1
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Hu L, Cui J, Lu T, Wang Y, Jia J. Dual-signal amplified electrochemical aptasensor based on Au/MrGO and DNA nanospheres for ultra-sensitive detection of BPA without directly modified working electrode. CHEMOSPHERE 2024; 357:142063. [PMID: 38636912 DOI: 10.1016/j.chemosphere.2024.142063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Rapid and sensitive analysis of bisphenol A (BPA) is essential for preventing health risks to humans and animals. Hence, a signal-amplified electrochemical aptasensor without repetitive polishing and modification of working electrode was developed for BPA using Au-decorated magnetic reduced graphene oxide (Au/MrGO)-based recognition probe (RP) and DNA nanospheres (DNS)-based signal probe (SP) cooperative signal amplification. The DNS served as a signal molecule carrier and signal amplifier, while Au/MrGO acted as a signal amplifier and excellent medium for magnetic adsorption and separation. Moreover, utilizing the excellent magnetic properties of Au/MrGO eliminates the need for repetitive polishing and multi-step direct modification of the working electrode while ensuring that all detection processes take place in solution and that used Au/MrGO can be easily recycled. The proposed aptasensor exhibited not only good stability and selectivity, but also excellent sensitivity with a limit of detection (LOD) of 8.13 fg/mL (S/N = 3). The aptasensor's practicality was proven by spiking recovery tests on actual water samples and comparing the results with those detected by HPLC. The excellent sensitivity and selectivity make this aptasensor an alternative and promising avenue for rapid detection of BPA in environmental monitoring.
Collapse
Affiliation(s)
- Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Tao Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; International Copper Association, Ltd., 381 Huaihai Zhong Road, Shanghai, 200020, PR China
| | - Yalin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
3
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
4
|
Mashhadian A, Jian R, Tian S, Wu S, Xiong G. An Overview of Electrochemical Sensors Based on Transition Metal Carbides and Oxides: Synthesis and Applications. MICROMACHINES 2023; 15:42. [PMID: 38258161 PMCID: PMC10819441 DOI: 10.3390/mi15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Sensors play vital roles in industry and healthcare due to the significance of controlling the presence of different substances in industrial processes, human organs, and the environment. Electrochemical sensors have gained more attention recently than conventional sensors, including optical fibers, chromatography devices, and chemiresistors, due to their better versatility, higher sensitivity and selectivity, and lower complexity. Herein, we review transition metal carbides (TMCs) and transition metal oxides (TMOs) as outstanding materials for electrochemical sensors. We navigate through the fabrication processes of TMCs and TMOs and reveal the relationships among their synthesis processes, morphological structures, and sensing performance. The state-of-the-art biological, gas, and hydrogen peroxide electrochemical sensors based on TMCs and TMOs are reviewed, and potential challenges in the field are suggested. This review can help others to understand recent advancements in electrochemical sensors based on transition metal oxides and carbides.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| |
Collapse
|
5
|
Liu YH, Liu C, Wang XH, Li T, Zhang X. Electrochemical sensor for sensitive detection of bisphenol A based on molecularly imprinted TiO 2 with oxygen vacancy. Biosens Bioelectron 2023; 237:115520. [PMID: 37429148 DOI: 10.1016/j.bios.2023.115520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical and broadly used in plastics. The leakage of BPA in food and water cycles poses a significant risk to the environment and human health. Thus, monitoring the concentration of BPA to avoid its potential risk is highly important. In this work, a simple and efficient oxygen deficient molecularly imprinted TiO2 electrochemical sensor was proposed for the detection of BPA. The introduction both oxygen vacancies and molecular imprinting evidently enhanced the electrochemical oxidation signal of BPA. The sensor had a good linear response ranging from 0.01 μM to 20 μM with a limit of detection of 3.6 nM. Additionally, the sensor showed remarkable stability, reproducibility and interference resistant ability. It also exhibits excellent recovery during the detection of real water. These findings suggested that the sensor has the potential to be developed as a simple, efficient and low-cost monitoring system for the monitoring of BPA in water.
Collapse
Affiliation(s)
- Yu-Huan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xin-Hui Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xing Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
6
|
Awal A, Islam S, Islam T, Hasan MM, Nayem SMA, James MMH, Hossain MD, Ahammad AJS. Facile Chemical Synthesis of Co-Ru-Based Heterometallic Supramolecular Polymer for Electrochemical Oxidation of Bisphenol A: Kinetics Study at the Electrode/Electrolyte Interface. ACS OMEGA 2023; 8:28355-28366. [PMID: 37576688 PMCID: PMC10413823 DOI: 10.1021/acsomega.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Regardless of the adverse effects of Bisphenol A (BPA), its use in industry and in day-to-day life is increasing at a higher rate every year. In the present study, a simple and reliable chemical approach was used to develop an efficient BPA sensor based on a Co-Ru-based heterometallic supramolecular polymer (polyCoRu). Surface morphology and elemental analysis were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, functional group analysis was accomplished by Fourier transform infrared spectroscopy (FT-IR). UV-vis spectroscopy was used to confirm the complexation in the ratio of 0.5:0.5:1 (metal 1/metal 2/ligand). Electrochemical characterization of the synthesized polyCoRu was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The study identified two distinct linear dynamic ranges for the detection of BPA, 0.197-2.94 and 3.5-17.72 μM. The regression equation was utilized to determine the sensitivity and limit of detection (LOD), resulting in values of 0.6 μA cm-2 μM-1 and 0.02 μM (S/N = 3), respectively. The kinetics of BPA oxidation at the polyCoRu/GCE were investigated to evaluate the heterogeneous rate constant (k), charge transfer coefficient (α), and the number of electrons transferred during the oxidation and rate-determining step. A probable electrochemical reaction mechanism has been presented for further comprehending the phenomena occurring at the electrode surface. The practical applicability of the fabricated electrode was analyzed using tap water, resulting in a high percentage of recovery ranging from 96 to 105%. Furthermore, the reproducibility and stability data demonstrated the excellent performance of polyCoRu/GCE.
Collapse
Affiliation(s)
- Abdul Awal
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Santa Islam
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Tamanna Islam
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md. Mahedi Hasan
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - S. M. Abu Nayem
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | | |
Collapse
|
7
|
Zhang J, Li Y, Xie T, Cui Y, Mao R, Zhao X. Enhanced photoelectrocatalytic oxidation of hypophosphite and simultaneous recovery of metallic nickel via carbon aerogel cathode. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130601. [PMID: 36746082 DOI: 10.1016/j.jhazmat.2022.130601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 06/18/2023]
Abstract
Carbon aerogel (CA) cathode was adopted to an undivided-chamber photoelectrocatalytic system with TiO2 nanotube arrays (TNA) photoanode to enhance the oxidation of hypophosphite (H2PO2-) and simultaneous recovery of metallic nickel (Ni). Both the efficiencies of H2PO2- oxidation and Ni recovery were significantly enhanced after replacing Ti or carbon fiber paper cathode with CA cathode. With 1.0 mM H2PO2- and 1.0 mM Ni2+, the ratio of PO43- production increased from ∼41% or ∼54% to ∼100%, and the ratio of Ni recovery increased from ∼20% or ∼ 37% to ∼93% within 180 min at 3.0 V. H2PO2- was finally oxidized to PO43- by •OH radicals, which was speculated to be generated from UV/H2O2 and bound on TNA photoanode. Meanwhile, Ni2+ was eventually electro-reduced to metallic Ni by a two-electron reduction reaction. The efficiencies of H2PO2- oxidation and Ni recovery were favored at higher cell voltage, faintly acid conditions and larger H2PO2- concentration. The stability of this system exhibited that the ratio of PO43- production increased significantly in each cycle, which was attributed to the increase of H2O2 in-situ-generation via CA cathode caused by deposition of metallic Ni. Finally, the treatment of actual electroless nickel plating effluents was demonstrated.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yibing Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Tengfei Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yuexin Cui
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ran Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Shooshtari M, Vollebregt S, Vaseghi Y, Rajati M, Pahlavan S. The sensitivity enhancement of TiO 2-based VOCs sensor decorated by gold at room temperature. NANOTECHNOLOGY 2023; 34:255501. [PMID: 36958031 DOI: 10.1088/1361-6528/acc6d7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Detection of hazardous toxic gases for air pollution monitoring and medical diagnosis has attracted the attention of researchers in order to realize sufficiently sensitive gas sensors. In this paper, we fabricated and characterized a Titanium dioxide (TiO2)-based gas sensor enhanced using the gold nanoparticles. Thermal oxidation and sputter deposition methods were used to synthesize fabricated gas sensor. X-ray diffraction analysis was used to determine the anatase structure of TiO2samples. It was found that the presence of gold nanoparticles on the surface of TiO2enhances the sensitivity response of gas sensors by up to about 40%. The fabricated gas sensor showed a sensitivity of 1.1, 1.07 and 1.03 to 50 ppm of acetone, methanol and ethanol vapors at room temperature, respectively. Additionally, the gold nanoparticles reduce 50 s of response time (about 50% reduction) in the presence of 50 ppm ethanol vapor; and we demonstrated that the recovery time of the gold decorated TiO2sensor is less than 40 s. Moreover, we explain that the improved performance depends on the adsorption-desorption mechanism, and the chemical sensitization and electronic sensitization of gold nanoparticles.
Collapse
Affiliation(s)
- Mostafa Shooshtari
- Laboratory of Electronic Components, Technology, and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Sten Vollebregt
- Laboratory of Electronic Components, Technology, and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Yas Vaseghi
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Mahshid Rajati
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Saeideh Pahlavan
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran
| |
Collapse
|
9
|
Liu W, Zhang M, Guo L, Peng K, Man Z, Xie S, Liu P, Xie D, Wang S, Cheng F. Photoelectrochemical aptasensor based on nanocomposite of CdSe@SnS2 for ultrasensitive and selective detection of sulfamethazine. Mikrochim Acta 2022; 189:453. [DOI: 10.1007/s00604-022-05565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
|
10
|
Ramya M, Senthil Kumar P, Rangasamy G, Uma Shankar V, Rajesh G, Nirmala K, Saravanan A, Krishnapandi A. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. CHEMOSPHERE 2022; 308:136416. [PMID: 36099991 DOI: 10.1016/j.chemosphere.2022.136416] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Industrialization and globalization, both on an international and local scale, have caused large quantities of toxic chemicals to be released into the environment. Thus, developing an environmental pollutant sensor platform that is sensitive, reliable, and cost-effective is extremely important. In current years, considerable progress has been made in the expansion of electrochemical sensors and biosensors to monitor the environment using nanomaterials. A large number of emerging biomarkers are currently in existence in the biological fluids, clinical, pharmaceutical and bionanomaterial-based electrochemical biosensor platforms have drawn much attention. Electrochemical systems have been used to detect biomarkers rapidly, sensitively, and selectively using biomaterials such as biopolymers, nucleic acids, proteins etc. In this current review, several recent trends have been identified in the growth of electrochemical sensor platforms using nanotechnology such as carbon nanomaterials, metal oxide nanomaterials, metal nanoparticles, biomaterials and polymers. The integration strategies, applications, specific properties and future projections of nanostructured materials for emerging progressive sensor platforms are also observed. The objective of this review is to provide a comprehensive overview of nanoparticles in the field of electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | |
Collapse
|
11
|
Zhao Y, Yan Y, Liu C, Zhang D, Wang D, Ispas A, Bund A, Du B, Zhang Z, Schaaf P, Wang X. Plasma-Assisted Fabrication of Molecularly Imprinted NiAl-LDH Layer on Ni Nanorod Arrays for Glyphosate Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35704-35715. [PMID: 35894695 DOI: 10.1021/acsami.2c08500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An inorganic-framework molecularly imprinted NiAl layered double hydroxide (MI-NiAl-LDH) with specific template molecule (glyphosate pesticide, Glyp) recognition ability was prepared on Ni nanorod arrays (Ni NRAs) through electrodeposition followed by a low-temperature O2 plasma treatment. The freestanding Ni/MI-NiAl-LDH NRA electrode had highly enhanced sensitivity and selectivity. The electrocatalytic oxidation of Glyp was proposed to occur at Ni3+ centers in MI-NiAl-LDH, and the current response depended linearly on the Glyp concentration from 10.0 nmol/L to 1.0 μmol/L (R2 = 0.9906), with the limit of detection (LOD) being 3.1 nmol/L (S/N = 3). An exceptional discriminating capability with tolerance for other similar organophosphorus compounds was achieved. Molecular imprinting (N and P residues) affected the electronic structure of NiAl-LDH, triggering the formation of highly active NiOOH sites at relatively lower anodic potentials and substantially enhancing the electrocatalytic oxidation ability of the NiAl-LDH interface toward the C-N bonds in Glyp. In combination with the surface enrichment effect of MI-NiAl-LDH toward template molecules, the electrochemical oxidation signal intensity of Glyp increased significantly, with a greater peak separation from interfering molecules. These results challenge the common belief that the excellent performance of inorganic-framework molecularly imprinted interfaces arises from their specific adsorption of template molecules, providing new insight into the development of high-performance organic-pollutant-sensing electrodes.
Collapse
Affiliation(s)
- Yuguo Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Chunyue Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| | - Dong Wang
- Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MarcoNano®, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Adriana Ispas
- Fachgebiet Elektrochemie und Galvanotechnik, Institut für Werkstofftechnik und Institut für Mikro- und Nanotechnologien MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Andreas Bund
- Fachgebiet Elektrochemie und Galvanotechnik, Institut für Werkstofftechnik und Institut für Mikro- und Nanotechnologien MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Biao Du
- Beijing Yixingyuan Petrochemical Technology Co., Ltd., 101301 Beijing, People's Republic of China
| | - Zhengdong Zhang
- Center for Environmental Metrology, National Institute of Metrology, 100029 Beijing, People's Republic of China
| | - Peter Schaaf
- Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MarcoNano®, TU Ilmenau, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100124 Beijing, People's Republic of China
| |
Collapse
|
12
|
Kokulnathan T, Vishnuraj R, Chen SM, Pullithadathil B, Ahmed F, Hasan PMZ, Bilgrami AL, Kumar S. Tailored construction of one-dimensional TiO 2/Au nanofibers: Validation of an analytical assay for detection of diphenylamine in food samples. Food Chem 2022; 380:132052. [PMID: 35105505 DOI: 10.1016/j.foodchem.2022.132052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 12/16/2022]
Abstract
We report a one-dimensional titanium dioxide encapsulated with gold heterojunction nanofibers (TiO2/Au NFs) as robust electrocatalysts for electrochemical detection of diphenylamine (DPA). A TiO2/Au NFs were successfully synthesized by a coaxial electrospinning method. The formation of TiO2/Au NFs was confirmed by various analytical and spectroscopic approaches. The fabricated TiO2/Au NFs modified screen-printed carbon electrodes (SPCE) exhibit a well-enhanced detection activity towards DPA sensing as compared to other electrodes. Under the experimental conditions, the proposed electrode leading to the sensing range from 0.05 to 60 µM with a detection limit of 0.009 µM was obtained for the DPA detection. Moreover, the TiO2/Au NFs/SPCE showed good selectivity towards the electrochemical oxidation of DPA. Interestingly, the TiO2/Au NFs modified electrode was then applied to detect the effect of DPA on spiked content in the food samples.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | | | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Biji Pullithadathil
- Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004, India
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - P M Z Hasan
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia; Department of Physics, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, India
| |
Collapse
|
13
|
Huang J, Zhang T, Dong G, Zhu S, Yan F, Liu J. Direct and Sensitive Electrochemical Detection of Bisphenol A in Complex Environmental Samples Using a Simple and Convenient Nanochannel-Modified Electrode. Front Chem 2022; 10:900282. [PMID: 35720995 PMCID: PMC9204582 DOI: 10.3389/fchem.2022.900282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid, convenient, and sensitive detection of Bisphenol A (BPA) in complex environmental samples without the need for tedious pre-treatment is crucial for assessing potential health risks. Herein, we present an electrochemical sensing platform using a simple nanochannel-modified electrode, which enables the direct and sensitive detection of BPA in complex samples. A vertically ordered mesoporous silica-nanochannel film (VMSF) with high-density nanochannels is rapidly and stably grown on the surface of a electrochemically activated glassy carbon electrode (p-GCE) by using the electrochemically assisted self-assembly (EASA) method. The high antifouling capability of the VMSF/p-GCE sensor is proven by investigating the electrochemical behavior of BPA in the presence of model coexisting interfering molecules including amylum, protein, surfactant, and humic acid. The VMSF/p-GCE sensor can sensitively detect BPA ranged from 50 to 1.0 μM and 1.0–10.0 μM, with low detection limits (15 nM). Owing to the electrocatalytic performance and high potential resolution of p-GCE, the sensor exhibits high selectivity for BPA detection in the presence of common environmental pollutants, including bisphenol S (BPS), catechol (CC), hydroquinone (HQ), and 4-nitrophenol (4-NP). In combination with the good antifouling property of the VMSF, direct detection of BPA in environmental water samples and soil leaching solution (SLS) is also realized without separation pretreatment. The developed VMSF/p-GCE sensor demonstrated advantages of simple structure, high sensitivity, good antifouling performance, and great potential in direct electroanalysis of endocrine-disrupting compounds in complex samples.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- Heihe Water Resources and Ecological Protection Research Center, Lanzhou, China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guotao Dong
- Heihe Water Resources and Ecological Protection Research Center, Lanzhou, China
- *Correspondence: Guotao Dong, ; Jiyang Liu,
| | - Shanshan Zhu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fei Yan
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Guotao Dong, ; Jiyang Liu,
| |
Collapse
|
14
|
Manoj D, Rajendran S, Vasseghian Y, Ansar S, Gracia F, Soto-Moscoso M. Tailoring the heterojunction of TiO2 with multivalence CeO2 nanocrystals - for detection of toxic 2-aminophenol. Food Chem Toxicol 2022; 165:113182. [DOI: 10.1016/j.fct.2022.113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/24/2023]
|
15
|
Ren H, Tianxiang W. Electrochemical Synthesis Methods of Metal‐Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem 2022. [DOI: 10.1002/celc.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ren
- Nanjing Normal University School of Environment CHINA
| | - Wei Tianxiang
- Nanjing Normal University No. 1 Wenyuan Road, Qixia District Nanjing CHINA
| |
Collapse
|
16
|
Yang Q, Chen N, Zhang X, Ye Z, Yang Y. A Sensitive Electrochemical Sensor Based on Co
3
O
4
‐CeO
2
Composites Modified Glassy Carbon Electrode for the Determination of Bisphenol A. ChemistrySelect 2022. [DOI: 10.1002/slct.202104513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qin Yang
- Department of Resources & Environment Chengdu University of Information Technology Chengdu 610225 China
| | - Ninghua Chen
- Department of Resources & Environment Chengdu University of Information Technology Chengdu 610225 China
| | - Xuefeng Zhang
- Department of Resources & Environment Chengdu University of Information Technology Chengdu 610225 China
| | - Zhixiang Ye
- Department of Resources & Environment Chengdu University of Information Technology Chengdu 610225 China
| | - Yingchun Yang
- Department of Resources & Environment Chengdu University of Information Technology Chengdu 610225 China
| |
Collapse
|
17
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Zhao J, Xue S, Ji R, Li B, Li J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem Soc Rev 2021; 50:12070-12097. [PMID: 34533143 DOI: 10.1039/d1cs00237f] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalysis plays a vital role in energy conversion and storage in modern society. Localized surface plasmon resonance (LSPR) is a highly attractive approach to enhance the electrocatalytic activity and selectivity with solar energy. LSPR excitation can induce the transfer of hot electrons and holes, electromagnetic field enhancement, lattice heating, resonant energy transfer and scattering, in turn boosting a variety of electrocatalytic reactions. Although the LSPR-mediated electrocatalysis has been investigated, the underlying mechanism has not been well explained. Moreover, the efficiency is strongly dependent on the structure and composition of plasmonic metals. In this review, the currently proposed mechanisms for plasmon-mediated electrocatalysis are introduced and the preparation methods to design supported plasmonic nanostructures and related electrodes are summarized. In addition, we focus on the characterization strategies used for verifying and differentiating LSPR mechanisms involved at the electrochemical interface. Following that are highlights of representative examples of direct plasmonic metal-driven and indirect plasmon-enhanced electrocatalytic reactions. Finally, this review concludes with a discussion on the remaining challenges and future opportunities for coupling LSPR with electrocatalysis.
Collapse
Affiliation(s)
- Jian Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Rongrong Ji
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Bing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jinghong Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Karthick Raj A, Murugan C, Pandikumar A. Efficient photoelectrochemical reduction of carbon dioxide into alcohols assisted by photoanode driven water oxidation with gold nanoparticles decorated titania nanotubes. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Li Z, Hu J, Lou Z, Zeng L, Zhu M. Molecularly imprinted photoelectrochemical sensor for detecting tetrabromobisphenol A in indoor dust and water. Mikrochim Acta 2021; 188:320. [PMID: 34480212 DOI: 10.1007/s00604-021-04980-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
The gradual emissions of tetrabromobisphenol A (TBBPA) from the primitive recycling of E-waste create human health threats, which urgently require to develop an efficient, rapid yet simple detection method. The present study conducts a highly sensitive molecularly imprinted photoelectrochemical sensor (MIPES) containing molecularly imprinted (MI)-TiO2, Au, and reduced graphene oxide for the trace detection of TBBPA in indoor dust and surface water from an E-waste recycling area. The photocurrent response is used to evaluate the sensing performance of the MIPES toward TBBPA detection. The working potential for amperometry is 0.48 V. The wavelength range for photoelectrochemical detection is 320-780 nm. The sensor shows a detection range of 1.68 to 100 nM with a low limit of detection of 0.51 nM (LOD = 3 sb/S) and a limit of quantification of 1.68 nM (LOQ = 3.3 LOD). In addition, the MIPES sensor exhibits rapid, excellent reproducibility, selectivity, and long-term stability toward TBBPA detection. The relative standard deviation of three measurements for real samples is less than 7.0%, and the recovery range is 90.0-115%. The surface of molecular imprinting contributes to the high charge separation and sensing photocurrent response of TBBPA, which is confirmed by single-particle photoluminescence spectroscopy. The present study provides a new facile sensor with highly sensitive yet rapid response to detect environmental pollutants in E-waste by using the MIPES.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Jiayue Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Zaizhu Lou
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China.
| |
Collapse
|
22
|
Huang Z, Chen Z, Qayum A, Zhao X, Xia H, Lu F, Hu L. Enhanced photocatalytic degradation of 4-chlorophenol under visible light over carbon nitride nanosheets with carbon vacancies. NANOTECHNOLOGY 2021; 32:415704. [PMID: 34171851 DOI: 10.1088/1361-6528/ac0eac] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional graphitic carbon nitride (g-C3N4, GCN) is considered as one of the promising visible light-responsive photocatalysts for energy storage and environmental remediation. However, the photocatalytic performance of pristine GCN is restricted by the inherent shortcomings of rapid charge carrier recombination and limited absorption of visible light. Vacancy engineering is widely accepted as the auspicious approach for boosting the photocatalytic activity of GCN-based photocatalysts. Herein, a magnesium thermal calcination method has been developed to reconstruct GCN, in which magnesium serves as a carbon etcher for introducing carbon vacancies and pores into GCN (Vc-GCN). The fabricated Vc-GCN demonstrates excellent photocatalytic performances of degrading hazardous 4-chlorophenol under visible light irradiation benefiting from the improved carrier separating and light absorption ability as well as rich reactive sites. The optimal Vc-GCN sample delivers 2.3-fold enhancement from the pristine GCN. The work provides a tactic to prepare GCN photocatalysts with controllable carbon vacancies and for a candidate for the degradation of organic pollutants from the environment.
Collapse
Affiliation(s)
- Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Zhenjie Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Abdul Qayum
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Xia Zhao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Hong Xia
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Fushen Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| |
Collapse
|
23
|
Hasan MM, Islam T, Imran A, Alqahtani B, Shah SS, Mahfoz W, Karim MR, Alharbi HF, Aziz MA, Ahammad AS. Mechanistic insights of the oxidation of bisphenol A at ultrasonication assisted polyaniline-Au nanoparticles composite for highly sensitive electrochemical sensor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137968] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Xu Z, Wang R, Chen Y, Chen M, Zhang J, Cheng Y, Xu J, Chen W. Three-dimensional assembly and disassembly of Fe 3O 4-decorated porous carbon nanocomposite with enhanced transversal relaxation for magnetic resonance sensing of bisphenol A. Mikrochim Acta 2021; 188:90. [PMID: 33598733 DOI: 10.1007/s00604-021-04718-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
The design and construction of a novel magnetic resonance sensor (MRS) is presented for bisphenol A (BPA) detection. The MRS has been built based on the core component of magnetic Fe3O4 nanoparticles (~ 40 nm), which were uniformly distributed in nanoporous carbon (abbreviated as Fe3O4@NPC). The synthesis was derived from the calcination of the metal organic framework (MOF) precursor of Fe-MIL-101 at high temperature. Fe3O4@NPC was confirmed with enhanced transversal relaxation with r2 value of 118.2 mM-1 s-1, which was around 1.7 times higher than that of the naked Fe3O4 nanoparticle. This enhancement is attributed to the excellent proton transverse relaxation rate of Fe3O4@NPC caused by the reduced self-diffusion coefficient of water molecules in the vicinity of Fe3O4 nanoparticles in the nanoporous carbon. BPA antibody (Ab) and antigen (Ag)-ovalbumin (OVA) were immobilized onto the Fe3O4@NPC to form Ab-Fe3O4@NPC and Ag-Fe3O4@NPC, respectively. These two composites can cause the three-dimensional assembly of Fe3O4@NPC via immunological recognition. The presence of BPA can compete with antigen-OVA to combine with Ab-Fe3O4@NPC, thereby breaking the assembly process (disassembly). The difference in the change of the T2 value before and after adding BPA can thus be used to monitor BPA. The proposed MRS not only revealed a wide linear range of BPA concentration from 0.05 to 50 ng mL-1 with an extremely low detection limit of 0.012 ng mL-1 (S/N = 3), but also displayed high selectivity towards matrix interferences. The recoveries of BPA ranged from 95.6 to 108.4% for spiked tea π, and 93.4 to 104.7% for spiked canned oranges samples, respectively, and the RSD (n = 3) was less than 4.4% for 3 successive assays. The versatility of Fe3O4@NPC with customized relaxation responses provides the possibility for the adaptation of magnetic resonance platforms for food safety development. The magnetic Fe3O4 nanoparticles are uniformly dispersed in the nanoporous carbon (Fe3O4@NPC), which derived from the calcinating of the metal organic framework (MOF) precursor of Fe-MIL-101. And the magnetic Fe3O4@NPCs are adopted for the construction of magnetic resonance sensor (MRS) for bisphenol A (BPA) detection.
Collapse
Affiliation(s)
- Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Rong Wang
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yanqiu Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Maolong Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Zhang
- College of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Jianguo Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
25
|
Khaliq N, Rasheed MA, Khan M, Maqbool M, Ahmad M, Karim S, Nisar A, Schmuki P, Cho SO, Ali G. Voltage-Switchable Biosensor with Gold Nanoparticles on TiO 2 Nanotubes Decorated with CdS Quantum Dots for the Detection of Cholesterol and H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3653-3668. [PMID: 33439005 DOI: 10.1021/acsami.0c19979] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A thin layer of gold nanoparticles (Au NPs) sputtered on cadmium sulfide quantum dots (CdS QDs) decorated anodic titanium dioxide nanotubes (TNTs) (Au/CdS QDs/TNTs) was fabricated and explored for the nonenzymatic detection of cholesterol and hydrogen peroxide (H2O2). Morphological studies of the sensor revealed the formation of uniform nanotubes decorated with a homogeneously dispersed CdS QDs and Au NPs layer. The electrochemical measurements showed an enhanced electrocatalytic performance with a fast electron transfer (∼2 s) between the redox centers of each analyte and electrode surface. The hybrid nanostructure (Au/CdS QDs/TNTs) electrode exhibited about a 6-fold increase in sensitivity for both cholesterol (10,790 μA mM-1 cm-2) and H2O2 (78,833 μA mM-1 cm-2) in analyses compared to the pristine samples. The hybrid electrode utilized different operational potentials for both analytes, which may lead to a voltage-switchable dual-analyte biosensor with a higher selectivity. The biosensor also demonstrated a good reproducibility, thermal stability, and increased shelf life. In addition, the clinical significance of the biosensor was tested for cholesterol and H2O2 in real blood samples, which showed maximum relative standard deviations of 1.8 and 2.3%, respectively. These results indicate that a Au/CdS QDs/TNTs-based hybrid nanostructure is a promising choice for an enzyme-free biosensor due to its suitable band gap alignment and higher electrocatalytic activities.
Collapse
Affiliation(s)
- Nilem Khaliq
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Muhammad Asim Rasheed
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Maaz Khan
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, the University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Mashkoor Ahmad
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Shafqat Karim
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Amjad Nisar
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Patrik Schmuki
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
- Department of Chemistry, King Abdulaziz University, Jeddah 21413, Saudi Arabia
| | - Sung Oh Cho
- Department of Nuclear and Quantum Engineering (NQe), KAIST, Daejeon 34141, South Korea
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| |
Collapse
|
26
|
GORDUK O. Poly(glutamic acid) Modified Pencil Graphite Electrode for Voltammetric Determination of Bisphenol A. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.728165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
27
|
Li Z, Zhu M. Detection of pollutants in water bodies: electrochemical detection or photo-electrochemical detection? Chem Commun (Camb) 2020; 56:14541-14552. [PMID: 33118579 DOI: 10.1039/d0cc05709f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The massive discharge of pollutants including endocrine-disrupting chemicals (EDCs), heavy metals, pharmaceuticals and personal care products (PPCPs) into water bodies is endangering the ecological environment and human health, and needs to be accurately detected. Both electrochemical and photo-electrochemical detection methods have been widely used for the detection of these pollutants, however, which one is better for the detection of different environmental pollutants? In this feature article, different electrochemical and photo-electrochemical detection methods are summarized, including the principles, classification, common catalysts, and applications. By summarizing the advantages and disadvantages of different detection methods, this review provides a guide for other researchers to detect pollutants in water bodies by using electrochemical and photo-electrochemical analysis.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China.
| | | |
Collapse
|
28
|
Grochowska K, Nedyalkov N, Karczewski J, Haryński Ł, Śliwiński G, Siuzdak K. Anodic titania nanotubes decorated with gold nanoparticles produced by laser-induced dewetting of thin metallic films. Sci Rep 2020; 10:20506. [PMID: 33239673 PMCID: PMC7688952 DOI: 10.1038/s41598-020-77710-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Herein, we combine titania layers with gold species in a laser-supported process and report a substantial change of properties of the resulting heterostructures depending on the major processing parameters. Electrodes were fabricated via an anodisation process complemented with calcination to ensure a crystalline phase, and followed by magnetron sputtering of metallic films. The obtained TiO2 nanotubes with deposited thin (5, 10 nm) Au films were treated with a UV laser (355 nm) to form Au nanoparticles on top of the nanotubes. It was proven that selected laser working parameters ensure not only the formation of Au nanoparticles, but also simultaneously provide preservation of the initial tubular architecture, while above-threshold laser fluences result in partial destruction (melting) of the top layer of the nanotubes. For almost all of the samples, the crystalline phase of the nanotubes observed in Raman spectra was maintained independently of the laser processing parameters. Enhanced photoresponse up to ca 6 mA/cm2 was demonstrated by photoelectrochemical measurements on samples obtained by laser annealing of the 10 nm Au coating on a titania support. Moreover, a Mott-Schottky analysis indicated the dramatically increased (two orders of magnitude) concentration of donor density in the case of a laser-treated Au-TiO2 heterojunction compared to reference electrodes.
Collapse
Affiliation(s)
- Katarzyna Grochowska
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland.
| | - Nikolay Nedyalkov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., 1784, Sofia, Bulgaria
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233, Gdańsk, Poland
| | - Łukasz Haryński
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland
| | - Gerard Śliwiński
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland
| |
Collapse
|
29
|
Cai G, Yu Z, Tang D. Actuating photoelectrochemical sensing sensitivity coupling core-core-shell Fe3O4@C@TiO2 with molecularly imprinted polypyrrole. Talanta 2020; 219:121341. [DOI: 10.1016/j.talanta.2020.121341] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
|
30
|
Piro B, Tran HV, Thu VT. Sensors Made of Natural Renewable Materials: Efficiency, Recyclability or Biodegradability-The Green Electronics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5898. [PMID: 33086552 PMCID: PMC7594081 DOI: 10.3390/s20205898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/24/2023]
Abstract
Nowadays, sensor devices are developing fast. It is therefore critical, at a time when the availability and recyclability of materials are, along with acceptability from the consumers, among the most important criteria used by industrials before pushing a device to market, to review the most recent advances related to functional electronic materials, substrates or packaging materials with natural origins and/or presenting good recyclability. This review proposes, in the first section, passive materials used as substrates, supporting matrixes or packaging, whether organic or inorganic, then active materials such as conductors or semiconductors. The last section is dedicated to the review of pertinent sensors and devices integrated in sensors, along with their fabrication methods.
Collapse
Affiliation(s)
- Benoît Piro
- ITODYS, CNRS, Université de Paris, F-75006 Paris, France
| | - Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST), 1st Dai Co Viet Road, 10000 Hanoi, Vietnam;
| | - Vu Thi Thu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi, Vietnam;
| |
Collapse
|
31
|
Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125193] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Paradowska E, Arkusz K, Pijanowska DG. Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4269. [PMID: 32992707 PMCID: PMC7578957 DOI: 10.3390/ma13194269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023]
Abstract
The increasing interest of attachment of gold nanoparticles (AuNPs) on titanium dioxide nanotubes (TNTs) has been devoted to obtaining tremendous properties suitable for biosensor applications. Achieving precise control of the attachment and shape of AuNPs by methods described in the literature are far from satisfactory. This work shows the comparison of physical adsorption (PA), cyclic voltammetry (CV) and chronoamperometry (CA) methods and the parameters of these methods on TNTs properties. The structural, chemical, phase and electrochemical characterizations of TNTs, Au/TNTs, AuNPs/TNTs are carried out using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The use of PA methods does not allow the deposition of AuNPs on TNTs. CV allows easily obtaining spherical nanoparticles, for which the diameter increases from 20.3 ± 2.9 nm to 182.3 ± 51.7 nm as a concentration of tetrachloroauric acid solution increase from 0.1 mM to 10 mM. Increasing the AuNPs deposition time in the CA method increases the amount of gold, but the AuNPs diameter does not change (35.0 ± 5 nm). Importantly, the CA method also causes the dissolution of the nanotubes layer from 1000 ± 10.0 nm to 823 ± 15.3 nm. Modification of titanium dioxide nanotubes with gold nanoparticles improved the electron transfer and increased the corrosion resistance, as well as promoted the protein adsorption. Importantly, after the deposition of bovine serum albumin, an almost 5.5-fold (324%) increase in real impedance, compared to TNTs (59%) was observed. We found that the Au nanoparticles-especially those with smaller diameter-promoted the stability of bovine serum albumin binding to the TNTs platform. It confirms that the modification of TNTs with gold nanoparticles allows the development of the best platform for biosensing applications.
Collapse
Affiliation(s)
- Ewa Paradowska
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Zygmunta Szafrana 4 Street, 65-516 Zielona Gora, Poland;
| | - Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Zygmunta Szafrana 4 Street, 65-516 Zielona Gora, Poland;
| | - Dorota G. Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 Street, 02-109 Warszawa, Poland;
| |
Collapse
|
33
|
Si Y, Zhang AY, Liu C, Pei DN, Yu HQ. Stable Electrochemical Determination of Dopamine by a Fluorine-Terminated {001}-Exposed TiO 2 Single Crystal Sensor. Anal Chem 2020; 92:9629-9639. [PMID: 32605362 DOI: 10.1021/acs.analchem.0c00845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photochemical oxidation is able to effectively regenerate the fouled electrode in electrochemical pollutant monitoring, while its regeneration capacity is limited by the surface-bound hydroxyl radical speciation with low activity and mobility, which is attributed to the dissociated water adsorption on hydrophilic metal oxides. In this work, fluorine-terminated {001}-exposed TiO2 single crystals (F-TiO2) are rationally designed to construct an Au-based electrochemical sensor (Au/F-TiO2) for dopamine (DA) detection in different matrices. The Au/F-TiO2 sensor exhibits an efficient and stable detection capacity in both environmental and biological samples. A superior photochemical regeneration capacity is obtained on the Au/F-TiO2 electrode with much reduced matrix effects under UV irradiation. Spectral observation, crystallographic analysis, pollutant degradation performance, radical inhibition, and surface enhanced Raman scattering tests reveal that both the fluorine-terminated surface chemical features and the bulk-free radical speciation are mainly responsible for the superior photochemical regeneration capacity of the Au/F-TiO2 electrode. Even for the real biological samples, a stable electrochemical DA detection is also achieved on the Au/F-TiO2 sensor. Our work establishes a new approach to refine electrochemical sensors for stable monitoring and provides a robust photoactive electrode substrate with high efficiency and low cost for practical applications.
Collapse
Affiliation(s)
- Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.,Department of Municipal Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
34
|
Khanmohammadi A, Jalili Ghazizadeh A, Hashemi P, Afkhami A, Arduini F, Bagheri H. An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01940-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Alam AU, Deen MJ. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Anal Chem 2020; 92:5532-5539. [DOI: 10.1021/acs.analchem.0c00402] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arif U. Alam
- Electrical and Computer Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - M. Jamal Deen
- Electrical and Computer Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
36
|
Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020; 206:120210. [DOI: 10.1016/j.talanta.2019.120210] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
|
37
|
Yang Y, Liang J, Jin W, Li Y, Xuan M, Wang S, Sun X, Chen C, Zhang J. The design and growth of peanut-like CuS/BiVO4 composites for photoelectrochemical sensing. RSC Adv 2020; 10:14670-14678. [PMID: 35497162 PMCID: PMC9051948 DOI: 10.1039/d0ra01307b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/18/2020] [Indexed: 01/14/2023] Open
Abstract
In this study, the CuS/BiVO4-X (where X represents the mass percentage of CuS associated with CuS/BiVO4; X = 2%, 5% and 7%) p–n heterostructures were fabricated using a two-step hydrothermal method.
Collapse
Affiliation(s)
- Yang Yang
- Clinical Bioinformatics Experimental Center
- Henan Provincial People's Hospital
- People's Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Junting Liang
- Clinical Bioinformatics Experimental Center
- Henan Provincial People's Hospital
- People's Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Wenwen Jin
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Yingyue Li
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Menghui Xuan
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Shijie Wang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Xiaoqian Sun
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center
- Henan Provincial People's Hospital
- People's Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
38
|
The Influence of the Parameters of a Gold Nanoparticle Deposition Method on Titanium Dioxide Nanotubes, Their Electrochemical Response, and Protein Adsorption. BIOSENSORS-BASEL 2019; 9:bios9040138. [PMID: 31756994 PMCID: PMC6956335 DOI: 10.3390/bios9040138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
The goal of this research was to find the best conditions to prepare titanium dioxide nanotubes (TNTs) modified with gold nanoparticles (AuNPs). This paper, for the first time, reports on the influence of the parameters of cyclic voltammetry process (CV) -based AuNP deposition, i.e., the number of cycles and the concentration of gold salt solution, on corrosion resistance and the capacitance of TNTs. Another innovation was to fabricate AuNPs with well-formed spherical geometry and uniform distribution on TNTs. The AuNPs/TNTs were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and open-circuit potential measurement. From the obtained results, the correlation between the deposition process parameters, the AuNP diameters, and the electrical conductivity of the TNTs was found in a range from 14.3 ± 1.8 to 182.3 ± 51.7 nm. The size and amount of the AuNPs could be controlled by the number of deposition cycles and the concentration of the gold salt solution. The modification of TNTs using AuNPs facilitated electron transfer, increased the corrosion resistance, and caused better adsorption properties for bovine serum albumin.
Collapse
|
39
|
Gao J, He P, Yang T, Zhou L, Wang X, Chen S, Lei H, Zhang H, Jia B, Liu J. Electrodeposited NiO/graphene oxide nanocomposite: An enhanced voltammetric sensing platform for highly sensitive detection of uric acid, dopamine and ascorbic acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Zhao J, Cheng L, Wang J, Liu Y, Yang J, Xu Q, Chen R, Ni H. Heteroatom-doped carbon nanofilm embedded in highly ordered TiO2 nanotube arrays by thermal nitriding with enhanced electrochemical activity. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Liu C, Zhang AY, Si Y, Pei DN, Yu HQ. Photochemical Protection of Reactive Sites on Defective TiO 2- x Surface for Electrochemical Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7641-7652. [PMID: 31150211 DOI: 10.1021/acs.est.9b01307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The electrode is the key in electrochemical process for water and wastewater treatment. Many nonstoichiometric metal oxides are active electrode materials but have poor stability under strong anodic polarization due to their susceptible nature of the oxygen vacancies on surface and subsurface as defective reactive sites. In this work, a novel photochemical protecting strategy is proposed to stabilize the defective reactive sites on the TiO2- x surface and subsurface for long-term anodic oxidation of pollutants. With this strategy, a novel photoassisted electrochemical system at low anodic bias is further constructed. Such a system exhibits a high protecting capacity at a low operation cost for electrochemical degradation of bisphenol A (BPA), a typical persistent organic pollutant. Its excellent photochemical protecting capacity is found to be mainly attributed to the mild non-band-gap excitation pathways on the defective TiO2- x electrode under both visible-light irradiation and moderate anodic polarization. Under real sunlight irradiation, a 20 run cyclic test for BPA degradation demonstrates the excellent performance and stability of the constructed system at low bias without significant oxygen evolution. Our work provides a new opportunity to utilize the defective and reactive TiO2- x for efficient, stable, and cost-effective electrochemical water treatment with the aid of its photo- and electrochemical bifunctional properties.
Collapse
Affiliation(s)
- Chang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
- Department of Municipal Engineering , Hefei University of Technology , Hefei , 230009 , China
| | - Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| |
Collapse
|
42
|
Si Y, Zhang AY, Liu C, Pei DN, Yu HQ. Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO 2 single crystals. WATER RESEARCH 2019; 157:30-39. [PMID: 30952006 DOI: 10.1016/j.watres.2019.03.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a semi-persistent environmental endocrine disrupter and widely present in aqueous environments. Electrochemical detection is an effective method to monitor pollutants like BPA in aqueous environments. However, the electrode fouling from anodic polymeric products is one main barrier of electrochemical sensors for their practical applications. In this work, a renewable electrochemical sensor was rationally designed, constructed and tested for efficient BPA detection. The TiO2 anodic material was surface-engineered by inorganic-framework molecular imprinting sites with tailored morphological shape, exposed facet and crystal structure. This electrode could be activated mainly as an electrochemical catalyst and partially as a photochemical catalyst. The developed TiO2-based sensor exhibited a good detection reliability and cyclic stability for determining BPA in water samples, with an electrochemical signal decrease of less than 5.0% in 10-run cyclic tests. By virtue of the bi-functional properties of the tailored TiO2 anodic material, a unique photo-assisted electrochemical sensor was further developed, in which analyte digestion and analytical signal originated mainly from anodic conversion. Such a synergistic digesting mechanism distinguishes it from the reported electro-assisted photochemical TiO2 sensors. Our work provides a robust sensor for monitoring pollutants in aqueous environments and a new opportunity to develop renewable electrode materials with good reusability.
Collapse
Affiliation(s)
- Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Chang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
43
|
Zhang Y, Xu M, Gao P, Gao W, Bian Z, Jia N. Photoelectrochemical sensing of dopamine using gold-TiO2 nanocomposites and visible-light illumination. Mikrochim Acta 2019; 186:326. [DOI: 10.1007/s00604-019-3401-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
44
|
Lu M, Wu X, Hao C, Xu C, Kuang H. An Ultrasensitive Electrochemical Immunosensor for Nonylphenol Leachate from Instant Noodle Containers in Southeast Asia. Chemistry 2019; 25:7023-7030. [DOI: 10.1002/chem.201900806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Meiru Lu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- International Joint Research Laboratory for Biointerface, and Biodetection and School of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu ProvinceJiangnan University Wuxi Jiangsu 214122 P.R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- International Joint Research Laboratory for Biointerface, and Biodetection and School of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu ProvinceJiangnan University Wuxi Jiangsu 214122 P.R. China
| | - Changlong Hao
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- International Joint Research Laboratory for Biointerface, and Biodetection and School of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu ProvinceJiangnan University Wuxi Jiangsu 214122 P.R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- International Joint Research Laboratory for Biointerface, and Biodetection and School of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu ProvinceJiangnan University Wuxi Jiangsu 214122 P.R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- International Joint Research Laboratory for Biointerface, and Biodetection and School of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P.R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu ProvinceJiangnan University Wuxi Jiangsu 214122 P.R. China
| |
Collapse
|
45
|
Zhao X, Zhao H, Yan L, Li N, Shi J, Jiang C. Recent Developments in Detection Using Noble Metal Nanoparticles. Crit Rev Anal Chem 2019; 50:97-110. [DOI: 10.1080/10408347.2019.1576496] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Haobin Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Na Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
46
|
Liu M, Tang F, Yang Z, Xu J, Yang X. Recent Progress on Gold-Nanocluster-Based Fluorescent Probe for Environmental Analysis and Biological Sensing. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1095148. [PMID: 30719370 PMCID: PMC6334364 DOI: 10.1155/2019/1095148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/18/2018] [Accepted: 12/02/2018] [Indexed: 05/07/2023]
Abstract
Gold nanoclusters (AuNCs) are one of metal nanoclusters, which play a pivotal role in the recent advances in the research of fluorescent probes for their fluorescence effect. They are favored by most researchers due to their strong stability in fluorescence and adjustability in fluorescence wavelength when compared to traditional organic fluorescent dyes. In this review, we introduce various synthesis strategies of gold-nanocluster-based fluorescent probes and summarize their application for environmental analysis and biological sensing. The use of gold-nanocluster-based fluorescent probes for the analysis of heavy metals and inorganic and organic pollutants is covered in the environmental analysis while biological labeling, imaging, and detection are presented in biological sensing.
Collapse
Affiliation(s)
- Mingxian Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Zhengli Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| |
Collapse
|
47
|
Zhou Y, Li X, Wang Y, Tai H, Guo Y. UV Illumination-Enhanced Molecular Ammonia Detection Based On a Ternary-Reduced Graphene Oxide–Titanium Dioxide–Au Composite Film at Room Temperature. Anal Chem 2018; 91:3311-3318. [DOI: 10.1021/acs.analchem.8b04347] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xian Li
- Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yongcai Guo
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
48
|
Anu Prathap MU, Kaur B, Srivastava R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. CHEM REC 2018; 19:883-907. [DOI: 10.1002/tcr.201800068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- M. U. Anu Prathap
- Department of Biological Systems Engineering; University of Wisconsin−Madison; 460 Henry Mall Madison, WI 53706 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Balwinder Kaur
- Department of Chemistry; University of Massachusetts Lowell; 256 Riverside Street,Olney Hall Lowell, MA 01845 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| |
Collapse
|
49
|
Fan Z, Fan L, Shuang S, Dong C. Highly sensitive photoelectrochemical sensing of bisphenol A based on zinc phthalocyanine/TiO2 nanorod arrays. Talanta 2018; 189:16-23. [DOI: 10.1016/j.talanta.2018.06.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
|
50
|
Lead(II) ion detection in purified drinking water by nickel hexacyanoferrate-modified n-Si electrode in presence of dihydroxybenzene. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4063-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|