. Investigating the research landscape of chlorinated paraffins over the past ten decades. FRONTIERS IN TOXICOLOGY 2025; 6:1533722. [PMID: 39911852 PMCID: PMC11794532 DOI: 10.3389/ftox.2024.1533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Chlorinated paraffins (CPs) are classified as emerging persistent organic pollutants (POPs). Due to their associated environmental and health impacts, these groups of chemicals have been a subject of interest among researchers in the past decades. Here we used a scientometric approach to understand the research landscape of CPs using literature published in the Web of Science and Scopus database. RStudio and VOSviewer programs were employed as scientometric tools to analyze the publication trends in global CP-related research from 1916 to 2024. A total of 1,452 articles were published over this period, with a publication/author and co-author/publication ratio of 0.43 and 5.49, respectively. China ranked first in publication output (n = 556, 43.3%), and the highest total citations (n = 12,007), followed by Sweden (n = 90), Canada (n = 77), and Germany (n = 75). Publications from developing countries were limited, with most contributions from Africa originating from Egypt (n = 7), South Africa (n = 5), and Nigeria (n = 3), primarily through international collaborations. The average annual growth rate of 4.3% suggests a significant future article output. This scientometric analysis allowed us to infer global trends in CPs, identify tendencies and gaps, and contribute to future research. Despite having similar toxicity to short-chain chlorinated paraffin (SCCP), long-chain chlorinated paraffin (LCCP) has received less attention. Therefore, future research should prioritize studying LCCP bioaccumulation and toxicity in diverse food webs, focusing on aquatic species vulnerable to CPs and effective toxicological models. Additionally, collaborative research with developing countries should be encouraged to enhance meeting the Stockholm Convention's demand.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gqeberha, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Zhang M, Zhang R, Kong Y, Li J, Wang G, Wu D, Wu M, Lan H. LCCP exposure leads to skin cell senescence damage by triggering oxidative stress mediated by mitochondrial Ca 2+ overload. Int Immunopharmacol 2024; 143:113471. [PMID: 39467346 DOI: 10.1016/j.intimp.2024.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Currently, LCCP is widely present in environmental media as well as animal and human samples, suggesting that exposure to LCCP may have posed a threat to the health of animals and humans. Skin is one of the important pathways for LCCP exposure. To clarify the effects of LCCP exposure on the skin, we have utilized two skin cell models, HaCaT and L929, to investigate the complex impacts of LCCP exposure on skin cell senescence and its potential regulatory mechanism(s). Firstly, the expression of senescence-related markers, including SA-β-Gal staining, p16, p21, and p53 proteins, were evaluated, and the results showed that skin cell senescence occurred under the treatment of LCCP. Moreover, our findings revealed that LCCP exposure triggered the activation of the NF-κB signaling pathway, prompting an inflammatory response in skin cells. To further understand the potential molecular mechanism of skin cell senescence induced by LCCP, according to our preliminary experimental results, we hypothesized that mtROS and Ca2+ might have played an important role in the LCCP-induced senescence of skin cells. Based on this hypothesis, the use of mtROS and Ca2+ inhibitors revealed a reduction in LCCP-triggered cell senescence and oxidative stress, validating our speculation. Similarly, in vivo experiments showed that LCCP enhanced the expression of inflammatory factors in mouse skin tissue, inhibiting skin proliferation and collagen level. This discovery was consistent with the findings from in vitro experiments. In summary, our experiments emphasized that both in vitro and in vivo, exposure to LCCP could induce skin aging, potentially through oxidative stress mediated by Ca2+ overload, leading to skin aging damage. The research presented here establishes an important foundation for continued examination of the toxicology characteristics of LCCP.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ruoting Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuebing Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jiawen Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
9
|
Parizkova D, Sykorova A, Tomasko J, Parizek O, Pulkrabova J. Evaluation of the Body Burden of Short- and Medium-Chain Chlorinated Paraffins in the Blood Serum of Residents of the Czech Republic. J Xenobiot 2024; 14:2003-2014. [PMID: 39728415 DOI: 10.3390/jox14040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are environmental contaminants known for their persistence and bioaccumulation in fatty tissues. SCCPs are considered potential carcinogens and endocrine disruptors, with similar effects expected for MCCPs. This study investigated the body burden of SCCPs and MCCPs in residents of two regions of the Czech Republic with different levels of industrial pollution. Blood serum samples from 62 individuals in Ceske Budejovice (control area) and Ostrava (industrial area) were analysed. The results showed higher concentrations of SCCPs (<120-650 ng/g lipid weight (lw)) and MCCPs (<240-1530 ng/g lw) in Ostrava compared to Ceske Budejovice (SCCPs: <120-210 ng/g lw, MCCPs: <240-340 ng/g lw). The statistical analysis revealed no significant correlations between chemical concentrations and demographic variables such as age, BMI, or gender. The findings are consistent with European and Australian studies but significantly lower than levels reported in China. This is the first comprehensive survey of SCCPs and MCCPs in human blood serum in the Czech Republic and the second study in Europe. The data collected in this study are essential for assessing SCCPs and MCCPs. They will contribute to a better understanding the potential health risks associated with exposure to these chemicals.
Collapse
Affiliation(s)
- Denisa Parizkova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic
| | - Aneta Sykorova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic
| | - Jakub Tomasko
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic
| | - Ondrej Parizek
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic
| | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Liang N, Cao R, Jiang N, Shi C, Guo Z, Gao Y, Zhang R, Zhang H, Chen J, Geng N. Occurrence and fate of atmospheric short/medium chain chlorinated paraffins: Size distribution and inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176507. [PMID: 39341256 DOI: 10.1016/j.scitotenv.2024.176507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Chlorinated paraffins (CPs) are intricate industrial compounds synthesized through alkane chlorination. Researches on the size distribution of short-chain (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in atmospheric particulate matter (PM) are limited. Here, we conducted a thorough investigation on the size-dependent distribution characteristics, deposition behavior in respiratory tract, and health risks associated with CPs in atmospheric PM. The concentration of SCCPs in atmospheric particulate matter (PM10) was much higher than MCCPs, with concentration ranges of 2.53-31.8 and 1.07-4.62 ng m-3, respectively. Concentrations of CPs increase with decreasing PM size, peaking at aerodynamic diameters (Dp) < 0.49 μm. Physicochemical properties influence the distribution of CP homologs in PM. Those with lower vapor pressure, higher octanol-air and octanol-water partition coefficients tended to accumulate in PM with larger geometric mean diameters. Most of the inhaled CPs in PM deposited in the upper airways, with a small amount in the trachea and alveolar regions. The estimated daily intakes values were highest when Dp < 0.49 μm. Particle size is an essential determinant for the deposition of inhaled CPs in PM and should be considered in health risk assessments.
Collapse
Affiliation(s)
- Naibing Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Jiang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Chengcheng Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhangpeng Guo
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruiqin Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Arko WE, Zhao S, Ma J, Tian L, Asante KA, Amoah DK, Qi S, Zhang G. Impact of anthropogenic activities on atmospheric chlorinated paraffins in Ghana using polyurethane foam disk - passive air sampler. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176252. [PMID: 39278497 DOI: 10.1016/j.scitotenv.2024.176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Chlorinated paraffins (CPs) are a global concern due to their high production, ubiquity in the environment and potential toxicity. In Ghana, there is a significant research gap on the concentration and sources of CPs in the air, as well as insufficient regular monitoring programs to track CP levels over time. This study utilized polyurethane foam-based passive air samplers (PUF-PAS) to examine the concentrations, sources and potential human health risks of CPs in the atmosphere surrounding e-waste sites, urban areas, commercial areas and control/background areas in Ghana. The medium-chain CPs (MCCPs) dominated with an average concentration of 26.0 ± 40.1 ng/m3 and ranged from 1.78 to 240 ng/m3. Short-chain CPs (SCCPs) ranged from 0.05 to 15.2 ng/m3 and had an average concentration of 3.48 ± 3.99 ng/m3. The very short-chain CPs (C9-CPs), had an average concentration of 0.544 ± 0.524 ng/m3 and ranged from 0.091 to 2.14 ng/m3. MCCPs exceeded SCCPs by a factor of 7.5 and C9-CPs by a factor of 48. C14Cl8 was the dominant congener in MCCPs and C10Cl7 was also the dominant congener in SCCPs. E-waste was the main contributor to SCCPs and MCCPs (>30 %) in Ghana. The assessed non-cancer risks associated with CP exposure were within acceptable ranges. For cancer risk, MCCPs indicated high potential health risk but C9-CPs and SCCPs showed low risk. To the best of our knowledge, this is the first study on CPs in Ghana's atmosphere, and e-waste was identified as the country's main source of CPs. This study will help regulatory bodies create policies and procedures to control the use and disposal of chlorinated paraffins.
Collapse
Affiliation(s)
- William Ekow Arko
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jianchu Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Tian
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
13
|
McGrath TJ, Hägele C, Schweizer S, Vetter W, Dodson RE, Le Bizec B, Covaci A, Dervilly G, Cariou R. Application of pattern deconvolution strategies for the estimation of bromochloro alkane concentrations in indoor dust samples. CHEMOSPHERE 2024; 366:143370. [PMID: 39306103 DOI: 10.1016/j.chemosphere.2024.143370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Bromochloro alkanes (BCAs) are a class of flame retardants similar in structure to polychlorinated alkanes (PCAs), which are the major component of short-chain chlorinated paraffins (SCCPs) listed as Persistent Organic Pollutants under the Stockholm Convention. BCAs have recently been detected for the first time in environmental samples. Due to the complete lack of commercially available analytical standards, no method for quantifying BCAs has been reported to date. In this study, 16 custom-synthesised standards with mixed bromine and chlorine halogenation and carbon chain lengths ranging from C10 to C17 were characterized by liquid chromatography and Orbitrap high-resolution mass spectrometry and used to assess the applicability of pattern deconvolution quantification strategies for BCAs in indoor dust. Br1-9 and Cl1-8 BCAs were detected as [M + Cl]- adduct ions among the C10 to C17 standards, as well as numerous PCA homologues. After applying correction factors to account for the presence of PCAs in the standards, triplicate fortification experiments using varied halogenation composition and concentration determined an average measurement accuracy of 81% over the carbon chain lengths studied and coefficient of variance ≤20% between replicates. Overall, approximately 89% of the ΣBCA concentrations quantified in the fortification trials met the European Union Reference Laboratory's accuracy acceptability criteria recommended for PCAs, between 50 and 150%. Application of the BCA pattern deconvolution quantification procedure to seven representative indoor dust samples from the United States of America revealed a low correlation between the homologue distribution in the samples and the prototype standards (R2 ≤ 0.40), which precluded reliable quantification. This study indicates that pattern deconvolution is an appropriate strategy for quantifying BCAs in environmental samples, but that a large set of appropriate mixture standards will be required before more reliable estimates of BCA concentrations can be achieved in indoor dust.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44300, Nantes, France; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Clara Hägele
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Sina Schweizer
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | | |
Collapse
|
14
|
Zhu C, Cao Z, Hu B, Li Z, Huang S, Han X, Luo X, Yuan H, Li L. Human bare and clothing-covered skin exposure to chlorinated paraffins for the general populations: Exposure pattern differential and significance of indirect dermal exposure via clothing-to-skin transport. ENVIRONMENT INTERNATIONAL 2024; 192:109068. [PMID: 39406162 DOI: 10.1016/j.envint.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
To investigate human exposure to short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) through dermal and oral intake via hand-to-mouth contact, wipes from the face, forearm, hand, and foot of 30 volunteers were sampled. The concentration of ∑SCCPs and ∑MCCPs ranged from 0.66 to 119 and 0.71 to 565 µg/m2, respectively. Hands exhibited significantly higher ∑CPs concentrations than other skin areas, indicating that direct contact with indoor surfaces contributed considerable CP levels on this bare skin area. Gender differences in CP levels were observed in wipes from all locations, except for the hands, possibly because of the significant variability in residuals on the hands. A significant positive relationship was found between CP levels on the hands and faces, and the CP ratios of the hands/faces were related to log KOA. Bare skin showed more significant variations in CP partitioning among related congeners and between genders than skin covered by clothing, as elucidated by the linear analysis of RSD and log KOA. Although concentrations on clothing-covered areas were relatively lower than on bare skin, the median estimated dermal absorption doses of ∑SCCPs and ∑MCCPs (152 and 737 ng/kg bw/day, respectively) for the entire body were approximately 1-2 orders of magnitude higher than those for oral ingestion (1.62 and 7.94 ng/kg bw/day, respectively), emphasizing indirect dermal uptake as a significant exposure pathway for humans.
Collapse
Affiliation(s)
- Chunyou Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Beibei Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhi Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xu Han
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haoran Yuan
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
15
|
Dong S, Qi S, Zhang S, Wu X, Xin J, Fan Y, Wang X, Wang P, Wu L. Tissue-Specific Accumulation of Orally Administered Short- and Medium-Chain Chlorinated Paraffins in Honeybees ( Apis mellifera L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13658-13667. [PMID: 39056270 DOI: 10.1021/acs.est.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The prevalence and distribution of chlorinated paraffins (CPs) have been extensively studied in various matrices and organisms; however, there is a lack of information about insects, particularly in honeybees. To address this gap, we studied young honeybee workers exposed to short- and medium-chain CPs (SCCPs and MCCPs) at an environmentally relevant concentration of 10 mg/L for 7 days, followed by a 7-day elimination period. Results indicated that CPs could transfer into the head after oral consumption and SCCPs and MCCPs exhibited clear bioaccumulation trends: midgut > hindgut > head. An evaluation of congener group distribution patterns demonstrated that the dominant congener groups in all target tissues were C11-13Cl7-8 and C14Cl7-8 for SCCPs and MCCPs, respectively, consistent with the treated CP standards. In honeybees, a significant negative relationship was observed for the log concentration of MCCP congener groups and their log KOW, but not with their log KOA. Conversely, no such correlation was found for SCCPs. These findings suggest that honeybees have a high potential to bioaccumulate MCCPs, particularly those with a low log KOW, and exhibit weak selectivity for SCCPs.
Collapse
Affiliation(s)
- Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingyi Wu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jianing Xin
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yaqun Fan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
16
|
Zhu C, Liu S, Cao Z, Hu B, Yang C, Luo X, Yuan H, Li L. Human dermal exposure to short- and medium-chain chlorinated paraffins: Effect of populations, activities, gender, and haze pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135169. [PMID: 39024769 DOI: 10.1016/j.jhazmat.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Human dermal exposure to chlorinated paraffins (CPs) has not been well documented. Therefore, hand wipes were collected from four occupational populations to analyze short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in order to estimate dermal uptake and oral ingestion via hand-to-mouth contact. The total CP levels (∑SCCPs and ∑MCCPs) in wipes ranged from 71.4 to 2310 µg/m2 in security guards, 37.6 to 333 µg/m2 in taxi drivers, 20.8 to 559 µg/m2 in office workers, and 20.9 to 932 µg/m2 in undergraduates, respectively. Security guards exhibited the highest levels of ∑SCCPs among four populations (p < 0.01). In undergraduates engaged in outdoor activities, C13 emerged as the most dominant SCCPs homologue group, followed by C12, C11, and C10. The levels of ∑SCCPs and ∑MCCPs in males in light haze pollution were significantly higher than that in heavy haze pollution (p < 0.05). The median estimated dermal absorption dose of SCCPs and MCCPs via hand was 22.2 and 104 ng (kg of bw)-1 day-1, respectively, approximately 1.5 times the oral ingestion [12.3 and 74.4 ng (kg of bw)-1 day-1], suggesting that hand contact is a significant exposure source to humans.
Collapse
Affiliation(s)
- Chunyou Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shijun Liu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Beibei Hu
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou 511458, China.
| | - Chenyu Yang
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haoran Yuan
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
17
|
Chen H, Chigusa K, Kanda K, Tanoue R, Ochiai M, Iwata H. Developmental toxicity of short-chain chlorinated paraffins on early-stage chicken embryos in a shell-less (ex-ovo) incubation system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116304. [PMID: 38626606 DOI: 10.1016/j.ecoenv.2024.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs) are listed as a category of globally controlled persistent organic pollutants (POPs) by the Stockholm Convention in 2017. However, SCCP toxicity, particularly their developmental toxicity in avian embryos, has not been well studied. In this study, we observed the early development of chicken embryos (Gallus gallus domesticus) by applying a shell-less (ex-ovo) incubation system developed in our previous studies. After exposing embryos at Hamburger Hamilton stage (HHS) 1 to SCCPs (control, 0.1% DMSO; SCCPs-L, 200 ng/g; SCCPs-M, 2000 ng/g; SCCPs-H, 20,000 ng/g), we observed the development of embryos from the 3rd to 9th incubation day. Exposure to SCCPs-M and -H induced a significant reduction in survival, with an LD50 of 3100 ng/g on the 9th incubation day. Significant dose-dependent decreases in body length were observed from days 4-9. We also found that SCCPs-H decreased the blood vessel length and branch number on the 4th incubation day. Additionally, SCCPs-H significantly reduced the heart rate on the 4th and 5th incubation days. These findings suggest that SCCPs may have potential of developmental and cardiovascular toxicity during the early stages of chicken embryos. Quantitative PCR of the mRNA of genes related to embryonic development showed that SLC16A10 (a triiodothyronine transporter) level decreased in the SCCPs-H group, showing a significant positive correlation with the body length of embryos. THRA level, a thyroid hormone receptor, was significantly decreased in the SCCPs-H group, whereas that of DIO3 level, a deiodinase was significantly increased. These results suggest that SCCPs exposure induces developmental delays via the thyroxine signaling pathway. Analysis of thyroid hormones (THs) in blood plasma also indicated a significant reduction in thyroxine (T4) levels in the SCCPs-H group on the 9th incubation day of embryos. In conclusion, SCCPs induce developmental toxicity by disrupting thyroid functions at the early-life stage of chicken embryos.
Collapse
Affiliation(s)
- Hao Chen
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Kaori Chigusa
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Kazuki Kanda
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|
18
|
McGrath TJ, Saint-Vanne J, Hutinet S, Vetter W, Poma G, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Le Bizec B, Dervilly G, Covaci A, Cariou R. Detection of Bromochloro Alkanes in Indoor Dust Using a Novel CP-Seeker Data Integration Tool. Anal Chem 2024; 96:4942-4951. [PMID: 38478960 DOI: 10.1021/acs.analchem.3c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44307 Nantes, France
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, 70599, Stuttgart, Germany
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Robin E Dodson
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | |
Collapse
|
19
|
Jiang L, Ma X, Ciren Y, Wu J, Wang Y, Jiang G. Characterization of short-, medium-, and long-chain chlorinated paraffins in Tibetan butter and implications for local human exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133117. [PMID: 38056260 DOI: 10.1016/j.jhazmat.2023.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Since short-chain chlorinated paraffins (SCCPs) were severely restricted under the Stockholm Convention in 2017, a shift to the production of other chlorinated paraffin (CP) groups has occurred, particularly medium-chain (MCCPs) and long-chain CPs (LCCPs), although data on the latter are sparser in the literature. This study described the occurrence of three types of CPs in butter samples from six livestock milk sources across 15 sites in Tibet. The median levels of SCCPs, MCCPs, and LCCPs were 132, 456, and 13.2 ng/g lipid, respectively. The detection rate of 97.6% suggests that LCCPs can be transmitted to humans. Thus, all CPs, regardless of their chain length and degree of chlorination, should be treated with caution. The differences in concentration were mainly caused by dynamic wet deposition and thermodynamic cold-trapping effects across the different districts. The homolog pattern of CPs varied widely across livestock species, which was attributed to the diverse impacts of the physicochemical properties of the homologs, especially the heterogeneity in the uptake and transfer of CPs across different organisms. Under three different criteria, the health risks associated with the daily intake of SCCPs should not be neglected, especially considering other intake exposure pathways and the degradation of longer-carbon-chain monomers.
Collapse
Affiliation(s)
- Lu Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xindong Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan 570228, China
| | - Yuzhen Ciren
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
20
|
Melchiors M, Tran KM, Svingen T, Rosenmai AK. In vitro assessment of potential endocrine disrupting activities of chlorinated paraffins of various chain lengths. Toxicol Appl Pharmacol 2024; 484:116843. [PMID: 38331103 DOI: 10.1016/j.taap.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The production of chlorinated paraffins (CPs) has risen in the past two decades due to their versatile industrial applications. Consequently, CPs are now widely detected in human food sources, the environment, and in human matrices such as serum, the placenta and breast milk. This raises concern about prenatal and postnatal exposure. While some studies suggest that certain short-chained CPs (SCCPs) may have endocrine disrupting properties, knowledge about potential endocrine disrupting potential of medium- (MCCP) and long-chained CPs (LCCPs) remains relativity sparse. Here, we used a panel of in vitro assays to investigate seven pure CPs and two technical mixtures of CPs. These varied in chain length and, chlorination degree. The in vitro panel covered androgen, estrogen, and retinoic acid receptor activities, transthyretin displacement, and steroidogenesis. One of the SCCPs inhibited androgen receptor (AR) activity. All SCCPs induced estrogen receptor (ER) activity. Some SCCPs and MCCPs increased 17β-estradiol levels in the steroidogenesis assay, though not consistently across all substances in these groups. SCCPs exhibited the most pronounced effects in multiple in vitro assays, while the tested LCCPs showed no effects. Based on our results, some CPs can have endocrine disrupting potential in vitro. These findings warrant further examinations to ensure that CPs do not cause issues in intact organisms, including humans.
Collapse
Affiliation(s)
- Mikala Melchiors
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Kieu-Mi Tran
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | |
Collapse
|
21
|
Yuan B, Bignert A, Andersson PL, West CE, Domellöf M, Bergman Å. Polychlorinated alkanes in paired blood serum and breast milk in a Swedish cohort study: Matrix dependent partitioning differences compared to legacy POPs. ENVIRONMENT INTERNATIONAL 2024; 183:108440. [PMID: 38232504 DOI: 10.1016/j.envint.2024.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Polychlorinated alkanes (PCAs) constitute a large group of individual congeners originating from commercial chlorinated paraffin (CP) products with carbon chain lengths of PCAs-C10-13, PCAs-C14-17, and PCAs-C18-32, occasionally containing PCAs-C6-9 impurities. The extensive use of CPs has led to global environmental pollution of PCAs. This study aimed to quantify PCAs in paired serum and breast milk of lactating Swedish mothers, exploring their concentration relationship. METHODS Twenty-five paired samples of mothers' blood serum and breast milk were analysed and concentrations were determined for PCAs C6-32 and compared to 4,4'-DDE, the PCB congener 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153), and hexachlorobenzene (HCB). RESULTS The median concentrations of PCAs-C6-9, PCAs-C10-13, PCAs-C14-17, PCAs-C18-32 and ΣPCAs in serum were 14, 790, 520, 16 and 1350 ng/g lipid weight (lw), respectively, and in breast milk 0.84, 36, 63, 6.0 and 107 ng/g lw. Levels of 4,4'-DDE, CB-153 and HCB were comparable in the two matrices, serum and breast milk at 17, 12 and 4.9 ng/g lw. The results show significant differences of PCAs-C10-13 and PCAs-C14-17 in breast milk with 22- and 6.2-times lower lw-based concentrations than those measured in serum. On wet weight the differences serum/breast milk ratios of PCAs-C6-9, PCAs-C10-13, PCAs-C14-17, PCAs-C18-32 and ΣPCAs were 1.7, 3.2, 1.0, 0.4 and 1.6, respectively, while the ratio for 4,4'-DDE, CB-153 and HCB were each close to 0.1. CONCLUSION Swedish lactating mothers had high serum concentrations of PCAs-C10-13 and PCAs-C14-17, with the ΣPCAs median serum concentration of 1350 ng/g lw. The breast milk concentration, although considerably lower at 107 ng/g lw, still surpassed those of 4,4'-DDE, CB-153 and HCB, suggesting an exposure risk of infants to PCAs. The variation in blood and breast milk accumulation between PCAs and studied legacy POPs, is rarely discussed but warrants further studies on partitioning properties as well as associated toxicological implications.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science (ACES), Stockholm University, SE-106 92, Stockholm, Sweden; Department of Chemistry, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | - Anders Bignert
- The Swedish Museum of Natural History, SE-104 01, Stockholm, Sweden.
| | | | - Christina E West
- Department of Clinical Sciences, Umeå University, SE-901 87, Umeå, Sweden.
| | - Magnus Domellöf
- Department of Clinical Sciences, Umeå University, SE-901 87, Umeå, Sweden.
| | - Åke Bergman
- Department of Environmental Science (ACES), Stockholm University, SE-106 92, Stockholm, Sweden; Department of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
22
|
Tahir A, Abbasi NA, He C, Ahmad SR. Exposure and human health risk assessment of chlorinated paraffins in indoor and outdoor dust from a metropolitan city, Lahore, Pakistan. CHEMOSPHERE 2024; 347:140687. [PMID: 37952823 DOI: 10.1016/j.chemosphere.2023.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Chlorinated paraffins (CPs) are widely used in commercial products due to their stability and durability and are subsequently released in the environment posing serious health risks in human population. In this study, dust samples from indoor and outdoor settings of residential, commercial and industrial zones as well as from vehicles were collected from a metropolitan city, Lahore, Pakistan. A total of 83 dust samples were analyzed for short (SCCPs) and medium (MCCPs) chained CPs through quadrupole time of flight mass spectrometer in atmospheric pressure chemical ionization (APCI QToF-MS) mode. The median concentrations of ƩCPs (C10-17) in outdoor dust were higher than indoor dust in industries (0.97 vs 0.48 μg/g), and residential areas (0.70 vs 0.13 μg/g) while lower in commercial areas (0.28 vs 0.44 μg/g) reflecting their higher prevalence in industrial and residential zones. The vehicular dust had median ƩCPs of 0.16 μg/g which was similar to residential indoor dust. Overall, ƩSCCPs were dominant among all zones with C10,12 and Cl7-8 as abundant carbon and chlorine congeners in both indoor and outdoor dusts. No significant correlations were observed between indoor and outdoor dust for ƩSCCPs and ƩMCCPs indicating their varying exposure. Health hazard index and margin of exposure revealed that toddlers were at higher risk compared to adults as a results of CPs exposure from both indoor and outdoor environments. This is the first ever assessment of CPs in Pakistan reflecting higher prevalence of SCCPs than MCCPs in dust of local environment posing some serious health consequences hence needed intensive investigation and effective management.
Collapse
Affiliation(s)
- Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Chang He
- Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, 4102, Australia
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
23
|
Liao H, Li X, Zhou Y, Wu Y, Cao Y, Yang J, Zhang J. Biomonitoring, exposure routes and risk assessment of chlorinated paraffins in humans: a mini-review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1588-1603. [PMID: 37655634 DOI: 10.1039/d3em00235g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chlorinated paraffins (CPs), which were conventionally classified into short- (SCCPs), medium- (MCCPs) and long- (LCCPs) chain CPs, have received growing attention due to their wide usage and extensive detection in environmental samples and biota. The number of studies regarding the biomonitoring of CPs in human beings increased rapidly and their health risk gained great concern. This review summarized their occurrence and homologue patterns in human matrices including blood/serum, placenta, cord serum and breast milk. As the production and usage of SCCPs was progressively banned after being listed in Annex A of the Stockholm Convention, the production of MCCPs and LCCPs was stimulated. Accordingly, the ratio of MCCPs/SCCPs in human samples has increased rapidly in the last 5 years. The current understanding of exposure routes and risk assessments of CPs was also reviewed. Oral dietary intake is the most predominant source of daily CP intake, but dust ingestion, inhalation and dermal exposure is also nonnegligible, especially for MCCPs and LCCPs. Furthermore, the reported upper bound of the estimated daily intakes (EDIs) in various risk assessment studies was close to or exceeded the tolerable daily intakes (TDIs). Considering the bioaccumulation and long-lasting exposure of CPs, their health impacts on humans and the ecosystem required continuous monitoring and evaluation.
Collapse
Affiliation(s)
- Hanyu Liao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xue Li
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yuanyuan Zhou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yinyin Wu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yifei Cao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jun Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jianyun Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
24
|
McGrath TJ, Poma G, Hutinet S, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Dervilly G, Cariou R, Covaci A. An international investigation of chlorinated paraffin concentrations and homologue distributions in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121994. [PMID: 37302785 DOI: 10.1016/j.envpol.2023.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In this study, very short-, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs and LCCPs, respectively) were measured in 40 indoor dust samples from four countries including Japan (n = 10), Australia (n = 10), Colombia (n = 10) and Thailand (n = 10). Homologues of the chemical formula CxH(2x+2-y)Cly ranging C6-36 and Cl3-30 were analysed using liquid chromatography coupled to Orbitrap high resolution mass spectrometry (LC-Orbitrap-HRMS) and integrated using novel custom-built CP-Seeker software. CPs were detected in all dust samples with MCCPs the dominant homologue group in all countries. Overall median ∑SCCP, ∑MCCP and ∑LCCP (C18-20) concentrations determined in dust samples were 30 μg/g (range; 4.0-290 μg/g), 65 μg/g (range; 6.9-540 μg/g) and 8.6 μg/g (range; <1.0-230 μg/g), respectively. Of the quantified CP classes, overall concentrations were generally highest in the samples from Thailand and Colombia, followed by Australia and Japan. vSCCPs with C≤9 were detected in dust from each country with an overall frequency of 48%, while LCCPs (C21-36) were present in 100% of samples. Estimated daily intakes (EDIs) calculated for SCCPs and MCCPs relating to ingestion of contaminated indoor dust were considered not to represent health risks based on currently available toxicological data using the margin of exposure (MOE) approach. To the authors' knowledge, this study provides the first data on CPs in indoor dust from Japan, Colombia and Thailand, and is among the first reports of vSCCPs in indoor dust, globally. These findings indicate that further toxicological data and the availability of appropriate analytical standards are needed to evaluate the potential for negative health outcomes deriving from exposure to vSCCPs and LCCPs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Oniris, INRAE, LABERCA, 44300, Nantes, France.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
25
|
Guida Y, Matsukami H, Oliveira de Carvalho G, Weber R, Vetter W, Kajiwara N. Homologue Composition of Technical Chlorinated Paraffins Used in Several Countries over the Last 50 Years─SCCPs Are Still Out There. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13136-13147. [PMID: 37607020 DOI: 10.1021/acs.est.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chlorinated paraffins (CPs) are widely produced chemicals, with certain CP subgroups facing global restrictions due to their environmental dispersion, persistence, bioaccumulation, and toxicity. To evaluate the effectiveness of these international restrictions, we assessed the homologue group contribution and the mass fraction of short-chain CPs (SCCPs: C10-C13), medium-chain CPs (MCCPs: C14-C17), and long-chain CPs (LCCPs: ≥C18) in 36 technical CP mixtures used worldwide over the last 50 years. Using low-resolution mass spectrometry (LC-ESI-MS/MS), we quantified 74 CP homologue groups (C10Cl4-C20Cl10). Additionally, high-resolution mass spectrometry (LC-ESI-QTOF-MS) screening was employed to identify unresolved CP contents, covering 375 CP homologue groups (C6Cl4-C30Cl30). Overall, 1 sample was mainly composed of
Collapse
Affiliation(s)
- Yago Guida
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Gabriel Oliveira de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Roland Weber
- POPs Environmental Consulting, 73527 Schwäbisch Gmünd, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, DE-70593 Stuttgart, Germany
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
26
|
Li Q, Cheng L, Jin X, Liu L, Shangguan J, Chang S, Sun R, Shang Y, Lv Q, Li J, Zhang G. Chlorinated paraffins in multimedia during residential interior finishing: Occurrences, behavior, and health risk. ENVIRONMENT INTERNATIONAL 2023; 178:108072. [PMID: 37406371 DOI: 10.1016/j.envint.2023.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Though with bioaccumulation and toxicity, chlorinated paraffins (CPs) are still high produced and widely utilized in various daily necessities for extender plasticization and flame retardation. CPs can be released during the reprocessing processes of finishing materials and distributed in multi-environmental media. Herein, concentrations and compositions of CPs in four representative media including interior finishing materials, PM10, total suspended particulate (TSP), and dust samples collected from eight interior finishing stages were studied. Unexpectedly, CP concentrations in ceramic tiles was found to be high with a mean value of 7.02 × 103 μg g-1, which could be attributed to the presence of CPs in the protective wax coated on ceramic tiles surfaces. Furthermore, the pollution characteristics of short-chain and medium-chain CPs (SCCPs and MCCPs) in those samples were inconsistent. According to the investigation regarding Kdust-TSP and [Formula: see text] , the occurrence and distribution of CPs in indoor atmospheric particles (PM10 and TSP) and dust were highly affected by reprocessing processes (cutting, hot melting, etc.) compared to that in the finishing materials. Moreover, dermal contact was the primary pathway of CP exposure for the occupational population (interior construction workers) for most interior finishing stages, and the interior finishing process is the prime CP exposure period for the occupational groups. As suggested by our assessment, though hardly posing an immediate health risk, CPs exposure still presents unneglected adverse health effects, which calls for adequate personal protections during interior finishing, especially in developing countries.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China.
| | - Lei Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Xinjie Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Linjie Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Shixiang Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Ruoxi Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yihan Shang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Qing Lv
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
27
|
He W, Sun P, Zhao Y, Pu Q, Yang H, Hao N, Li Y. Source toxicity characteristics of short- and medium-chain chlorinated paraffin in multi-environmental media: Product source toxicity, molecular source toxicity and food chain migration control through silica methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162861. [PMID: 36931521 DOI: 10.1016/j.scitotenv.2023.162861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Short and medium-chain chlorinated paraffin (SCCP/MCCP) have been widely studied because of their extensive environmental hazards. In this study, product source toxicity, molecular source toxicity and food chain migration of SCCP and MCCP in multi-environmental media were comprehensively considered. The additive combination of SCCP and MCCP in the air, water and soil environment was adjusted, and PVC, PU and rubber products with the lowest source toxicity were screened. The source toxicity of SCCP and MCCP in the water environment was inhibited by design of the feed additive addition scheme (highest inhibition was 16.29 %), and the source toxicity of SCCP and MCCP in the soil environment was affected by different field management measures (highest inhibition was 38.22 %). A forage fertilizer addition plan, a cattle feed addition plan and a special population healthy complementary food regulation plan were developed to prevent the migration step by step and absorption of SCCP and MCCP in the terrestrial food chain. In addition, by means of density functional theory and analysis of key amino acid residues, the mechanism of toxicity difference between SCCP and MCCP was analyzed from the level of chemical interaction, and rationality of the inhibition scheme designed in this study was verified.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
28
|
Zhang J, Liao H, Chen Y, Li X, Chen R, Han S, Liu S, Yin S. Concentrations and homologue patterns of SCCPs and MCCPs in the serum of the general population of adults in Hangzhou, China. CHEMOSPHERE 2023:139131. [PMID: 37285971 DOI: 10.1016/j.chemosphere.2023.139131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Due to their ubiquitous presence in the environment and humans, chlorinated paraffins (CPs) are a major environmental and public health concern. CPs are known to persist, bioaccumulate and potentially threaten human health, but reports on their internal exposure in the adult general population are still scarce. In this study, serum samples collected from adults living in Hangzhou, China, were quantified for SCCPs and MCCPs using GC-NCI-MS methods. A total of 150 samples were collected and subjected to analysis. ∑SCCPs were detected in 98% of the samples with a median concentration of 721 ng/g lw. MCCPs were found in all serum samples with a median concentration of 2210 ng/g lw, indicating that MCCPs were the dominant homologous group. For SCCPs and MCCPs, ∑C10 and ∑C14 were found to be the dominant carbon chain length homologues. Our results showed that age, BMI and lifestyle were not found to be significantly associated with internal exposure to CPs for the samples in this study. Based on PCA analysis, an age-specific distribution of CP homologues was observed. This suggests that internal exposure to CPs in the general population is related to exposure scenarios and history. The results of this study may contribute to a better understanding of the internal exposure to CPs in the general population and may provide a direction for the investigation of the source of exposure to CPs in the environment and daily life.
Collapse
Affiliation(s)
- Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hanyu Liao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanhong Chen
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xue Li
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China; Toxicological Centre, Universiteit Antwerpen, Wilrijk, 2610, Belgium.
| |
Collapse
|
29
|
Choo G, Ekpe OD, Kim DH, Oh JE. Human exposure to short-chain chlorinated paraffins and organophosphate flame retardants in relation to paired multiple sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162681. [PMID: 36889397 DOI: 10.1016/j.scitotenv.2023.162681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In this study, the levels and distributions of short chain chlorinated paraffins (SCCPs) and organophosphate flame retardants (OPFRs) were determined in 10-88 aged human serum/hair and their paired multiple exposure sources, including one-day composite food, drinking water, and house dust. The average concentration of SCCPs and OPFRs were respectively 6313 and 176 ng/g lipid weight (lw) in serum, 1008 and 108 ng/g dry weight (dw) in hair, 1131 and 27.2 ng/g dw in food, not detected and 45.1 ng/L in drinking water, and 2405 and 864 ng/g in house dust. The levels of SCCPs in serum of adults were significantly higher than those of juvenile (Mann-Whitney U test, p < 0.05), whereas gender showed no statistically significant difference in SCCPs and OPFRs levels. In addition, there were significant relationships of OPFR concentrations between serum and drinking water as well as hair and food using the multiple linear regression analysis, whereas no correlation was observed for SCCPs. Based on the estimated daily intake, the major exposure pathway for SCCPs was food, while for OPFRs, it was food and drinking water with three order magnitude safety margin.
Collapse
Affiliation(s)
- Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
30
|
Wang XT, Wang CL, Zhou Y, Ren GF, Fu R, An J. Short- and medium-chain chlorinated paraffins in urban road dust of Shanghai, China: concentrations, source apportionment and human exposure assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3789-3804. [PMID: 36580188 DOI: 10.1007/s10653-022-01453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 06/01/2023]
Abstract
Chlorinated paraffins (CPs) are ubiquitous anthropogenic contaminants that have been found in various environmental media. The objective of this study was to determine concentrations, spatial distribution, possible sources and potential health risk of SCCPs and MCCPs in urban road dust collected from Shanghai, China. The concentrations ranged from 9.74 to 11,400 ng g-1 for ΣSCCPs, 44.1 to 49,900 ng g-1 for ΣMCCPs and 53.9 to 61,400 ng g-1 for total CPs, respectively. MCCPs were the dominant component in all road dust, averagely accounting for 82.8% of total CPs. The concentrations of CPs in dust collected from traffic and commercial areas were significantly higher than those from campus, industrial, park and residential areas (p < 0.01), which could be attributed to tire wear in heavy traffic. All dust samples were divided into two groups by hierarchical cluster analysis for both SCCPs and MCCPs, and the most abundant homologue groups in most samples were C10Cl7-10 and C13Cl7-9 for SCCPs, and C14Cl7-9 and C15Cl8-9 for MCCPs. Correlation analysis showed that all carbon homologues in road dusts were highly correlated each other, suggesting SCCPs and MCCPs in dust maybe came from similar sources. Three sources for CPs in dust samples were apportioned by the PMF model; their relative contributions to the total CPs burden in dust were 25.6% for factor 1 (commercial CP mixture), 13.7% for factor 2 (long-distance transport) and 60.7% for factor 3 (commercial CP mixture). The median estimated daily intakes of total CPs via road dust were 1.78 × 10-5 for children and 3.0 × 10-6 mg kg-1 day-1 for adults, respectively. Quantitative risk assessment using non-cancer hazard index and total margin of exposure of total CPs indicated that total CPs at the present level in road dust pose no significant risk for both children and adults in Shanghai.
Collapse
Affiliation(s)
- Xue-Tong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng-Lin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, 200040, China
| | - Guo-Fa Ren
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rui Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
31
|
Mu YW, Cheng D, Zhang CL, Zhao XL, Zeng T. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162187. [PMID: 36781137 DOI: 10.1016/j.scitotenv.2023.162187] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 μg/kg bw/d) and the UK Committee on Toxicity (COT, 30 μg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.
Collapse
Affiliation(s)
- Ying-Wen Mu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
32
|
Yin S, McGrath TJ, Cseresznye A, Bombeke J, Poma G, Covaci A. Assessment of silicone wristbands for monitoring personal exposure to chlorinated paraffins (C 8-36): A pilot study. ENVIRONMENTAL RESEARCH 2023; 224:115526. [PMID: 36813067 DOI: 10.1016/j.envres.2023.115526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs. Twelve participants were asked to wear a pre-cleaned wristband for a week during the summer of 2022, and three field samplers (FSs) in different micro-environments were also deployed. The samples were then analyzed for CP homologs by LC-Q-TOFMS. In worn SWBs, the median concentrations of quantifiable CP classes were 19 ng/g wb, 110 ng/g wb, and 13 ng/g wb for ∑SCCPs, ∑MCCPs, and ∑LCCPs (C18-20), respectively. For the first time, lipid content is reported in worn SWBs, which could be a potential impact factor in the kinetics of the accumulation process for CPs. Results showed that micro-environments were key contributors to dermal exposure to CPs, while a few outliers suggested other sources of exposure. CP exposure via dermal contact showed an increased contribution and thus poses a nonnegligible potential risk to humans in daily life. Results presented here provide proof of concept of the use of SWBs as a cheap and non-invasive personal sampler in exposure studies.
Collapse
Affiliation(s)
- Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
33
|
Huang J, Zhao L, Shi Y, Zeng X, Sun W, Zhao X, Liu R, Wu Q, Dong G, Chen D, Liu X. Characterization of short-, medium- and long-chain chlorinated paraffins in ambient PM 2.5 from the Pearl River Delta, China. ENVIRONMENT INTERNATIONAL 2023; 175:107932. [PMID: 37116426 DOI: 10.1016/j.envint.2023.107932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
Research on the environmental occurrence of long-chain chlorinated paraffins (LCCPs) in ambient fine particulate matter (PM2.5) is still scarce. In the present study, short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs) and LCCPs were simultaneously quantified and profiled in PM2.5 samples collected from 96 primary or secondary schools in the Pearl River Delta of South China. SCCPs, MCCPs and LCCPs were detected in higher than 90% samples with concentrations in the range of 0.832-109, 1.02-110, and 0.173-17.4 ng/m3, respectively. The dominant congener groups of SCCPs, MCCPs and LCCPs were C13Cl6-8, C14Cl7-8, and C18Cl7-9, respectively. The concentrations of SCCPs and MCCPs were higher in summer than in winter, while an opposite seasonal trend was observed for LCCPs. Principal components analysis showed there were seasonal variations in the congener group patterns with C13Cl6-7 and C14Cl7 more abundant in summer than in winter. Concentrations of CPs also exhibited slight spatial variations. Exposure risk assessment based on different age groups suggested exposure to PM2.5-associated CPs would not pose significant health risk. The present study expands the existing knowledge of CPs contamination in atmospheric environment.
Collapse
Affiliation(s)
- Jingwen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Zhao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yumeng Shi
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenwen Sun
- SCIEX (China) Co., Ltd., Guangzhou 510623, China
| | | | - Ruqing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
34
|
Shen M, Liu G, Zhou L, Yin H, Arif M. Comparison of pollution status and source apportionment for PCBs and OCPs of indoor dust from an industrial city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2473-2494. [PMID: 36006579 DOI: 10.1007/s10653-022-01360-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, the pollution status of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was investigated in indoor and outdoor dust from three different functional areas of Hefei, China. The relationship between the concentrations of PCBs and OCPs and different influencing factors in dwellings was studied. The results showed that the concentrations of PCBs and OCPs were higher in samples from dwellings with higher smoking frequency, lower cleaning frequency, higher floors and smaller household size. The results of Spearman's correlation coefficient analysis indicated that PCBs and OCPs were not consistently associated with each other, while sources of low-chlorinated PCBs and high-chlorinated PCBs were different. Scanning electron microscopy (SEM) shows the shape of indoor dust was a mixture of blocky, flocculated, spherical structures, and irregular shapes. The results of principal component analysis (PCA) and positive matrix factorization model (PMF) showed that the PCBs and OCPs of indoor dust came from both indoor and outdoor sources between local and regional transport. Carbon (δ13C) and Nitrogen (δ15N) stable isotope results indicate or show that the indoor dust (δ13C: - 24.37‰, δ15N: 6.88‰) and outdoor dust (δ13C: - 12.65‰, δ15N: 2.558‰) is derived from fossil fuel, coal combustion, road dust, fly ash, C4 biomass and soil. Potential source contribution factor (PSCF) and concentration weighted-trajectory analysis suggest that sources of pollutants were local and regional transport from surrounding provinces and marine emissions. The average daily dose (adult: 8.20E-04, children: 2.37E-03) of pollutants and the carcinogenic risks (adult: 1.23E-02, children: 2.65E-02) were relatively greater for children than adults. This study demonstrates the utility of SEM to characterize indoor dust morphology while combining PMF, PSCF, and stable isotope methods in identifying indoor PCBs and OCPs sources and regions.
Collapse
Affiliation(s)
- Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Hao Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| |
Collapse
|
35
|
Weng J, Yu H, Zhang H, Gao L, Qiao L, Ai Q, Liu Y, Liu Y, Xu M, Zhao B, Zheng M. Health Risks Posed by Dermal and Inhalation Exposure to High Concentrations of Chlorinated Paraffins Found in Soft Poly(vinyl chloride) Curtains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5580-5591. [PMID: 36976867 DOI: 10.1021/acs.est.2c07040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are used in many products, including soft poly(vinyl chloride) curtains, which are used in many indoor environments. Health hazards posed by CPs in curtains are poorly understood. Here, chamber tests and an indoor fugacity model were used to predict CP emissions from soft poly(vinyl chloride) curtains, and dermal uptake through direct contact was assessed using surface wipes. Short-chain and medium-chain CPs accounted for 30% by weight of the curtains. Evaporation drives CP migration, like for other semivolatile organic plasticizers, at room temperature. The CP emission rate to air was 7.09 ng/(cm2 h), and the estimated short-chain and medium-chain CP concentrations were 583 and 95.3 ng/m3 in indoor air 21.2 and 172 μg/g in dust, respectively. Curtains could be important indoor sources of CPs to dust and air. The calculated total daily CP intakes from air and dust were 165 ng/(kg day) for an adult and 514 ng/(kg day) for a toddler, and an assessment of dermal intake through direct contact indicated that touching just once could increase intake by 274 μg. The results indicated that curtains, which are common in houses, could pose considerable health risks through inhalation of and dermal contact with CPs.
Collapse
Affiliation(s)
- Jiyuan Weng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoran Yu
- Dalian Institute of Chemical Physics, Chinese Academy Of Sciences, Dalian 116023, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy Of Sciences, Dalian 116023, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
36
|
Wu Y, Gao S, Zeng X, Liang Y, Liu Z, He L, Yuan J, Yu Z. Levels and diverse composition profiles of chlorinated paraffins in indoor dust: possible sources and potential human health related concerns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01524-9. [PMID: 36881246 DOI: 10.1007/s10653-023-01524-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs), a group of mixtures with different carbon chain lengths and chlorine contents, are widely used as plasticizers and flame retardants in various indoor materials. CPs could be released from CP-containing materials into the ambient environment and then enter the human body via inhalation, dust ingestion and dermal absorption, resulting in potential effects on human health. In this study, we collected residential indoor dust in Wuhan, the largest city in central China, and focused on the co-occurrence and composition profiles of CPs as well as the resultant human risk via dust ingestion and dermal absorption. The results indicated that CPs with C9-40 were ubiquity in indoor dust with medium-chain CPs (MCCPs, C14-17) as the main components (6.70-495 μg g-1), followed by short-chain CPs (SCCPs, C10-13) (4.23-304 μg g-1) and long-chain (LCCPs, C≥18) CPs (3.68-331 μg g-1). Low levels (not detected-0.469 μg g-1) of very short-chain CPs (vSCCPs, C9) were also found in partial indoor dust. The dominant homolog groups were C9 and Cl6-7 groups for vSCCPs, C13 and Cl6-8 groups for SCCPs, C14 and Cl6-8 groups for MCCPs, and C18 and Cl8-9 groups for LCCPs. Based on the measured concentrations, vSCCPs, SCCPs, MCCPs, and LCCPs posed limited human health risks to local residents via dust ingestion and dermal absorption.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiyang Liu
- Institute of Atmospheric Environment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Lixiong He
- Fujian Academy of Environmental Sciences, Fuzhou, 350013, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
37
|
Yu H, Gao Y, Zhan F, Zhang H, Chen J. Release Mechanism of Short- and Medium-Chain Chlorinated Paraffins from PVC Materials under Thermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3095-3103. [PMID: 36799869 DOI: 10.1021/acs.est.2c07548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) as plasticizers are massively added to polyvinyl chloride (PVC) products, during whose life cycle CPs can be continuously released especially under thermal stress. In this study, a PVC cable sheath was adopted as a representative kind of PVC material to investigate the release behaviors of short- and medium-chain CPs (SCCPs and MCCPs) under thermal treatment. Release percentages of CPs with increasing temperature followed a Gaussian-like curve. At the unmolten stage of 80 °C, heating for 10 min caused 0.051% of added SCCPs and 0.029% of added MCCPs to be released. At the molten stage of 270 °C, accumulative release rates of SCCPs and MCCPs within 10 min were up to 30 and 14%, respectively. The developed emission model indicated that material-gas partitioning and internal diffusion simultaneously governed the release of CPs. During thermal treatment, the release of CPs could be remarkably affected by the thermal expansion of the PVC material and the formation of breakage and micropores. Congener group profiles of released CPs indicated a slight fractionation effect for SCCPs during the release process. Furthermore, the release risk of CPs from the whole life cycle of PVC products was preliminarily evaluated.
Collapse
Affiliation(s)
- Haoran Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Faqiang Zhan
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
38
|
Lu R, Xia D, Ma X, Zhao S, Liu Y, Sun Y. Short and medium-chain chlorinated paraffins in indoor dust from a multistory residential building in Beijing, China: Vertical distribution and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160642. [PMID: 36470386 DOI: 10.1016/j.scitotenv.2022.160642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, we conducted a preliminary investigation of the vertical distribution and potential health risks of short and medium-chain chlorinated paraffins (SCCPs and MCCPs) in indoor dust from a multistory residential building in Beijing, China. Forty-eight SCCP and MCCP congener groups in dust from different floors of the multistory residential building were determined by two-dimensional gas chromatography coupled with electron capture negative ionization mass spectrometry. The concentration ranges for SCCPs and MCCPs in the dust samples were 0.0239-207 μg/g and 0.135-2903 μg/g, respectively. MCCPs were the dominant group, on average accounting for 76.8 % of ∑CPs. Generally, the concentrations of both SCCPs and MCCPs greatly decreased as the floor level increased, which indicated that the CP contamination was attributed to exogenous atmospheric transport and deposition. C13Cl7-8 and C14Cl7-8 were the dominant SCCP and MCCP congener groups, possibly indicating the use of industrial CP-52 products was the main source of CPs. In the worst-case scenario using the maximum concentrations of CPs, the daily intake of SCCPs for toddlers was of the same order of magnitude as the reference dose. It should be noted that CPs exposure may be more serious when indoor decorations, furniture, and various plastic products are taken into consideration. Overall, more attention should be paid to CPs exposure and control measures in high-rise buildings.
Collapse
Affiliation(s)
- Rongjing Lu
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100191, China.
| | - Xiao Ma
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Shuangshuang Zhao
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Yusong Liu
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
39
|
Niu S, Chen X, Chen R, Zou Y, Zhang Z, Li L, Hageman KJ, Ng C, Dong L. Understanding inter-individual variability in short-chain chlorinated paraffin concentrations in human blood. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130235. [PMID: 36368064 DOI: 10.1016/j.jhazmat.2022.130235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs), particularly short-chain CPs (SCCPs), have been reported in human blood with high detection frequency and often high variation among individuals. However, factors associated with and their contributions to inter-individual variability in SCCP concentrations in human blood have not been assessed. In this study, we first measured SCCP concentrations in 57 human blood samples collected from individuals living in the same vicinity in China. We then used the PROduction-To-Exposure model to investigate the impacts of variations in sociodemographic data, biotransformation rates, dietary patterns, and indoor contamination on inter-individual variability in SCCP concentrations in human blood. Measured ∑SCCP concentrations varied by a factor of 10 among individuals with values ranging from 122 to 1230 ng/g, wet weight. Model results show that age, sex, body weight, and dietary composition played a minor role in causing variability in ∑SCCP concentrations in human blood given that modeled ∑SCCP concentrations ranged over a factor of 2 - 3 correlated to the variations of these factors. In contrast, variations in the modeled ΣSCCP concentrations increased to factors of 6 and 8 when variability in biotransformation rates and indoor contamination were considered, respectively, indicating these two factors could be the most influential on inter-individual variability in SCCP concentrations in human blood.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China.
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiwen Chen
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Zou
- Organic Biological Analytical Chemistry Group, Department of Chemistry, University of Liège, Liège, Belgium
| | - ZhiZhen Zhang
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Li Li
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China
| |
Collapse
|
40
|
Bai L, Lv K, Li J, Gao W, Liao C, Wang Y, Jiang G. Evaluating the dynamic distribution process and potential exposure risk of chlorinated paraffins in indoor environments of Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129907. [PMID: 36099735 DOI: 10.1016/j.jhazmat.2022.129907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are typical semi-volatile chemicals (SVOCs) that have been used in copious quantities in indoor material additives. SVOCs distribute dynamically between the gas phase and various condensate phases, especially organic films. Investigating the dynamic behaviors of existing CPs in indoor environments is necessary for understanding their potential risk to humans from indoor exposure. We investigate the distribution profiles of CPs in both gas phase and organic films in indoor environments of residential buildings in Beijing, China. The concentrations of CPs were in the range of 32.21-1447 ng/m3 in indoor air and in the range of 42.30-431.1 μg/m2 and in organic films. Cooking frequency was identified as a key factor that affected the distribution profiles of CPs. Furthermore, a film/gas partitioning model was constructed to explore the transportation and fate of CPs. Interestingly, a re-emission phenomenon from organic films was observed for chemical groups with lower log Koa components, and, importantly, their residue levels in indoor air were well predicted. The estimated exposure risk of CPs in indoor environment was obtained. For the first time, these results produced convincing evidence that the co-exposure risk of short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in indoor air could be further increased by film/gas distribution properties, which is relevant for performing risk assessments of exposure to these SVOCs in indoor environments.
Collapse
Affiliation(s)
- Lu Bai
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
41
|
Chi ZH, Goodyer CG, Hales BF, Bayen S. Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. ENVIRONMENT INTERNATIONAL 2023; 171:107717. [PMID: 36630790 DOI: 10.1016/j.envint.2022.107717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Hundreds of xenobiotics, with very diverse origins, have been detected in human milk, including contaminants of emerging concern, personal care products and other current-use substances reflecting lifestyle. The routes of exposure to these chemicals include dermal absorption, ingestion and inhalation. Specific families of chemicals are dominant among human milk monitoring studies (e.g., organochlorine pesticides, bisphenol A, dioxins), even though other understudied families may be equally toxicologically relevant (e.g., food-processing chemicals, current-use plasticizers and flame retardants, mycotoxins). Importantly, the lack of reliable human milk monitoring data for some individual chemicals and, especially, for complex mixtures, is a major factor hindering risk assessment. Non-targeted screening can be used as an effective tool to identify unknown contaminants of concern in human milk. This approach, in combination with novel methods to conduct risk assessments on the chemical mixtures detected in human milk, will assist in elucidating exposures that may have adverse effects on the development of breastfeeding infants.
Collapse
Affiliation(s)
- Zhi Hao Chi
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Cindy Gates Goodyer
- Department of Pediatrics, Division of Experimental Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
42
|
Yuan B, Haug LS, Tay JH, Padilla-Sánchez JA, Papadopoulou E, de Wit CA. Dietary Intake Contributed the Most to Chlorinated Paraffin Body Burden in a Norwegian Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17080-17089. [PMID: 36378808 PMCID: PMC9730849 DOI: 10.1021/acs.est.2c04998] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Determining the major human exposure pathways is a prerequisite for the development of effective management strategies for environmental pollutants such as chlorinated paraffins (CPs). As a first step, the internal and external exposure to CPs were quantified for a well-defined human cohort. CPs in participants' plasma and diet samples were analyzed in the present study, and previous results on paired air, dust, and hand wipe samples were used for the total exposure assessment. Both one compartment pharmacokinetic modeling and forensic fingerprinting indicate that dietary intake contributed the most to body burden of CPs in this cohort, contributing a median of 60-88% of the total daily intakes. The contribution from dust ingestion and dermal exposure was greater for the intake of long-chain CPs (LCCPs) than short-chain CPs (SCCPs), while the contribution from inhalation was greater for the intake of SCCPs than medium-chain CPs (MCCPs) and LCCPs. Significantly higher concentrations of SCCPs and MCCPs were observed in diets containing butter and eggs, respectively (p < 0.05). Additionally, other exposure sources were correlated to plasma levels of CPs, including residence construction parameters such as the construction year (p < 0.05). This human exposure to CPs is not a local case. From a global perspective, there are major knowledge gaps in biomonitoring and exposure data for CPs from regions other than China and European countries.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
- ,
| | - Line Småstuen Haug
- Department
for Food Safety, Norwegian Institute of
Public Health, OsloNO-0213, Norway
| | - Joo Hui Tay
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
| | | | - Eleni Papadopoulou
- Department
for Food Safety, Norwegian Institute of
Public Health, OsloNO-0213, Norway
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, StockholmSE-10691, Sweden
| |
Collapse
|
43
|
Yang D, Liu Q, Wang S, Bozorg M, Liu J, Nair P, Balaguer P, Song D, Krause H, Ouazia B, Abbatt JPD, Peng H. Widespread formation of toxic nitrated bisphenols indoors by heterogeneous reactions with HONO. SCIENCE ADVANCES 2022; 8:eabq7023. [PMID: 36459560 PMCID: PMC10936053 DOI: 10.1126/sciadv.abq7023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
With numerous structurally diverse indoor contaminants, indoor transformation chemistry has been largely unexplored. Here, by integrating protein affinity purification and nontargeted mass spectrometry analysis (PUCA), we identified a substantial class of previously unrecognized indoor transformation products formed through gas-surface reactions with nitrous acid (HONO). Through the PUCA, we identified a noncommercial compound, nitrated bisphenol A (BPA), from house dust extracts strongly binding to estrogen-related receptor γ. The compound was detected in 28 of 31 house dust samples with comparable concentrations (ND to 0.30 μg/g) to BPA. Via exposing gaseous HONO to surface-bound BPA, we demonstrated it likely forms via a heterogeneous indoor chemical transformation that is highly selective toward bisphenols with electron-rich aromatic rings. We used 15N-nitrite for in situ labeling and found 110 nitration products formed from indoor contaminants with distinct aromatic moieties. This study demonstrates a previously unidentified class of chemical reactions involving indoor HONO, which should be incorporated into the risk evaluation of indoor contaminants, particularly bisphenols.
Collapse
Affiliation(s)
- Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Qifan Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Sizhi Wang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Matin Bozorg
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Pranav Nair
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Balaguer
- IRCM, INSERM U1194, Université de Montpellier, ICM, Montpellier, France
| | - Datong Song
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Henry Krause
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | | | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
McGrath TJ, Christia C, Poma G, Covaci A. Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust. ENVIRONMENT INTERNATIONAL 2022; 170:107616. [PMID: 36370602 DOI: 10.1016/j.envint.2022.107616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each detected in all Belgian indoor dust samples with overall median concentrations of 6.1 µg/g (range 0.61 to 120 µg/g), 45 µg/g (range 4.5 to 520 µg/g) and 4.5 µg/g (range 0.3 to 50 µg/g), respectively. Concentrations were significantly higher in the winter samples than summer for each of the three groups (p < 0.05). LCCPs homologues ranging from C21-32 were also detected in dust samples and accounted for approximately half of the LCCP relative abundance based on instrumental peak area, although a lack of appropriate analytical standards prevented quantification of these homologues. While clear sources of CP contamination in dust could not be identified, significant associations between concentrations of ∑SCCPs, ∑MCCPs and ∑LCCPs (C18-20) (p < 0.05) suggested the combined application within materials or products in homes. Based on typical exposure scenarios, estimated daily intake of ∑CPs (C10-20) for adults and toddlers were 14 and 270 ng/kg bw/day, respectively, though margin of exposure assessments for SCCPs and MCCPs indicated that adverse health effects were unlikely for all exposure scenarios. This study presents the first evidence of seasonal variation in the levels and distribution for each of the SCCP, MCCP and LCCP classes in indoor dust and highlights the urgent need for appropriate analytical standards for LCCP quantification.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
45
|
South L, Saini A, Harner T, Niu S, Parnis JM, Mastin J. Medium- and long-chain chlorinated paraffins in air: A review of levels, physicochemical properties, and analytical considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157094. [PMID: 35779735 DOI: 10.1016/j.scitotenv.2022.157094] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are synthetic chemicals that are produced at high volumes and have a global presence. CPs are generally divided into three groups based on their carbon chain lengths: short-chain CPs (SCCPs, C10-13), medium-chain CPs (MCCPs, C14-17), and long-chain CPs (LCCPs, C≥18). SCCPs have been formally recognized as persistent organic pollutants (POPs) and have been listed under the Stockholm Convention on POPs. Concerns about increases in MCCP and LCCP production as replacements for SCCP products are rising, given their similar properties to SCCPs and the fact that they remain relatively understudied with only a few reported measurements in air. Passive air samplers with polyurethane foam disks (PUF-PAS), which have been successfully applied to SCCPs, provide an opportunity to expand the existing body of data on MCCP and LCCP air concentrations, as they are inexpensive and require little maintenance. The uptake of MCCPs and LCCPs by PUF disk samplers is characterized in this paper based on newly derived PUF-air partitioning coefficients using COSMOtherm. The ability of PUF disk samplers to capture both gas-phase and particle fractions is important because MCCPs and LCCPs have reduced volatility compared to SCCPs and therefore are mainly associated with particulate matter in air. In addition, due to their use as additives in plastics and rubber products, they are associated with micro- and nanoplastics, which are considered to be potential vectors for the long-range atmospheric transport (LRAT) of these chemicals. The review has highlighted other limitations to reporting of MCCPs and LCCPs in air, including the lack of suitable analytical standards and the requirement for advanced analytical methods to detect and resolve these complex mixtures. Overall, this review indicates that further research is needed in many areas for medium- and long-chain chlorinated paraffins in order to better understand their occurrence, transport and fate in air.
Collapse
Affiliation(s)
- Lauren South
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - J Mark Parnis
- Department of Chemistry and Canadian Environmental Modelling Centre, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Jacob Mastin
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
46
|
Kang S, Lee K, Lim M. Estimation of multi-route exposures to various chemicals during Children's clay toy use. ENVIRONMENTAL RESEARCH 2022; 212:113500. [PMID: 35594962 DOI: 10.1016/j.envres.2022.113500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Clay toys have been used as play materials and educational tools for children. Clay toys exhibit adherent properties, and may facilitate chemical ingestion via dermal absorption and oral (hand-to-mouth, HTM) exposures. Inhalation exposure also be considered when contain volatile chemicals. The purpose of this study was to estimate the exposure dose for chemicals in clay toys via three exposure routes, and to evaluate the relationship between the exposure contribution of each route considering both the chemical properties and children's age. Chemical analysis was conducted for 9 semi-volatile organic compounds (SVOCs), 17 volatile organic compounds (VOCs), and 7 metal elements in clay toys (n = 66) purchased from Korean market. Exposure factors for usage pattern of clay toys were conducted based on a nationally representative survey in Korea. A total of 12,144 (60.7%) children responded positively to playing with clay toys. Exposure to SVOCs and VOCs in clay toys via HTM, inhalation, and dermal absorption were estimated. The exposure level was the highest in styrene with 5.2 × 10-3 mg/kg-bw/day (95th percentile population), which was approximately 13% of the acceptable daily dose for styrene. In 3-year-old children, dermal absorption route contributed the highest at 59.2-100%. Chemicals with higher octanol-water partition coefficient (Kow) had the greater the contribution of the dermal absorption route and the weaker the contribution of the HTM route. In infants (0-2 years), the contribution via HTM exposure was higher than that in the other age groups. The contribution of inhalation exposure differed depending on the volatility of the chemicals. Furthermore, the exposure route contribution significantly differed due to age-dependent behavioral changes in children. These results suggest that the exposure assessments for children could be considered with multiple exposure routes related to chemical properties.
Collapse
Affiliation(s)
- Sohyun Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University. Seoul, South Korea
| | - Miyoung Lim
- Institute of Health and Environment, Seoul National University. Seoul, South Korea.
| |
Collapse
|
47
|
Du X, Yuan B, Li J, Yin G, Qiu Y, Zhao J, Duan X, Wu Y, Lin T, Zhou Y. Distribution, behavior, and risk assessment of chlorinated paraffins in paddy plants throughout whole growth cycle. ENVIRONMENT INTERNATIONAL 2022; 167:107404. [PMID: 35868077 DOI: 10.1016/j.envint.2022.107404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Paddy plants provide staple food for 3 billion people worldwide. This study explores the environmental fate and behavior of a high-volume production emerging contaminants chlorinated paraffins (CPs) in the paddy ecosystem. Very-short-, short-, medium-, and long-chain CPs (vSCCPs, SCCPs, MCCPs, and LCCPs, respectively) were analyzed in specific tissue of paddy plants at four main growth stages and soils from the Yangtze River Delta, China throughout a full rice growing season. The total CP concentrations in the paddy roots, stalks, leaves, panicles, hulls, rice, and soils ranged from 181 to 1.74 × 103, 21.7-383, 19.6-585, 108-332, 245-470, 59.6-130, and 99.6-400 ng/g dry weight, respectively. The distribution profile indicated the translocation of SCCPs and MCCPs from soils to paddy tissue, highlighting their elevated bioaccumulative potential. The evolution of CP level/mass/pattern during the whole growth cycle suggested atmospheric CPs deposition on leaves and hulls, as well as stalk-rice transfer. CSOIL plant uptake model well predicted the level, distribution pattern, and bioconcentration factors (BCFs) of SCCPs and MCCPs in paddy shoot and recognized the soil-air-shoot pathway as the major contributor. Moreover, risk evaluation indicated that MCCPs intake and subsequent risks dominated the total exposure to CPs via rice ingestion. This is the first report on the occurrence, fate and risk assessment of all CPs classes in paddy ecosystems, and the results underline the potential health effects caused by the in-use MCCPs via rice ingestion.
Collapse
Affiliation(s)
- Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden; Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuchuan Duan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
48
|
Darnerud PO, Bergman Å. Critical review on disposition of chlorinated paraffins in animals and humans. ENVIRONMENT INTERNATIONAL 2022; 163:107195. [PMID: 35447436 DOI: 10.1016/j.envint.2022.107195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Even though the chlorinated paraffins (CPs) have been on the environmental pollution agenda throughout the last 50 years it is a class of chemicals that only now is discussed in terms of an emerging issue with extensive annual publication rates. Major reviews on CPs have been produced, but a deeper understanding of the chemical fate of CPs, including formation of metabolites in animals and humans, is still missing. Thus, the present review aims to critically compile our present knowledge on the disposition, i.e. Adsorption, Disposition, Metabolism, and Excretion (ADME) of CPs in biota and to identify research needs. We conclude that CPs could be effectively absorbed from the gastro-intestinal tract (GI) tract, and probably also from the lungs, and transported to various organs. A biphasic elimination is suggested, with a rapid initial phase followed by a terminal phase, the latter (e.g., fat tissues) covering half-lives of weeks and months. CPs are metabolized in the liver and excreted mainly via the bile and faeces, and the metabolic rate and type of metabolites are dependent on chlorine content and chain length. Results that strengthen CP metabolism are in vivo findings of phase II metabolites in bile, and CP degradation to carbon fragments in experimental animals. Still the metabolic transformations of CPs are poorly studied, and no metabolic scheme has yet been presented. Further, toxicokinetic mass balance calculations suggest that a large part of a given dose (not found as parent compound) is transformation products of CPs, and in vitro metabolism studies present numerous CP metabolites (e.g., chloroalkenes, chlorinated ketones, aldehydes, and carboxylic acids).
Collapse
Affiliation(s)
- Per Ola Darnerud
- Department of Organismal Biology, Environmental Toxicology, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | - Åke Bergman
- Department of Environmental Science (ACES), Stockholm University, SE-106 92 Stockholm, Sweden; Department of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; College of Environmental Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
49
|
Yuan B, Rüdel H, de Wit CA, Koschorreck J. Identifying emerging environmental concerns from long-chain chlorinated paraffins towards German ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127607. [PMID: 34768030 DOI: 10.1016/j.jhazmat.2021.127607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 05/22/2023]
Abstract
Germany is one of several major European producers of chlorinated paraffins (CPs). This study showed that not only the legacy short-chain products (SCCPs, C10-13), but also the current-use medium- and long-chain products (MCCPs, C14-17; LCCPs, C>17) as well as the very-short-chain impurities (vSCCPs, C<10) are ubiquitous in the 72 samples collected from the coastal, terrestrial, and freshwater ecosystems across the country. The concentrations of LCCPs surpassed those of the other CPs in 40% of the biota samples. Archived bream samples collected downstream of a CP-manufacturing factory showed decreasing temporal trends of (v)SCCPs and relatively constant levels of MCCPs from 1995 to 2019; however, the overall levels of LCCPs have increased by 290%, reflecting the impact of chemical regulation policies on changes in CP production. A visualization algorithm was developed for integrating CP results from various matrices to illustrate spatial tendencies of CP pollution. Higher levels of (v)SCCPs were indicated in the former West Germany region, while MCCP and LCCP concentrations did not seem to differ between former East and West Germany, suggesting relatively equal production and use of these chemicals after the German Reunification. The results provide an early warning signal of environmental concerns from LCCPs on the eve of their booming global production and use.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392 Schmallenberg, Germany
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), 14191 Berlin, Germany
| |
Collapse
|
50
|
Ding L, Zhang S, Zhu Y, Zhao N, Yan W, Li Y. Overlooked long-chain chlorinated paraffin (LCCP) contamination in foodstuff from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149775. [PMID: 34467914 DOI: 10.1016/j.scitotenv.2021.149775] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Data on long-chain chlorinated paraffins (LCCPs) is extremely sparse, despite their use and emission are increasing with the phasing out of short-chain chlorinated paraffins (SCCPs). In this study, we analyzed chlorinated paraffins (CPs) in foodstuff samples (551 pooled samples, 93 items) divided into eight categories collected from Jinan, Shandong Province of China, by atmospheric-pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-qToF-MS), to investigate the occurrence, contamination patterns and homologue patterns of LCCPs in foodstuff commonly consumed in traditional Chinese diet. LCCP intake through diet was estimated as well. LCCPs were detected in all pooled samples with geometric mean (GM) concentrations ranging from 1.8 to 21.9 ng/g wet weight (ng/g ww), contributing to 9-28% of the total CP mass in the studied foodstuff categories. The contamination patterns of LCCPs differed from SCCPs and medium-chain chlorinated paraffins (MCCPs), as reflected by the patterns of mass distribution, and by the lack of correlations between LCCP and S/MCCP concentrations in various foodstuff categories. The homologue profiles of LCCPs were extremely complex and diverse, with frequent detection of C30-36Cl2-15 very-long-chain chlorinated paraffin (vLCCP) congeners. The homologue profiles of eggs stood out for their high abundance of C18-22Cl9-13 LCCP congeners. LCCPs contributed 6.0-25.2% (8.9% for median estimation) to the estimated dietary intake (EDI) for total CPs through diet based on estimations using different percentiles of CP concentrations. The median estimate of dietary LCCP intake for adults in Jinan was 287.9 ng/kg_bw/day, reaching ~10- to 100-fold of that in Sweden and Canada. Considering the continuing production, use and emission of LCCPs, as well as the similar toxicity effects induced by LCCPs as SCCPs and MCCPs, attention should be paid to the health risk posed by LCCPs, or all CPs as a class of contaminants.
Collapse
Affiliation(s)
- Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yuting Zhu
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, Jiaodingshan Road 539, Rizhao 276800, China
| | - Yahui Li
- Jinan Ecological Environmental Protection Grid Supervision Center, Lvyou Road 17199, Jinan 250098, China
| |
Collapse
|