1
|
Tachachartvanich P, Sangsuwan R, Duangta S, Navasumrit P, Ruchirawat S, Ruchirawat M. Estrogenic and anti-estrogenic assessment of the flame retardant, 2-ethylhexyl diphenyl phosphate (EHDPP), and its metabolites: Evidence from in vitro, in silico, and transcriptome studies. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137303. [PMID: 39862785 DOI: 10.1016/j.jhazmat.2025.137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a replacement flame-retardant commonly found in several environmental matrices and human biospecimens. Although some adverse effects of EHDPP have been identified, the endocrine-disrupting effects of EHDPP and its key metabolites on the human estrogen receptor (ER) are largely unknown. Herein, we report for the first time that EHDPP, at concentrations found in the environment and humans, significantly promoted estrogenic activity and synergized with 17β-estradiol-induced ER transactivation. However, two major EHDPP metabolites 2-ethyl-3-hydroxyhexyl diphenyl phosphate (3-OH-EHDPP) and 2-ethyl-5-hydroxyhexyl diphenyl phosphate (5-OH-EHDPP), inhibited the ER through a non-competitive binding mechanism. Molecular docking showed that Pi-Pi stacking, hydrogen, and hydrophobic bonds primarily stabilize intermolecular interactions between EHDPP and the binding pockets of human ERα and ERβ. Moreover, transcriptome analysis confirmed the estrogenic effects of EHDPP, revealing notable enrichments in ER-mediated signaling and breast cancer pathways, consistent with the validated estrogenic gene expression profile. Intriguingly, EHDPP markedly promoted the clonogenic growth of two ER+ breast cancer cell lines, corroborating the expression levels of ERα protein. Our findings indicate that the common flame-retardant EHDPP activates the ER and downstream signaling, providing far-reaching implications for environmental and health risks associated with estrogen-related adversities such as the development of ER+ breast cancer.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand; Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Rapeepat Sangsuwan
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Sornsawan Duangta
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand; Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
| |
Collapse
|
2
|
Peng C, Wang M, Zheng C, Zhang X, Chen Y, Wang L. Organophosphate flame retardant triphenyl phosphate (TPhP) induced colonic fibrosis by bringing about epithelial-mesenchymal transition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117913. [PMID: 39970497 DOI: 10.1016/j.ecoenv.2025.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Intestinal fibrosis is often observed in inflammatory bowel disease (IBD) and seriously affects intestinal health. Our previous study identified that triphenyl phosphate (TPhP), one kind of frequently used organophosphate flame retardants (OPFRs), induced IBD-like features in colon. Herein, we firstly observed extracellular matrix deposition in colon tissues, indicative of appearance of colonic fibrosis. Further studies showed that TPhP downregulated epithelial marker E-cadherin levels but upregulated alpha smooth muscle actin (α-SMA) in mouse colon tissues, and similar results were observed in cultured colon cells, indicating that fibrogenesis might be attributed to epithelial-mesenchymal transition (EMT). Further transcriptome and experimental data demonstrated that TPhP-induced EMT was closely associated with activated Wnt/β-catenin pathway. Moreover, FOXM1 facilitated the entrance of β-catenin into nucleus to regulate expression of Wnt target genes, promoting EMT initiation. Collectively, these findings demonstrated that TPhP induced colonic fibrosis in mice by activating EMT, and this work may provide new perspectives in exploring etiology of intestinal fibrosis and developing relevant treatment strategies.
Collapse
Affiliation(s)
- Chunyan Peng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Mo Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xiaoqi Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yabing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
3
|
Fang T, Liu Q, Huangfu X, Zhu H, Sun H, Chen L. New insights into the mechanism of triphenyl phosphate and its metabolite diphenyl phosphate in diabetic kidney disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117877. [PMID: 39933236 DOI: 10.1016/j.ecoenv.2025.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Diabetic kidney disease is a significant complication of diabetes mellitus, and exposure to certain chemicals may play a role in its development. Triphenyl phosphate (TPHP) is commonly used in plastics and flame retardants. This study aims to investigate the potential impact of TPHP and its metabolite diphenyl phosphate (DPHP) on diabetic kidney disease using various methods, including network toxicology, molecular docking, and cell experiments like CCK8 assay and real-time-PCR. The research examined the relationship between urinary DPHP levels and kidney function in American adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to March 2020. Additionally, the study explored the targets of action for TPHP and DPHP using network toxicity analysis, conducted protein interaction analysis, and explored the functional aspects of action through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Furthermore, the study identified key proteins involved in the action and conducted experimental verification by treating cells with TPHP and DPHP. Toxicity analysis showed that TPHP could cause dose-dependent toxicity in mouse podocyte clone 5 (MPC5) and mouse mesangial cells (MES13). The study also detected mRNA expression of core targets molecularly docked with TPHP and DPHP using real-time-PCR. The results indicated statistically significant regulation of most core targets by TPHP and DPHP in MPC5, MES13, and human kidney-2 cells.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiaoyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xinxin Huangfu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
4
|
Kalia V, Jackson G, Dominguez RJ, Pinto-Pacheco B, Bloomquist T, Furnari J, Banu M, Volpert O, Manz KE, Walker DI, Pennell KD, Canoll PD, Bruce JN, Eitan E, Wu H, Baccarelli AA. Molecular profiling of neuronal extracellular vesicles reveals brain tissue specific signals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.23.25320909. [PMID: 39974146 PMCID: PMC11839008 DOI: 10.1101/2025.01.23.25320909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Extracellular vesicles (EVs) released by neurons (nEVs) provide an opportunity to measure biomarkers from the brain circulating in the periphery. No study yet has directly compared molecular cargo in brain tissue to nEVs found in circulation in humans. We compared the levels microRNAs and environmental chemicals because microRNAs are one of the most studied nEV cargoes and offer great potential as biomarkers and environmental chemical load in nEVs is understudied and could reveal levels of chemicals in the brain. To do so, we leveraged matched sets of brain tissue and serum, and isolated serum total EVs and serum nEVs. We also generated and compared metabolomic profiles in a different set of matched serum, serum total EVs, and serum nEVs since metabolite cargo in nEVs is also understudied but could offer potential biomarkers. Highly expressed brain tissue miRNAs showed stronger correlations with nEVs than serum or total EVs. We detected several environmental chemical pollutant classes in nEVs. The chemical pollutant concentrations in nEVs were more strongly correlated with brain tissue levels than those observed between brain tissue and serum or total EVs. We also detected several endogenous metabolite classes in nEVs. Compared to serum and total EVs, there was enrichment of metabolites with known signaling roles, such as bile acids, oleic acid, phosphatidylserine, and isoprenoids. We provide evidence that nEV cargo is closely correlated to brain tissue content, further supporting their utility as a brain liquid biopsy.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gabriela Jackson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Regina J. Dominguez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tessa Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julia Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Matei Banu
- Stanford Neuroscience Health Center, Stanford Medicine, Palo Alto, CA, USA
| | | | - Katherine E. Manz
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurt D. Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
5
|
Zhao B, Zheng S, Yang G, He Z, Deng J, Luo L, Li X, Luan T. Rap1 and mTOR signaling pathways drive opposing immunotoxic effects of structurally similar aryl-OPFRs, TPHP and TOCP. ENVIRONMENT INTERNATIONAL 2025; 195:109215. [PMID: 39705979 DOI: 10.1016/j.envint.2024.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Aryl organophosphorus flame retardants (aryl-OPFRs), commonly used product additives with close ties to daily life, have been regrettably characterized by multiple well-defined toxicity risks. Triphenyl phosphate (TPHP) and tri-o-cresyl phosphate (TOCP), two structurally similar aryl-OPFRs, were observed in our previous study to exhibit contrasting immunotoxic effects on THP-1 macrophages, yet the underlying mechanisms remain unclear. This study sought to address the knowledge gap by integrating transcriptomic and metabolomic analyses to elucidate the intricate mechanisms. During individual omics analyses, we unfortunately only obtained highly similar results for both TPHP and TOCP, failing to identify the key reasons for their differences. These results revealed comparable disturbances induced by both compounds, including disruptions in nucleic acid synthesis and energy metabolism, blocking ADP to ATP conversion by reducing TCA cycle intermediates, consequently leading to ATP depletion. However, through integrative analysis, specific pathways affected by each compound were successfully identified, shedding light on their unique effects. TPHP reduced GTP levels necessary for Rap1 activation, thereby inhibiting phagocytosis and adhesion of THP-1 macrophages. Conversely, TOCP stimulated the mTOR signaling pathway, enhancing phosphorylation of downstream proteins S6K, RHOA, and PKC, consequently promoting immune responses. This study not only clarified the distinct immunotoxic mechanisms of TPHP and TOCP but also provided critical insights into how structural variations in aryl-OPFRs can lead to markedly different immune responses, thereby informing future risk assessments and regulatory strategies for these compounds.
Collapse
Affiliation(s)
- Bilin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Gaoxiang Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijun He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
6
|
Liu L, Li X, Luo X, Wang X, Liu L, Yuan Z, Sun C, Zheng H, Xu EG, Li F. Phthalates esters disrupt demersal fish behavior: Unveiling the brain-gut axis impact. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117470. [PMID: 39647374 DOI: 10.1016/j.ecoenv.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The widespread use of plasticizers like phthalate esters (PAEs) has led to environmental and health concerns. The neurobehavioral toxicity of these compounds in marine environments, particularly regulated by the "brain-gut" axis, remains unclear, especially concerning wild demersal fish of high ecological value. Our investigation into the behavioral effects of three common PAEs, i.e., dimethyl phthalate (DMP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and their molecular mechanisms on juvenile Sebastes schlegelii, revealed alarming results from molecular to population levels. After a 20-day foodborne exposure at a low marine environmental concentration (1.0 μg g-1), we observed that all three PAEs significantly increased the thigmotaxis (behavioral tendency to stay close to physical boundaries) and mobility of juvenile fish by 28.2-59.4 % and 23.3-74.5 %, respectively, indicating anxiety-like behavior of fish. DEHP exhibited the most pronounced effects, followed by DBP and DMP. PAEs accumulated in the juvenile fish in the order of brain > liver > gut > muscle, with DEHP showing the highest brain concentrations (23.2 ± 2.98 μg g-1). This accumulation led to oxidative damage, inflammatory responses, and neurodegenerative changes in the optic tectum, resulting in cholinergic system dysfunction. In the gut, PAEs caused inflammatory lesions, disrupted the gut barrier, and altered the gut microbiome, exacerbating the neurotoxicity via "brain-gut" communication. These findings underscore the significant neurobehavioral toxicity of PAEs, emphasizing their critical impact on fish behavior. We also stress the crucial need for further research on fish and other marine species beyond the laboratory scale to fully understand the broader implications of PAE exposure in marine ecosystems and to guide future conservation efforts.
Collapse
Affiliation(s)
- Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xinyao Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Linjia Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| |
Collapse
|
7
|
Jia T, Liu W, Keller AA, Gao L, Xu X, Wu W, Wang X, Yu Y, Zhao G, Li B, Deng J, Mao T, Chen C. Potential impact of organophosphate esters on thyroid eye disease based on machine learning and molecular docking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177835. [PMID: 39631328 DOI: 10.1016/j.scitotenv.2024.177835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in daily commodities and building materials. Some OPEs, acting as agonists of the thyroid-stimulating hormone receptor (TSHR), may contribute to the development of thyroid eye disease (TED). This study analyzes the serum and urine of patients and control groups, using machine learning and molecular docking to investigate the potential impact of OPEs on TED. Results indicate significantly higher concentrations of OPEs and di-OPEs of TED patients compared to controls (Mann-Whitney U test, p < 0.05). Aryl OPEs exhibit the strongest binding affinity with TSHR. We developed a predictive model for OPE-TSHR affinity to explore the impact of OPE structural features on TSHR activity and effectively capture the complex relationships between changes in OPE side chains and their effects on TSHR. Predictions from the USEPA's database indicate that 28 % of 1011 OPEs have a tendency to bind with TSHR. Furthermore, a high-accuracy classification model successfully identified key substructures associated with high affinity for TSHR. This study not only enhances our understanding of the complex relationship between the structural diversity of OPEs and their thyroid impact but also offers molecular design insights to prevent releasing OPEs with high thyroid harm potential into the environment.
Collapse
Affiliation(s)
- Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China..
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA.
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaotian Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqi Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoxia Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Yu
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guang Zhao
- Department of Clinical Laboratory, 989th Hospital of the Joint Logistic Support Force of the PLA, Luoyang 471031, China
| | - Baohui Li
- Department of Clinical Laboratory, 989th Hospital of the Joint Logistic Support Force of the PLA, Luoyang 471031, China
| | - Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
8
|
Cui J, Ge Y, Guo M, Zhang L, Zhang S, Zhao L, Shi Y, Baqar M, Yao Y, Zhu H, Wang L, Cheng Z, Sun H. Occupational exposure to traditional and emerging organophosphate esters: A comparison of levels across different sources and blood distribution. ENVIRONMENT INTERNATIONAL 2024; 194:109165. [PMID: 39637534 DOI: 10.1016/j.envint.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Currently, there is limited knowledge regarding occupational exposure of traditional and emerging organophosphate esters (OPEs) from e-waste and automobile dismantling activities, and their distribution within the human blood. In the present study, we collected dust and urine samples from e-waste (ED) (n = 91 and 130, respectively) and automobile dismantling (AD) plants (n = 93 and 94, respectively), as well as serum-plasma-whole blood samples (sets from 128 participants) within ED areas for analyzing traditional and emerging organophosphate tri-esters (tri-OPEs) and organophosphate di-esters (di-OPEs). Median concentration of ∑tri-OPEs and ∑di-OPEs in dust (37,400 and 9,000 ng/g in ED, and 27,000 and 14,700 ng/g in AD areas, respectively) and urine samples (11.8 and 21.9 ng/mL in ED areas, and 17.2 and 15.0 ng/mL in AD areas, respectively) indicated that both e-waste and automobile dismantling activities served as important pollution source for OPEs. Dust ingestion has been evidenced to be the main exposure pathway compared to dermal absorption and inhalation. The median concentration (ng/mL) of OPEs in blood matrices descended order as follow: whole blood (13.1) > serum (11.6) > plasma (10.4) for ∑tri-OPEs, and plasma (3.51) > serum (0.36) > whole blood (0.23) for ∑di-OPEs. Concentration ratios of OPEs varied across blood matrices, depending on the compounds, suggesting that the essentiality of appropriate biomonitoring matrix for conducting comprehensive exposure assessments.
Collapse
Affiliation(s)
- Jingren Cui
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Meiqi Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Jia T, Keller AA, Gao L, Liu W, Liu S, Xu X, Yin F, He Y, Mao T, Deng J, Hussain J, Chen C. Organophosphate ester exposure in nail salons: Health implications for workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125013. [PMID: 39322103 DOI: 10.1016/j.envpol.2024.125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Organophosphates esters (OPEs) have become a preferred alternative in nail polish as plasticizers due to health concerns over previously used additives like dibutyl phthalate. However, the true extent of nail technicians' exposure to OPEs is largely unknown. This study shows that nail salon workers are significant exposed to OPEs, with varied concentrations found in air, dust, masks, and urine. The total concentrations of 11 OPEs in ultrasonic personal air samplers (UPAS) ranged from 251 to 1007 ng/m³, and in air conditioner filter dust from 371 to 14473 ng/g. Triphenyl phosphate (TPHP) was the most abundant compound found in the nail polishes used in these salons. On average, the concentrations of TPHP and diphenyl phosphate (DPHP) in workers' urine after work were 5.2 and 1.8 times higher than those before work, respectively. Two nail salons that had the highest nail polish usage also had very high concentrations of TPHP in surgical masks, dust, and UPAS. TPHP concentrations in workers' urine after work were 19 and 13 times those before work, respectively, in these two salons. Human internal exposure assessment showed that the average exposure dose of TPHP after work was 1.8 times higher than that before work. On average, use of masks reduced OPEs in urine by 77%. In conclusion, frequent mask replacement is highly recommended, especially in long working circumstances. Without regular replacement, masks may accumulate OPEs from the air, potentially becoming another source of human exposure to OPEs. Therefore, more attention should be paid to the occupational exposure of nail salon workers to OPEs, particularly considering that most practitioners in this industry are young women of reproductive age.
Collapse
Affiliation(s)
- Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, United States
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Sasha Liu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xiaotian Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fei Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China
| | - Tianao Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China
| | - Javid Hussain
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China; Department of Environmental Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87100, Pakistan
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China
| |
Collapse
|
10
|
Xu W, Zhang W, Yu Z, Gai X, Fu J, Hu L, Fu J, Zhang H, Jiang G. A comparative study for organophosphate triesters and diesters in mice via oral gavage exposure: Tissue distribution, excreta elimination, metabolites and toxicity. ENVIRONMENT INTERNATIONAL 2024; 193:109114. [PMID: 39509842 DOI: 10.1016/j.envint.2024.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Organophosphate triesters (tri-OPEs) and diesters (di-OPEs) may threaten human health through dietary intake, whereas little information is available about their fate in mammals. Herein, mice exposure experiments were carried out through gavage with six tri-OPEs and six di-OPEs, respectively. The residual levels of di-OPEs in mice were generally higher than those of tri-OPEs. The residual di-OPEs mainly distributed in the liver and blood while the most tri-OPEs remained in stomach, indicating easier transfer and lower metabolism levels of di-OPEs. The accumulation of tri- and di-OPEs with large octanol-water partition coefficients and long carbon chain were observed in tissues and feces, implying that the elimination of these OPEs through fecal excretion is an important elimination pathway. A total of 86 OPE metabolites were found in murine urine and feces, 57 of which were identified for the first time. For tri-OPEs, carboxylated OPEs had higher peak intensities and fewer interference factors among the metabolites, which could serve as ideal biomarkers. The predicted oral median lethal doses of OPEs and corresponding metabolites showed an increased toxicity of some hydroxylated OPEs and di-OPEs, needing further attention. These results provided new insights and evidence on the fates and biomarkers of OPEs exposure for mammals.
Collapse
Affiliation(s)
- Wenyu Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wei Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zechen Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoyu Gai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
11
|
Cao J, Lei Y, Li W, Jiang X, Li M. Coupled digital visualization and multi-omics uncover neurobehavioral dysfunction in zebrafish induced by resorcinol bis(diphenylphosphate). ENVIRONMENT INTERNATIONAL 2024; 192:109023. [PMID: 39321538 DOI: 10.1016/j.envint.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Resorcinol bis(diphenylphosphate) (RDP) is an emerging pollutant that has been frequently detected in aquatic environments, although its toxicity is poorly characterized. To understand how RDP affects the neural system, two-month-old zebrafish were exposed to RDP at concentrations of 0.1 and 10 μg/L for 60 days. Following exposure, behavioral assessments were conducted, revealing the emergence of anxiety-like symptoms and memory deficits among the adult fish exposed to RDP, especially at the higher concentration. The increased blood-brain barrier (BBB) permeability (4.67-5.58-fold higher than the control group), reduced expression of tight junction proteins and the rapid brain RDP bioaccumulation (15.63 ± 2.34 ng/g wet weight) indicated the neurotoxicity of RDP. Excess reactive oxygen species synthesis (2.20-2.50-fold) was induced by RDP, leading to mitochondrial dysfunction and decreased production of neurotransmitters in the brain, specifically serotonin (5-HT; 16.3 %) and dopamine (DA; 18.1 %). Metabolomic analysis revealed that the low-toxicity RDP dose up-regulated lipid-related metabolites, while the high-toxicity dose up-regulated arachidonic acid metabolism and disrupted amino acid metabolism, including tryptophan and tyrosine metabolism related to dopaminergic and serotonergic pathways. The dysregulation of genes in various cellular processes was identified by transcriptomics, mainly involved in cell adhesion molecules and gap junctions, and oxidative phosphorylation, which were directly associated with BBB permeability and oxidative stress, respectively. Correlation analysis of microbiome-metabolite-host links built a mechanistic hypothesis for alterations in gut microbiota (Actinobacteriota and Proteobacteria) induced by high-dose RDP leading to the alteration of tryptophan, tyrosine, and arachidonic acid metabolism, decreasing the production of 5-HT and DA through the gut-brain axis. This study provides valuable insights into the mechanism underlying RDP-induced neurotoxicity in zebrafish, which can inform ecological risk assessments.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Cao J, Lei Y, Jiang X, Kannan K, Li M. Biotransformation, Bioaccumulation, and Bioelimination of Triphenyl Phosphate and Its Dominant Metabolite Diphenyl Phosphate In Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15486-15496. [PMID: 39167085 DOI: 10.1021/acs.est.4c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Aryl phosphorus flame retardants (aryl-PFRs), such as triphenyl phosphate (TPHP) and diphenyl phosphate (DPHP), are widely used worldwide. Understanding the fates of aryl-PFRs in vivo is crucial to assessing their toxicity and the risks they pose. Seven TPHP metabolites, including Phase I hydrolysis and hydroxylation and Phase II glucuronidation products, were identified in C57BL/6J male mice following subacute dietary exposure to aryl-PFRs (70 μg/kg body weight (bw)/day) for 7 days. TPHP was almost completely metabolized by mice (∼97%), with DPHP the major metabolite formed (34%-58%). In addition, mice were exposed to aryl-PFRs (7 μg/kg bw/day) for 12 weeks. Both TPHP and DPHP occurred at higher concentrations in the digestive tract (intestine and stomach), liver and heart. The total concentration of DPHP in all organs was 3.55-fold greater than that of TPHP. Recovery analysis showed that the rate of TPHP elimination from mouse organs reached 38%, while only 3%-5% of DPHP was removed, suggesting that the rates of degradation and elimination of DPHP were slower than TPHP and its bioaccumulation potential was higher. These results highlight the critical role of DPHP in the biotransformation, bioaccumulation, and bioelimination of TPHP, providing valuable insights into the fate of aryl-PFRs in vivo.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York 12237, United States
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Hong X, Yuan L, Zhao X, Shan Y, Qin T, Li J, Zha J. Embryonic Exposure to Organophosphate Flame Retardants (OPFRs) Differentially Induces Cardiotoxicity in Rare Minnow ( Gobiocypris rarus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13648-13657. [PMID: 39069658 DOI: 10.1021/acs.est.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Organophosphorus flame retardants (OPFRs) such as triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were reported to impair cardiac function in fish. However, limited information is available regarding their cardiotoxic mechanisms. Using rare minnow (Gobiocypris rarus) as a model, we found that both TPHP and TDCIPP exposures decreased heart rate at 96 h postfertilization (hpf) in embryos. Atropine (an mAChR antagonist) can significantly attenuate the bradycardia caused by TPHP, but only marginally attenuated in TDCIPP treatment, suggesting that TDCIPP-induced bradycardia is independent of mAChR. Unlike TDCIPP, although TPHP-induced bradycardia could be reversed by transferring larvae to a clean medium, the inhibitory effect of AChE activity persisted compared to 96 hpf, indicating the existence of other bradycardia regulatory mechanisms. Transcriptome profiling revealed cardiotoxicity-related pathways in treatments at 24 and 72 hpf in embryos/larvae. Similar transcriptional alterations were also confirmed in the hearts of adult fish. Further studies verified that TPHP and TDCIPP can interfere with Na+/Ca2+ transport and lead to disorders of cardiac excitation-contraction coupling in larvae. Our findings provide useful clues for unveiling the differential cardiotoxic mechanisms of OPFRs and identifying abnormal Na+/Ca2+ transport as one of a select few known factors sufficient to impair fish cardiac function.
Collapse
Affiliation(s)
- Xiangsheng Hong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xu Zhao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, Guangzhou 510655, China
| | - Yuan Shan
- National Fisheries Technology Extension Center and China Society of Fisheries, Beijing 100125, China
| | - Tianlong Qin
- Aquatic Technology Promotion Guidance Center for Wuhan, 821 Development Avenue, Jiangan District, Wuhan 430014, China
| | - Jiasu Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Liu Y, Li H, Yin Y, Zhao L, Zhou R, Cui Y, Wang Y, Wang P, Li X. Organophosphate esters in milk across thirteen countries from 2020 to 2023: Concentrations, sources, temporal trends and ToxPi priority to humans. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134632. [PMID: 38781852 DOI: 10.1016/j.jhazmat.2024.134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Recent increases in organophosphate ester (OPE) application have led to their widespread presence, yet little is known about their temporal trends in food. This study collected milk samples from 13 countries across three continents during 2020-2023, finding detectable OPEs in all samples (range: 2.25-19.7; median: 7.06 ng/g ww). Although no statistical temporal differences were found for the total OPEs during the 4-year sampling campaign, it was interesting to observe significant variations in the decreasing trend for Cl-OPEs and concentration variations for aryl-OPEs and alkyl-OPEs (p < 0.05), indicating changing OPE use patterns. Packaged milk exhibited significant higher OPE levels than those found in directly collected raw unpackaged milk, and milk with longer shelf-life showed higher OPE levels, revealing packaging material as a contamination source. No significant geographical differences were observed in milk across countries (p > 0.05), but Shandong Province, a major OPE production site in China, showed relatively higher OPE concentrations. The Monte Carlo simulation of estimated daily intakes indicated no exposure risk from OPEs through milk consumption. The molecular docking method was used to assess human hormone binding affinity with OPEs, amongst which aryl-OPEs had the highest binding energies. The Toxicological-Priority-Index method which integrated chemical property, detection frequency, risk quotients, hazardous quotients and endocrine-disrupting effects was employed to prioritize OPEs. Aryl-OPEs showed the highest scores, deserving attention in the future.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hongting Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Liang Zhao
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ruoxian Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yajing Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yongjun Wang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
15
|
Zhang Z, Dai L, Yang K, Luo J, Zhang Y, Ding P, Tian J, Tuo X, Chi B. Molecular insight on the binding of halogenated organic phosphate esters to human serum albumin and its effect on cytotoxicity of halogenated organic phosphate esters. Int J Biol Macromol 2024; 270:132383. [PMID: 38754667 DOI: 10.1016/j.ijbiomac.2024.132383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Halogenated Organic Phosphate Esters (OPEs) are commonly found in plasticizers and flame retardants. However, they are one kind of persistent contaminants that can pose a significant threat to human health and ecosystem as new environmental estrogen. In this study, two representative halogenated OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCP) and tris(2,3-dibromopropyl) phosphate (TDBP), were selected as experimental subjects to investigate their interaction with human serum albumin (HSA). Despite having similar structures, the two ligands exhibited contrasting effects on enzyme activity of HSA, TDCP inhibiting enzyme activity and TDBP activating it. Furthermore, both TDCP and TDBP could bind to HSA at site I, interacted with Arg222 and other residues, and made the conformation of HSA unfolded. Thermodynamic parameters indicated the main driving forces between TDBP and HSA were hydrogen bonding and van der Waals forces, while TDCP was mainly hydrophobic force. Molecular simulations found that more hydrogen bonds of HSA-TDBP formed during the binding process, and the larger charge area of TDBP than TDCP could partially account for the differences observed in their binding abilities to HSA. Notably, the cytotoxicity of TDBP/TDCP was inversely proportional to their binding ability to HSA, implying a new method for determining the cytotoxicity of halogenated OPEs in vitro.
Collapse
Affiliation(s)
- Zihang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lulu Dai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yue Zhang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jianwen Tian
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
16
|
Du B, Deng Q, Luo D, Chen H, Wu W, Liang B, Zhu H, Zeng L. Ubiquity of Synthetic Phenolic Antioxidants in Children's Cerebrospinal Fluid from South China: First Evidence for Their Penetration across the Blood-Cerebrospinal Fluid Barrier. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8289-8298. [PMID: 38687905 DOI: 10.1021/acs.est.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Synthetic phenolic antioxidants (SPAs) and relevant transformation products (TPs) are potentially neurotoxic pollutants to which humans are widely exposed. However, their penetration behavior across the brain barrier and associated exposure to the central nervous system (CNS) remain unknown. This study is the first to investigate a wide range of 30 SPAs and TPs, including emerging SPAs, in matched serum and cerebrospinal fluid (CSF) samples from children in Guangzhou, China. Sixty-two children of either sex aged <14 years with nonbloody CSF and complete clinical information were included. The findings demonstrated the ubiquitous occurrence of many SPAs and TPs, particularly BHT, 2,4-di-tert-butylphenol (DBP), AO 1010, AO 1076, BHT-Q, and BHT-quinol, not only in serum but also in the CSF. Median total concentrations of SPAs and TPs were up to 22.0 and 2.63 ng/mL in serum and 14.5 and 2.11 ng/mL in CSF, respectively. On calculating the penetration efficiencies across the blood-CSF barrier (BCSFB) (RCSF/serum, CCSF/Cserum) for selected SPAs and TPs, their RCSF/serum values (median 0.52-1.41) were highly related to their physicochemical properties, indicating that passive diffusion may be the potential mechanism of BCSFB penetration. In addition, the RCSF/serum values were positively correlated with the barrier permeability index RAlb (AlbuminCSF/Albuminserum), indicating that barrier integrity is an important determinant of BCSFB penetration. Overall, these results will improve our perception of human internal exposure to SPAs and lay a solid foundation for assessing the risk of CNS exposure to various SPAs.
Collapse
Affiliation(s)
- Bibai Du
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Qing Deng
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Dan Luo
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Hui Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Weixiang Wu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Bowen Liang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Hongkai Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lixi Zeng
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
17
|
Cohn EF, Clayton BLL, Madhavan M, Lee KA, Yacoub S, Fedorov Y, Scavuzzo MA, Paul Friedman K, Shafer TJ, Tesar PJ. Pervasive environmental chemicals impair oligodendrocyte development. Nat Neurosci 2024; 27:836-845. [PMID: 38528201 PMCID: PMC11088982 DOI: 10.1038/s41593-024-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
Exposure to environmental chemicals can impair neurodevelopment, and oligodendrocytes may be particularly vulnerable, as their development extends from gestation into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocytes. Here, using a high-throughput developmental screen in cultured cells, we identified environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents and personal care products, were potently and selectively cytotoxic to developing oligodendrocytes, whereas organophosphate flame retardants, commonly found in household items such as furniture and electronics, prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired oligodendrocyte development postnatally in mice and in a human 3D organoid model of prenatal cortical development. Analysis of epidemiological data showed that adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our screen. This work identifies toxicological vulnerabilities for oligodendrocyte development and highlights the need for deeper scrutiny of these compounds' impacts on human health.
Collapse
Affiliation(s)
- Erin F Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kristin A Lee
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Yacoub
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuriy Fedorov
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Marissa A Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
18
|
Zhang L, Yang P, Shu Y, Huang W, Sun W, Liu X, Chen D. Suspect-Screening Analysis of Environmental Chemicals in Paired Human Cerebrospinal Fluid and Serum Samples. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47701. [PMID: 38656168 PMCID: PMC11041624 DOI: 10.1289/ehp14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Long Zhang
- School of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yaqing Shu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Huang
- School of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Wenwen Sun
- SCIEX (China) Co., Ltd., Guangzhou, Guangdong, China
| | - Xiaotu Liu
- School of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Da Chen
- School of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Gao K, Wang L, Xu Y, Zhang Y, Li H, Fu J, Fu J, Lu L, Qiu X, Zhu T. Concentration identification and endpoint-oriented health risk assessments on a broad-spectrum of organic compounds in atmospheric fine particles: A sampling experimental study in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167574. [PMID: 37804984 DOI: 10.1016/j.scitotenv.2023.167574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Understanding the complicate chemical components in atmospheric fine particulate matter (PM2.5) helps policy makers for pollutants control track progress and identify disparities in overall health risks. However, till now, information on accurate component detection, source identification, and effect-oriented risk assessment is scarce, especially for the simultaneous analysis of a broad-spectrum of compounds. In this study, a high-throughput target method was employed to distinguish the occurrence and characteristics of 152 chemicals: phthalate esters (PAEs), organophosphate esters (OPEs), carboxylic acid esters (CAEs), nitrophenols (NPs), nitrogen heterocyclic compounds (NHCs), per- and poly-fluoroalkyl substances (PFASs), triclosan and its derivatives (TCSs), and organosulfates (OSs) in ambient PM2.5 collected from Beijing, China. Detection frequencies of 77 targeted compounds were >50 %. Total concentrations of all compounds ranged from 33.1 to 745 ng/m3. The median concentration of ∑PAEs (108 ng/m3) was the highest, followed by ∑CAEs (12.2 ng/m3) and ∑NPs (10.1 ng/m3). Organophosphate diesters (di-OPEs) and TCSs were reported for the first time in ambient PM2.5. The pollutants mainly originated from the local industrial production, release of building materials, and environmental degradation of parent compounds. Based on absorption, distribution, metabolism, excretion, and toxicity (ADMET)-oriented risk evaluations, we found that bis (2-ethylhexyl) phthalate, diisobutyl phthalate, dibutyl phthalate, and di (2-ethylhexyl) adipate have high health risks. Additionally, the high oxidative stress potential of 4-nitrocatechol and the strong blood-brain barrier penetration potential of triclosan cannot be ignored. Our study will facilitate the evaluations of specific health outcomes and mechanisms of pollutants, and suggestion of pollutants priority control to reduce human health hazards caused by atmospheric particles.
Collapse
Affiliation(s)
- Ke Gao
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China; SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Linxiao Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China
| | - Yifan Xu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yidan Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Haonan Li
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Jianjie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
20
|
Peng C, Zhang X, Chen Y, Wang L. Toxicity assessment of organophosphate flame retardant triphenyl phosphate (TPHP) on intestines in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115685. [PMID: 37976930 DOI: 10.1016/j.ecoenv.2023.115685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Triphenyl phosphate (TPHP), one widely used organophosphate flame retardant, has attracted accumulating attention due to its high detection rate in human biological samples. Up to date, the effects of TPHP exposure on intestinal health remain unexplored. In this study, BALB/c mice were used as a model and exposed to TPHP at dose of 2, 10, or 50 mg/kg body weight for 28 days. We observed Crohn's disease-like features in ileum and ulcerative colitis disease-like features in colon, such as shorter colon length, ileum/colon structure impairment, intestinal epithelial cell apoptosis, enrichment of proinflammatory cytokines and immune cells, and disruption of tight junction. Furthermore, we found that TPHP induced production of reactive oxygen species and apoptosis in intestinal epithelial Caco-2 cells, accompanied by disruption of tight junction between cells. To understand the molecular mechanism underlying TPHP-induced changes in intestines, we build the adverse outcome pathway (AOP) framework based on Comparative Toxicogenomics and GeneCards database. The AOP framework revealed that PI3K/AKT and FoxO signaling pathway might be associated with cellular apoptosis, an increase in ROS production, and increased inflammation response in mouse ileum and colon tissues challenged with TPHP. These results identified that TPHP induced IBD-like features and provided new perspectives for toxicity evaluation of TPHP.
Collapse
Affiliation(s)
- Chunyan Peng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Xiaoqi Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
21
|
Luo W, Liu Y, Yang X, Aamir M, Bai X, Liu W. Prenatal exposure to emerging and traditional organophosphate flame retardants: Regional comparison, transplacental transfer, and birth outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122463. [PMID: 37669697 DOI: 10.1016/j.envpol.2023.122463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
During gestation, organophosphate flame retardants (OPFRs) have the potential to pose health risks to fetuses due to their ability to cross the placental barrier. However, data are scarce regarding the transplacental transfer of these compounds, particularly concerning emerging OPFRs and regional variations. In this study, we analyzed 14 traditional OPFRs and 5 emerging OPFRs in maternal and cord serum samples from Mianyang and Hangzhou, two cities in eastern and western China, respectively. The results revealed marked disparities in the overall levels of OPFRs between the two cities (p < 0.05), with the average concentration in maternal serum being higher in Hangzhou (14.55 ng/mL) than in Mianyang (8.28 ng/mL). The most abundant compounds found in both cities were tris (2-chloroethyl) phosphate (TCEP), Triphenyl phosphate (TPHP), and Tri-n-butyl phosphate (TnBP). Additionally, this study marked the first detection of novel OPFRs, including resorcinol bis (diphenyl phosphate) (RDP), isodecyl diphenyl phosphate (IDDPP), cresyl diphenyl phosphate (CDP), and bisphenol A bis (diphenyl phosphate) (BPA-BDPP) in maternal and cord serum simultaneously with the detection frequencies higher than 45%. This study also found that transplacental transfer efficiencies for OPFRs varied by ester group, with Aryl-OPFRs exhibiting the highest transfer rates (0.90-1.11) and Alkyl-OPFRs exhibiting the lowest (0.66-0.83). Transfer efficiencies exhibited a positive correlation with log Kow values (p < 0.05), suggesting that hydrophobic OPFRs with higher log Kow values are more likely to permeate the placental barrier. Moreover, the exposure levels of Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), Tri (Chloropropyl) Phosphate (TCIPP), TPHP, and CDP in cord serum were negatively associated (p < 0.05) with birthweight of newborns. This research adds to our understanding of the transplacental transfer of OPFRs and the possible health risks associated with prenatal exposure.
Collapse
Affiliation(s)
- Wangwang Luo
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomeng Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Muhammed Aamir
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaoxia Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
22
|
Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O. Interactions of organophosphate flame retardants with human drug transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115348. [PMID: 37597291 DOI: 10.1016/j.ecoenv.2023.115348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé), France.
| |
Collapse
|
23
|
Ma X, Kuang L, Wang X, Zhang Z, Chen C, Ding P, Chi B, Xu J, Tuo X. Investigation on the interaction of aromatic organophosphate flame retardants with human serum albumin via computer simulations, multispectroscopic techniques and cytotoxicity assay. Int J Biol Macromol 2023; 247:125741. [PMID: 37423437 DOI: 10.1016/j.ijbiomac.2023.125741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Organophosphate flame retardants (OPFRs) are newly emerging estrogenic environmental pollutants, which attracted widespread public interest owing to their potential threats to human. Here, the interaction between two typical aromatic OPFRs, TPHP/EHDPP and HSA was researched by different experiments. Experimental results indicated that TPHP/EHDPP can insert the site I of HSA and be encircled by several amino acid residues, Asp451, Glu292, Lys195, Trp214 and Arg218 played vital roles in this binding process. At 298 K, the Ka value of TPHP-HSA complex was 5.098 × 104 M-1, and the Ka value of EHDPP-HSA was 1.912 × 104 M-1. Except H-bonds and van der Waals forces, the π-electrons on the phenyl ring of aromatic-based OPFRs played a pivotal role in maintaining the stability of the complexes. The content alterations of HSA were observed in the present of TPHP/EHDPP. The IC50 values of TPHP and EHDPP were 157.9 μM and 31.14 μM to GC-2spd cells, respectively. And the existence of HSA has a regulatory effect on the reproductive toxicity of TPHP/EHDPP. In addition, the results of present work implied Ka values of OPFRs and HSA are possible to be a useful parameter for evaluating their relative toxicity.
Collapse
Affiliation(s)
- Xiulan Ma
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowei Wang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zihang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Junying Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
24
|
Zhao L, Zhu H, Cheng Z, Shi Y, Zhang Q, Wang Y, Sun H. Co-occurrence and distribution of organophosphate tri- and di-esters in dust and hand wipes from an e-waste dismantling plant in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163176. [PMID: 37003336 DOI: 10.1016/j.scitotenv.2023.163176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Electronic waste (e-waste) dismantling facilities are a well-known source of emerging contaminants including organophosphate esters (OPEs). However, little information is available regarding the release characteristics and co-contaminations of tri- and di-esters. This study, therefore, investigated a broad range of tri- and di-OPEs in dust and hand wipe samples collected from an e-waste dismantling plant and homes as comparison. The median ∑tri-OPE and ∑di-OPE levels in dust and hand wipe samples were approximately 7- and 2-fold higher than those in the comparison group, respectively (p < 0.01). Triphenyl phosphate (median: 11,700 ng/g and 4640 ng/m2) and bis(2-ethylhexyl) phosphate (median: 5130 ng/g and 940 ng/m2) were the dominant components of tri- and di-OPEs, respectively. The combination of Spearman rank correlations and the determinations of molar concentration ratios of di-OPEs to tri- OPEs revealed that apart from the degradation of tri-OPEs, di-OPEs could originate from direct commercial application, or as impurities in tri-OPE formulas. Significant positive correlations (p < 0.05) were found for most tri- and di-OPE levels between the dust and hand wipes from dismantling workers, whereas this was not observed in those from the ordinary microenvironment. Our results provide robust evidence that e-waste dismantling activities contribute to OPEs contamination in the surroundings and further human exposure pathways and toxicokinetics are needed to be elucidated.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
25
|
Liu Y, Li Y, Xiao N, Liu M, Wang Y, Luo H, Yao Y, Feng Y, Wang S. Serum Organophosphate Flame retardants and plasticizers in Chinese females of childbearing age: Association with serum reproductive and thyroid hormones. CHEMOSPHERE 2023:139237. [PMID: 37331665 DOI: 10.1016/j.chemosphere.2023.139237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Organophosphate flame retardants (OPFRs) are extensively used as flame retardants and plasticizers, but their endocrine disrupting potentials have raised concerns. However, the impacts of OPFR exposures on reproductive and thyroid hormones in females remains unclear. In this study, serum concentrations of OPFRs were investigated, and levels of reproductive and thyroid hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, anti-Müllerian hormone, prolactin (PRL), testosterone (T), and thyroid stimulating hormone, were analyzed in childbearing-age females undergoing in-vitro fertilization treatment from Tianjin, a coastal city in China (n = 319). Tris (2-chloroethyl) phosphate (TCEP) was the predominant OPFR, with a median concentration of 0.33 ng/mL and a detection frequency of 96.6%. In the whole population, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP) were positively associated with T (p < 0.05), while triethyl phosphate (TEP) was negatively associated with LH (p < 0.05) and LH/FSH (p < 0.01). Particularly, TCIPP was negatively associated with PRL in the younger subgroup (age≤30, p < 0.05). Moreover, TCIPP was negatively associated with diagnostic antral follicle counting (AFC) in the mediation analysis by a dominating direct effect (p < 0.01). In conclusion, serum levels of OPFRs were significantly associated with reproductive and thyroid hormone levels and a risk of decreased ovarian reserve in childbearing-age females, with age and body mass index being significant influencing factors.
Collapse
Affiliation(s)
- Yarui Liu
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Min Liu
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| | - Shuo Wang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China.
| |
Collapse
|
26
|
Tong W, Du X, Wang J, Yan H, Xie T, Wang Y, Zhang Y. Degradation and phosphorus immobilization treatment of organophosphate esters hazardous waste by Fe-Mn bimetallic oxide. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131049. [PMID: 36840987 DOI: 10.1016/j.jhazmat.2023.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate esters (OPEs) waste is difficult to dispose effectively because of its stability and the potential risk of P element. In this study, taking one typical organic extractant of tributyl phosphate (TBP) as an example, we proposed a strategy to treat OPEs inspired by chemical looping combustion (CLC) technology-oxygen carrier immobilization process (OCIP), aiming at efficient TBP degradation and simultaneous P immobilization. Adopting Fe-Mn bimetallic oxide (FMBO) as oxygen carrier, an almost 100% P immobilization efficiency was achieved under recommended conditions which were obtained by response surface methodology. Meanwhile, gaseous products released from TBP degradation, e.g., non-methane hydrocarbon, was lower than the maximum allowable emission concentration limit. Further characterizations implied that P-species released from reaction process were mainly immobilized as stable inorganic forms of metaphosphate, phosphate and pyrophosphate. On the basis of identifying degradation intermediates, we proposed a possible degradation pathways. FMBO as an oxygen carrier provided sufficient oxygen molecules for flameless combustion of OCIP process. Electron paramagnetic resonance measurement confirmed the existence of oxygen vacancies on FMBO surface, which contributed to the formation of •O2-. Oxidation by oxygen molecules and •O2- attack resulted in the degradation and mineralization of TBP, with simultaneously achieving P stabilization.
Collapse
Affiliation(s)
- Wenhua Tong
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinhang Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiepeng Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Yan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
27
|
Zhang S, Cheng Z, Yang M, Guo Z, Zhao L, Baqar M, Lu Y, Wang L, Sun H. Percutaneous Penetration of Liquid Crystal Monomers (LCMs) by In Vitro Three-Dimensional Human Skin Equivalents: Possible Mechanisms and Implications for Human Dermal Exposure Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4454-4463. [PMID: 36867107 DOI: 10.1021/acs.est.2c07844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear. Herein, we used EpiKutis 3D-Human Skin Equivalents (3D-HSE) to quantitatively assess the percutaneous penetration of nine LCMs, which were detected in e-waste dismantling workers' hand wipes with high detection frequencies. LCMs with higher log Kow and greater molecular weight (MW) were more difficult to penetrate through the skin. Molecular docking results showed that ABCG2 (an efflux transporter) may be responsible for percutaneous penetration of LCMs. These results suggest that passive diffusion and active efflux transport may be involved in the penetration of LCMs across the skin barrier. Furthermore, the occupational dermal exposure risks evaluated based on the dermal absorption factor suggested the underestimation of the continuous LCMs' health risks via dermal previously.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zijin Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Yue J, Sun C, Tang J, Zhang Q, Lou M, Sun H, Zhang L. Downregulation of miRNA-155-5p contributes to the adipogenic activity of 2-ethylhexyl diphenyl phosphate in 3T3-L1 preadipocytes. Toxicology 2023; 487:153452. [PMID: 36764644 DOI: 10.1016/j.tox.2023.153452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a commonly used organophosphorus flame retardant and food packaging material. Because of its high lipophilic and bioaccumulative properties, adipocytes are the primary target of EHDPP. However, the toxicity of EHDPP on preadipocytes and the potential mechanism have not been fully elucidated. MicroRNAs (miRNAs) are thought to be an important mediator that contribute to the toxicity of environmental contaminants. To identify the miRNAs specifically responsible for EHDPP exposure and their role in EGDPP's toxicity in preadipocytes, the adipogenic effects and miRNA expression profiling were performed on 3T3-L1 preadipocytes exposed to EHDPP. EHDPP at concentrations of 1-10 μM promoted adipocyte differentiation, as evidenced by lipid staining, triglyceride content, and expression of adipogenesis markers. MiRNA-seq analysis revealed that 7 differentially expressed miRNAs were recognized under EHDPP exposure, with miR-155-5p being the top down-regulated miRNA. Quantitative reverse transcription PCR (RT-qPCR) analysis showed that miR-155-5p level fell sharply during the first 2 days and continued to fall dose-dependently throughout the EHDPP exposure period. MiR-155-5p inhibition promotes adipocyte differentiation, whereas its overexpression counteracted EHDPP-induced adipogenesis. Luciferase reporter assay identified CCAAT/enhancer-binding protein beta (C/EBPβ) as a target of miR-155-5p in 3T3-L1 preadipocytes in response to EHDPP. Taken together, EHDPP exposure down-regulated miR-155-5p, which then increased C/EBPβ and peroxisome proliferator-activated receptor γ (PPARγ) expression and promoted adipogenesis in preadipocytes.
Collapse
Affiliation(s)
- Junjie Yue
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Caiting Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jinyuan Tang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qiyuan Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mengjie Lou
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lianying Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Cohn EF, Clayton BL, Madhavan M, Yacoub S, Federov Y, Paul-Friedman K, Shafer TJ, Tesar PJ. Pervasive environmental chemicals impair oligodendrocyte development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528042. [PMID: 36798415 PMCID: PMC9934656 DOI: 10.1101/2023.02.10.528042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Exposure to environmental chemicals can impair neurodevelopment1-4. Oligodendrocytes that wrap around axons to boost neurotransmission may be particularly vulnerable to chemical toxicity as they develop throughout fetal development and into adulthood5,6. However, few environmental chemicals have been assessed for potential risks to oligodendrocyte development. Here, we utilized a high-throughput developmental screen and human cortical brain organoids, which revealed environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents, hair conditioners, and fabric softeners, were potently and selectively cytotoxic to developing oligodendrocytes through activation of the integrated stress response. Organophosphate flame retardants, commonly found in household items such as furniture and electronics, were non-cytotoxic but prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired human oligodendrocyte development in a 3D organoid model of prenatal cortical development. In analysis of epidemiological data from the CDC's National Health and Nutrition Examination Survey, adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our oligodendrocyte toxicity platform. Collectively, our work identifies toxicological vulnerabilities specific to oligodendrocyte development and highlights common household chemicals with high exposure risk to children that warrant deeper scrutiny for their impact on human health.
Collapse
Affiliation(s)
- Erin F. Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Benjamin L.L. Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Sara Yacoub
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Yuriy Federov
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Timothy J. Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
30
|
Yue J, Sun X, Duan X, Sun C, Chen H, Sun H, Zhang L. Triphenyl phosphate proved more potent than its metabolite diphenyl phosphate in inducing hepatic insulin resistance through endoplasmic reticulum stress. ENVIRONMENT INTERNATIONAL 2023; 172:107749. [PMID: 36680801 DOI: 10.1016/j.envint.2023.107749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Triphenyl phosphate (TPHP) is a widely used flame retardant and plasticizer and has been detected extensively in environmental media, wildlife and human bodies. Several epidemiological and animal studies have revealed that TPHP exposure is positively associated with glucose homeostasis disruption and diabetes. However, the effects of TPHP on hepatic glucose homeostasis and the underlying mechanisms remain unclear. The present work aimed to investigate the cytotoxicity and glucose metabolism disruption of TPHP and its metabolite diphenyl phosphate (DPHP) within hepatocytes. The cell viability assay undertaken on human normal liver (L02) cells showed that TPHP exhibited more potent hepatotoxicity than DPHP. RNA sequencing (RNA-seq) data showed that TPHP and DPHP presented different modes of toxic action. Insulin resistance is one of the predominant toxicities for TPHP, but not for DPHP. The insulin-stimulated glucose uptake and glycogen synthesis were impaired by TPHP, while DPHP exhibited no significant impairment on these factors. TPHP exposure induced endoplasmic reticulum (ER) stress, and the ER stress antagonist 4-PBA restored the impairment of insulin-stimulated glucose uptake and glycogen synthesis induced by TPHP. TPHP could also induce liver ER stress and insulin resistance in mice. Taken together, the results suggested that TPHP induces more potent insulin resistance through ER stress than its metabolite DPHP.
Collapse
Affiliation(s)
- Junjie Yue
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Caiting Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lianying Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Wang X, Zhao X, Shi D, Dong Z, Zhang X, Liang W, Liu L, Wang X, Wu F. Integrating Physiologically Based Pharmacokinetic Modeling-Based Forward Dosimetry and in Vitro Bioassays to Improve the Risk Assessment of Organophosphate Esters on Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1764-1775. [PMID: 36591971 DOI: 10.1021/acs.est.2c04576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ability to accurately assess the health risks of contaminants is limited by the shortcomings of toxicological standards. Using organophosphate esters (OPEs) as an example, this study attempted to integrate physiologically based pharmacokinetic (PBPK)-based forward dosimetry and in vitro bioassays to assess the likelihood of contaminants inducing biological effects in humans. The total exposure level of OPEs for Chinese residents was 19.5 ± 8.71 ng/kg/day with inhalation being the main exposure pathway. Then, human PBPK models were developed for individual OPEs to predict their steady-state concentrations in human tissues, and the predicted median levels in blood were close to the measurements. The reference doses (RfDs) of OPEs based on in vitro bioassays were comparable to in vivo animal-derived RfDs, demonstrating the reliability of in vitro bioassays. Therefore, the likelihood of OPEs inducing bioactivities in humans (RQin-vitro) was calculated using in vitro toxicity data and OPE levels in human tissues. The RQin-vitros of tris(2-chloroisopropyl) phosphate, tris(1,3-dichloropropyl) phosphate, and triphenyl phosphate (7.68 × 10-5-3.18 × 10-3) were comparable to the risks assessed using traditional RfDs (5.22 × 10-5-1.94 × 10-3), indicating the credibility of the method proposed in this study. This study establishes a new framework to improve the health risk assessment of contaminants without sufficient toxicity data and minimize the need for animal experimentation.
Collapse
Affiliation(s)
- Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing 100191, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Lingling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| |
Collapse
|