1
|
Jadoon WA, Khan YA, Varol M, Onjia A, Mohany M. Comprehensive analysis and risk assessment of fine road dust in Abbottabad city (Pakistan) with heavy traffic for potentially toxic elements. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136788. [PMID: 39740543 DOI: 10.1016/j.jhazmat.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic. The current study also evaluated PTE associated pollution, ecological and health risks, and potential sources of these elements. The average concentrations (in mg kg-1) of PTEs in road dust were highest for Fe (15540), followed by Mn (304), Zn (139), Cu (50.0), Pb (21.5), Cr (13.0), Ni (10.3), Co (6.66), and Cd (0.236). The levels of Co, Cr, Mn, Ni, and Fe were below the upper continental crust (UCC) averages, while Cd, Cu, Pb, and Zn exceeded them. Spatially, Cd, Cu, Pb, and Zn were found at higher levels near traffic hotspots, bus stands and automobile workshops. Road dust in Abbottabad exhibited unpolluted to moderate pollution levels (geo-accumulation index), with Cd, Cu, Zn, and Pb at 23 % of the sites. The enrichment factor results indicated a significant anthropogenic influence, with Cd being significantly enriched and Zn, Cu, and Pb moderately enriched. The contamination factor results revealed moderate contamination by (Cd: 2.62, Zn: 2.08, Cu: 1.79, Pb: 1.27). Single metal risk index showed that 61 % of the sites posed considerable to very high ecological risks due to Cd, which was highlighted as a significant concern. The absolute principal component scores-multiple linear regression model identified three factors contributing to PTE pollution: lithogenic (Co, Fe, Mn, Ni), traffic-related (Cd, Cu, Pb, Zn), and mixed sources (Cr), with contributions of 52.8 %, 35.8 %, and 11.4 %, respectively. The PTE hazard quotient and total hazard index values for children and adults were below the safe risk level of 1, indicating no non-carcinogenic health risks. The cumulative carcinogenic risk values to the residents were also within acceptable limits. However, children's susceptibility to non-carcinogenic risks is higher due to their behavior and lower body weight. This study highlights the accumulation of PTEs in Abbottabad's environment, which poses challenges to long-term sustainability, particularly amid unplanned tourism. Therefore, urgent measures are necessary to mitigate PTE pollution and preserve tourist spots and public health.
Collapse
Affiliation(s)
- Waqar Azeem Jadoon
- Department of Earth and Environmental Sciences, Hazara University Mansehra, 21130, Pakistan
| | - Yousaf Ali Khan
- Department of Mathematics and Statistics, Hazara University Mansehra, 21130, Pakistan
| | - Memet Varol
- Malatya Turgut Özal University, Agriculture Faculty, Aquaculture Department, Malatya, Turkey.
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11120, Serbia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Ololade IA, Apata AO, Oladoja NA, Oloyede OJ, Ololade OO, Asanga OP, Oloye FF. Occurrence, seasonal distribution and probabilistic source-specific health risk assessment of dissolved trace metals in southwestern rivers, Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178342. [PMID: 39818164 DOI: 10.1016/j.scitotenv.2024.178342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
The presence of trace metals (TMs) in river systems at certain levels can cause toxicity and pose significant risks to human health. In this study, nine TMs (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) in water samples collected from six major rivers from southwestern Nigeria during both dry and wet seasons. Across both seasons, the mean concentrations (mg/L) ranged from 0.463 to 5.611, 0.121-0.438, 0.016-0.393, 0.122-1.193, 0.005-5.950, 0.924-8.547, 0.026-3.339, 0.001-0.138, 0.022-0.151, and 0.036-0.853 for Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn, respectively. Almost 100 % of Cd, Cr, and Pb were above the maximum admissible and desirable limits recommended by WHO. Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) indicate that the TMs are mostly derived from anthropogenic activities with partial contribution from natural sources. In either children or adults, dermal pathways accounted for not <78 % of the total contribution to carcinogenic risks. Source-specific health risk assessment revealed Cr and Cd as major contributors to CR via dermal and ingestion pathways, respectively. A probabilistic health risk assessment via hazard quotient and index indicated potential non-carcinogenic health risks (HI > 1) and high carcinogenic risk levels; children were more vulnerable than adults in both seasons.
Collapse
Affiliation(s)
- Isaac Ayodele Ololade
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo-State, Nigeria.
| | - Abiodun Oyewumi Apata
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo-State, Nigeria; Puget Sound Naval Shipyard, Bremerton, Washington 98314, USA
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Oluwabunmi Jerome Oloyede
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo-State, Nigeria
| | - Oluwaranti Olubunmi Ololade
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo-State, Nigeria
| | - Omotayo Praise Asanga
- Department of Chemistry, Clemson University, 211S, Palmetto Blvd, Clemson, SC, 29643, USA
| | - Francis Femi Oloye
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh, Bradford, 16701, PA, USA
| |
Collapse
|
3
|
Gao F, Shen Y, Wu H, Laue HE, Lau FK, Gillet V, Lai Y, Shrubsole MJ, Prada D, Zhang W, Liu Z, Bellenger JP, Takser L, Baccarelli AA. Associations of Stool Metal Exposures with Childhood Gut Microbiome Multiomics Profiles in a Prospective Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22053-22063. [PMID: 39630952 DOI: 10.1021/acs.est.4c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal exposures are closely related to childhood developmental health. However, their effects on the childhood gut microbiome, which also impacts health, are largely unexplored using microbiome multiomics including the metagenome and metatranscriptome. This study examined the associations of fecal profiles of metal/element exposures with gut microbiome species and active functional pathways in 8- to 12-year-old children (N = 116) participating in the GESTation and Environment (GESTE) cohort study. We analyzed 19 stool metal and element concentrations (B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Ba, and Pb). Covariate-adjusted linear regression models identified several significant microbiome associations with continuous stool metal/element concentrations. For instance, Zn was positively associated with Turicibacter sanguinis (coef = 1.354, q-value = 0.039) and negatively associated with Eubacterium eligens (coef = -0.794, q-value = 0.044). Higher concentrations of Cd were associated with lower Eubacterium eligens (coef = -0.774, q-value = 0.045). Additionally, a total of 490 significant functional pathways such as biosynthesis and degradation/utilization/assimilation were identified, corresponding to different functions, including amino acid synthesis and carbohydrate degradation. Our results suggest links among metal exposures, pediatric gut microbiome multiomics, and potential health implications. Future work will further explore their relation to childhood health.
Collapse
Affiliation(s)
- Feng Gao
- Department of Environmental Health Sciences, Fielding School of Public Health, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Yike Shen
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Hannah E Laue
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst School of Public Health and Health Sciences, Amherst, Massachusetts 01003, United States
| | - Fion K Lau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Virginie Gillet
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Diddier Prada
- Institute for Health Equity Research - IHER, Department of Population Health Science and Policy and the Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York 10032, United States
| | | | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrea A Baccarelli
- Office of the Dean, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Beauchemin S, Avramescu ML, Levesque C, Rasmussen PE. Carcinogenic metal(loid)s in house dust compared to soil: Concentrations and gastric bioaccessibility. ENVIRONMENTAL RESEARCH 2024; 255:119175. [PMID: 38768886 DOI: 10.1016/j.envres.2024.119175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As a sink and a source of chemicals, house dust represents a relevant medium to assess indoor exposure to metal(loid)s via incidental ingestion or inhalation. However, nationally representative indoor data are scarce. Results from the Canadian House Dust Study (CHDS, 2007-2010; n = 1025) provide nationally representative mean, median and 95th percentile concentrations for 38 elements in typical urban house dust, along with their gastric bioaccessibility. Total concentrations (median/95th percentile) of carcinogenic metal(loid)s in Canadian house dust (μg g-1) are as follows: As (9.0/40), Be (0.4/0.9), Cd (3.5/17), Co (5.6/19), Cr (99/214), Ni (62/322) and Pb (100/760). Total As and Pb concentrations in house dust exceed residential soil guidelines for the protection of human health in about one-third of Canadian homes. Percent bioaccessibilities (median) are: Cd (65%) > Pb (63%) > Be ∼ Ni (36%) > Co (35%) > As (20%) > Cr (15%). Lead, Cd and Co concentrations are significantly greater in older houses (< 1976). Data from two pilot studies (n = 66 + 51) further demonstrate the distinct geochemistry of house dust compared to soils, notably enrichment of carcinogenic metal(loid)s and their increased bioaccessibility. These results provide essential baseline values to refine risk assessment and inform on health risk at contaminated sites.
Collapse
Affiliation(s)
- Suzanne Beauchemin
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9.
| | - Mary-Luyza Avramescu
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9
| | - Christine Levesque
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9
| | - Pat E Rasmussen
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9; Department of Earth and Environmental Science, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| |
Collapse
|
5
|
Ibañez-Del Rivero C, Wheeler CA, Fry KL, Taylor MP. Portable X-ray fluorescence spectrometry: a cost-effective method for analysing trace metals in deposited dust. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5038-5048. [PMID: 38985328 DOI: 10.1039/d4ay00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
For projects requiring extensive environmental sampling and rapid decision-making to identify trace metal contamination using dust wipes, the cost and time required for wet chemistry analysis can be prohibitive. Under such circumstances there is a need for a suitable screening method that is cost-effective, efficient, and portable. To address this need, this study investigated the utility of portable X-ray fluorescence (pXRF) for the analysis of trace metals in dust wipes. Here, 316 dust wipe samples from three different geographical settings co-located with mining and smelting operations were investigated for their trace metal loadings (μg m-2) of arsenic (As), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) using pXRF. Results collected using pXRF were compared against inductively coupled plasma mass spectrometry (ICP-MS) concentrations using matched dust wipes (n = 87) to assess reproducibility. A subset of dust wipes (n = 4) were subject to different pXRF analytical scenarios (ranging from 1 to 12 pXRF measurements) using a standardised test duration of 30 seconds to identify the most efficient number of tests for analytical precision. Conducting four pXRF tests on a single wipe (total exposure time of 120 seconds) returned comparable results to ICP-MS and was adopted for analysis of all samples. Results from dust wipes analysed with both ICP-MS and pXRF (n = 87) showed moderate to strong Spearman Rho correlations (rs = 0.489-0.956, p < 0.01) and linear regression coefficients of variation demonstrated good agreement between methods (R2 = 0.432-0.989, p < 0.05). Linear regression equations were used to correct pXRF data to the ICP-MS dust wipe data for samples analysed by both approaches, and applied to pXRF data that were not subject to ICP-MS analysis (n = 229). Application of the correction formula resulted in a substantial improvement of pXRF's accuracy and precision, confirming its effectiveness for assessing trace metals in dust wipes.
Collapse
Affiliation(s)
- Carlos Ibañez-Del Rivero
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Cassandra A Wheeler
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
- Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| | - Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
- Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| |
Collapse
|
6
|
Sowers TD, Nelson CM, Blackmon MD, Li K, Jerden ML, Kirby AM, Kovalcik K, Cox D, Dewalt G, Friedman W, Pinzer EA, Ashley PJ, Bradham KD. United States house dust Pb concentrations are influenced by soil, paint, and house age: insights from a national survey. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:709-717. [PMID: 38548929 PMCID: PMC11303246 DOI: 10.1038/s41370-024-00655-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Lead (Pb) in house dust contributes significantly to blood lead levels (BLLs) in children which may result in dire health consequences. Assessment of house dust Pb in the United States, relationships with Pb in soil and paint, and residential factors influencing Pb concentrations are essential to probing drivers of house dust Pb exposure. OBJECTIVE Pb concentrations in vacuum-collected house dust are characterized across 346 homes participating in the American Health Homes Survey II (AHHS II), a US survey (2018-2019) evaluating residential Pb hazards. Connections between house dust Pb and soil Pb, paint Pb, and other residential factors are evaluated, and dust Pb concentration data are compared to paired loading data to understand Pb hazard standard implications. RESULTS Mean and median vacuum dust Pb concentrations were 124 µg Pb g-1 and 34 µg Pb g-1, respectively. Vacuum-collected dust concentrations and dust wipe Pb loading rates were significantly correlated within homes (α < 0.001; r ≥ 0.4). At least one wipe sample exceeded current house dust Pb loading hazard standards (10 µg ft-2 or 100 µg Pb ft-2 for floors and windowsills, respectively) in 75 of 346 homes (22%). House dust Pb concentrations were correlated with soil Pb (r = 0.64) and Pb paint (r = 0.57). Soil Pb and paint Pb were also correlated (r = 0.6). IMPACT The AHHS II provides a window into the current state of Pb in and around residences. We evaluated the relationship between house dust Pb concentrations and two common residential Pb sources: soil and Pb-based paint. Here, we identify relationships between Pb concentrations from vacuum-collected dust and paired Pb wipe loading data, enabling dust Pb concentrations to be evaluated in the context of hazard standards. This relationship, along with direct ties to Pb in soil and interior/exterior paint, provides a comprehensive assessment of dust Pb for US homes, crucial for formulating effective strategies to mitigate Pb exposure risks in households.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | | | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Kevin Li
- Independent Researcher, Lansing, MI, 48915, USA
| | - Marissa L Jerden
- Jacobs Technology, Inc., 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Alicia M Kirby
- Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Kasey Kovalcik
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David Cox
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Gary Dewalt
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Warren Friedman
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Eugene A Pinzer
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Peter J Ashley
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
7
|
Fry KL, Taylor MP. Peppered with lead: An environmental forensics approach to identify the source of rising blood lead levels. ENVIRONMENTAL RESEARCH 2024; 252:118832. [PMID: 38579992 DOI: 10.1016/j.envres.2024.118832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Despite the phase-out of lead-based products, lead contamination can still present a contemporary risk to public health. In situations where elevated blood lead cannot be attributed to common sources, detailed environmental investigation is needed to identify more elusive sources and manage harmful exposure pathways. We apply a forensics approach to assess common and elusive sources of lead in the home environment of two individuals with fluctuating blood lead levels in Sydney, Australia. Using multiple analytical lines of evidence (portable X-Ray Fluorescence spectrometry (pXRF), inductively coupled-plasma mass spectrometry (ICP-MS), lead isotopic compositional analysis (PbIC) and haematological assessment) a pewter pepper grinder containing lead (>6000 mg/kg; 70% bioavailable) was identified as a potential source. After removing the pepper grinder from the home, the couple's blood lead decreased to below the Australian intervention level of 5 μg/dL within a year (Person A: from 12.5 μg/dL in August 2020 to 4.4 μg/dL in March 2022; and Person B: 15.4 μg/dL in August 2020 to 2.1 μg/dL in July 2021). This case study demonstrates how environmental science investigations can play a crucial role in supporting people to take evidence-based action to improve their health.
Collapse
Affiliation(s)
- K L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, New South Wales, 2109, Australia; Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - M P Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, New South Wales, 2109, Australia; Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria, 3085, Australia.
| |
Collapse
|
8
|
Lu TH, Chen CY, Wang WM, Liao CM. One Health-based management for sustainably mitigating tetracycline-resistant Aeromonas hydrophila-induced health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123943. [PMID: 38599271 DOI: 10.1016/j.envpol.2024.123943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human-animal-environment interfaces in various exposure scenarios. The dose-response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25-1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10-4) and swimmers in coastal areas (∼4 × 10-6) during autumn exceeded acceptable risk (10-6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70-99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a "risk detector" for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species-human-environmental health system.
Collapse
Affiliation(s)
- Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403514, Taiwan, ROC.
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106319, Taiwan, ROC
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106319, Taiwan, ROC
| |
Collapse
|
9
|
Cao Y, Liu M, Zhang W, Zhang X, Li X, Wang C, Zhang W, Liu H, Wang X. Characterization and childhood exposure assessment of toxic heavy metals in household dust under true living conditions from 10 China cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171669. [PMID: 38494014 DOI: 10.1016/j.scitotenv.2024.171669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Health hazards caused by metal exposure in household dust are concerning environmental health problems. Exposure to toxic metals in household dust imposes unclear but solid health risks, especially for children. In this multicenter cross-sectional study, a total of 250 household dust samples were collected from ten stratified cities in China (Panjin, Shijiazhuang, Qingdao, Lanzhou, Luoyang, Ningbo, Xi'an, Wuxi, Mianyang, Shenzhen) between April 2018 and March 2019. Questionnaire was conducted to gather information on individuals' living environment and health status in real-life situations. Multivariate logistic regression and principal component analysis were conducted to identify risk factors and determine the sources of metals in household dust. The median concentration of five metals in household dust from 10 cities ranged from 0.03 to 73.18 μg/g. Among the five heavy metals, only chromium in household dust of Mianyang was observed significantly both higher in the cold season and from the downwind households. Mercury, cadmium, and chromium were higher in the third-tier cities, with levels of 0.08, 0.30 and 97.28 μg/g, respectively. There were two sources with a contribution rate of 38.3 % and 25.8 %, respectively. Potential risk factors for increased metal concentration include long residence time, close to the motorway, decoration within five years, and purchase of new furniture within one year. Under both moderate and high exposure scenarios, chromium showed the highest level of exposure with 6.77 × 10-4 and 2.28 × 10-3 mg·kg-1·d-1, and arsenic imposed the highest lifetime carcinogenic risk at 1.67 × 10-4 and 3.17 × 10-4, respectively. The finding highlighted the priority to minimize childhood exposure of arsenic from household dust.
Collapse
Affiliation(s)
- Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenying Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaotong Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Weiyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
10
|
Chen L, Fang L, Yang X, Luo X, Qiu T, Zeng Y, Huang F, Dong F, White JC, Bolan N, Rinklebe J. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. ENVIRONMENT INTERNATIONAL 2024; 187:108708. [PMID: 38703447 DOI: 10.1016/j.envint.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Xing Yang
- College of Ecology and Environment, Hainan University, Haikou 570100, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Pauluskirchstraße 7, Wuppertal 42285, Germany
| |
Collapse
|
11
|
Zhang Z, Xu X, Qian Z, Zhong Q, Wang Q, Hylkema MN, Snieder H, Huo X. Association between 6PPD-quinone exposure and BMI, influenza, and diarrhea in children. ENVIRONMENTAL RESEARCH 2024; 247:118201. [PMID: 38220074 DOI: 10.1016/j.envres.2024.118201] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
12
|
Buch AC, Sims DB, de Ramos LM, Marques ED, Ritcher S, Abdullah MMS, Silva-Filho EV. Assessment of environmental pollution and human health risks of mine tailings in soil: after dam failure of the Córrego do Feijão Mine (in Brumadinho, Brazil). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:72. [PMID: 38367120 DOI: 10.1007/s10653-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
The dam failure of the Córrego do Feijão Mine (CFM) located in Minas Gerais State, Brazil, killed at least 278 people. In addition, large extensions of aquatic and terrestrial ecosystems were destroyed, directly compromising the environmental and socioeconomic quality of the region. This study assessed the pollution and human health risks of soils impacted by the tailing spill of the CFM dam, along a sample perimeter of approximately 200 km. Based on potential ecological risk and pollution load indices, the enrichments of Cd, As, Hg, Cu, Pb and Ni in soils indicated that the Brumadinho, Mário Campos, Betim and São Joaquim de Bicas municipalities were the most affected areas by the broken dam. Restorative and reparative actions must be urgently carried out in these areas. For all contaminated areas, the children's group indicated an exacerbated propensity to the development of carcinogenic and non-carcinogenic diseases, mainly through the ingestion pathway. Toxicological risk assessments, including acute, chronic and genotoxic effects, on people living and working in mining areas should be a priority for public management and mining companies to ensure effective environmental measures that do not harm human health and well-being over time.
Collapse
Affiliation(s)
- Andressa Cristhy Buch
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, S/N., Centro, Niterói, Rio de Janeiro, 24020-007, Brazil.
| | - Douglas B Sims
- Department of Physical Sciences, College of Southern Nevada, North Las Vegas, NV, 89030, USA
| | - Larissa Magalhães de Ramos
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, 82590-300, Brazil
| | - Eduardo Duarte Marques
- Service Geological Survey of Brazil/Company of Research of Mineral Resources (SGB/CPRM), Belo Horizonte Regional Office, Belo Horizonte, Minas Gerais, 30140-002, Brazil
| | - Simone Ritcher
- Researcher of Paraná Center of Reference in Agroecology, Estrada da Graciosa, Pinhais, Paraná, 6960, 83327-055, Brazil
| | - Mahmood M S Abdullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Emmanoel Vieira Silva-Filho
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, S/N., Centro, Niterói, Rio de Janeiro, 24020-007, Brazil
| |
Collapse
|
13
|
Wang Y, Han J, Ren Q, Liu Z, Zhang X, Wu Z. The Involvement of Lactic Acid Bacteria and Their Exopolysaccharides in the Biosorption and Detoxication of Heavy Metals in the Gut. Biol Trace Elem Res 2024; 202:671-684. [PMID: 37165259 DOI: 10.1007/s12011-023-03693-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Heavy metal pollution has become one of the most important global environmental issues. The human health risk posed by heavy metals encountered through the food chain and occupational and environmental exposure is increasing, resulting in a series of serious diseases. Ingested heavy metals might disturb the function of the gut barrier and cause toxicity to organs or tissues in other sites of the body. Probiotics, including some lactic acid bacteria (LAB), can be used as an alternative strategy to detoxify heavy metals in the host body due to their safety and effectiveness. Exopolysaccharides (EPS) produced by LAB possess varied chemical structures and functional properties and take part in the adsorption of heavy metals via keeping the producing cells vigorous. The main objective of this paper was to summarize the roles of LAB and their EPS in the adsorption and detoxification of heavy metals in the gut. Accumulated evidence has demonstrated that microbial EPS play a pivotal role in heavy metal biosorption. Specifically, EPS-producing LAB have been reported to show superior absorption, tolerance, and efficient abatement of the toxicity of heavy metals in vitro and/or in vivo to non-EPS-producing species. The mechanisms underlying EPS-metal binding are mainly related to the negatively charged acidic groups and unique steric structure on the surface of EPS. However, whether the enriched heavy metals on the bacterial cell surface increase toxicity to local mammal cells or tissues in the intestine and whether they are released during excretion remain to be elucidated.
Collapse
Affiliation(s)
- Yitian Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Quanlu Ren
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China.
| |
Collapse
|
14
|
Stanek LW, Grokhowsky N, George BJ, Thomas KW. Assessing lead exposure in U.S. pregnant women using biological and residential measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167135. [PMID: 37739076 PMCID: PMC11351066 DOI: 10.1016/j.scitotenv.2023.167135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
There is strong scientific evidence for multiple pathways of human exposure to lead (Pb) in residential settings, particularly for young children; however, less is known about maternal exposure during pregnancy and children's exposure during early lifestages. A robust, multi-faceted secondary analysis was conducted using data collected by the National Institute of Child Health and Human Development in the 2009-2014 National Children's Study Vanguard Studies. Descriptive statistics summarized Pb concentrations of maternal blood, maternal urine, and house dust vacuum samples collected during pregnancy and residence surface wipes collected both during pregnancy and six months post-partum. The maternal blood Pb level geometric mean was 0.44 μg/dL (n = 426), with no women having values ≥ 5 μg/dL; creatinine-adjusted maternal urinary Pb geometric mean was 0.43 μg/g (n = 366). These blood and urine concentrations are similar to those observed for females in the general U.S. population in the National Health and Nutrition Examination Survey 2010-2011 cycle. A modest correlation between maternal blood Pb and surface wipe measurements during pregnancy was observed (Spearman r = 0.35, p < 0.0001). Surface wipe Pb loadings obtained in mother's homes during pregnancy (n = 640) and from areas where children spent the most time at roughly 6 months of age (n = 99) ranged from 0.02 to 71.8 ng/cm2, with geometric means of 0.47 and 0.49 ng/cm2, respectively, which were relatively low compared to other national studies. Survey responses of demographic, lifestyle, and residence characteristics were assessed for associations with blood concentration and surface wipe loading. Demographic (e.g., race/ethnicity, income, education, marital status) and housing characteristics (e.g., year home built, paint condition, own or rent home, attached garage) were associated with both maternal blood and surface wipe loadings during pregnancy. The availability of residential environmental media and extensive survey data provided enhanced understanding of Pb exposure during pregnancy and early life.
Collapse
Affiliation(s)
- Lindsay W Stanek
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA.
| | - Nicholas Grokhowsky
- Formerly of Oak Ridge Institute for Science and Education, Research Triangle Park, NC, USA
| | - Barbara J George
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA
| | - Kent W Thomas
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Somsunun K, Prapamontol T, Kuanpan T, Santijitpakdee T, Kohsuwan K, Jeytawan N, Thongjan N. Health Risk Assessment of Heavy Metals in Indoor Household Dust in Urban and Rural Areas of Chiang Mai and Lamphun Provinces, Thailand. TOXICS 2023; 11:1018. [PMID: 38133419 PMCID: PMC10747779 DOI: 10.3390/toxics11121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Indoor exposure to heavy metals poses human health risks worldwide, but study reports from Thailand are still limited, particularly in rural and urban areas. We measured the heavy metals in a hundred indoor household dust samples collected from urban and rural areas in Chiang Mai and Lamphun provinces and found a significantly higher concentration of As in rural areas and Cd in urban areas with industrial activities. The source identification of the heavy metals showed significant enrichment from traffic emissions, paint, smoking, and mixed sources with natural soil. From health risk assessment models, children were more vulnerable to noncarcinogenic risks (HI = 1.45), primarily via ingestion (HQ = 1.39). Lifetime cancer risks (LCRs) due to heavy metal exposure were found in adults (LCR = 5.31 × 10-4) and children (LCR = 9.05 × 10-4). The cancer risks from As were higher in rural areas via ingestion, while Cr and Ni were higher in urban areas via inhalation and ingestion, respectively. This study estimated that approximately 5 out of 10,000 adults and 9 out of 10,000 children among the population may develop cancer in their lifetime from exposure to indoor heavy metals in this region.
Collapse
Affiliation(s)
- Kawinwut Somsunun
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang University, Chiang Mai 50200, Thailand
| | - Tippawan Prapamontol
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Todsabhorn Kuanpan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Teetawat Santijitpakdee
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Kanyapak Kohsuwan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Natwasan Jeytawan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Nathaporn Thongjan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| |
Collapse
|
16
|
Zhang Z, Liang W, Zheng X, Zhong Q, Hu H, Huo X. Kindergarten dust heavy metal(loid) exposure associates with growth retardation in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118341-118351. [PMID: 37910347 DOI: 10.1007/s11356-023-30278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Heavy metal contamination from electronic waste recycling sites is present in dust found in indoor kindergartens located in e-waste recycling areas, and its potential impact on child health is a significant concern. The association between heavy metal(loid)s and the child developmental indicators is still unclear. In 2019 and 2020, we enrolled 325 and 319 children in an e-waste recycling town, respectively. Corresponding 61 and 121 dust samples were collected from roads, houses, and kindergartens in the two years. The median concentrations of metals, including Cr, Ni, Cu, Zn, and Pb exceeded the allowable limits. The highest amount of cumulative enrichment (cEF) was observed in indoor kindergarten dust (cEF = 112.3400), followed by house dust (cEF = 76.6950) and road dust (cEF = 39.7700). Children residing in the e-waste town had below-average height and weight compared to their Chinese peers. Based on linear regression analysis, the daily intake of Cd, V, Mn, and Pb in indoor kindergarten dust was found to be negatively associated with head circumference (HeC) (P < 0.05). Similarly, the daily intake of As, Cd, and Ba in indoor kindergarten dust was found to be negatively associated with chest circumference (ChC) (P < 0.05). In addition, the daily intake of As, Cd, and Ba in indoor kindergarten dust was negatively correlated with body mass index (BMI), as per the results of the study (P < 0.05). Cross-product term analysis revealed a negative correlation between daily intake of heavy metal(loid)s and HeC, ChC, and BMI, with age and sex serving as influencing factors. In conclusion, exposure to heavy metal(loid)s in indoor kindergarten dust increases the risk of growth retardation and developmental delay in children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Wanting Liang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hongfei Hu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
17
|
Zhang X, Sun M, Aikawa M. Characteristics of PM 2.5-bound metals in Japan over six years: Spatial distribution, health risk, and source analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118750. [PMID: 37573701 DOI: 10.1016/j.jenvman.2023.118750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Air sampling campaigns were conducted at 100 survey sites across Japan from April 2014 to February 2020, and a comprehensive database of atmospheric particles was obtained. In this study, the characteristics of PM2.5 and 26 metals were investigated in depth. Spatially, the concentration of PM2.5 gradually increased from the northeast to the southwest of Japan. The pollution in Kitakyushu City was the most serious, reaching 19.8 μg m-3. As an important particle component, metals did not show obviously spatial variation in Japan, with a sum concentration of 0.4 μg m-3. Anthropogenic metals only accounted for about 8% of the total metals, but they could pose a serious threat to public health. For children, the non-carcinogenic risk and carcinogenic risk due to exposure to anthropogenic metals could not be neglected in Japan; the corresponding HI and CR values at 100 survey sites ranged from 2.7 to 15.0 and 4.1 × 10-5 to 3.4 × 10-4, respectively. Adults faced lower health risks than children, with HI values ranging from 0.2 to 2.0 and CR values ranging from 2.0 × 10-5 to 1.6 × 10-4. The integrated health risk assessment results showed that the coastal region of the Seto Inland Sea and the north Tohoku Region were the most heavily polluted areas of Japan; in this study, 20 survey sites were finally determined to be high-risk sites, among which pollution control for Niihama City, Kitakyushu City, Hachinohe City, and Shimonoseki City were of first priority. With further combination with a positive matrix factorization model, it can be known that these four cities mainly had five to seven metal sources, and their heavy pollution was mainly caused by ship emissions, industrial emissions, biomass burning, and coal combustion. Overall, our study comprehensively revealed the regional patterns of PM2.5-bound metal pollution across Japan, which can help in making cost-effective risk management policies with limited national/local budgets.
Collapse
Affiliation(s)
- Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Meng Sun
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
18
|
Gulson B, Taylor A. Which environmental sample type and statistical approach provides most information about metal exposure in young children from an urban setting? ENVIRONMENTAL RESEARCH 2023; 234:116433. [PMID: 37429392 DOI: 10.1016/j.envres.2023.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Identification of sources and pathways is critical in minimizing exposure of young children to toxic materials. We monitored 108 children <5 years old 6-monthly for up to 5 years in a major urban setting. Samples (ñ7000) included interior handwipes (W1) and after exterior playing (W2), interior house dust (PD1) and day care dust (PD2) using petri dishes, exterior dust-fall accumulation, exterior dust sweepings, garden soil, blood and urine. Here we describe multi-element results to determine which sampling method and analysis of the data provide the most reliable indicators of metal exposure to young children. Samples were analysed by ICPMS for Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Ti, V and Zn. Pearson Correlations showed the highest number of significant correlations are for: W1 and W2, dust sweepings and soil. Mixed model analyses (MMA) for the blood levels as the dependent variable and environmental predictor variables showed the most consistent results were for W1, PD1 and sweepings. MMA to investigate the association between each metal (e.g. Ca) and the other 11 metals showed the largest numbers of significant relationships are for W1 and sweepings. Cluster analyses showed that the 'best' clusters in W1 and W2 are for Fe-Zn-Mg and Mn-Pb-Ni. For PD1 and PD2 the 'best' clusters were Fe-Zn-Mg, Cr-Ni-Ti, and Cu-Mn-Pb. Clusters for dust sweepings and soil are generally similar. Principal component analysis (PCA) loadings for W1 and PD1 accounted for >50% of the variance. Metals comprising loading 1 component for both sample types included Ca, Fe, Mg, and Mn. Overall cluster analyses provided more information than PCA loadings. In summary: The most suitable methods and analyses are MMA of W1 and sweepings, and cluster analyses of W1and PD1. Resuspension from outdoor surfaces and soils and deposition in the residences is a likely pathway for most metals.
Collapse
Affiliation(s)
- Brian Gulson
- Macquarie University, School of Natural Sciences, Sydney, Australia.
| | - Alan Taylor
- Department of Psychology, Macquarie University, Sydney, Australia
| |
Collapse
|
19
|
Jin Q, Fan Y, Lu Y, Zhan Y, Sun J, Tao D, He Y. Liquid crystal monomers in ventilation and air conditioning dust: Indoor characteristics, sources analysis and toxicity assessment. ENVIRONMENT INTERNATIONAL 2023; 180:108212. [PMID: 37738697 DOI: 10.1016/j.envint.2023.108212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Indoor dust contaminated with liquid crystal monomers (LCMs) released from various commercial liquid crystal display (LCD) screens may pose environmental health risks to humans. This study aimed to investigate the occurrence of 64 LCMs in ventilation and air conditioning filters (VACF) dust, characterize their composition profiles, potential sources, and associations with indoor characteristics, and assess their in vitro toxicity using the human lung bronchial epithelial cells (BEAS-2B). A total of 31 LCMs with concentrations (ΣLCMs) ranging from 43.7 ng/g to 448 ng/g were detected in the collected VACF dust. Additional analysis revealed the potential interactions between indoor environmental conditions and human exposure risks associated with the detected LCMs in VACF dust. The service area and working time of the ventilation and air conditioning system, and the number of indoor LCD screens were positively correlated with the fluorinated ΣLCMs in VACF dust (r = 0.355 ∼ 0.511, p < 0.05), while the associations with the non-fluorinated ΣLCMs were not found (p > 0.05), suggesting different environmental behavior and fates of fluorinated and non-fluorinated LCMs in the indoor environment. Four main indoor sources of LCMs (i.e., computer (37.1%), television (28.3%), Brand A smartphone (21.2%) and Brand S smartphone (13.4%)) were identified by positive matrix factorization-multiple linear regression (PMF-MLR). Exposure to 14 relatively frequently detected LCMs, individually and in the mixture, induced significant oxidative stress in BEAS-2B cells. Among them, non-fluorinated LCMs, specifically 3cH2B and MeP3bcH, caused dominant decreased cell viability. This study provides new insights into the indoor LCMs pollution and the associated potential health risks due to the daily use of electronic devices.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yinzheng Fan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
20
|
Li Z, Xiong J. A dynamic inventory database for assessing age-, gender-, and route-specific chronic internal exposure to chemicals in support of human exposome research. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117867. [PMID: 37027904 DOI: 10.1016/j.jenvman.2023.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
In this study, we proposed a dynamic inventory database to evaluate chronic internal exposure to chemicals at a population level, which enables users to perform modeling exercises specific to a particular chemical, route of exposure, age group, and gender. The database was built based on the steady-state solution of physiologically based kinetic (PBK) models. The biotransfer factors [BTF, the steady-state ratio between the chemical concentration in human tissues and the average daily dose (ADD) of the chemical] of 931 organic chemicals in major organs and tissues were simulated for a total of 14 population age groups for males and females. The results indicated that infants and children had the highest simulated BTFs of chemicals, and middle-aged adults had the lowest simulated BTFs. The route-specific analysis of the simulated BTFs indicated that the biotransformation half-life and octanol-water partition coefficient of chemicals had a profound impact on the BTFs. Organ- and chemical-specific results indicated that the biotransfer potential of chemicals in human bodies was primarily determined by bio-thermodynamic variables (e.g., lipid contents). In conclusion, the proposed inventory database can be conveniently used to access chronic internal exposure doses of chemicals by multiplying the route-specific ADD values for different population groups. In future studies, we recommend incorporating human biotransformation data, partition coefficients of ionizable chemicals, age-specific vulnerable indicators (e.g., the degree of maturation of immune systems), physiological variations within the same age group (e.g., intensity of daily physical activities), growth rates (i.e., the dilution effect on chemical biotransfer), and all possible target organs of carcinogenicity (e.g., bladder) into the proposed dynamic inventory database to help promote human exposome research.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jie Xiong
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
21
|
Jin Q, Yu J, Fan Y, Zhan Y, Tao D, Tang J, He Y. Release Behavior of Liquid Crystal Monomers from Waste Smartphone Screens: Occurrence, Distribution, and Mechanistic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37369363 DOI: 10.1021/acs.est.2c09602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Liquid crystal display (LCD) screens can release many organic pollutants into the indoor environment, including liquid crystal monomers (LCMs), which have been proposed as a novel class of emerging pollutants. Knowing the release pathways and mechanisms of LCMs from various components of LCD screens is important to accurately assess the LCM release and reveal their environmental transport behavior and fate in the ambient environment. A total of 47, 43, and 33 out of 64 target LCMs were detected in three disassembled parts of waste smartphone screens, including the LCM layer (LL), light guide plate (LGP), and screen protector (SP), respectively. Correlation analysis confirmed LL was the source of LCMs detected in LGP and SP. The emission factors of LCMs from waste screen, SP, and LGP parts were estimated as 2.38 × 10-3, 1.36 × 10-3, and 1.02 × 10-3, respectively. A mechanism model was developed to describe the release behaviors of LCMs from waste screens, where three characteristics parameters of released LCMs, including average mass proportion (AP), predicted subcooled vapor pressures (PL), and octanol-air partitioning coefficients (Koa), involving coexistence of absorption and adsorption mechanisms, could control the diffusion-partitioning. The released LCMs in LGP could reach diffusion-partition equilibrium more quickly than those in SP, indicating that LCM release could be mainly governed through SP diffusions.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianxin Yu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yinzheng Fan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
22
|
Araja A, Bertins M, Celma G, Busa L, Viksna A. Distribution of Minor and Major Metallic Elements in Residential Indoor Dust: A Case Study in Latvia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6207. [PMID: 37444055 PMCID: PMC10341758 DOI: 10.3390/ijerph20136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has not only brought considerable and permanent changes to economies and healthcare systems, but it has also greatly changed the habits of almost the entire society. During the lockdowns, people were forced to stay in their dwellings, which served as a catalyst for the initiation of a survey on the estimation of the metallic element content in residential indoor dust in different parts of Latvia. This article presents the study results obtained through the analysis of collected dust samples from 46 dwellings, both in the capital of Latvia, Riga, and in smaller cities. Two methods were employed for indoor dust collection: vacuum sampling and manual sampling with a brush and plastic spatula. After microwave-assisted acid extraction, the samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) in terms of the major (Na, K, Ca, Mg, Al and Fe) and minor (Mn, Ni, Co, Pb, Cr, As, Ba, Li, Be, B, V, Cu, Zn, Se, Rb, Sr, Cd, La, Ce and Bi) elements. For the data analysis, principal component analysis was performed. Among the measured metals, the highest values were determined for the macro and most abundant elements (Na > K > Ca > Fe > Mg > Al). The concentration ranges of the persistently detected elements were as follows: Pb, 0.27-1200 mg kg-1; Cd, 0.01-6.37 mg kg-1; Ni, 0.07-513 mg kg-1; As, 0.01-69.2 mg kg-1; Cu, 5.71-1900 mg kg-1; Zn, 53.6-21,100 mg kg-1; and Cr, 4.93-412 mg kg-1. The critical limit values of metallic elements in soil defined by the legislation of the Republic of Latvia (indicating the level at or above which the functional characteristics of soil are disrupted, or pollution poses a direct threat to human health or the environment) were exceeded in the following numbers of dwellings: Pb = 4, Ni = 2, As = 1, Cu = 16, Cr = 1 and Zn = 28.
Collapse
Affiliation(s)
- Agnese Araja
- Faculty of Chemistry, University of Latvia, Jelgavas Str.1, LV-1004 Riga, Latvia
| | | | | | | | | |
Collapse
|
23
|
Anake WU, Nnamani EA. Physico-chemical characterization of indoor settled dust in Children's microenvironments in Ikeja and Ota, Nigeria. Heliyon 2023; 9:e16419. [PMID: 37251465 PMCID: PMC10220365 DOI: 10.1016/j.heliyon.2023.e16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Indoor dust is a collection of particles identified as a major reservoir for several emerging indoor chemical pollutants. This study presents indoor dust particles' morphology and elemental composition in eight children's urban and semi-urban microenvironments (A-H) in Nigeria. Samples were collected using a Tesco vacuum cleaner and analyzed with scanning electron microscopy coupled with an energy-dispersive X-ray (SEM-EDX). The morphology results confirm the presence of alumino silicates, mineral particles and flakes, fly ash and soot, and soot aggregates deposited on alumino silicate particles in the sampled microenvironments. These particles may trigger serious health concerns that directly or indirectly affect the overall well-being of children. From the EDX analysis, the trend of elements (w/w %) in the dust particles across the sampled sites was silicon (386) > oxygen (174)> aluminium (114) > carbon (34.5) > iron (28.0) > calcium (16.7) > magnesium (14.2) > sodium (7.92) > potassium (7.58) > phosphorus (2.22) > lead (2.04) > manganese (1.17) > titanium (0.21). Lead (Pb), a toxic and carcinogenic heavy metal, was observed in locations A and B. This is a concern without a safe lead level because of the neurotoxicity effect on children. As a result, further research on the concentrations, bioavailability, and health risk assessment of heavy metals in these sampled locations is recommended. Furthermore, frequent vacuum cleaning, wet moping and adequate ventilation systems will significantly reduce the accumulation of indoor dust-bound metals.
Collapse
Affiliation(s)
- Winifred U. Anake
- Department of Chemistry, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| | - Esther A. Nnamani
- Department of Chemistry, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
24
|
Yu YJ, Li ZC, Tian JL, Hao CJ, Kuang HX, Dong CY, Zhou Y, Wu QZ, Gong YC, Xiang MD, Chen XC, Yang X, Dong GH. Why Do People Gain Belly Fat in Rural Areas? A Study of Urinary Metal(loid)s and Abdominal Obesity in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7938-7949. [PMID: 37202343 DOI: 10.1021/acs.est.2c09464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Obesity is prevalent in rural areas of China, and there are inconsistent findings regarding the association between metal(loid) exposure and the risk of obesity. Abdominal obesity (AOB), which reflects visceral fat abnormity, is a crucial factor in studying obesity-related diseases. We conducted a study measuring 20 urinary metal(loid)s, 13 health indicators, and the waist circumference (WC) in 1849 participants from 10 rural areas of China to investigate their relationships. In the single exposure models, we found that urinary chromium (Cr) was significantly associated with the odds of having AOB [adjusted odds ratio (OR) = 1.81 (95% confidence interval (CI): 1.24, 2.60)]. In the mixture exposure models, urinary Cr consistently emerged as the top contributor to AOB, while the overall effect of mixed metal(loid)s was positive toward the odds of having AOB [adjusted OR: 1.33 (95% CI: 1.00, 1.77)], as revealed from the quantile g-computation model. After adjusting for the effects of other metal(loid)s, we found that the elevation of apolipoprotein B and systolic blood pressure significantly mediated the association between urinary Cr and the odds of having AOB by 9.7 and 19.4%, respectively. Our results suggest that exposure to metal(loid)s is a key factor contributing to the prevalence of AOB and WC gain in rural areas of China.
Collapse
Affiliation(s)
- Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhen-Chi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jing-Lin Tian
- Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chao-Jie Hao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chen-Yin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xi-Chao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiao Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
25
|
Ibañez-Del Rivero C, Fry KL, Gillings MM, Barlow CF, Aelion CM, Taylor MP. Sources, pathways and concentrations of potentially toxic trace metals in home environments. ENVIRONMENTAL RESEARCH 2023; 220:115173. [PMID: 36584841 DOI: 10.1016/j.envres.2022.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Despite ongoing concerns about trace metal and metalloid (trace metals) exposure risks from indoor dust, there has been limited research examining their sources and relationship to outdoor soils. Here we determine the concentrations and sources for potentially toxic trace metals arsenic (As), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) and their pathways into homes in Sydney, Australia, using home-matched indoor dust (n = 166), garden soil (n = 166), and road dust samples (n = 51). All trace metals were more elevated indoors versus their matched garden soil counterparts. Indoor Cu and Zn dust concentrations were significantly more enriched than outdoor dusts and soils, indicating indoor sources were more relevant for these elements. By contrast, even though Pb was elevated in indoor dust, garden soil concentrations were correspondingly high, indicating that it remains an important source and pathway for indoor contamination. Elevated concentrations of As, Pb and Zn in garden soil and indoor dust were associated with home age (>50 years), construction materials, recent renovations and deteriorating interior paint. Significant correlations (p < 0.05) between road dust and garden soil Cu concentrations, and those of As and Zn in soil and indoor dust, and Pb across all three media suggest common sources. Scanning electron microscopy (SEM) analysis of indoor dust samples (n = 6) showed that 57% of particles were derived from outdoor sources. Lead isotopic compositions of soil (n = 21) and indoor dust (n = 21) were moderately correlated, confirming the relevance of outdoor contaminants to indoor environments. This study illustrates the source, relationship and fate of trace metals between outdoor and indoor environments. The findings provide insight into understanding and responding to potentially toxic trace metal exposures in the home environment.
Collapse
Affiliation(s)
- Carlos Ibañez-Del Rivero
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia
| | - Max M Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Cynthia F Barlow
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; The Australian Centre for Housing Research, Faculty of Arts, Business, Law and Economics, University of Adelaide, SA, 5000, Australia
| | - C Marjorie Aelion
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| |
Collapse
|
26
|
Wang M, Lv Y, Lv X, Wang Q, Li Y, Lu P, Yu H, Wei P, Cao Z, An T. Distribution, sources and health risks of heavy metals in indoor dust across China. CHEMOSPHERE 2023; 313:137595. [PMID: 36563718 DOI: 10.1016/j.chemosphere.2022.137595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The potential effects of heavy metals on human health have attracted increasing attention as most people spend up to 90% of their time indoors. Human exposure to heavy metals in indoor dust have only been characterised for limited regions in China, and full-scale data for different functional areas are not available. Therefore, this review analysed the concentrations, contamination characteristics, and potential health risks of seven heavy metals (including zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni), arsenic (As), and cadmium (Cd)) in indoor dust at 3392 sampling sites in 55 cities across 27 provincial regions of China based on literature data. Results revealed that the median heavy metal concentrations in indoor dust throughout China decreased in the following order: Zn > Pb > Cu > Cr > Ni > As > Cd. Traffic emissions and decorative materials are the primary sources of heavy metal pollution in indoor dust. No considerable non-carcinogenic risk was found for Zn, Cu, Cr, Ni, and Cd in indoor dust, while Pb and As exhibited potential non-carcinogenic risks to children, primarily distributed in cities across Southern China. Meanwhile, the carcinogenic risks posed by Cr and Ni were higher than those posed by As and Cd, especially in Southern China. Therefore, effective measures in Southern China should prioritised for controlling Pb, Cr, Ni and As pollution in indoor dust to reduce human health risk. This review is useful for policy decision-making and protecting human from exposure to heavy metals in indoor dust across China.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yinyi Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xinyan Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qianhan Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yiyi Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Lu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Taicheng An
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
27
|
Gul HK, Gullu G, Babaei P, Nikravan A, Kurt-Karakus PB, Salihoglu G. Assessment of house dust trace elements and human exposure in Ankara, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7718-7735. [PMID: 36044148 PMCID: PMC9428879 DOI: 10.1007/s11356-022-22700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
One of the impacts of the COVID-19 pandemic is leading people remain at homes longer than ever. Considering the elongation of the time people spend indoors, the potential health risks caused by contaminants including heavy metals in indoor environments have become even more critical. The purpose of this study was to evaluate the levels and sources of heavy metals in indoor dust, to assess the exposure to heavy metals via indoor dust, and to estimate the associated health risk. The highest median value was measured for Zn (263 μg g-1), while the lowest median concentration value was observed for Cd (0.348 μg g-1). The levels of elements measured in the current study were found to be within the ranges reported in the other parts of the world, mostly close to the lower end of the range. House characteristics such as proximity to the main street, presence of pets, number of occupants, and age of the building were the house characteristics influencing the observed higher concentrations of certain heavy metals in houses. Enrichment factor values range between 1.79 (Cr) and 20.4 (Zn) with an average EF value of 8.80 ± 6.80 representing that the targeted elements are enriched (EF>2) in indoor dust in Ankara. Positive matrix factorization results showed that the heavy metals in the house dust in the study area are mainly contributed from sources namely outdoor dust, carpets/furniture, solders, wall paint/coal combustion, and cigarette smoke. Carcinogenic and non-carcinogenic risk values from heavy metals did not exceed the safe limits recommended by EPA. The highest carcinogenic risk level was caused by Cr. The risk through ingestion was higher than inhalation, and the risk levels were higher for children than for adults.
Collapse
Affiliation(s)
- Hatice Kubra Gul
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Gulen Gullu
- Department of Environmental Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Parisa Babaei
- Department of Environmental Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Afsoun Nikravan
- Department of Environmental Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Perihan Binnur Kurt-Karakus
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
| | - Guray Salihoglu
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
28
|
Tariba Lovaković B, Jagić K, Dvoršćak M, Klinčić D. Trace elements in indoor dust-Children's health risk considering overall daily exposure. INDOOR AIR 2022; 32:e13104. [PMID: 36168220 DOI: 10.1111/ina.13104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Indoor dust presents an important source of daily exposure to toxic elements. The present study reports for the first time the levels of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Se, Sr, Tl, V, and Zn measured in dust samples collected from 10 kindergartens and 21 cars from Zagreb, Croatia. Based on the obtained data, we assessed the health risks from overall daily exposure to trace elements for children aged 2-6 years taking into account three pathways of dust intake-ingestion, dermal absorption, and inhalation. The median concentration of most elements was significantly higher in dust obtained from cars compared to kindergartens, especially in the cases of Co (11.62 vs. 3.60 mg kg-1 ), Cr (73.55 vs. 39.89 mg kg-1 ), Cu (186.33 vs. 26.01 mg kg-1 ), Mo (8.599 vs. 0.559 mg kg-1 ), Ni (37.05 vs. 17.38 mg kg-1 ), and Sn (9.238 vs. 1.159 mg kg-1 ). Oral intake was identified as the most important exposure pathway, except for Cr, Ni, and Sb where dermal contact was the main route of exposure. Health risk assessment indicated that no adverse effects are expected from overall exposure to trace elements. Although the cases of high exposure to toxic elements are not common in areas with no significant environmental pollutants, due to the health threat they may present even at low levels, their status should be carefully monitored.
Collapse
Affiliation(s)
| | - Karla Jagić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marija Dvoršćak
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Darija Klinčić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
29
|
Rasmussen PE, Kubwabo C, Gardner HD, Levesque C, Beauchemin S. Relationships between House Characteristics and Exposures to Metal(loid)s and Synthetic Organic Contaminants Evaluated Using Settled Indoor Dust. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10329. [PMID: 36011971 PMCID: PMC9408639 DOI: 10.3390/ijerph191610329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
This study investigates associations between house characteristics and chemical contaminants in house dust, collected under the nationally representative Canadian House Dust Study (2007−2010). Vacuum samples (<80 µm fraction) were analysed for over 200 synthetic organic compounds and metal(loid)s. Spearman rank correlations between contaminant concentrations in dust and presence of children and pets, types of flooring, heating styles and other characteristics suggested a number of indoor sources, pointing to future research directions. Numerous synthetic organics were significantly associated with reported use of room deodorizers and with the presence of cats in the home. Hardwood flooring, which is a manufactured wood product, emerged as a source of metal(loid)s, phthalates, organophosphate flame retardants/plasticizers, and obsolete organochlorine pesticides such as ∑DDT (but not halogenated flame retardants). Many metal(loid)s were significantly correlated with flame-retardant compounds used in building materials and heating systems. Components of heating appliances and heat distribution systems appeared to contribute heat-resistant chemicals and alloys to settled dust. Carpets displayed a dual role as both a source and repository of dust-borne contaminants. Contaminant loadings (<80 µm fraction) were significantly elevated in heavily carpeted homes, particularly those located near industry. Depending on the chemical (and its source), the results show that increased dust mass loading may enrich or dilute chemical concentrations in dust. Research is needed to improve the characterisation of hidden indoor sources such as flame retardants used in building materials and heating systems, or undisclosed ingredients used in common household products, such as air fresheners and products used for companion animals.
Collapse
Affiliation(s)
- Pat E. Rasmussen
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - H. David Gardner
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Christine Levesque
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Suzanne Beauchemin
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
30
|
Dietrich M, Shukle JT, Krekeler MPS, Wood LR, Filippelli GM. Using Community Science to Better Understand Lead Exposure Risks. GEOHEALTH 2022; 6:e2021GH000525. [PMID: 35372744 PMCID: PMC8859494 DOI: 10.1029/2021gh000525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a neurotoxicant that particularly harms young children. Urban environments are often plagued with elevated Pb in soils and dusts, posing a health exposure risk from inhalation and ingestion of these contaminated media. Thus, a better understanding of where to prioritize risk screening and intervention is paramount from a public health perspective. We have synthesized a large national data set of Pb concentrations in household dusts from across the United States (U.S.), part of a community science initiative called "DustSafe." Using these results, we have developed a straightforward logistic regression model that correctly predicts whether Pb is elevated (>80 ppm) or low (<80 ppm) in household dusts 75% of the time. Additionally, our model estimated 18% false negatives for elevated Pb, displaying that there was a low probability of elevated Pb in homes being misclassified. Our model uses only variables of approximate housing age and whether there is peeling paint in the interior of the home, illustrating how a simple and successful Pb predictive model can be generated if researchers ask the right screening questions. Scanning electron microscopy supports a common presence of Pb paint in several dust samples with elevated bulk Pb concentrations, which explains the predictive power of housing age and peeling paint in the model. This model was also implemented into an interactive mobile app that aims to increase community-wide participation with Pb household screening. The app will hopefully provide greater awareness of Pb risks and a highly efficient way to begin mitigation.
Collapse
Affiliation(s)
- Matthew Dietrich
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - John T. Shukle
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - Mark P. S. Krekeler
- Department of Geology & Environmental Earth ScienceMiami UniversityOxfordOHUSA
- Department of Mathematical and Physical SciencesMiami University HamiltonHamiltonOHUSA
| | - Leah R. Wood
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - Gabriel M. Filippelli
- Department of Earth SciencesIndiana University–Purdue University IndianapolisIndianapolisINUSA
- Environmental Resilience InstituteIndiana University BloomingtonBloomingtonINUSA
| |
Collapse
|